modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
proycon/bert-ner-cased-conll2002-nld
2021-05-20T03:05:15.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "model.ot", "pytorch_model.bin", "test_results.txt", "vocab.txt" ]
proycon
17
transformers
proycon/bert-ner-cased-sonar1-nld
2021-05-20T03:06:13.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "model.ot", "pytorch_model.bin", "test_results.txt", "vocab.txt" ]
proycon
23
transformers
proycon/bert-pos-cased-deepfrog-nld
2021-05-20T03:07:09.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "model.ot", "pytorch_model.bin", "test_results.txt", "vocab.txt" ]
proycon
61
transformers
proycon/robbert-ner-cased-sonar1-nld
2021-05-20T19:41:07.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "labels.txt", "merges.txt", "model.ot", "pytorch_model.bin", "special_tokens_map.json", "test_predictions.txt", "test_results.txt", "tokenizer_config.json", "vocab.json" ]
proycon
26
transformers
proycon/robbert-pos-cased-deepfrog-nld
2021-05-20T19:42:26.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "labels.txt", "merges.txt", "model.ot", "pytorch_model.bin", "special_tokens_map.json", "test_results.txt", "tokenizer_config.json", "vocab.json" ]
proycon
36
transformers
proycon/robbert2-ner-cased-sonar1-nld
2021-05-20T19:43:40.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "labels.txt", "merges.txt", "model.ot", "pytorch_model.bin", "special_tokens_map.json", "test_predictions.txt", "test_results.txt", "tokenizer_config.json", "vocab.json" ]
proycon
37
transformers
proycon/robbert2-pos-cased-deepfrog-nld
2021-05-20T19:45:16.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "added_tokens.json", "config.json", "eval_results.txt", "flax_model.msgpack", "labels.txt", "merges.txt", "model.ot", "pytorch_model.bin", "special_tokens_map.json", "test_predictions.txt", "test_results.txt", "tokenizer_config.json", "vocab.json" ]
proycon
54
transformers
pspatel2/storygen
2021-05-23T12:09:14.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "added_tokens.json", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
pspatel2
45
transformers
pucpr/bioBERTpt-squad-v1.1-portuguese
2021-05-20T03:08:26.000Z
[ "pytorch", "tf", "jax", "bert", "question-answering", "pt", "transformers", "bioBERTpt" ]
question-answering
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
pucpr
163
transformers
--- language: pt tags: - question-answering - bert - bioBERTpt - pytorch metrics: - squad widget: - text: "O que é AVC?" context: "O AVC (Acidente vascular cerebral) é a segunda principal causa de morte no Brasil e a principal causa de incapacidade em adultos, retirando do mercado de trabalho milhares de brasileiros. A cada 5 minutos ocorre uma morte por AVC em nosso país. Ele é uma alteração súbita na circulação de sangue em alguma região encéfalo (composto pelo cérebro, cerebelo e tronco encefálico)." - text: "O que significa a sigla AVC?" context: "O AVC (Acidente vascular cerebral) é a segunda principal causa de morte no Brasil e a principal causa de incapacidade em adultos, retirando do mercado de trabalho milhares de brasileiros. A cada 5 minutos ocorre uma morte por AVC em nosso país. Ele é uma alteração súbita na circulação de sangue em alguma região encéfalo (composto pelo cérebro, cerebelo e tronco encefálico)." - text: "Do que a região do encéfalo é composta?" context: "O AVC (Acidente vascular cerebral) é a segunda principal causa de morte no Brasil e a principal causa de incapacidade em adultos, retirando do mercado de trabalho milhares de brasileiros. A cada 5 minutos ocorre uma morte por AVC em nosso país. Ele é uma alteração súbita na circulação de sangue em alguma região encéfalo (composto pelo cérebro, cerebelo e tronco encefálico)." - text: "O que causa a interrupção do oxigênio?" context: "O oxigênio é um elemento essencial para a atividade normal do nosso corpo; ele juntamente com os nutrientes são transportados pelo sangue, através das nossas artérias, estas funcionam como mangueiras direcionando o sangue para regiões específicas. Quando esse transporte é impedido e o oxigênio não chega as áreas necessárias parte do encéfalo não consegue obter o sangue (e oxigênio) de que precisa, então ele e as células sofrem lesão ou morrem. Essa interrupção pode ser causada por duas razões, um entupimento ou um vazamento nas artérias. desta forma temos dois tipos de AVC." --- # BioBERTpt-squad-v1.1-portuguese for QA (Question Answering) This is a clinical and biomedical model trained with generic QA questions. This model was finetuned on SQUAD v1.1, with the dataset SQUAD v1.1 in portuguese, from the Deep Learning Brasil group on Google Colab. See more details [here](https://huggingface.co/pierreguillou/bert-base-cased-squad-v1.1-portuguese). ## Performance The results obtained are the following: ``` f1 = 80.06 exact match = 67.52 ``` ## See more Our repo: https://github.com/HAILab-PUCPR/
pucpr/biobertpt-all
2021-05-20T03:09:58.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "pt", "dataset:biomedical literature from Scielo and Pubmed", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
pucpr
253
transformers
--- language: "pt" widget: - text: "O paciente recebeu [MASK] do hospital." - text: "O médico receitou a medicação para controlar a [MASK]." - text: "O principal [MASK] da COVID-19 é tosse seca." - text: "O vírus da gripe apresenta um [MASK] constituído por segmentos de ácido ribonucleico." datasets: - biomedical literature from Scielo and Pubmed thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt"> # BioBERTpt - Portuguese Clinical and Biomedical BERT The [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) paper contains clinical and biomedical BERT-based models for Portuguese Language, initialized with BERT-Multilingual-Cased & trained on clinical notes and biomedical literature. This model card describes the BioBERTpt(all) model, a full version with clinical narratives and biomedical literature in Portuguese language. ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-all") model = AutoModel.from_pretrained("pucpr/biobertpt-all") ``` ## More Information Refer to the original paper, [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) for additional details and performance on Portuguese NER tasks. ## Questions? Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
pucpr/biobertpt-bio
2021-05-20T03:11:39.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "pt", "dataset:biomedical literature from Scielo and Pubmed", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
pucpr
24
transformers
--- language: "pt" widget: - text: "O principal [MASK] da COVID-19 é tosse seca." - text: "O vírus da gripe apresenta um [MASK] constituído por segmentos de ácido ribonucleico." datasets: - biomedical literature from Scielo and Pubmed thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt"> # BioBERTpt - Portuguese Clinical and Biomedical BERT The [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) paper contains clinical and biomedical BERT-based models for Portuguese Language, initialized with BERT-Multilingual-Cased & trained on clinical notes and biomedical literature. This model card describes the BioBERTpt(bio) model, a biomedical version of BioBERTpt, trained on Portuguese biomedical literature from scientific papers from Pubmed and Scielo. ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-bio") model = AutoModel.from_pretrained("pucpr/biobertpt-bio") ``` ## More Information Refer to the original paper, [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) for additional details and performance on Portuguese NER tasks. ## Questions? Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
pucpr/biobertpt-clin
2021-05-20T03:14:08.000Z
[ "pytorch", "tf", "jax", "bert", "masked-lm", "pt", "dataset:biomedical literature from Scielo and Pubmed", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
pucpr
72
transformers
--- language: "pt" widget: - text: "O paciente recebeu [MASK] do hospital." - text: "O médico receitou a medicação para controlar a [MASK]." datasets: - biomedical literature from Scielo and Pubmed thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/BioBERTpt/master/images/logo-biobertpr1.png" alt="Logo BioBERTpt"> # BioBERTpt - Portuguese Clinical and Biomedical BERT The [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) paper contains clinical and biomedical BERT-based models for Portuguese Language, initialized with BERT-Multilingual-Cased & trained on clinical notes and biomedical literature. This model card describes the BioBERTpt(clin) model, a clinical version of BioBERTpt, trained on clinical narratives from electronic health records from Brazilian Hospitals. ## How to use the model Load the model via the transformers library: ``` from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("pucpr/biobertpt-clin") model = AutoModel.from_pretrained("pucpr/biobertpt-clin") ``` ## More Information Refer to the original paper, [BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition](https://www.aclweb.org/anthology/2020.clinicalnlp-1.7/) for additional details and performance on Portuguese NER tasks. ## Questions? Post a Github issue on the [BioBERTpt repo](https://github.com/HAILab-PUCPR/BioBERTpt).
pucpr/clininalnerpt-chemical
2021-05-20T03:15:38.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
41
transformers
pucpr/clininalnerpt-diagnostic
2021-05-20T03:16:55.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
13
transformers
pucpr/clininalnerpt-disease
2021-05-20T03:18:11.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
31
transformers
pucpr/clininalnerpt-disorders
2021-05-20T03:19:39.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
16
transformers
pucpr/clininalnerpt-finding
2021-05-20T03:20:55.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
23
transformers
pucpr/clininalnerpt-healthcare
2021-05-20T03:22:54.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
38
transformers
pucpr/clininalnerpt-laboratory
2021-05-20T03:24:09.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
119
transformers
pucpr/clininalnerpt-medical
2021-05-20T03:25:38.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
79
transformers
pucpr/clininalnerpt-pharmacologic
2021-05-20T03:27:04.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
13
transformers
pucpr/clininalnerpt-procedures
2021-05-20T03:28:19.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
6
transformers
pucpr/clininalnerpt-quantitative
2021-05-20T03:29:55.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
10
transformers
pucpr/clininalnerpt-sign
2021-05-20T03:31:51.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
9
transformers
pucpr/clininalnerpt-therapeutic
2021-05-20T03:34:05.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pucpr
17
transformers
pucpr/gpt2-bio-pt
2021-05-23T12:10:18.000Z
[ "pytorch", "tf", "jax", "gpt2", "lm-head", "causal-lm", "pt", "dataset:biomedical literature from Scielo and Pubmed", "transformers", "text-generation" ]
text-generation
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
pucpr
28
transformers
--- language: "pt" widget: - text: "O paciente recebeu " - text: "A cardiologia provou que " - text: "O paciente chegou no hospital " - text: "Cientistas descobriram que " - text: "O nível de atividade biológica " - text: "O DNA e o RNA " datasets: - biomedical literature from Scielo and Pubmed thumbnail: "https://raw.githubusercontent.com/HAILab-PUCPR/gpt2-bio-pt/main/img/logo-gpt2-bio-pt.png" --- <img src="https://raw.githubusercontent.com/HAILab-PUCPR/gpt2-bio-pt/main/img/logo-gpt2-bio-pt.png" alt="Logo GPt2-Bio-Pt"> # GPT2-BioPT - a Language Model for Portuguese Biomedical text generation ## Introduction GPT2-BioPT (Portuguese Biomedical GPT-2 small) is a language model for Portuguese based on the OpenAI GPT-2 model, trained from the [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese/) with biomedical literature. We used **Transfer Learning and Fine-tuning techniques** with 110MB of training data, corresponding to 16,209,373 tokens and 729,654 sentences. ## GPT-2 *Note: information copied/pasted from [Model: gpt2 >> GPT-2](https://huggingface.co/gpt2#gpt-2)* Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in this [paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and first released at this [page](https://openai.com/blog/better-language-models/) (February 14, 2019). Disclaimer: The team releasing GPT-2 also wrote a [model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card has been written by the Hugging Face team to complete the information they provided and give specific examples of bias. ## Model description *Note: information copied/pasted from [Model: gpt2 >> Model description](https://huggingface.co/gpt2#model-description)* GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was trained to guess the next word in sentences. More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence, shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a prompt. ## How to use GPT2-BioPT with HuggingFace ``` from transformers import pipeline chef = pipeline('text-generation',model="pucpr/gpt2-bio-pt", tokenizer="pucpr/gpt2-bio-pt",config={'max_length':800}) result = chef('O paciente chegou no hospital')[0]['generated_text'] print(result) ``` Resultado: *```O paciente chegou no hospital três meses após a operação, não houve complicações graves. Entre os grupos que apresentaram maior número de lesões, o exame da cavidade pélvica estava significantemente associado à ausência de complicações. Foi encontrada uma maior incidência de fraturas (...)```* ## Citation *soon* ## Questions? Post a Github issue on the [GPT2-Bio-Pt repo](https://github.com/HAILab-PUCPR/gpt2-bio-pt/).
pulp/CHILDES-ParentBERTo
2021-05-20T19:46:06.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
pulp
36
transformers
The language model trained on a fill-mask task with all the North American parent's data in CHILDES. The parent's data can be found here: https://github.com/xiaomeng-ma/CHILDES
puranjayr/model_name
2021-02-26T00:37:11.000Z
[]
[ ".gitattributes" ]
puranjayr
0
puri/puri-thai-albert-cased-v1
2020-11-15T06:43:20.000Z
[ "pytorch", "tf", "albert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tf_model.h5", "tokenizer_config.json" ]
puri
15
transformers
pvcastro/bert-portuguese-cased-rel-cp
2021-06-18T15:12:46.000Z
[ "pytorch", "transformers" ]
[ ".gitattributes", "added_tokens.json", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
pvcastro
0
transformers
pvl/labse_bert
2021-05-20T03:38:34.000Z
[ "pytorch", "tf", "jax", "bert", "pretraining", "en", "transformers", "embeddings", "license:apache-2.0" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt", "model_cards/labse-README.md" ]
pvl
11,019
transformers
--- language: en thumbnail: tags: - bert - embeddings license: Apache-2.0 --- # LABSE BERT ## Model description Model for "Language-agnostic BERT Sentence Embedding" paper from Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Arivazhagan, Wei Wang. Model available in [TensorFlow Hub](https://tfhub.dev/google/LaBSE/1). ## Intended uses & limitations #### How to use ```python from transformers import AutoTokenizer, AutoModel import torch # from sentence-transformers def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) return sum_embeddings / sum_mask tokenizer = AutoTokenizer.from_pretrained("pvl/labse_bert", do_lower_case=False) model = AutoModel.from_pretrained("pvl/labse_bert") sentences = ['This framework generates embeddings for each input sentence', 'Sentences are passed as a list of string.', 'The quick brown fox jumps over the lazy dog.'] encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt') with torch.no_grad(): model_output = model(**encoded_input) sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) ```
pyannote/TestModelForContinuousIntegration
2021-02-11T11:44:40.000Z
[ "pytorch", "pyannote", "license:mit" ]
[ ".gitattributes", "README.md", "config.yaml", "hparams.yaml", "pytorch_model.bin", "tfevents.bin" ]
pyannote
180
pyannote
--- tags: - pyannote license: mit inference: false --- ## Dummy model used for continuous integration purposes ```bash $ pyannote-audio-train protocol=Debug.SpeakerDiarization.Debug \ task=VoiceActivityDetection \ task.duration=2. \ model=DebugSegmentation \ trainer.max_epochs=10 ```
pyannote/embedding
2021-06-06T11:42:04.000Z
[ "pytorch", "dataset:voxceleb", "pyannote", "audio", "voice", "speech", "speaker", "speaker-recognition", "speaker-verification", "speaker-identification", "speaker-embedding", "license:mit" ]
[ ".gitattributes", "README.md", "config.yaml", "hparams.yaml", "hydra.yaml", "overrides.yaml", "pytorch_model.bin", "tfevents.bin", "train.log" ]
pyannote
66
pyannote
--- tags: - pyannote - audio - voice - speech - speaker - speaker-recognition - speaker-verification - speaker-identification - speaker-embedding datasets: - voxceleb license: mit inference: false --- ## pyannote.audio // speaker embedding Relies on pyannote.audio 2.0 currently in development: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation). This model is based on the [canonical x-vector TDNN-based architecture](https://ieeexplore.ieee.org/abstract/document/8461375), but with filter banks replaced with [trainable SincNet features](https://ieeexplore.ieee.org/document/8639585). See [`XVectorSincNet`](https://github.com/pyannote/pyannote-audio/blob/3c988c028dc505c64fe776720372f6fe816b585a/pyannote/audio/models/embedding/xvector.py#L104-L169) architecture for implementation detalis. ## Support For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]). For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository. ## Basic usage ```python from pyannote.audio import Inference inference = Inference("pyannote/embedding", window="whole") embedding1 = inference("speaker1.wav") embedding2 = inference("speaker2.wav") # `embeddingX` is (1 x D) numpy array extracted from the file as a whole. from scipy.spatial.distance import cdist distance = cdist(embedding1, embedding2, metric="cosine")[0,0] # `distance` is a `float` describing how dissimilar speakers 1 and 2 are. ``` Using cosine distance directly, this model reaches 2.8% equal error rate (EER) on VoxCeleb 1 test set. This is without voice activity detection (VAD) nor probabilistic linear discriminant analysis (PLDA). Expect even better results when adding one of those. ## Advanced usage ### Running on GPU ```python inference = Inference("pyannote/embedding", window="whole", device="cuda") embedding = inference("audio.wav") ``` ### Extract embedding from an excerpt ```python from pyannote.audio import Inference, Segment inference = Inference("pyannote/embedding", window="whole") excerpt = Segment(13.37, 19.81) embedding = inference.crop("audio.wav", excerpt) # `embedding` is (1 x D) numpy array extracted from the file excerpt. ``` ### Extract embeddings using a sliding window ```python from pyannote.audio import Inference inference = Inference("pyannote/embedding", window="sliding", duration=3.0, step=1.0) embeddings = inference("audio.wav") # `embeddings` is a (N x D) pyannote.core.SlidingWindowFeature # `embeddings[i]` is the embedding of the ith position of the # sliding window, i.e. from [i * step, i * step + duration]. ``` ## Citation ```bibtex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ``` ```bibtex @inproceedings{Coria2020, author="Coria, Juan M. and Bredin, Herv{\'e} and Ghannay, Sahar and Rosset, Sophie", editor="Espinosa-Anke, Luis and Mart{\'i}n-Vide, Carlos and Spasi{\'{c}}, Irena", title="{A Comparison of Metric Learning Loss Functions for End-To-End Speaker Verification}", booktitle="Statistical Language and Speech Processing", year="2020", publisher="Springer International Publishing", pages="137--148", isbn="978-3-030-59430-5" } ```
pyannote/segmentation
2021-06-10T12:45:48.000Z
[ "pytorch", "dataset:ami", "dataset:dihard", "dataset:voxconverse", "arxiv:2104.04045", "pyannote", "audio", "voice", "speech", "speaker", "speaker-segmentation", "voice-activity-detection", "overlapped-speech-detection", "resegmentation", "license:mit" ]
voice-activity-detection
[ ".gitattributes", "README.md", "config.yaml", "example.png", "hparams.yaml", "overrides.yaml", "pytorch_model.bin", "tfevents.bin", "train.log", "reproducible_research/dihard3_custom_split/development.txt", "reproducible_research/dihard3_custom_split/train.txt", "reproducible_research/expected_outputs/osd/AMI.development.rttm", "reproducible_research/expected_outputs/osd/AMI.test.rttm", "reproducible_research/expected_outputs/osd/DIHARD.development.rttm", "reproducible_research/expected_outputs/osd/DIHARD.test.rttm", "reproducible_research/expected_outputs/osd/VoxConverse.development.rttm", "reproducible_research/expected_outputs/osd/VoxConverse.test.rttm", "reproducible_research/expected_outputs/rsg/AMI.development.rttm", "reproducible_research/expected_outputs/rsg/AMI.test.rttm", "reproducible_research/expected_outputs/rsg/DIHARD.development.rttm", "reproducible_research/expected_outputs/rsg/DIHARD.test.rttm", "reproducible_research/expected_outputs/rsg/VoxConverse.development.rttm", "reproducible_research/expected_outputs/vad/AMI.development.rttm", "reproducible_research/expected_outputs/vad/AMI.test.rttm", "reproducible_research/expected_outputs/vad/DIHARD.development.rttm", "reproducible_research/expected_outputs/vad/DIHARD.test.rttm", "reproducible_research/expected_outputs/vad/VoxConverse.development.rttm", "reproducible_research/expected_outputs/vad/VoxConverse.test.rttm", "reproducible_research/expected_outputs/vbx/AMI.rttm", "reproducible_research/expected_outputs/vbx/DIHARD.rttm", "reproducible_research/expected_outputs/vbx/VoxConverse.rttm" ]
pyannote
952
pyannote
--- tags: - pyannote - audio - voice - speech - speaker - speaker-segmentation - voice-activity-detection - overlapped-speech-detection - resegmentation datasets: - ami - dihard - voxconverse license: mit inference: false --- # pyannote.audio // speaker segmentation ![Example](example.png) Model from *[End-to-end speaker segmentation for overlap-aware resegmentation](http://arxiv.org/abs/2104.04045)*, by Hervé Bredin and Antoine Laurent. Relies on pyannote.audio 2.0 currently in development: see [installation instructions](https://github.com/pyannote/pyannote-audio/tree/develop#installation). ## Support For commercial enquiries and scientific consulting, please contact [me](mailto:[email protected]). For [technical questions](https://github.com/pyannote/pyannote-audio/discussions) and [bug reports](https://github.com/pyannote/pyannote-audio/issues), please check [pyannote.audio](https://github.com/pyannote/pyannote-audio) Github repository. ## Usage ### Voice activity detection ```python from pyannote.audio.pipelines import VoiceActivityDetection pipeline = VoiceActivityDetection(segmentation="pyannote/segmentation") HYPER_PARAMETERS = { # onset/offset activation thresholds "onset": 0.5, "offset": 0.5, # remove speech regions shorter than that many seconds. "min_duration_on": 0.0, # fill non-speech regions shorter than that many seconds. "min_duration_off": 0.0 } pipeline.instantiate(HYPER_PARAMETERS) vad = pipeline("audio.wav") # `vad` is a pyannote.core.Annotation instance containing speech regions ``` ### Overlapped speech detection ```python from pyannote.audio.pipelines import OverlappedSpeechDetection pipeline = OverlappedSpeechDetection(segmentation="pyannote/segmentation") pipeline.instantiate(HYPER_PARAMETERS) osd = pipeline("audio.wav") # `osd` is a pyannote.core.Annotation instance containing overlapped speech regions ``` ### Resegmentation ```python from pyannote.audio.pipelines import Resegmentation pipeline = Resegmentation(segmentation="pyannote/segmentation", diarization="baseline") pipeline.instantiate(HYPER_PARAMETERS) resegmented_baseline = pipeline({"audio": "audio.wav", "baseline": baseline}) # where `baseline` should be provided as a pyannote.core.Annotation instance ``` ### Raw scores ```python from pyannote.audio import Inference inference = Inference("pyannote/segmentation") segmentation = inference("audio.wav") # `segmentation` is a pyannote.core.SlidingWindowFeature # instance containing raw segmentation scores like the # one pictured above (output) ``` ## Reproducible research In order to reproduce the results of the paper ["End-to-end speaker segmentation for overlap-aware resegmentation "](https://arxiv.org/abs/2104.04045), use the following hyper-parameters: Voice activity detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` ----------------|---------|----------|-------------------|------------------- AMI Mix-Headset | 0.684 | 0.577 | 0.181 | 0.037 DIHARD3 | 0.767 | 0.377 | 0.136 | 0.067 VoxConverse | 0.767 | 0.713 | 0.182 | 0.501 Overlapped speech detection | `onset` | `offset` | `min_duration_on` | `min_duration_off` ----------------|---------|----------|-------------------|------------------- AMI Mix-Headset | 0.448 | 0.362 | 0.116 | 0.187 DIHARD3 | 0.430 | 0.320 | 0.091 | 0.144 VoxConverse | 0.587 | 0.426 | 0.337 | 0.112 Resegmentation of VBx | `onset` | `offset` | `min_duration_on` | `min_duration_off` ----------------|---------|----------|-------------------|------------------- AMI Mix-Headset | 0.542 | 0.527 | 0.044 | 0.705 DIHARD3 | 0.592 | 0.489 | 0.163 | 0.182 VoxConverse | 0.537 | 0.724 | 0.410 | 0.563 Expected outputs (and VBx baseline) are also provided in the `/reproducible_research` sub-directories. ## Citation ```bibtex @inproceedings{Bredin2021, Title = {{End-to-end speaker segmentation for overlap-aware resegmentation}}, Author = {{Bredin}, Herv{\'e} and {Laurent}, Antoine}, Booktitle = {Proc. Interspeech 2021}, Address = {Brno, Czech Republic}, Month = {August}, Year = {2021}, ``` ```bibtex @inproceedings{Bredin2020, Title = {{pyannote.audio: neural building blocks for speaker diarization}}, Author = {{Bredin}, Herv{\\\\'e} and {Yin}, Ruiqing and {Coria}, Juan Manuel and {Gelly}, Gregory and {Korshunov}, Pavel and {Lavechin}, Marvin and {Fustes}, Diego and {Titeux}, Hadrien and {Bouaziz}, Wassim and {Gill}, Marie-Philippe}, Booktitle = {ICASSP 2020, IEEE International Conference on Acoustics, Speech, and Signal Processing}, Address = {Barcelona, Spain}, Month = {May}, Year = {2020}, } ```
q5530793/bert_finetuning_test
2021-05-20T03:40:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
q5530793
29
transformers
qarib/bert-base-qarib
2021-05-20T03:42:19.000Z
[ "pytorch", "jax", "bert", "masked-lm", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib", "fill-mask" ]
fill-mask
[ ".gitattributes", "Qarib_logo.png", "README.md", "config.json", "flax_model.msgpack", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
970
transformers
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'} ] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib60_1790k
2021-05-20T03:44:18.000Z
[ "pytorch", "jax", "bert", "masked-lm", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "qarib", "qarib60_1790k", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
120
transformers
--- language: ar tags: - pytorch - tf - qarib - qarib60_1790k datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For Tweets, the data was collected using twitter API and using language filter. `lang:ar`. For Text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). ### bert-base-qarib60_1790k - Data size: 60Gb - Number of Iterations: 1790k - Loss: 1.8764963 ## Training QARiB The training of the model has been performed using Google’s original Tensorflow code on Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. See more details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] ``` ## Training procedure The training of the model has been performed using Google’s original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. ## Eval results We evaluated QARiB models on five NLP downstream task: - Sentiment Analysis - Emotion Detection - Named-Entity Recognition (NER) - Offensive Language Detection - Dialect Identification The results obtained from QARiB models outperforms multilingual BERT/AraBERT/ArabicBERT. ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/qarib/bert-base-qarib60_1790k ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib60_1970k
2021-05-20T03:46:19.000Z
[ "pytorch", "jax", "bert", "masked-lm", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "qarib", "qarib60_1790k", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "model.ckpt.data-00000-of-000", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
94
transformers
--- language: ar tags: - pytorch - tf - qarib - qarib60_1790k datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For Tweets, the data was collected using twitter API and using language filter. `lang:ar`. For Text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). ### bert-base-qarib60_1970k - Data size: 60Gb - Number of Iterations: 1970k - Loss: 1.5708898 ## Training QARiB The training of the model has been performed using Google’s original Tensorflow code on Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. See more details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] ``` ## Training procedure The training of the model has been performed using Google’s original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. ## Eval results We evaluated QARiB models on five NLP downstream task: - Sentiment Analysis - Emotion Detection - Named-Entity Recognition (NER) - Offensive Language Detection - Dialect Identification The results obtained from QARiB models outperforms multilingual BERT/AraBERT/ArabicBERT. ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/qarib/bert-base-qarib60_1970k ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib60_860k
2021-05-20T03:48:03.000Z
[ "pytorch", "jax", "bert", "masked-lm", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "arxiv:2102.10684", "transformers", "tf", "bert-base-qarib60_860k", "qarib", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "bert_config.json", "config.json", "flax_model.msgpack", "model.ckpt-860000.data-00000-of-00001", "model.ckpt-860000.index", "model.ckpt-860000.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
37
transformers
--- language: ar tags: - pytorch - tf - bert-base-qarib60_860k - qarib datasets: - arabic_billion_words - open_subtitles - twitter metrics: - f1 widget: - text: " شو عندكم يا [MASK] ." --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For tweets, the data was collected using twitter API and using language filter. `lang:ar`. For text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). ### bert-base-qarib60_860k - Data size: 60Gb - Number of Iterations: 860k - Loss: 2.2454472 ## Training QARiB The training of the model has been performed using Google’s original Tensorflow code on Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. See more details in [Training QARiB](https://github.com/qcri/QARiB/blob/main/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARiB/blob/main/Using_QARiB.md) ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/data60gb_86k") >>> fill_mask("شو عندكم يا [MASK]") [{'sequence': '[CLS] شو عندكم يا عرب [SEP]', 'score': 0.0990147516131401, 'token': 2355, 'token_str': 'عرب'}, {'sequence': '[CLS] شو عندكم يا جماعة [SEP]', 'score': 0.051633741706609726, 'token': 2308, 'token_str': 'جماعة'}, {'sequence': '[CLS] شو عندكم يا شباب [SEP]', 'score': 0.046871256083250046, 'token': 939, 'token_str': 'شباب'}, {'sequence': '[CLS] شو عندكم يا رفاق [SEP]', 'score': 0.03598872944712639, 'token': 7664, 'token_str': 'رفاق'}, {'sequence': '[CLS] شو عندكم يا ناس [SEP]', 'score': 0.031996358186006546, 'token': 271, 'token_str': 'ناس'}] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [{'sequence': '[CLS] قللي وشفيييك يرحم والديك [SEP]', 'score': 0.4152909517288208, 'token': 9650, 'token_str': 'والديك'}, {'sequence': '[CLS] قللي وشفيييك يرحملي [SEP]', 'score': 0.07663793861865997, 'token': 294, 'token_str': '##لي'}, {'sequence': '[CLS] قللي وشفيييك يرحم حالك [SEP]', 'score': 0.0453166700899601, 'token': 2663, 'token_str': 'حالك'}, {'sequence': '[CLS] قللي وشفيييك يرحم امك [SEP]', 'score': 0.04390475153923035, 'token': 1942, 'token_str': 'امك'}, {'sequence': '[CLS] قللي وشفيييك يرحمونك [SEP]', 'score': 0.027349254116415977, 'token': 3283, 'token_str': '##ونك'}] >>> fill_mask("وقام المدير [MASK]") [ {'sequence': '[CLS] وقام المدير بالعمل [SEP]', 'score': 0.0678194984793663, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقام المدير بذلك [SEP]', 'score': 0.05191086605191231, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقام المدير بالاتصال [SEP]', 'score': 0.045264165848493576, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقام المدير بعمله [SEP]', 'score': 0.03732728958129883, 'token': 40486, 'token_str': 'بعمله'}, {'sequence': '[CLS] وقام المدير بالامر [SEP]', 'score': 0.0246378555893898, 'token': 29124, 'token_str': 'بالامر'} ] >>> fill_mask("وقامت المديرة [MASK]") [{'sequence': '[CLS] وقامت المديرة بذلك [SEP]', 'score': 0.23992691934108734, 'token': 984, 'token_str': 'بذلك'}, {'sequence': '[CLS] وقامت المديرة بالامر [SEP]', 'score': 0.108805812895298, 'token': 29124, 'token_str': 'بالامر'}, {'sequence': '[CLS] وقامت المديرة بالعمل [SEP]', 'score': 0.06639821827411652, 'token': 4230, 'token_str': 'بالعمل'}, {'sequence': '[CLS] وقامت المديرة بالاتصال [SEP]', 'score': 0.05613093823194504, 'token': 26096, 'token_str': 'بالاتصال'}, {'sequence': '[CLS] وقامت المديرة المديرة [SEP]', 'score': 0.021778125315904617, 'token': 41635, 'token_str': 'المديرة'}] ``` ## Training procedure The training of the model has been performed using Google’s original Tensorflow code on eight core Google Cloud TPU v2. We used a Google Cloud Storage bucket, for persistent storage of training data and models. ## Eval results We evaluated QARiB models on five NLP downstream task: - Sentiment Analysis - Emotion Detection - Named-Entity Recognition (NER) - Offensive Language Detection - Dialect Identification The results obtained from QARiB models outperforms multilingual BERT/AraBERT/ArabicBERT. ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib60_860k ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib_far
2021-04-04T07:59:36.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
[ ".gitattributes", "README.md", "config.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
34
transformers
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") >>> fill_mask("قللي وشفيييك يرحم [MASK]") ``` ## Evaluations: ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib_far_6500k
2021-04-21T13:41:11.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
[ ".gitattributes", "README.md", "config.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
44
transformers
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib_far_8280k
2021-04-21T13:40:36.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
[ ".gitattributes", "README.md", "config.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
29
transformers
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qarib/bert-base-qarib_far_9920k
2021-04-21T13:38:28.000Z
[ "pytorch", "ar", "dataset:arabic_billion_words", "dataset:open_subtitles", "dataset:twitter", "dataset:Farasa", "arxiv:2102.10684", "transformers", "tf", "QARiB", "qarib" ]
[ ".gitattributes", "README.md", "config.json", "model.ckpt.data-00000-of-00001", "model.ckpt.index", "model.ckpt.meta", "pytorch_model.bin", "vocab.txt" ]
qarib
22
transformers
--- language: ar tags: - pytorch - tf - QARiB - qarib datasets: - arabic_billion_words - open_subtitles - twitter - Farasa metrics: - f1 widget: - text: "و+قام ال+مدير [MASK]" --- # QARiB: QCRI Arabic and Dialectal BERT ## About QARiB Farasa QCRI Arabic and Dialectal BERT (QARiB) model, was trained on a collection of ~ 420 Million tweets and ~ 180 Million sentences of text. For the tweets, the data was collected using twitter API and using language filter. `lang:ar`. For the text data, it was a combination from [Arabic GigaWord](url), [Abulkhair Arabic Corpus]() and [OPUS](http://opus.nlpl.eu/). QARiB: Is the Arabic name for "Boat". ## Model and Parameters: - Data size: 14B tokens - Vocabulary: 64k - Iterations: 10M - Number of Layers: 12 ## Training QARiB See details in [Training QARiB](https://github.com/qcri/QARIB/Training_QARiB.md) ## Using QARiB You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the model hub to look for fine-tuned versions on a task that interests you. For more details, see [Using QARiB](https://github.com/qcri/QARIB/Using_QARiB.md) This model expects the data to be segmented. You may use [Farasa Segmenter](https://farasa-api.qcri.org/segmentation/) API. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>>from transformers import pipeline >>>fill_mask = pipeline("fill-mask", model="./models/bert-base-qarib_far") >>> fill_mask("و+قام ال+مدير [MASK]") [ ] >>> fill_mask("و+قام+ت ال+مدير+ة [MASK]") [ ] >>> fill_mask("قللي وشفيييك يرحم [MASK]") [ ] ``` ## Evaluations: |**Experiment** |**mBERT**|**AraBERT0.1**|**AraBERT1.0**|**ArabicBERT**|**QARiB**| |---------------|---------|--------------|--------------|--------------|---------| |Dialect Identification | 6.06% | 59.92% | 59.85% | 61.70% | **65.21%** | |Emotion Detection | 27.90% | 43.89% | 42.37% | 41.65% | **44.35%** | |Named-Entity Recognition (NER) | 49.38% | 64.97% | **66.63%** | 64.04% | 61.62% | |Offensive Language Detection | 83.14% | 88.07% | 88.97% | 88.19% | **91.94%** | |Sentiment Analysis | 86.61% | 90.80% | **93.58%** | 83.27% | 93.31% | ## Model Weights and Vocab Download From Huggingface site: https://huggingface.co/qarib/bert-base-qarib_far ## Contacts Ahmed Abdelali, Sabit Hassan, Hamdy Mubarak, Kareem Darwish and Younes Samih ## Reference ``` @article{abdelali2021pretraining, title={Pre-Training BERT on Arabic Tweets: Practical Considerations}, author={Ahmed Abdelali and Sabit Hassan and Hamdy Mubarak and Kareem Darwish and Younes Samih}, year={2021}, eprint={2102.10684}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
qi/deeplearning
2021-04-24T04:58:09.000Z
[]
[ ".gitattributes" ]
qi
0
qingtan007/bert_cn_finetuning
2021-05-20T03:49:01.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
qingtan007
17
transformers
qingtan007/bert_finetuning_test
2021-05-20T03:50:11.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
qingtan007
18
transformers
qqhann/w2v2_only_jsut_xlsr53
2021-04-27T10:27:49.000Z
[]
[ ".gitattributes" ]
qqhann
0
qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500
2021-04-01T15:16:55.000Z
[ "pytorch", "wav2vec2", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
qqhann
8
transformers
--- language: ja datasets: - common_voice #TODO: remove if you did not use the common voice dataset - TODO: add more datasets if you have used additional datasets. Make sure to use the exact same dataset name as the one found [here](https://huggingface.co/datasets). If the dataset can not be found in the official datasets, just give it a new name metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 70.1869 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 70.18 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... <!-- # TODO: adapt to state all the datasets that were used for training. --> The script used for training can be found [here](...) <!-- # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. -->
qqhann/w2v_hf_jsut_xlsr53
2021-04-01T14:49:39.000Z
[ "pytorch", "wav2vec2", "ja", "dataset:common_voice", "dataset:jsut", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
qqhann
44
transformers
--- language: ja datasets: - common_voice - jsut metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: 51.72 - name: Test CER type: cer value: 24.89 --- # Wav2Vec2-Large-XLSR-53-Japanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Japanese using the [Common Voice](https://huggingface.co/datasets/common_voice), and JSUT dataset{s}. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Japanese test data of Common Voice. ```python !pip install torchaudio !pip install datasets transformers !pip install jiwer !pip install mecab-python3 !pip install unidic-lite !python -m unidic download !pip install jaconv import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re import MeCab from jaconv import kata2hira from typing import List # Japanese preprocessing tagger = MeCab.Tagger("-Owakati") chars_to_ignore_regex = '[\。\、\「\」\,\?\.\!\-\;\:\"\“\%\‘\”\�]' def text2kata(text): node = tagger.parseToNode(text) word_class = [] while node: word = node.surface wclass = node.feature.split(',') if wclass[0] != u'BOS/EOS': if len(wclass) <= 6: word_class.append((word)) elif wclass[6] == None: word_class.append((word)) else: word_class.append((wclass[6])) node = node.next return ' '.join(word_class) def hiragana(text): return kata2hira(text2kata(text)) test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") resampler = torchaudio.transforms.Resample(48_000, 16_000) # JSUT is already 16kHz # resampler = torchaudio.transforms.Resample(16_000, 16_000) # JSUT is already 16kHz processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_jsut_xlsr53") model.to("cuda") # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = hiragana(batch["sentence"]).strip() batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) def cer_compute(predictions: List[str], references: List[str]): p = [" ".join(list(" " + pred.replace(" ", ""))).strip() for pred in predictions] r = [" ".join(list(" " + ref.replace(" ", ""))).strip() for ref in references] return wer.compute(predictions=p, references=r) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) print("CER: {:2f}".format(100 * cer_compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 51.72 % ## Training <!-- The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. --> The privately collected JSUT Japanese dataset was used for training. <!-- The script used for training can be found [here](...) # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. -->
qqhann/w2v_hf_laboro_dev_clean_xlsr53
2021-03-29T06:32:51.000Z
[]
[ ".gitattributes" ]
qqhann
0
qqhann/wav2vec2-large-xlsr-japanese-0325-1200
2021-03-29T10:26:40.000Z
[ "pytorch", "wav2vec2", "ja", "dataset:common_voice", "transformers", "audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week", "license:apache-2.0" ]
automatic-speech-recognition
[ ".gitattributes", "README.md", "config.json", "preprocessor_config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
qqhann
87
transformers
--- language: ja datasets: - common_voice metrics: - wer - cer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: Japanese XLSR Wav2Vec2 Large 53 results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice ja type: common_voice args: ja metrics: - name: Test WER type: wer value: { wer_result_on_test } #TODO (IMPORTANT): replace {wer_result_on_test} with the WER error rate you achieved on the common_voice test set. It should be in the format XX.XX (don't add the % sign here). **Please** remember to fill out this value after you evaluated your model, so that your model appears on the leaderboard. If you fill out this model card before evaluating your model, please remember to edit the model card afterward to fill in your value --- # Wav2Vec2-Large-XLSR-53-{language} #TODO: replace language with your {language}, _e.g._ French Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on {language} using the [Common Voice](https://huggingface.co/datasets/common_voice), ... and ... dataset{s}. #TODO: replace {language} with your language, _e.g._ French and eventually add more datasets that were used and eventually remove common voice if model was not trained on common voice When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ja", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200") model = Wav2Vec2ForCTC.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. # TODO: replace #TODO: replace language with your {language}, _e.g._ French ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ja", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200") model = Wav2Vec2ForCTC.from_pretrained("qqhann/wav2vec2-large-xlsr-japanese-0325-1200") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: XX.XX % <!-- # TODO: write output of print here. IMPORTANT: Please remember to also replace {wer_result_on_test} at the top of with this value here. tags. --> ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... <!-- # TODO: adapt to state all the datasets that were used for training. --> The script used for training can be found [here](...) <!-- # TODO: fill in a link to your training script here. If you trained your model in a colab, simply fill in the link here. If you trained the model locally, it would be great if you could upload the training script on github and paste the link here. -->
quanvo17/test
2021-05-29T16:48:00.000Z
[]
[ ".gitattributes" ]
quanvo17
0
quincyqiang/chtesla3
2021-05-20T03:51:07.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "all_results.json", "config.json", "eval_results.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "train_results.json", "training_args.bin", "vocab.txt" ]
quincyqiang
8
transformers
quincyqiang/tesla2
2021-05-20T03:52:00.000Z
[ "pytorch", "jax", "bert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
quincyqiang
8
transformers
qytocompany/bonus
2021-05-14T07:23:27.000Z
[]
[ ".gitattributes", "README.md" ]
qytocompany
0
なぜカジノボーナスがあるのか ここでは、日本のギャンブラー向けのカジノ無料ボーナスの主な利点を紹介いたします。オンラインでギャンブルする時に楽しんでいただける利点から始めましょう。プレイ中に、ボーナスではバンクロールを容易に増やすことが出来ます。オンラインギャンブルの初心者の場合、無料ボーナスでのゲームの試用は良い機会です。 カジノサイトが提供する特別なプロモーションには、自動車のリワード、イベント、大会や番組のチケットなどがあります。掛け金の要件が、ゲームのプロセスから楽しい気持ちを消してしまう事が、ボーナスの一つのデメリットとなります。 日本のギャンブラーは、オンラインカジノでプレーするときに、常にさまざまな製品を要求します。 QYTOチームは、設備が整っていて、公平で信頼できる日本のデポジットなしのボーナスカジノを探しているプレーヤーに専念しています。各オンラインカジノには、プレーヤーを喜ばせ、繰り返しプレイさせるための独自のウェルカムボーナスシステムがあります。専門家によってレビューおよびテストされた最も信頼できるオプションのいくつかを次に示します。 私たちのレビューを読んで、信頼と注意を必要とする多くの素晴らしい取引を見てください。オンラインギャンブルに不慣れで、<a href="https://qyto.jp/bonus/">カジノボーナスオンライン</a>に慣れていない場合は、詳細を説明します。ボーナスは、ユーザーがサイトを使い続けるためのインセンティブとして、企業がプレーヤーに提供する楽しい報酬です。
r3dhummingbird/DialoGPT-medium-joshua
2021-06-06T23:15:49.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "license:mit", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
r3dhummingbird
3,470
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Joshua from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). I built a Discord AI chatbot based on this model. [Check out my GitHub repo.](https://github.com/RuolinZheng08/twewy-discord-chatbot) Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-joshua") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("JoshuaBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
r3dhummingbird/DialoGPT-medium-neku
2021-06-08T02:57:19.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "license:mit", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
r3dhummingbird
183
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-medium](https://huggingface.co/microsoft/DialoGPT-medium) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-medium-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-medium-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
r3dhummingbird/DialoGPT-small-neku
2021-06-08T00:50:01.000Z
[ "pytorch", "gpt2", "lm-head", "causal-lm", "transformers", "conversational", "license:mit", "text-generation" ]
conversational
[ ".gitattributes", "README.md", "config.json", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
r3dhummingbird
89
transformers
--- thumbnail: https://huggingface.co/front/thumbnails/dialogpt.png tags: - conversational license: mit --- # DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-small-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-small-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
rabble/testmodel
2021-06-14T01:07:48.000Z
[]
[ ".gitattributes" ]
rabble
0
racai/distilbert-base-romanian-cased
2021-05-24T07:27:47.000Z
[ "pytorch", "distilbert", "ro", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
racai
275
transformers
--- language: ro --- # Romanian DistilBERT This repository contains the DistilBERT version for Romanian. Teacher model used for distillation: [dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1). ## Usage ```python from transformers import AutoTokenizer, AutoModel # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained("racai/distilbert-base-romanian-cased") model = AutoModel.from_pretrained("racai/distilbert-base-romanian-cased") # tokenize a test sentence input_ids = tokenizer.encode("Aceasta este o propoziție de test.", add_special_tokens=True, return_tensors="pt") # run the tokens trough the model outputs = model(input_ids) print(outputs) ``` ## Model Size Romanian DistilBERT is 35% smaller than the original Romanian BERT. | Model | Size (MB) | Params (Millions) | |--------------------------------|:---------:|:----------------:| | bert-base-romanian-cased-v1 | 477.2 | 124.4 | | distilbert-base-romanian-cased | 312.7 | 81.3 | ## Evaluation We evaluated the Romanian DistilBERT in comparison with the original Romanian BERT on 5 tasks: - **UPOS**: Universal Part of Speech (F1-macro) - **XPOS**: Extended Part of Speech (F1-macro) - **NER**: Named Entity Recognition (F1-macro) - **SAPN**: Sentiment Anlaysis - Positive vs Negative (Accuracy) - **SAR**: Sentiment Analysis - Rating (F1-macro) - **DI**: Dialect identification (F1-macro) - **STS**: Semantic Textual Similarity (Pearson) | Model | UPOS | XPOS | NER | SAPN | SAR | DI | STS | |--------------------------------|:----:|:----:|:---:|:----:|:---:|:--:|:---:| | bert-base-romanian-cased-v1 | 98.00 | 96.46 | 85.88 | 98.07 | 79.61 | 95.58 | 79.11 | | distilbert-base-romanian-cased | 97.97 | 97.08 | 83.35 | 98.40 | 83.01 | 96.31 | 80.57 |
radha1258/save
2020-01-25T07:47:43.000Z
[ "tf", "transformers" ]
[ ".gitattributes", "config.json", "tf_model.h5" ]
radha1258
9
transformers
radiokosmos/bart-base
2021-05-18T10:20:56.000Z
[]
[ ".gitattributes" ]
radiokosmos
0
ragarwal/args-me-biencoder-v1
2021-05-07T17:56:32.000Z
[ "transformers" ]
[ ".gitattributes", "README.md", "config.json", "modules.json", "0_Transformer/config.json", "0_Transformer/merges.txt", "0_Transformer/pytorch_model.bin", "0_Transformer/sentence_bert_config.json", "0_Transformer/special_tokens_map.json", "0_Transformer/tokenizer_config.json", "0_Transformer/vocab.json", "1_Pooling/config.json", "2_Dense/config.json", "2_Dense/pytorch_model.bin" ]
ragarwal
7
transformers
init
ragarwal/args-me-crossencoder-v1
2021-05-20T19:47:10.000Z
[ "pytorch", "jax", "roberta", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
ragarwal
6
transformers
ragarwal/args-me-roberta-base
2021-05-20T19:48:38.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ragarwal
27
transformers
modelhub test
rajendra-ml/mar_GPT2
2021-03-06T09:35:16.000Z
[]
[ ".gitattributes", "README.md", "model_mar_GPT2/config.json", "model_mar_GPT2/merges.txt", "model_mar_GPT2/special_tokens_map.json", "model_mar_GPT2/tf_model.h5", "model_mar_GPT2/tokenizer_config.json", "model_mar_GPT2/vocab.json" ]
rajendra-ml
0
GPT2 model for marathi language. heads=12 layers=6. This is a bit smaller version, since I trained it on my laptop with smaller gpu.
rajendra-ml/sam_GPT2
2021-03-06T09:02:34.000Z
[]
[ ".gitattributes", "README.md", "model_sam_GPT2/config.json", "model_sam_GPT2/merges.txt", "model_sam_GPT2/special_tokens_map.json", "model_sam_GPT2/tf_model.h5", "model_sam_GPT2/tokenizer_config.json", "model_sam_GPT2/vocab.json" ]
rajendra-ml
0
GPT2 model for Sanskrit language, one of the oldest in world. heads=12 layers=6. This is a bit smaller version, since I trained it on my laptop with smaller gpu.
rajratnpranesh/DCS_sanskrit_albert
2020-07-25T15:53:47.000Z
[ "pytorch", "albert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
rajratnpranesh
14
transformers
rajratnpranesh/DCS_sanskrit_bert
2021-05-20T03:52:51.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
rajratnpranesh
20
transformers
rajratnpranesh/DCS_sanskrit_distilbert
2021-05-20T03:53:33.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
rajratnpranesh
13
transformers
ralcanta/do_nothing_bert
2020-11-26T23:38:08.000Z
[ "pytorch", "encoder-decoder", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
ralcanta
13
transformers
ralcanta/share-meme-generator
2021-05-07T23:35:34.000Z
[ "tf" ]
[ ".gitattributes", "tf_model.h5" ]
ralcanta
0
ramonzaca/roberto-base-finetuned-pos
2021-05-20T19:49:47.000Z
[ "pytorch", "jax", "roberta", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "eval_results.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
ramonzaca
20
transformers
ramonzaca/roberto
2021-05-20T19:51:19.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "Readme.md", "config.json", "flax_model.msgpack", "merges.txt", "optimizer.pt", "pytorch_model.bin", "scheduler.pt", "special_tokens_map.json", "tokenizer_config.json", "trainer_state.json", "training_args.bin", "vocab.json" ]
ramonzaca
15
transformers
Testing
ramsrigouthamg/BERT_WSD
2021-01-28T10:39:22.000Z
[]
[ ".gitattributes" ]
ramsrigouthamg
0
ramsrigouthamg/t5_boolean_questions
2020-07-25T17:29:28.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
ramsrigouthamg
471
transformers
ramsrigouthamg/t5_paraphraser
2020-12-11T22:00:04.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
ramsrigouthamg
18,196
transformers
## Model in Action 🚀 ```python import torch from transformers import T5ForConditionalGeneration,T5Tokenizer def set_seed(seed): torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(seed) set_seed(42) model = T5ForConditionalGeneration.from_pretrained('ramsrigouthamg/t5_paraphraser') tokenizer = T5Tokenizer.from_pretrained('ramsrigouthamg/t5_paraphraser') device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print ("device ",device) model = model.to(device) sentence = "Which course should I take to get started in data science?" # sentence = "What are the ingredients required to bake a perfect cake?" # sentence = "What is the best possible approach to learn aeronautical engineering?" # sentence = "Do apples taste better than oranges in general?" text = "paraphrase: " + sentence + " </s>" max_len = 256 encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to(device), encoding["attention_mask"].to(device) # set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3 beam_outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, do_sample=True, max_length=256, top_k=120, top_p=0.98, early_stopping=True, num_return_sequences=10 ) print ("\nOriginal Question ::") print (sentence) print ("\n") print ("Paraphrased Questions :: ") final_outputs =[] for beam_output in beam_outputs: sent = tokenizer.decode(beam_output, skip_special_tokens=True,clean_up_tokenization_spaces=True) if sent.lower() != sentence.lower() and sent not in final_outputs: final_outputs.append(sent) for i, final_output in enumerate(final_outputs): print("{}: {}".format(i, final_output)) ``` ## Output ``` Original Question :: Which course should I take to get started in data science? Paraphrased Questions :: 0: What should I learn to become a data scientist? 1: How do I get started with data science? 2: How would you start a data science career? 3: How can I start learning data science? 4: How do you get started in data science? 5: What's the best course for data science? 6: Which course should I start with for data science? 7: What courses should I follow to get started in data science? 8: What degree should be taken by a data scientist? 9: Which course should I follow to become a Data Scientist? ``` ## Detailed blog post available here : https://towardsdatascience.com/paraphrase-any-question-with-t5-text-to-text-transfer-transformer-pretrained-model-and-cbb9e35f1555
ramsrigouthamg/t5_sentence_paraphraser
2021-05-15T11:39:47.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
ramsrigouthamg
44
transformers
ramsrigouthamg/t5_squad
2020-07-01T15:37:53.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
ramsrigouthamg
16
transformers
ramsrigouthamg/t5_squad_v1
2021-04-24T12:42:12.000Z
[ "pytorch", "t5", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
ramsrigouthamg
810
transformers
ran/c10
2021-05-20T03:54:23.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
ran
16
transformers
ran/c9
2021-05-20T03:55:20.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "fine_tuning_result_rc9.txt", "fine_tuning_result_wc9.txt", "fine_tuning_resultc9.txt", "flax_model.msgpack", "pytorch_model.bin" ]
ran
16
transformers
ran/h1
2021-05-20T03:56:49.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
ran
14
transformers
ran/y7
2021-05-20T03:58:46.000Z
[ "pytorch", "jax", "bert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
ran
12
transformers
rasa/LaBSE
2021-05-20T04:01:27.000Z
[ "pytorch", "tf", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
rasa
5,602
transformers
rathi/storyGenerator
2021-05-23T12:11:32.000Z
[ "pytorch", "jax", "gpt2", "lm-head", "causal-lm", "transformers", "text-generation" ]
text-generation
[ ".DS_Store", ".gitattributes", "README.md", "added_tokens.json", "config.json", "eval_results_lm.txt", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.json" ]
rathi
34
transformers
## This is a genre-based Movie plot generator. For best results, structure the input as follows - 1. Add a `<BOS>` tag in the start. 2. Add a `<genre>` tag (with the genre as a placeholder for lowercased genres such as `<action>`, `<romantic>`, `<thriller>`, `<comedy>`
ray1379/bio-convbert-medium-samll
2021-01-21T02:55:31.000Z
[]
[ ".gitattributes", "README.md" ]
ray1379
0
pretrained convbert_medium-small with PubMed text.
raybin/model_out
2021-05-20T04:03:40.000Z
[ "pytorch", "bert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.txt" ]
raybin
15
transformers
raykallen/cybert_apache_parser
2021-05-20T04:04:23.000Z
[ "pytorch", "jax", "bert", "token-classification", "transformers" ]
token-classification
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", ".ipynb_checkpoints/config-checkpoint.json" ]
raykallen
30
transformers
raymond/bert_finetuning_test
2021-03-16T02:21:06.000Z
[]
[ ".gitattributes" ]
raymond
0
razent/SciFive-base-PMC
2021-06-11T10:53:37.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
0
transformers
# SciFive PMC Base ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-PMC") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-PMC") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
razent/SciFive-base-Pubmed
2021-06-11T10:57:55.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
3
transformers
# SciFive Pubmed Base ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
razent/SciFive-base-Pubmed_PMC
2021-06-11T10:45:35.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
69
transformers
# SciFive Pubmed+PMC Base ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-base-Pubmed_PMC") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-base-Pubmed_PMC") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
razent/SciFive-large-PMC
2021-06-11T11:13:21.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
5
transformers
# SciFive PMC Large ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-PMC") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-PMC") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
razent/SciFive-large-Pubmed
2021-06-11T11:07:05.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
6
transformers
# SciFive Pubmed Large ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
razent/SciFive-large-Pubmed_PMC
2021-06-11T11:20:30.000Z
[ "pytorch", "tf", "t5", "seq2seq", "arxiv:2106.03598", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "spiece.model", "tf_model.h5", "tokenizer.json" ]
razent
9
transformers
# SciFive Pubmed+PMC Large ## Introduction Paper: [SciFive: a text-to-text transformer model for biomedical literature](https://arxiv.org/abs/2106.03598) Authors: _Long N. Phan, James T. Anibal, Hieu Tran, Shaurya Chanana, Erol Bahadroglu, Alec Peltekian, Grégoire Altan-Bonnet_ ## How to use For more details, do check out [our Github repo](https://github.com/justinphan3110/SciFive). ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM ​ tokenizer = AutoTokenizer.from_pretrained("razent/SciFive-large-Pubmed_PMC") model = AutoModelForSeq2SeqLM.from_pretrained("razent/SciFive-large-Pubmed_PMC") ​ sentence = "Identification of APC2 , a homologue of the adenomatous polyposis coli tumour suppressor ." text = "ncbi_ner: " + sentence + " </s>" encoding = tokenizer.encode_plus(text, pad_to_max_length=True, return_tensors="pt") input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda") outputs = model.generate( input_ids=input_ids, attention_mask=attention_masks, max_length=256, early_stopping=True ) for output in outputs: line = tokenizer.decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=True) print(line) ```
rdenadai/BR_BERTo
2021-05-20T19:53:44.000Z
[ "pytorch", "jax", "roberta", "masked-lm", "pt", "transformers", "portuguese", "brazil", "pt_BR", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "training_args.bin", "vocab.json" ]
rdenadai
68
transformers
--- language: pt tags: - portuguese - brazil - pt_BR widget: - text: gostei muito dessa <mask> --- # BR_BERTo Portuguese (Brazil) model for text inference. ## Params Trained on a corpus of 6_993_330 sentences. - Vocab size: 150_000 - RobertaForMaskedLM size : 512 - Num train epochs: 3 - Time to train: ~10days (on GCP with a Nvidia T4) I follow the great tutorial from HuggingFace team: [How to train a new language model from scratch using Transformers and Tokenizers](https://huggingface.co/blog/how-to-train) More infor here: [BR_BERTo](https://github.com/rdenadai/BR-BERTo)
reSearch2vec/NLR_cs
2021-05-20T04:04:58.000Z
[ "tf", "bert", "transformers" ]
[ ".gitattributes", "config.json", "tf_model.h5", "vocab.txt" ]
reSearch2vec
16
transformers
readerbench/RoBERT-base
2021-05-20T04:05:43.000Z
[ "pytorch", "tf", "jax", "bert", "ro", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
readerbench
1,069
transformers
Model card for RoBERT-base --- language: - ro --- # RoBERT-base ## Pretrained BERT model for Romanian Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://www.aclweb.org/anthology/2020.coling-main.581/). Three BERT models were released: RoBERT-small, **RoBERT-base** and RoBERT-large, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 | | *RoBERT-base* | *114M* | *12* | *768* | *12* | *0.6511* | *0.9802* | | RoBERT-large | 341M | 24 | 1024 | 24 | 0.6929 | 0.9843 | All models are available: * [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small) * [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) * [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base") model = TFAutoModel.from_pretrained("readerbench/RoBERT-base") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-base") model = AutoModel.from_pretrained("readerbench/RoBERT-base") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Training data The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process. | Corpus | Words | Sentences | Size (GB)| |-----------|:---------:|:---------:|:--------:| | Oscar | 1.78B | 87M | 10.8 | | RoTex | 240M | 14M | 1.5 | | RoWiki | 50M | 2M | 0.3 | | **Total** | **2.07B** | **103M** | **12.6** | ## Downstream performance ### Sentiment analysis We report Macro-averaged F1 score (in %) | Model | Dev | Test | |------------------|:--------:|:--------:| | multilingual-BERT| 68.96 | 69.57 | | XLM-R-base | 71.26 | 71.71 | | BERT-base-ro | 70.49 | 71.02 | | RoBERT-small | 66.32 | 66.37 | | *RoBERT-base* | *70.89* | *71.61* | | RoBERT-large | **72.48**| **72.11**| ### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %). | Model | Dialect Classification | MD to RO | RO to MD | |-------------------|:----------------------:|:--------:|:--------:| | 2-CNN + SVM | 93.40 | 65.09 | 75.21 | | Char+Word SVM | 96.20 | 69.08 | 81.93 | | BiGRU | 93.30 | **70.10**| 80.30 | | multilingual-BERT | 95.34 | 68.76 | 78.24 | | XLM-R-base | 96.28 | 69.93 | 82.28 | | BERT-base-ro | 96.20 | 69.93 | 78.79 | | RoBERT-small | 95.67 | 69.01 | 80.40 | | *RoBERT-base* | *97.39* | *68.30* | *81.09* | | RoBERT-large | **97.78** | 69.91 | **83.65**| ### Diacritics Restoration Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %. | Model | word level | char level | |-----------------------------|:----------:|:----------:| | BiLSTM | 99.42 | - | | CharCNN | 98.40 | 99.65 | | CharCNN + multilingual-BERT | 99.72 | 99.94 | | CharCNN + XLM-R-base | 99.76 | **99.95** | | CharCNN + BERT-base-ro | **99.79** | **99.95** | | CharCNN + RoBERT-small | 99.73 | 99.94 | | *CharCNN + RoBERT-base* | *99.78* | **99.95** | | CharCNN + RoBERT-large | 99.76 | **99.95** | ### BibTeX entry and citation info ```bibtex @inproceedings{masala2020robert, title={RoBERT--A Romanian BERT Model}, author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6626--6637}, year={2020} } ```
readerbench/RoBERT-large
2021-05-20T04:07:47.000Z
[ "pytorch", "tf", "jax", "bert", "ro", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
readerbench
1,027
transformers
Model card for RoBERT-large --- language: - ro --- # RoBERT-large ## Pretrained BERT model for Romanian Pretrained model on Romanian language using a masked language modeling (MLM) and next sentence prediction (NSP) objective. It was introduced in this [paper](https://www.aclweb.org/anthology/2020.coling-main.581/). Three BERT models were released: RoBERT-small, RoBERT-base and **RoBERT-large**, all versions uncased. | Model | Weights | L | H | A | MLM accuracy | NSP accuracy | |----------------|:---------:|:------:|:------:|:------:|:--------------:|:--------------:| | RoBERT-small | 19M | 12 | 256 | 8 | 0.5363 | 0.9687 | | RoBERT-base | 114M | 12 | 768 | 12 | 0.6511 | 0.9802 | | *RoBERT-large* | *341M* | *24* | *1024* | *24* | *0.6929* | *0.9843* | All models are available: * [RoBERT-small](https://huggingface.co/readerbench/RoBERT-small) * [RoBERT-base](https://huggingface.co/readerbench/RoBERT-base) * [RoBERT-large](https://huggingface.co/readerbench/RoBERT-large) #### How to use ```python # tensorflow from transformers import AutoModel, AutoTokenizer, TFAutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = TFAutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="tf") outputs = model(inputs) # pytorch from transformers import AutoModel, AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained("readerbench/RoBERT-large") model = AutoModel.from_pretrained("readerbench/RoBERT-large") inputs = tokenizer("exemplu de propoziție", return_tensors="pt") outputs = model(**inputs) ``` ## Training data The model is trained on the following compilation of corpora. Note that we present the statistics after the cleaning process. | Corpus | Words | Sentences | Size (GB)| |-----------|:---------:|:---------:|:--------:| | Oscar | 1.78B | 87M | 10.8 | | RoTex | 240M | 14M | 1.5 | | RoWiki | 50M | 2M | 0.3 | | **Total** | **2.07B** | **103M** | **12.6** | ## Downstream performance ### Sentiment analysis We report Macro-averaged F1 score (in %) | Model | Dev | Test | |------------------|:--------:|:--------:| | multilingual-BERT| 68.96 | 69.57 | | XLM-R-base | 71.26 | 71.71 | | BERT-base-ro | 70.49 | 71.02 | | RoBERT-small | 66.32 | 66.37 | | RoBERT-base | 70.89 | 71.61 | | *RoBERT-large* | **72.48**| **72.11**| ### Moldavian vs. Romanian Dialect and Cross-dialect Topic identification We report results on [VarDial 2019](https://sites.google.com/view/vardial2019/campaign) Moldavian vs. Romanian Cross-dialect Topic identification Challenge, as Macro-averaged F1 score (in %). | Model | Dialect Classification | MD to RO | RO to MD | |-------------------|:----------------------:|:--------:|:--------:| | 2-CNN + SVM | 93.40 | 65.09 | 75.21 | | Char+Word SVM | 96.20 | 69.08 | 81.93 | | BiGRU | 93.30 | **70.10**| 80.30 | | multilingual-BERT | 95.34 | 68.76 | 78.24 | | XLM-R-base | 96.28 | 69.93 | 82.28 | | BERT-base-ro | 96.20 | 69.93 | 78.79 | | RoBERT-small | 95.67 | 69.01 | 80.40 | | RoBERT-base | 97.39 | 68.30 | 81.09 | | *RoBERT-large* | **97.78** | *69.91* | **83.65**| ### Diacritics Restoration Challenge can be found [here](https://diacritics-challenge.speed.pub.ro/). We report results on the official test set, as accuracies in %. | Model | word level | char level | |-----------------------------|:----------:|:----------:| | BiLSTM | 99.42 | - | | CharCNN | 98.40 | 99.65 | | CharCNN + multilingual-BERT | 99.72 | 99.94 | | CharCNN + XLM-R-base | 99.76 | **99.95** | | CharCNN + BERT-base-ro | **99.79** | **99.95** | | CharCNN + RoBERT-small | 99.73 | 99.94 | | CharCNN + RoBERT-base | 99.78 | **99.95** | | *CharCNN + RoBERT-large* | *99.76* | **99.95** | ### BibTeX entry and citation info ```bibtex @inproceedings{masala2020robert, title={RoBERT--A Romanian BERT Model}, author={Masala, Mihai and Ruseti, Stefan and Dascalu, Mihai}, booktitle={Proceedings of the 28th International Conference on Computational Linguistics}, pages={6626--6637}, year={2020} } ```