modelId
stringlengths
4
112
lastModified
stringlengths
24
24
tags
list
pipeline_tag
stringclasses
21 values
files
list
publishedBy
stringlengths
2
37
downloads_last_month
int32
0
9.44M
library
stringclasses
15 values
modelCard
large_stringlengths
0
100k
spencerh/centerpartisan
2021-04-23T20:44:08.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tf_model.preproc", "tokenizer_config.json", "vocab.txt" ]
spencerh
71
transformers
spencerh/leftcenterpartisan
2021-04-23T19:42:54.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tf_model.preproc", "tokenizer_config.json", "vocab.txt" ]
spencerh
66
transformers
spencerh/leftpartisan
2021-04-23T19:27:15.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
spencerh
71
transformers
# Text classifier using DistilBERT to determine Partisanship ## This is one of many single-class partisanship models label_0 refers to "left" while label_1 refers to "other". This model was trained on 40,000 articles. ### Best Practices This model was optimized for 512 token-length text. Any text below 150 tokens will result in inaccurate results.
spencerh/rightcenterpartisan
2021-04-23T19:56:43.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tf_model.preproc", "tokenizer_config.json", "vocab.txt" ]
spencerh
67
transformers
spencerh/rightpartisan
2021-04-23T19:26:52.000Z
[ "pytorch", "tf", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tf_model.h5", "tokenizer_config.json", "vocab.txt" ]
spencerh
131
transformers
# Text classifier using DistilBERT to determine Partisanship ## This is one of the single-class partisan detecting models. (see leftpartisan/leftcenterpartisan/rightcenterpartisan/centerpartisan) label_0 refers to "other" while label_1 refers to "right" (right as in right-leaning). This was trained with 40,000 articles. ### Best Practices This model was optimized for 512 token-length text. Any text below 150 tokens will result in inaccurate results.
spentaur/post-here
2020-11-11T18:38:10.000Z
[ "pytorch", "distilbert", "text-classification", "transformers" ]
text-classification
[ ".DS_Store", ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "training_args.bin", "vocab.txt" ]
spentaur
10
transformers
spentaur/yelp
2020-12-11T22:02:07.000Z
[ "tf", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "config.json", "tf_model.h5" ]
spentaur
61
transformers
# DistilBERT Yelp Review Sentiment This model is used for sentiment analysis on english yelp reviews. It is a DistilBERT model trained on 1 million reviews from the yelp open dataset. It is a regression model, with outputs in the range of ~-2 to ~2. With -2 being 1 star and 2 being 5 stars. It was trained using the [ktrain](https://github.com/amaiya/ktrain) because of it's ease of use. Example use: ``` tokenizer = AutoTokenizer.from_pretrained( 'distilbert-base-uncased', use_fast=True) model = TFAutoModelForSequenceClassification.from_pretrained( "spentaur/yelp") review = "This place is great!" input_ids = tokenizer.encode(review, return_tensors='tf') pred = model(input_ids)[0][0][0].numpy() # pred should === 1.9562385 ```
spuun/kek
2021-06-06T08:40:36.000Z
[]
[ ".gitattributes", "README.md" ]
spuun
0
# Kek model --- A customized DialoGPT model designed for personal use. Usage is the same with DialoGPT. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch tokenizer = AutoTokenizer.from_pretrained("spuun/kek") model = AutoModelForCausalLM.from_pretrained("spuun/kek") # Let's chat for 5 lines for step in range(5): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) # pretty print last ouput tokens from bot print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
squeezebert/squeezebert-mnli-headless
2020-12-11T22:02:10.000Z
[ "pytorch", "squeezebert", "arxiv:2006.11316", "arxiv:1904.00962", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "vocab.txt" ]
squeezebert
777
transformers
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-mnli-headless`, has been pretrained for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective and finetuned on the [Multi-Genre Natural Language Inference (MNLI)](https://cims.nyu.edu/~sbowman/multinli/) dataset. This is a "headless" model with the final classification layer removed, and this will allow Transformers to automatically reinitialize the final classification layer before you begin finetuning on your data. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper presents 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-mnli-headless`, is the "finetuned with bells and whistles" MNLI-finetuned SqueezeBERT model. In this particular model, we have removed the final classification layer -- in other words, it is "headless." We recommend using this model if you intend to finetune the model on your own data. Using this model means that your final layer will automatically be reinitialized when you start finetuning on your data. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
squeezebert/squeezebert-mnli
2020-12-11T22:02:13.000Z
[ "pytorch", "squeezebert", "arxiv:2006.11316", "arxiv:1904.00962", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "vocab.txt" ]
squeezebert
348
transformers
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-mnli`, has been pretrained for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective and finetuned on the [Multi-Genre Natural Language Inference (MNLI)](https://cims.nyu.edu/~sbowman/multinli/) dataset. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper presents 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-mnli`, is the "trained with bells and whistles" MNLI-finetuned SqueezeBERT model. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
squeezebert/squeezebert-uncased
2020-12-11T22:02:17.000Z
[ "pytorch", "squeezebert", "arxiv:2006.11316", "arxiv:1904.00962", "transformers" ]
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "tokenizer.json", "vocab.txt" ]
squeezebert
6,876
transformers
language: en license: bsd datasets: - bookcorpus - wikipedia --- # SqueezeBERT pretrained model This model, `squeezebert-uncased`, is a pretrained model for the English language using a masked language modeling (MLM) and Sentence Order Prediction (SOP) objective. SqueezeBERT was introduced in [this paper](https://arxiv.org/abs/2006.11316). This model is case-insensitive. The model architecture is similar to BERT-base, but with the pointwise fully-connected layers replaced with [grouped convolutions](https://blog.yani.io/filter-group-tutorial/). The authors found that SqueezeBERT is 4.3x faster than `bert-base-uncased` on a Google Pixel 3 smartphone. ## Pretraining ### Pretraining data - [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of thousands of unpublished books - [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) ### Pretraining procedure The model is pretrained using the Masked Language Model (MLM) and Sentence Order Prediction (SOP) tasks. (Author's note: If you decide to pretrain your own model, and you prefer to train with MLM only, that should work too.) From the SqueezeBERT paper: > We pretrain SqueezeBERT from scratch (without distillation) using the [LAMB](https://arxiv.org/abs/1904.00962) optimizer, and we employ the hyperparameters recommended by the LAMB authors: a global batch size of 8192, a learning rate of 2.5e-3, and a warmup proportion of 0.28. Following the LAMB paper's recommendations, we pretrain for 56k steps with a maximum sequence length of 128 and then for 6k steps with a maximum sequence length of 512. ## Finetuning The SqueezeBERT paper results from 2 approaches to finetuning the model: - "finetuning without bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on each GLUE task - "finetuning with bells and whistles" -- after pretraining the SqueezeBERT model, finetune it on a MNLI with distillation from a teacher model. Then, use the MNLI-finetuned SqueezeBERT model as a student model to finetune on each of the other GLUE tasks (e.g. RTE, MRPC, …) with distillation from a task-specific teacher model. A detailed discussion of the hyperparameters used for finetuning is provided in the appendix of the [SqueezeBERT paper](https://arxiv.org/abs/2006.11316). Note that finetuning SqueezeBERT with distillation is not yet implemented in this repo. If the author (Forrest Iandola - [email protected]) gets enough encouragement from the user community, he will add example code to Transformers for finetuning SqueezeBERT with distillation. This model, `squeezebert/squeezebert-uncased`, has been pretrained but not finetuned. For most text classification tasks, we recommend using squeezebert-mnli-headless as a starting point. ### How to finetune To try finetuning SqueezeBERT on the [MRPC](https://www.microsoft.com/en-us/download/details.aspx?id=52398) text classification task, you can run the following command: ``` ./utils/download_glue_data.py python examples/text-classification/run_glue.py \ --model_name_or_path squeezebert-base-headless \ --task_name mrpc \ --data_dir ./glue_data/MRPC \ --output_dir ./models/squeezebert_mrpc \ --overwrite_output_dir \ --do_train \ --do_eval \ --num_train_epochs 10 \ --learning_rate 3e-05 \ --per_device_train_batch_size 16 \ --save_steps 20000 ``` ## BibTeX entry and citation info ``` @article{2020_SqueezeBERT, author = {Forrest N. Iandola and Albert E. Shaw and Ravi Krishna and Kurt W. Keutzer}, title = {{SqueezeBERT}: What can computer vision teach NLP about efficient neural networks?}, journal = {arXiv:2006.11316}, year = {2020} } ```
sramasamy8/testModel
2021-05-20T20:58:24.000Z
[ "pytorch", "bert", "masked-lm", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:1810.04805", "transformers", "exbert", "license:apache-2.0", "fill-mask" ]
fill-mask
[ ".gitattributes", "README.md", "RandomFile", "config.json", "pytorch_model.bin" ]
sramasamy8
7
transformers
--- language: en tags: - exbert license: apache-2.0 datasets: - bookcorpus - wikipedia --- # BERT base model (uncased) Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in [this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the BERT model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use You can use this model directly with a pipeline for masked language modeling: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("Hello I'm a [MASK] model.") [{'sequence': "[CLS] hello i'm a fashion model. [SEP]", 'score': 0.1073106899857521, 'token': 4827, 'token_str': 'fashion'}, {'sequence': "[CLS] hello i'm a role model. [SEP]", 'score': 0.08774490654468536, 'token': 2535, 'token_str': 'role'}, {'sequence': "[CLS] hello i'm a new model. [SEP]", 'score': 0.05338378623127937, 'token': 2047, 'token_str': 'new'}, {'sequence': "[CLS] hello i'm a super model. [SEP]", 'score': 0.04667217284440994, 'token': 3565, 'token_str': 'super'}, {'sequence': "[CLS] hello i'm a fine model. [SEP]", 'score': 0.027095865458250046, 'token': 2986, 'token_str': 'fine'}] ``` Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` and in TensorFlow: ```python from transformers import BertTokenizer, TFBertModel tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = TFBertModel.from_pretrained("bert-base-uncased") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='tf') output = model(encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions: ```python >>> from transformers import pipeline >>> unmasker = pipeline('fill-mask', model='bert-base-uncased') >>> unmasker("The man worked as a [MASK].") [{'sequence': '[CLS] the man worked as a carpenter. [SEP]', 'score': 0.09747550636529922, 'token': 10533, 'token_str': 'carpenter'}, {'sequence': '[CLS] the man worked as a waiter. [SEP]', 'score': 0.0523831807076931, 'token': 15610, 'token_str': 'waiter'}, {'sequence': '[CLS] the man worked as a barber. [SEP]', 'score': 0.04962705448269844, 'token': 13362, 'token_str': 'barber'}, {'sequence': '[CLS] the man worked as a mechanic. [SEP]', 'score': 0.03788609802722931, 'token': 15893, 'token_str': 'mechanic'}, {'sequence': '[CLS] the man worked as a salesman. [SEP]', 'score': 0.037680890411138535, 'token': 18968, 'token_str': 'salesman'}] >>> unmasker("The woman worked as a [MASK].") [{'sequence': '[CLS] the woman worked as a nurse. [SEP]', 'score': 0.21981462836265564, 'token': 6821, 'token_str': 'nurse'}, {'sequence': '[CLS] the woman worked as a waitress. [SEP]', 'score': 0.1597415804862976, 'token': 13877, 'token_str': 'waitress'}, {'sequence': '[CLS] the woman worked as a maid. [SEP]', 'score': 0.1154729500412941, 'token': 10850, 'token_str': 'maid'}, {'sequence': '[CLS] the woman worked as a prostitute. [SEP]', 'score': 0.037968918681144714, 'token': 19215, 'token_str': 'prostitute'}, {'sequence': '[CLS] the woman worked as a cook. [SEP]', 'score': 0.03042375110089779, 'token': 5660, 'token_str': 'cook'}] ``` This bias will also affect all fine-tuned versions of this model. ## Training data The BERT model was pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 4 cloud TPUs in Pod configuration (16 TPU chips total) for one million steps with a batch size of 256. The sequence length was limited to 128 tokens for 90% of the steps and 512 for the remaining 10%. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ## Evaluation results When fine-tuned on downstream tasks, this model achieves the following results: Glue test results: | Task | MNLI-(m/mm) | QQP | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE | Average | |:----:|:-----------:|:----:|:----:|:-----:|:----:|:-----:|:----:|:----:|:-------:| | | 84.6/83.4 | 71.2 | 90.5 | 93.5 | 52.1 | 85.8 | 88.9 | 66.4 | 79.6 | ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-1810-04805, author = {Jacob Devlin and Ming{-}Wei Chang and Kenton Lee and Kristina Toutanova}, title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language Understanding}, journal = {CoRR}, volume = {abs/1810.04805}, year = {2018}, url = {http://arxiv.org/abs/1810.04805}, archivePrefix = {arXiv}, eprint = {1810.04805}, timestamp = {Tue, 30 Oct 2018 20:39:56 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=bert-base-uncased"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
sravya/ELECTRA_SD_V3
2021-05-30T20:33:43.000Z
[ "pytorch", "electra", "pretraining", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sravya
44
transformers
sripadh8/Distil_albert_student_albert
2021-05-21T16:12:48.000Z
[ "pytorch", "albert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json" ]
sripadh8
16
transformers
sripadh8/distilbert-base-uncased
2021-05-20T08:00:43.000Z
[ "pytorch", "distilbert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json", "vocab.txt" ]
sripadh8
43
transformers
sripadhstudy/100_SDB_TAxxL_average_768
2021-06-05T15:37:11.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
1
transformers
sripadhstudy/100_SDB_TAxxL_truncate_768
2021-06-05T15:36:46.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
2
transformers
sripadhstudy/100_SDB_TBB
2021-06-03T13:05:44.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sripadhstudy
8
transformers
sripadhstudy/500_SAB_TAxxL_truncate_12_layers
2021-06-14T15:40:49.000Z
[ "pytorch", "albert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
14
transformers
sripadhstudy/500_SAB_TAxxL_truncate_3_layers
2021-06-14T15:51:21.000Z
[ "pytorch" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
13
sripadhstudy/500_SAB_TAxxL_truncate_768
2021-06-10T14:18:20.000Z
[ "pytorch", "albert", "transformers" ]
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
19
transformers
sripadhstudy/500_SDB_TAxxL_average_768
2021-06-05T11:05:26.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
26
transformers
sripadhstudy/500_SDB_TAxxL_truncate_768
2021-06-09T06:41:53.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
30
transformers
sripadhstudy/500_SDB_TBB
2021-06-03T21:37:32.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json", "tokenizer_config.json", "vocab.txt" ]
sripadhstudy
32
transformers
sripadhstudy/50_SDB_TAxxL_average_768
2021-06-04T16:40:02.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
7
transformers
sripadhstudy/50_SDB_TAxxL_truncate_768
2021-06-04T14:04:52.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer.json" ]
sripadhstudy
11
transformers
sripadhstudy/50_SDB_TBB
2021-06-03T12:22:46.000Z
[ "pytorch", "distilbert", "masked-lm", "transformers", "fill-mask" ]
fill-mask
[ ".gitattributes", "config.json", "pytorch_model.bin", "tokenizer_config.json" ]
sripadhstudy
25
transformers
srush/bert_uncased_L-2_H-128_A-2
2021-05-20T07:12:06.000Z
[ "pytorch", "jax", "bert", "transformers" ]
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin", "vocab.txt", "model_cards/README.md" ]
srush
24
transformers
If you use these models, please cite the following paper: @article{turc2019, title={Well-Read Students Learn Better: On the Importance of Pre-training Compact Models}, author={Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and Toutanova, Kristina}, journal={arXiv preprint arXiv:1908.08962v2 }, year={2019} }
sshleifer/bart-large-fp32
2020-09-22T16:20:39.000Z
[ "pytorch", "rust", "bart", "transformers" ]
[ ".gitattributes", "config.json", "merges.txt", "pytorch_model.bin", "rust_model.ot", "tokenizer_config.json", "vocab.json" ]
sshleifer
12
transformers
sshleifer/bart-tiny-random
2021-06-14T07:44:43.000Z
[ "pytorch", "tf", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "vocab.json" ]
sshleifer
55,662
transformers
sshleifer/bb12
2020-09-19T04:19:18.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
22
transformers
sshleifer/bb3b-tok
2020-09-25T18:06:31.000Z
[ "blenderbot", "seq2seq", "en", "dataset:blended_skill_talk", "arxiv:1907.06616", "transformers", "translation", "facebook", "convAI", "license:apache-2.0", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "bb3b.json", "config.json", "merges.txt", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
20
transformers
--- language: - en thumbnail: tags: - translation - facebook - convAI license: apache-2.0 datasets: - blended_skill_talk metrics: - perplexity --- # Blenderbot-3B ## Model description + [Paper](https://arxiv.org/abs/1907.06616). + [Original PARLAI Code] The abbreviation FSMT stands for FairSeqMachineTranslation All four models are available: * [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru) * [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en) * [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de) * [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en) ## Intended uses & limitations #### How to use ```python from transformers.tokenization_fsmt import FSMTTokenizer from transformers.modeling_fsmt import FSMTForConditionalGeneration mname = "facebook/wmt19-en-ru" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = "Machine learning is great, isn't it?" input_ids = tokenizer.encode(input, return_tensors="pt") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # Машинное обучение - это здорово, не так ли? ``` #### Limitations and bias - The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981) ## Training data Pretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616). ## Eval results pair | fairseq | transformers -------|---------|---------- en-ru | [36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724) | 33.47 The score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support: - model ensemble, therefore the best performing checkpoint was ported (``model4.pt``). - re-ranking The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR=en-ru export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=15 mkdir -p $DATA_DIR sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` note: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`. ## Data Sources - [training, etc.](http://www.statmt.org/wmt19/) - [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561) ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020}, title={Facebook FAIR's WMT19 News Translation Task Submission}, author={Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}, booktitle={Proc. of WMT}, } ``` ## TODO - port model ensemble (fairseq uses 4 model checkpoints)
sshleifer/dev-ft-en-ro
2020-07-21T19:37:34.000Z
[ "pytorch", "mbart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sshleifer
10
transformers
sshleifer/distilbart-cnn-12-3
2021-06-14T07:47:53.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
233
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-cnn-12-6
2021-06-14T07:51:12.000Z
[ "pytorch", "jax", "rust", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "rust_model.ot", "tokenizer_config.json", "vocab.json" ]
sshleifer
389,139
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-cnn-6-6
2021-06-14T07:53:04.000Z
[ "pytorch", "jax", "rust", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "rust_model.ot", "tokenizer_config.json", "vocab.json" ]
sshleifer
100,584
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-1-1
2021-06-14T07:53:57.000Z
[ "pytorch", "tf", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tf_model.h5", "tokenizer_config.json", "vocab.json" ]
sshleifer
6,524
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-12-1
2021-06-14T07:56:06.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "test_generations.txt", "tokenizer_config.json", "vocab.json" ]
sshleifer
274
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-12-3
2021-06-14T07:57:16.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
197
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-12-6
2021-06-14T07:58:25.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
2,204
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-6-6
2021-06-14T08:25:26.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
167
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distilbart-xsum-9-6
2021-06-14T08:26:18.000Z
[ "pytorch", "jax", "bart", "seq2seq", "en", "dataset:cnn_dailymail", "dataset:xsum", "transformers", "summarization", "license:apache-2.0", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
89
transformers
--- language: en tags: - summarization license: apache-2.0 datasets: - cnn_dailymail - xsum thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for DistilBART models | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
sshleifer/distill-mbart-en-ro-12-4
2020-09-10T15:56:16.000Z
[ "pytorch", "mbart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sshleifer
10
transformers
sshleifer/distill-mbart-en-ro-12-6
2021-03-16T01:57:13.000Z
[ "pytorch", "mbart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sshleifer
11
transformers
sshleifer/distill-mbart-en-ro-12-9
2020-09-10T15:56:54.000Z
[ "pytorch", "mbart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "sentencepiece.bpe.model", "special_tokens_map.json", "tokenizer_config.json" ]
sshleifer
9
transformers
sshleifer/distill-pegasus-cnn-16-4
2020-10-08T03:05:37.000Z
[ "pytorch", "pegasus", "seq2seq", "en", "arxiv:1912.08777", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
sshleifer
488
transformers
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sshleifer/distill-pegasus-xsum-12-12
2020-10-14T16:12:31.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
sshleifer
35
transformers
sshleifer/distill-pegasus-xsum-16-4
2020-10-14T16:16:54.000Z
[ "pytorch", "pegasus", "seq2seq", "en", "arxiv:1912.08777", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "test_generations.txt", "test_rouge.json", "tokenizer_config.json" ]
sshleifer
235
transformers
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sshleifer/distill-pegasus-xsum-16-8
2020-10-08T03:05:56.000Z
[ "pytorch", "pegasus", "seq2seq", "en", "arxiv:1912.08777", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
sshleifer
86
transformers
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sshleifer/mar_enro_6_3_student
2020-11-04T14:45:05.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "source.spm", "special_tokens_map.json", "target.spm", "tokenizer_config.json", "vocab.json" ]
sshleifer
19
transformers
sshleifer/opus-mt-CELTIC-en
2020-05-14T13:13:12.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "source.spm", "target.spm", "tokenizer_config.json", "vocab.json" ]
sshleifer
16
transformers
### opus-mt-INSULAR_CELTIC-en * source languages: ga,cy,br,gd,kw,gv * target languages: en * OPUS readme: [ga+cy+br+gd+kw+gv-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/ga+cy+br+gd+kw+gv-en/README.md) * dataset: opus+techiaith+bt * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus+techiaith+bt-2020-04-30.zip](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.zip) * test set translations: [opus+techiaith+bt-2020-04-30.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.test.txt) * test set scores: [opus+techiaith+bt-2020-04-30.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/ga+cy+br+gd+kw+gv-en/opus+techiaith+bt-2020-04-30.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba.ga.en | 28.4 | 0.446 |
sshleifer/opus-mt-en-he
2020-10-11T17:14:27.000Z
[ "pytorch", "marian", "seq2seq", "en", "he", "transformers", "translation", "license:apache-2.0", "text2text-generation" ]
translation
[ ".gitattributes", "README.md", "config.json", "metadata.json", "pytorch_model.bin", "source.spm", "special_tokens_map.json", "target.spm", "tokenizer_config.json", "vocab.json" ]
sshleifer
19
transformers
--- language: - en - he tags: - translation license: apache-2.0 --- ### en-he * source group: English * target group: Hebrew * OPUS readme: [eng-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md) * model: transformer * source language(s): eng * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-10-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip) * test set translations: [opus-2020-10-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt) * test set scores: [opus-2020-10-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.eng.heb | 37.9 | 0.602 | ### System Info: - hf_name: en-he - source_languages: eng - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'he'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-heb/opus-2020-10-04.test.txt - src_alpha3: eng - tgt_alpha3: heb - chrF2_score: 0.602 - bleu: 37.9 - brevity_penalty: 1.0 - ref_len: 60359.0 - src_name: English - tgt_name: Hebrew - train_date: 2020-10-04 00:00:00 - src_alpha2: en - tgt_alpha2: he - prefer_old: False - short_pair: en-he - helsinki_git_sha: 7b1a514877868084fd74350d261519e092b5b2dc - transformers_git_sha: 8e58566183ee49f9dbc4819a95a678fcfb1b7528 - port_machine: MacBook-Pro.local - port_time: 2020-10-11-13:07
sshleifer/pegasus-cnn-ft-v2
2020-10-08T03:06:14.000Z
[ "pytorch", "pegasus", "seq2seq", "en", "arxiv:1912.08777", "transformers", "summarization", "text2text-generation" ]
summarization
[ ".gitattributes", "README.md", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json", "logs/git_log.json", "logs/hparams.pkl", "logs/metrics.json", "logs/test_gens.txt", "logs/test_rouge.json", "logs/avg_metrics/test_gens.txt", "logs/avg_metrics/test_rouge.json" ]
sshleifer
66
transformers
--- language: en tags: - summarization --- ### Pegasus Models See Docs: [here](https://huggingface.co/transformers/master/model_doc/pegasus.html) Original TF 1 code [here](https://github.com/google-research/pegasus) Authors: Jingqing Zhang, Yao Zhao, Mohammad Saleh and Peter J. Liu on Dec 18, 2019 Maintained by: [@sshleifer](https://twitter.com/sam_shleifer) Task: Summarization The following is copied from the authors' README. # Mixed & Stochastic Checkpoints We train a pegasus model with sampled gap sentence ratios on both C4 and HugeNews, and stochastically sample important sentences. The updated the results are reported in this table. | dataset | C4 | HugeNews | Mixed & Stochastic| | ---- | ---- | ---- | ----| | xsum | 45.20/22.06/36.99 | 47.21/24.56/39.25 | 47.60/24.83/39.64| | cnn_dailymail | 43.90/21.20/40.76 | 44.17/21.47/41.11 | 44.16/21.56/41.30| | newsroom | 45.07/33.39/41.28 | 45.15/33.51/41.33 | 45.98/34.20/42.18| | multi_news | 46.74/17.95/24.26 | 47.52/18.72/24.91 | 47.65/18.75/24.95| | gigaword | 38.75/19.96/36.14 | 39.12/19.86/36.24 | 39.65/20.47/36.76| | wikihow | 43.07/19.70/34.79 | 41.35/18.51/33.42 | 46.39/22.12/38.41 *| | reddit_tifu | 26.54/8.94/21.64 | 26.63/9.01/21.60 | 27.99/9.81/22.94| | big_patent | 53.63/33.16/42.25 | 53.41/32.89/42.07 | 52.29/33.08/41.66 *| | arxiv | 44.70/17.27/25.80 | 44.67/17.18/25.73 | 44.21/16.95/25.67| | pubmed | 45.49/19.90/27.69 | 45.09/19.56/27.42 | 45.97/20.15/28.25| | aeslc | 37.69/21.85/36.84 | 37.40/21.22/36.45 | 37.68/21.25/36.51| | billsum | 57.20/39.56/45.80 | 57.31/40.19/45.82 | 59.67/41.58/47.59| The "Mixed & Stochastic" model has the following changes: - trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). - trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). - the model uniformly sample a gap sentence ratio between 15% and 45%. - importance sentences are sampled using a 20% uniform noise to importance scores. - the sentencepiece tokenizer is updated to be able to encode newline character. (*) the numbers of wikihow and big_patent datasets are not comparable because of change in tokenization and data: - wikihow dataset contains newline characters which is useful for paragraph segmentation, the C4 and HugeNews model's sentencepiece tokenizer doesn't encode newline and loose this information. - we update the BigPatent dataset to preserve casing, some format cleanings are also changed, please refer to change in TFDS. The "Mixed & Stochastic" model has the following changes (from pegasus-large in the paper): trained on both C4 and HugeNews (dataset mixture is weighted by their number of examples). trained for 1.5M instead of 500k (we observe slower convergence on pretraining perplexity). the model uniformly sample a gap sentence ratio between 15% and 45%. importance sentences are sampled using a 20% uniform noise to importance scores. the sentencepiece tokenizer is updated to be able to encode newline character. Citation ``` @misc{zhang2019pegasus, title={PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization}, author={Jingqing Zhang and Yao Zhao and Mohammad Saleh and Peter J. Liu}, year={2019}, eprint={1912.08777}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
sshleifer/student-bart-base-3-3
2021-06-14T08:27:02.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
20
transformers
sshleifer/student-pegasus-xsum-12-12
2020-09-11T04:01:55.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
10
transformers
sshleifer/student-pegasus-xsum-6-6
2020-09-11T04:04:22.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
16
transformers
sshleifer/student_blarge_12_3
2021-06-14T08:27:56.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
15
transformers
sshleifer/student_cnn_12_1
2021-06-14T08:29:25.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
14
transformers
sshleifer/student_cnn_12_2
2021-06-14T08:31:55.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
15
transformers
sshleifer/student_cnn_12_3
2021-06-14T08:34:05.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
22
transformers
sshleifer/student_cnn_12_6
2021-06-14T08:36:40.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
30
transformers
sshleifer/student_cnn_12_9
2021-06-14T08:39:43.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
22
transformers
sshleifer/student_cnn_6_6
2021-06-14T09:20:09.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
19
transformers
sshleifer/student_cnn_9_12
2021-06-14T09:22:48.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
24
transformers
sshleifer/student_cnn_9_9
2021-06-14T09:25:20.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
19
transformers
sshleifer/student_enro_avg_12_1
2021-06-14T09:27:51.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_enro_avg_12_2
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_enro_avg_12_3
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
18
transformers
sshleifer/student_enro_avg_12_6
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
17
transformers
sshleifer/student_enro_sum_12_1
2020-07-18T20:16:27.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_enro_sum_12_2
2020-07-18T20:25:02.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
16
transformers
sshleifer/student_enro_sum_12_3
2020-07-18T20:25:05.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_enro_sum_12_6
2020-07-18T20:25:05.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
13
transformers
sshleifer/student_marian_en_ro_1_1
2020-08-26T02:19:58.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
12
transformers
sshleifer/student_marian_en_ro_6_1
2020-08-26T23:33:54.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "source.spm", "target.spm", "vocab.json" ]
sshleifer
259
transformers
sshleifer/student_marian_en_ro_6_2
2020-08-26T02:18:56.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
13
transformers
sshleifer/student_marian_en_ro_6_3
2020-08-26T02:17:44.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "source.spm", "target.spm", "vocab.json" ]
sshleifer
73
transformers
sshleifer/student_marian_en_ro_6_4
2020-08-26T05:14:16.000Z
[ "pytorch", "marian", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "source.spm", "target.spm", "vocab.json" ]
sshleifer
17
transformers
sshleifer/student_mbart_en_ro_12_1
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
14
transformers
sshleifer/student_mbart_en_ro_12_2
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_mbart_en_ro_12_3
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_mbart_en_ro_12_4
2020-07-15T15:14:51.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
13
transformers
sshleifer/student_mbart_en_ro_12_6
2020-07-15T15:14:57.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
17
transformers
sshleifer/student_mbart_en_ro_12_9
2020-07-15T15:26:58.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
18
transformers
sshleifer/student_mbart_en_ro_1_1
2020-07-15T15:27:32.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
14
transformers
sshleifer/student_mbart_en_ro_6_6
2020-07-15T15:27:55.000Z
[ "pytorch", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
15
transformers
sshleifer/student_pegasus-xsum-12-4
2020-09-11T04:03:12.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
10
transformers
sshleifer/student_pegasus_cnn_12_2
2020-10-02T03:49:28.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin", "special_tokens_map.json", "spiece.model", "tokenizer_config.json" ]
sshleifer
26
transformers
sshleifer/student_pegasus_xsum_16_4
2020-08-27T21:24:12.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
21
transformers
sshleifer/student_pegasus_xsum_16_8
2020-08-27T21:23:21.000Z
[ "pytorch", "pegasus", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "pytorch_model.bin" ]
sshleifer
11
transformers
sshleifer/student_xsum_12_1
2021-06-14T09:40:24.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
17
transformers
sshleifer/student_xsum_12_2
2021-06-14T09:42:48.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "special_tokens_map.json", "tokenizer_config.json", "vocab.json" ]
sshleifer
12
transformers
sshleifer/student_xsum_12_3
2021-06-14T09:46:21.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
21
transformers
sshleifer/student_xsum_12_4
2021-06-14T09:48:49.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
23
transformers
sshleifer/student_xsum_12_6
2021-06-14T09:51:51.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
23
transformers
sshleifer/student_xsum_12_9
2021-06-14T09:54:50.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
26
transformers
sshleifer/student_xsum_3_12
2021-06-14T10:05:28.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
18
transformers
sshleifer/student_xsum_6_12
2021-06-14T10:08:37.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
27
transformers
sshleifer/student_xsum_6_6
2021-06-14T10:10:51.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
23
transformers
sshleifer/student_xsum_9_12
2021-06-14T10:13:47.000Z
[ "pytorch", "jax", "bart", "seq2seq", "transformers", "text2text-generation" ]
text2text-generation
[ ".gitattributes", "config.json", "flax_model.msgpack", "merges.txt", "pytorch_model.bin", "tokenizer_config.json", "vocab.json" ]
sshleifer
28
transformers