response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
Return gcs path to directory containing crash regressions. | def _get_regressions_corpus_gcs_url(bucket_name, bucket_path):
"""Return gcs path to directory containing crash regressions."""
return _get_gcs_url(
bucket_name, bucket_path, suffix=REGRESSIONS_GCS_PATH_SUFFIX) |
Build corpus GCS URL for gsutil.
Returns:
A string giving the GCS URL. | def _get_gcs_url(bucket_name, bucket_path, suffix=''):
"""Build corpus GCS URL for gsutil.
Returns:
A string giving the GCS URL.
"""
# TODO(metzman): Delete this after we are done migrating to the zipcorpus
# format.
url = f'gs://{bucket_name}{bucket_path}{suffix}'
if not url.endswith('/'):
# Ensure that the bucket path is '/' terminated. Without this, when a
# single file is being uploaded, it is renamed to the trailing non-/
# terminated directory name instead.
url += '/'
return url |
Returns a data bundle corpus that can be used by uworkers or trusted
workers to download the data bundle files using the fastest means available to
them. | def get_proto_data_bundle_corpus(
data_bundle) -> uworker_msg_pb2.DataBundleCorpus:
"""Returns a data bundle corpus that can be used by uworkers or trusted
workers to download the data bundle files using the fastest means available to
them."""
data_bundle_corpus = uworker_msg_pb2.DataBundleCorpus()
data_bundle_corpus.gcs_url = data_handler.get_data_bundle_bucket_url(
data_bundle.name)
data_bundle_corpus.data_bundle.CopyFrom(
uworker_io.entity_to_protobuf(data_bundle))
if task_types.task_main_runs_on_uworker():
# Slow path for when we need an untrusted worker to run a task.
# Note that the security of the system (only the correctness) depends on
# this path being taken. If it is not taken when we need to, utask_main will
# simply fail as it tries to do privileged operation it does not have
# permissions for.
urls = (f'{data_bundle_corpus.gcs_url}/{url}'
for url in storage.list_blobs(data_bundle_corpus.gcs_url))
data_bundle_corpus.corpus_urls.extend([
url_pair[0] for url_pair in storage.sign_urls_for_existing_files(
urls, include_delete_urls=False)
])
return data_bundle_corpus |
Returns a proto representation of a corpus. | def get_proto_corpus(bucket_name,
bucket_path,
max_upload_urls,
include_delete_urls=False):
"""Returns a proto representation of a corpus."""
gcs_url = _get_gcs_url(bucket_name, bucket_path)
# TODO(metzman): Allow this step to be skipped by trusted fuzzers.
urls = (f'{storage.GS_PREFIX}/{bucket_name}/{url}'
for url in storage.list_blobs(gcs_url))
corpus_urls = dict(
storage.sign_urls_for_existing_files(urls, include_delete_urls))
upload_urls = storage.get_arbitrary_signed_upload_urls(
gcs_url, num_uploads=max_upload_urls)
corpus = uworker_msg_pb2.Corpus(
corpus_urls=corpus_urls,
upload_urls=upload_urls,
gcs_url=gcs_url,
)
last_updated = storage.last_updated(_get_gcs_url(bucket_name, bucket_path))
if last_updated:
timestamp = timestamp_pb2.Timestamp() # pylint: disable=no-member
timestamp.FromDatetime(last_updated)
corpus.last_updated_time.CopyFrom(timestamp)
return corpus |
Gets target and bucket path for the corpus. | def get_target_bucket_and_path(engine,
project_qualified_target_name,
quarantine=False):
"""Gets target and bucket path for the corpus."""
engine = os.getenv('CORPUS_FUZZER_NAME_OVERRIDE', engine)
if quarantine:
sync_corpus_bucket_name = environment.get_value('QUARANTINE_BUCKET')
else:
sync_corpus_bucket_name = environment.get_value('CORPUS_BUCKET')
if not sync_corpus_bucket_name:
raise RuntimeError('No corpus bucket specified.')
return sync_corpus_bucket_name, f'/{engine}/{project_qualified_target_name}' |
Copies the corpus from gcs to disk. Can run on uworker. | def get_fuzz_target_corpus(engine,
project_qualified_target_name,
quarantine=False,
include_regressions=False,
include_delete_urls=False,
max_upload_urls=10000):
"""Copies the corpus from gcs to disk. Can run on uworker."""
fuzz_target_corpus = uworker_msg_pb2.FuzzTargetCorpus()
bucket_name, bucket_path = get_target_bucket_and_path(
engine, project_qualified_target_name, quarantine)
corpus = get_proto_corpus(
bucket_name,
bucket_path,
include_delete_urls=include_delete_urls,
max_upload_urls=max_upload_urls)
print('bucket_name', bucket_name, 'bucket_path', bucket_path, corpus.gcs_url)
fuzz_target_corpus.corpus.CopyFrom(corpus)
assert not (include_regressions and quarantine)
if include_regressions:
regressions_bucket_path = f'{bucket_path}{REGRESSIONS_GCS_PATH_SUFFIX}'
regressions_corpus = get_proto_corpus(
bucket_name,
regressions_bucket_path,
max_upload_urls=0, # This is never uploaded to using this mechanism.
include_delete_urls=False) # This is never deleted from.
fuzz_target_corpus.regressions_corpus.CopyFrom(regressions_corpus)
return ProtoFuzzTargetCorpus(engine, project_qualified_target_name,
fuzz_target_corpus) |
Returns a fuzz target corpus and quarantine corpus for pruning. | def get_corpuses_for_pruning(engine, project_qualified_name):
"""Returns a fuzz target corpus and quarantine corpus for pruning."""
# We need to include upload URLs because of corpus pollination. This is
# unfortunate as it is probably rarely used.
corpus = get_fuzz_target_corpus(
engine,
project_qualified_name,
include_regressions=True,
include_delete_urls=True)
max_upload_urls = len(corpus.proto_corpus.corpus.corpus_urls)
# We will never need to upload more than the number of testcases in the
# corpus to the quarantine.
quarantine_corpus = get_fuzz_target_corpus(
engine,
project_qualified_name,
quarantine=True,
max_upload_urls=max_upload_urls)
return corpus, quarantine_corpus |
Clear existing mappings for a fuzzer, and replace them. | def update_mappings_for_fuzzer(fuzzer, mappings=None):
"""Clear existing mappings for a fuzzer, and replace them."""
if mappings is None:
mappings = fuzzer.jobs
query = data_types.FuzzerJob.query()
query = query.filter(data_types.FuzzerJob.fuzzer == fuzzer.name)
entities = ndb_utils.get_all_from_query(query)
old_mappings = {}
for entity in entities:
old_mappings[entity.job] = entity
new_mappings = []
for job_name in mappings:
mapping = old_mappings.pop(job_name, None)
if mapping:
continue
job = data_types.Job.query(data_types.Job.name == job_name).get()
if not job:
logs.log_error('An unknown job %s was selected for fuzzer %s.' %
(job_name, fuzzer.name))
continue
mapping = data_types.FuzzerJob()
mapping.fuzzer = fuzzer.name
mapping.job = job_name
mapping.platform = job.platform
new_mappings.append(mapping)
ndb_utils.put_multi(new_mappings)
ndb_utils.delete_multi([m.key for m in list(old_mappings.values())]) |
Clear existing mappings for a job, and replace them. | def update_mappings_for_job(job, mappings):
"""Clear existing mappings for a job, and replace them."""
existing_fuzzers = {
fuzzer.name: fuzzer
for fuzzer in data_types.Fuzzer.query()
if job.name in fuzzer.jobs
}
modified_fuzzers = []
for fuzzer_name in mappings:
fuzzer = existing_fuzzers.pop(fuzzer_name, None)
if fuzzer:
continue
fuzzer = data_types.Fuzzer.query(
data_types.Fuzzer.name == fuzzer_name).get()
if not fuzzer:
logs.log_error('An unknown fuzzer %s was selected for job %s.' %
(fuzzer_name, job.name))
continue
fuzzer.jobs.append(job.name)
modified_fuzzers.append(fuzzer)
update_mappings_for_fuzzer(fuzzer)
# Removing the remaining values in exisiting_fuzzers as
# they are no longer mapped.
for fuzzer in existing_fuzzers.values():
fuzzer.jobs.remove(job.name)
modified_fuzzers.append(fuzzer)
update_mappings_for_fuzzer(fuzzer)
ndb.put_multi(modified_fuzzers) |
Update platform for all mappings for a particular job. | def update_platform_for_job(job_name, new_platform):
"""Update platform for all mappings for a particular job."""
query = data_types.FuzzerJob.query()
query = query.filter(data_types.FuzzerJob.job == job_name)
mappings = ndb_utils.get_all_from_query(query)
new_mappings = []
for mapping in mappings:
mapping.platform = new_platform
new_mappings.append(mapping)
ndb_utils.put_multi(new_mappings) |
Select a fuzzer that can run on this platform. | def get_fuzz_task_payload(platform=None):
"""Select a fuzzer that can run on this platform."""
if not platform:
queue_override = environment.get_value('QUEUE_OVERRIDE')
platform = queue_override if queue_override else environment.platform()
platforms = [platform]
base_platform = platform.split(':')[0]
# Generalized queue for platforms with a base platform (e.g. ANDROID)
if base_platform != platform:
platforms.append(base_platform)
if environment.is_production():
query = data_types.FuzzerJobs.query()
query = query.filter(data_types.FuzzerJobs.platform.IN(platforms))
mappings = []
for entity in query:
mappings.extend(entity.fuzzer_jobs)
else:
# 'FuzzerJobs' may not exist locally because they are created by
# the 'batch_fuzzer_jobs' cron job
query = data_types.FuzzerJob.query()
query = query.filter(data_types.FuzzerJob.platform.IN(platforms))
mappings = list(ndb_utils.get_all_from_query(query))[:1]
if not mappings:
return None, None
selection = utils.random_weighted_choice(
mappings, weight_attribute='actual_weight')
return selection.fuzzer, selection.job |
Select a fuzz target from a list of potential targets. | def select_fuzz_target(targets, target_weights):
"""Select a fuzz target from a list of potential targets."""
assert targets
weighted_targets = []
for target in targets:
weight = target_weights.get(target, 1.0)
weighted_targets.append(WeightedTarget(target, weight))
return utils.random_weighted_choice(weighted_targets).target |
Get a list of fuzz target weights based on the current fuzzer. | def get_fuzz_target_weights():
"""Get a list of fuzz target weights based on the current fuzzer."""
job_type = environment.get_value('JOB_NAME')
target_jobs = list(fuzz_target_utils.get_fuzz_target_jobs(job=job_type))
fuzz_targets = fuzz_target_utils.get_fuzz_targets_for_target_jobs(target_jobs)
weights = {}
for fuzz_target, target_job in zip(fuzz_targets, target_jobs):
if not fuzz_target:
logs.log_error('Skipping weight assignment for fuzz target '
f'{target_job.fuzz_target_name}.')
continue
weights[fuzz_target.binary] = target_job.weight
return weights |
Return a list of random gestures. | def get_gestures(gesture_count):
"""Return a list of random gestures."""
plt = environment.platform()
if environment.is_android(plt):
return android.gestures.get_random_gestures(gesture_count)
if plt == 'LINUX':
return linux.gestures.get_random_gestures(gesture_count)
if plt == 'WINDOWS':
return windows.gestures.get_random_gestures(gesture_count)
return [] |
Creates an empty local blacklist. | def create_empty_local_blacklist():
"""Creates an empty local blacklist."""
lsan_suppressions_path = get_local_blacklist_file_path()
with open(lsan_suppressions_path, 'w') as local_blacklist:
# Insert comment on top to avoid parsing errors on empty file.
local_blacklist.write(LSAN_HEADER_COMMENT) |
Cleans out closed and deleted testcases from the global blacklist. | def cleanup_global_blacklist():
"""Cleans out closed and deleted testcases from the global blacklist."""
blacklists_to_delete = []
global_blacklists = data_types.Blacklist.query(
data_types.Blacklist.tool_name == LSAN_TOOL_NAME)
for blacklist in global_blacklists:
testcase_id = blacklist.testcase_id
try:
testcase = data_handler.get_testcase_by_id(testcase_id)
except errors.InvalidTestcaseError:
testcase = None
# Delete entry if testcase is closed, deleted, or unreproducible.
if not testcase or not testcase.open or testcase.one_time_crasher_flag:
blacklists_to_delete.append(blacklist.key)
ndb_utils.delete_multi(blacklists_to_delete) |
Copies contents of global blacklist into local blacklist file, excluding
a particular testcase (if any). | def copy_global_to_local_blacklist(blacklisted_functions,
excluded_testcase=None):
"""Copies contents of global blacklist into local blacklist file, excluding
a particular testcase (if any)."""
lsan_suppressions_path = get_local_blacklist_file_path()
excluded_function_name = (
get_leak_function_for_blacklist(excluded_testcase)
if excluded_testcase else None)
with open(lsan_suppressions_path, 'w') as local_blacklist:
# Insert comment on top to avoid parsing errors on empty file.
local_blacklist.write(LSAN_HEADER_COMMENT)
for function_name in blacklisted_functions:
if function_name == excluded_function_name:
continue
local_blacklist.write(
LSAN_SUPPRESSION_LINE.format(function=function_name)) |
Return leak function to be used for blacklisting. | def get_leak_function_for_blacklist(testcase):
"""Return leak function to be used for blacklisting."""
crash_functions = testcase.crash_state.splitlines()
if not crash_functions:
return None
return crash_functions[0] |
Return the file path to the local blacklist text file. | def get_local_blacklist_file_path():
"""Return the file path to the local blacklist text file."""
local_blacklist_path = os.path.join(environment.get_suppressions_directory(),
'lsan_suppressions.txt')
# Create the directory if it does not exists, since we need to write to it.
blacklist_directory = os.path.dirname(local_blacklist_path)
if not os.path.exists(blacklist_directory):
os.makedirs(blacklist_directory)
return local_blacklist_path |
Returns True if testcase is reproducible and not deleted. | def should_be_blacklisted(testcase):
"""Returns True if testcase is reproducible and not deleted."""
return (testcase.open and testcase.crash_type == DIRECT_LEAK_LABEL and
not testcase.one_time_crasher_flag) |
Adds relevant function from testcase crash state to global blacklist. | def add_crash_to_global_blacklist_if_needed(testcase):
"""Adds relevant function from testcase crash state to global blacklist."""
testcase_id = testcase.key.id()
if not should_be_blacklisted(testcase):
logs.log('Testcase %s is not a reproducible leak, skipping leak blacklist.'
% testcase_id)
return False
function_name = get_leak_function_for_blacklist(testcase)
if not function_name:
logs.log_error(
'Testcase %s has invalid crash state, skipping leak blacklist.' %
testcase_id)
return False
existing_query = data_types.Blacklist.query(
data_types.Blacklist.function_name == function_name)
existing_query = existing_query.filter(
data_types.Blacklist.testcase_id == testcase_id)
existing_query = existing_query.filter(
data_types.Blacklist.tool_name == LSAN_TOOL_NAME)
if existing_query.get():
logs.log_error('Item already in leak blacklist.')
return False
blacklist_item = data_types.Blacklist(
function_name=function_name,
testcase_id=testcase_id,
tool_name=LSAN_TOOL_NAME)
blacklist_item.put()
logs.log('Added %s to leak blacklist.' % function_name)
return blacklist_item |
Highlights the first direct leak in a report.
Args:
crash_stacktrace: The crash report.
Returns:
new_report: Updated crash report with first direct leak highlighted. | def highlight_first_direct_leak(crash_stacktrace):
"""Highlights the first direct leak in a report.
Args:
crash_stacktrace: The crash report.
Returns:
new_report: Updated crash report with first direct leak highlighted.
"""
new_report = []
processed_first_leak = False
num_stacks = 0
highlighted_stack_index = 0
divider_index = 0
# Used to prevent highlighting on first indirect leak.
direct_leak = False
currently_highlighting = False
for line in crash_stacktrace.splitlines():
if DIRECT_LEAK_REGEX.match(line):
direct_leak = True
# Marking the end of the highlighted stack with a divider.
if BLANK_LINE_REGEX.match(line) and currently_highlighting:
currently_highlighting = False
processed_first_leak = True
if STACK_REGEX.match(line):
if STACK_START_REGEX.match(line):
num_stacks += 1
if direct_leak and not processed_first_leak:
highlighted_stack_index = num_stacks
currently_highlighting = True
# If the line is in the first stack, highlight.
if currently_highlighting:
line = '<b>%s</b>' % line
if not processed_first_leak:
divider_index += 1
new_report.append(line)
# If there's only one stack, return original report.
if num_stacks == 1:
return crash_stacktrace
# If there are leaks after the highlighted leak, insert a divider.
if highlighted_stack_index != num_stacks:
new_report.insert(divider_index + 1, FIRST_LEAK_DIVIDER)
return '\n'.join(new_report) |
Creates a batch client. | def _create_batch_client_new():
"""Creates a batch client."""
creds, project = credentials.get_default()
if not project:
project = utils.get_application_id()
return batch.BatchServiceClient(credentials=creds) |
Gets the batch client, creating it if it does not exist. | def _batch_client():
"""Gets the batch client, creating it if it does not exist."""
if hasattr(_local, 'client'):
return _local.client
_local.client = _create_batch_client_new()
return _local.client |
Implementation of itertools.py's batched that was added after Python3.7. | def _bunched(iterator, bunch_size):
"""Implementation of itertools.py's batched that was added after Python3.7."""
# TODO(metzman): Replace this with itertools.batched.
assert bunch_size > -1
idx = 0
bunch = []
for item in iterator:
idx += 1
bunch.append(item)
if idx == bunch_size:
idx = 0
yield bunch
bunch = []
if bunch:
yield bunch |
Creates batch jobs. | def create_uworker_main_batch_jobs(batch_tasks):
"""Creates batch jobs."""
job_specs = collections.defaultdict(list)
for batch_task in batch_tasks:
logs.log(f'Scheduling {batch_task.command}, {batch_task.job_type}.')
spec = _get_spec_from_config(batch_task.command, batch_task.job_type)
job_specs[spec].append(batch_task.input_download_url)
logs.log('Creating batch jobs.')
jobs = []
logs.log('Batching utask_mains.')
for spec, input_urls in job_specs.items():
for input_urls_portion in _bunched(input_urls, MAX_CONCURRENT_VMS_PER_JOB):
jobs.append(_create_job(spec, input_urls_portion))
return jobs |
Creates batch jobs 20 tasks at a time, lazily. This is helpful to use when
batch_tasks takes a very long time to create. | def create_uworker_main_batch_jobs_bunched(batch_tasks):
"""Creates batch jobs 20 tasks at a time, lazily. This is helpful to use when
batch_tasks takes a very long time to create."""
# Use term bunch instead of "batch" since "batch" has nothing to do with the
# cloud service and is thus very confusing in this context.
jobs = [
create_uworker_main_batch_jobs(bunch)
for bunch in _bunched(batch_tasks, TASK_BUNCH_SIZE)
]
return list(itertools.chain(jobs)) |
Gets the task spec based on the batch workload spec. | def _get_task_spec(batch_workload_spec):
"""Gets the task spec based on the batch workload spec."""
runnable = batch.Runnable()
runnable.container = batch.Runnable.Container()
runnable.container.image_uri = batch_workload_spec.docker_image
runnable.container.options = (
'--memory-swappiness=40 --shm-size=1.9g --rm --net=host '
'-e HOST_UID=1337 -P --privileged --cap-add=all '
'--name=clusterfuzz -e UNTRUSTED_WORKER=False -e UWORKER=True '
'-e UWORKER_INPUT_DOWNLOAD_URL')
runnable.container.volumes = ['/var/scratch0:/mnt/scratch0']
task_spec = batch.TaskSpec()
task_spec.runnables = [runnable]
task_spec.max_retry_count = RETRY_COUNT
# TODO(metzman): Change this for production.
task_spec.max_run_duration = MAX_DURATION
return task_spec |
Returns the allocation policy for a BatchWorkloadSpec. | def _get_allocation_policy(spec):
"""Returns the allocation policy for a BatchWorkloadSpec."""
disk = batch.AllocationPolicy.Disk()
disk.image = 'batch-cos'
disk.size_gb = spec.disk_size_gb
disk.type = spec.disk_type
instance_policy = batch.AllocationPolicy.InstancePolicy()
instance_policy.boot_disk = disk
instance_policy.machine_type = spec.machine_type
instances = batch.AllocationPolicy.InstancePolicyOrTemplate()
instances.policy = instance_policy
# Don't use external ip addresses which use quota, cost money, and are
# unnecessary.
network_interface = batch.AllocationPolicy.NetworkInterface()
network_interface.no_external_ip_address = True
# TODO(metzman): Make configurable.
network_interface.network = (
'projects/google.com:clusterfuzz/global/networks/batch')
network_interface.subnetwork = (
'projects/google.com:clusterfuzz/regions/us-west1/subnetworks/us-west1a')
network_interfaces = [network_interface]
network_policy = batch.AllocationPolicy.NetworkPolicy()
network_policy.network_interfaces = network_interfaces
allocation_policy = batch.AllocationPolicy()
allocation_policy.instances = [instances]
allocation_policy.network = network_policy
service_account = batch.ServiceAccount(email=spec.service_account_email) # pylint: disable=no-member
allocation_policy.service_account = service_account
return allocation_policy |
Creates and starts a batch job from |spec| that executes all tasks. | def _create_job(spec, input_urls):
"""Creates and starts a batch job from |spec| that executes all tasks."""
task_group = batch.TaskGroup()
task_group.task_count = len(input_urls)
assert task_group.task_count < MAX_CONCURRENT_VMS_PER_JOB
task_environments = [
batch.Environment(variables={'UWORKER_INPUT_DOWNLOAD_URL': input_url})
for input_url in input_urls
]
task_group.task_environments = task_environments
task_group.task_spec = _get_task_spec(spec)
task_group.task_count_per_node = TASK_COUNT_PER_NODE
assert task_group.task_count_per_node == 1, 'This is a security issue'
job = batch.Job()
job.task_groups = [task_group]
job.allocation_policy = _get_allocation_policy(spec)
job.labels = {'env': 'testing', 'type': 'container'}
job.logs_policy = batch.LogsPolicy()
job.logs_policy.destination = batch.LogsPolicy.Destination.CLOUD_LOGGING
create_request = batch.CreateJobRequest()
create_request.job = job
job_name = get_job_name()
create_request.job_id = job_name
# The job's parent is the region in which the job will run
project_id = 'google.com:clusterfuzz'
create_request.parent = f'projects/{project_id}/locations/us-west1'
job_result = _send_create_job_request(create_request)
logs.log(f'Created batch job id={job_name}.', spec=spec)
return job_result |
Returns the batch config. This function was made to make mocking easier. | def _get_batch_config():
"""Returns the batch config. This function was made to make mocking easier."""
return local_config.BatchConfig() |
Returns the Job entity named by |job_name|. This function was made to make
mocking easier. | def _get_job(job_name):
"""Returns the Job entity named by |job_name|. This function was made to make
mocking easier."""
return data_types.Job.query(data_types.Job.name == job_name).get() |
Gets the configured specifications for a batch workload. | def _get_spec_from_config(command, job_name):
"""Gets the configured specifications for a batch workload."""
job = _get_job(job_name)
config_name = job.platform
if command == 'fuzz':
config_name += '-PREEMPTIBLE'
else:
config_name += '-NONPREEMPTIBLE'
# TODO(metzman): Get rid of this when we stop doing privileged operations in
# utasks.
if command in _UNPRIVILEGED_TASKS:
config_name += '-UNPRIVILEGED'
batch_config = _get_batch_config()
instance_spec = batch_config.get('mapping').get(config_name, None)
if instance_spec is None:
raise ValueError(f'No mapping for {config_name}')
project_name = batch_config.get('project')
docker_image = instance_spec['docker_image']
user_data = instance_spec['user_data']
# TODO(https://github.com/google/clusterfuzz/issues/3008): Make this use a
# low-privilege account.
spec = BatchWorkloadSpec(
docker_image=docker_image,
user_data=user_data,
disk_size_gb=instance_spec['disk_size_gb'],
disk_type=instance_spec['disk_type'],
service_account_email=instance_spec['service_account_email'],
subnetwork=instance_spec['subnetwork'],
gce_zone=instance_spec['gce_zone'],
project=project_name,
preemptible=instance_spec['preemptible'],
machine_type=instance_spec['machine_type'])
return spec |
Return an api client for bigquery. | def get_api_client():
"""Return an api client for bigquery."""
return discovery.build(
'bigquery',
'v2',
cache_discovery=False,
credentials=credentials.get_default()[0]) |
Return bucket for bigquery stats. | def get_bucket():
"""Return bucket for bigquery stats."""
return local_config.ProjectConfig().get('bigquery.bucket') |
Cast value to appropriate type. | def cast(value, field):
"""Cast value to appropriate type."""
if value is None:
return None
if field['type'] in {'INTEGER', 'INT64'}:
return int(value)
if field['type'] in {'FLOAT', 'FLOAT64'}:
return float(value)
if field['type'] in {'BOOLEAN', 'BOOL'}:
return value == 'true'
if field['type'] in {'STRING'}:
return value
if field['type'] in {'TIMESTAMP'}:
return datetime.datetime.utcfromtimestamp(float(value))
if field['type'] in {'RECORD'}:
return convert_row(value, field['fields'])
raise RuntimeError(f'The type field[{"type"}] is unsupported.') |
Convert a single raw row (from BigQuery) to a dict. | def convert_row(raw_row, fields):
"""Convert a single raw row (from BigQuery) to a dict."""
row = {}
for index, raw_value in enumerate(raw_row['f']):
field = fields[index]
if field['mode'] == 'REPEATED':
row[field['name']] = []
for item in raw_value['v']:
row[field['name']].append(cast(item['v'], field))
else:
row[field['name']] = cast(raw_value['v'], field)
return row |
Convert a query result into an array of dicts, each of which represents
a row. | def convert(result):
"""Convert a query result into an array of dicts, each of which represents
a row."""
fields = result['schema']['fields']
rows = []
for raw_row in result.get('rows', []):
rows.append(convert_row(raw_row, fields))
return rows |
Write a range to BigQuery. This is applicable for regression and fixed
ranges. | def write_range(table_id, testcase, range_name, start, end):
"""Write a range to BigQuery. This is applicable for regression and fixed
ranges."""
client = Client(dataset_id='main', table_id=table_id)
result = client.insert([
Insert(
row={
'testcase_id': str(testcase.key.id()),
'crash_type': testcase.crash_type,
'crash_state': testcase.crash_state,
'security_flag': testcase.security_flag,
'parent_fuzzer_name': testcase.fuzzer_name,
'fuzzer_name': testcase.overridden_fuzzer_name,
'job_type': testcase.job_type,
'created_at': int(time.time()),
('%s_range_start' % range_name): int(start),
('%s_range_end' % range_name): int(end),
},
insert_id='%s:%s:%s' % (testcase.key.id(), start, end))
])
for error in result.get('insertErrors', []):
logs.log_error(
("Ignoring error writing the testcase's %s range (%s) to "
'BigQuery.' % (range_name, testcase.key.id())),
exception=ValueError(error)) |
Get an appropriate max_results. | def _get_max_results(max_results, limit, count_so_far):
"""Get an appropriate max_results."""
# limit is None means we get every record (no limit).
if limit is None:
return max_results
return min(max_results, limit - count_so_far) |
Return whether if the key is a GCS key. | def _is_gcs_key(blob_key):
"""Return whether if the key is a GCS key."""
gcs_key_pattern = re.compile(
r'^[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$')
return bool(gcs_key_pattern.match(blob_key)) |
Return the full path to the blob on GCS. | def _get_gcs_blob_path(blob_key):
"""Return the full path to the blob on GCS."""
return '/%s/%s' % (storage.blobs_bucket(), blob_key) |
Return GCS path for the blob. | def get_gcs_path(blob_key):
"""Return GCS path for the blob."""
if _is_gcs_key(blob_key):
return _get_gcs_blob_path(blob_key)
# Legacy blobstore key.
blob_info = get_legacy_blob_info(blob_key)
if not blob_info:
return None
return blob_info.gs_object_name |
Returns blob size for a given blob key. | def get_blob_size(blob_key):
"""Returns blob size for a given blob key."""
if not blob_key or blob_key == 'NA':
return None
blob_info = get_blob_info(blob_key)
if not blob_info:
return None
return blob_info.size |
Get the GcsBlobInfo for the given key. Always returns a
storage.GcsBlobInfo, even for legacy blobs. | def get_blob_info(blob_key):
"""Get the GcsBlobInfo for the given key. Always returns a
storage.GcsBlobInfo, even for legacy blobs."""
if _is_gcs_key(blob_key):
return storage.GcsBlobInfo.from_key(blob_key)
legacy_blob_info = get_legacy_blob_info(blob_key)
if not legacy_blob_info:
return None
return storage.GcsBlobInfo.from_legacy_blob_info(legacy_blob_info) |
Delete a blob key. | def delete_blob(blob_key):
"""Delete a blob key."""
blob_info = get_blob_info(blob_key)
if not blob_info:
return False
return storage.delete(blob_info.gcs_path) |
Write a single file testcase to GCS. | def write_blob(file_handle_or_path):
"""Write a single file testcase to GCS."""
blobs_bucket = storage.blobs_bucket()
blob_name = generate_new_blob_name()
if storage.get(storage.get_cloud_storage_file_path(blobs_bucket, blob_name)):
raise BlobsError('UUID collision found: %s' % blob_name)
if isinstance(file_handle_or_path, str):
filename = os.path.basename(file_handle_or_path)
else:
filename = file_handle_or_path.name
metadata = {
storage.BLOB_FILENAME_METADATA_KEY: filename,
}
gcs_path = '/%s/%s' % (blobs_bucket, blob_name)
if storage.copy_file_to(file_handle_or_path, gcs_path, metadata=metadata):
return blob_name
raise BlobsError('Failed to write blob %s.' % blob_name) |
Copy data stored in the blobstore to a local file. | def read_blob_to_disk(blob_key, local_file):
"""Copy data stored in the blobstore to a local file."""
assert not environment.is_running_on_app_engine()
directory = os.path.dirname(local_file)
if not os.path.exists(directory):
os.makedirs(directory)
gcs_path = get_gcs_path(blob_key)
return storage.copy_file_from(gcs_path, local_file) |
Returns data associated with a blobstore key. | def read_key(blob_key):
"""Returns data associated with a blobstore key."""
gcs_path = get_gcs_path(blob_key)
return storage.read_data(gcs_path) |
Return legacy blob info information. | def get_legacy_blob_info(blob_key):
"""Return legacy blob info information."""
legacy_blob_info = ndb.Key(BlobInfo, blob_key).get()
if not legacy_blob_info:
return None
if legacy_blob_info.gs_object_name:
return legacy_blob_info
# Blobs which were stored before the move to GCS have an additional mapping
# entry created by our migration jobs.
blob_mapping = get_blob_mapping(blob_key)
if not blob_mapping:
raise BlobsError('Blob mapping not found.')
legacy_blob_info.gs_object_name = blob_mapping.gcs_filename
return legacy_blob_info |
Return blob mapping information. | def get_blob_mapping(blob_key):
"""Return blob mapping information."""
return ndb.Key(_blobmigrator_BlobKeyMapping, blob_key).get() |
Generate a new blob name. | def generate_new_blob_name():
"""Generate a new blob name."""
return str(uuid.uuid4()).lower() |
Returns a signed download URL that can be used to upload the blob pointed
to by |blob_key|. | def get_signed_download_url(blob_key):
"""Returns a signed download URL that can be used to upload the blob pointed
to by |blob_key|."""
gcs_path = get_gcs_path(blob_key)
return storage.get_signed_download_url(gcs_path) |
Returns a signed download URL that can be used to download the blob pointed
to by |blob_key|. | def get_signed_upload_url(blob_key):
"""Returns a signed download URL that can be used to download the blob pointed
to by |blob_key|."""
gcs_path = get_gcs_path(blob_key)
return storage.get_signed_upload_url(gcs_path) |
Returns a pair of (blob_name,signed_upload_url) to be used from utask_main
to upload blobs. | def get_blob_signed_upload_url():
"""Returns a pair of (blob_name,signed_upload_url) to be used from utask_main
to upload blobs."""
bucket = storage.blobs_bucket()
blob_name = generate_new_blob_name()
gcs_path = storage.get_cloud_storage_file_path(bucket, blob_name)
# Keep generating paths until no collision is encountered.
while storage.get(gcs_path):
blob_name = generate_new_blob_name()
gcs_path = storage.get_cloud_storage_file_path(bucket, blob_name)
# Write something to the file to avoid collision between calls.
storage.write_data('', gcs_path)
if not storage.get(gcs_path):
raise BlobsError(f'Failed to create blob under: {gcs_path}')
logs.log(f'created blob with gcs_path: {gcs_path}')
signed_upload_url = storage.get_signed_upload_url(gcs_path)
return blob_name, signed_upload_url |
Adds a metadata key/value to the "items" list from an instance's
metadata. | def _add_metadata_key_value(items, key, value):
"""Adds a metadata key/value to the "items" list from an instance's
metadata."""
replaced_existing = False
for item in items:
if item['key'] == key:
replaced_existing = True
item['value'] = value
break
if not replaced_existing:
items.append({'key': key, 'value': value}) |
Execute an operation, retrying on any exceptions. | def _do_operation_with_retries(operation, project, zone, wait_for_completion):
"""Execute an operation, retrying on any exceptions."""
response = _execute_api_call_with_retries(operation)
if response is None:
return False
if not wait_for_completion:
# No need to wait, so we are done.
return True
for _ in range(NUM_RETRIES + 1):
try:
# This could cause exceptions when the response is not ready.
_wait_for_operation(response, project, zone)
return True
except Exception:
logs.log_error('Failed to wait for Compute Engine operation. '
'Original response is %s.' % str(response))
time.sleep(SLEEP_TIME)
continue
return False |
Do a start/reset/stop on the compute engine instance in the given project
and zone. | def _do_instance_operation(operation, instance_name, project, zone,
wait_for_completion):
"""Do a start/reset/stop on the compute engine instance in the given project
and zone."""
api = _get_api()
operation_func = getattr(api.instances(), operation)
operation = operation_func(instance=instance_name, project=project, zone=zone)
return _do_operation_with_retries(
operation, project, zone, wait_for_completion=wait_for_completion) |
Execute the given API call, retrying if necessary. Returns the response if
successful, or None. | def _execute_api_call_with_retries(api_func):
"""Execute the given API call, retrying if necessary. Returns the response if
successful, or None."""
last_exception = None
for i in range(NUM_RETRIES + 1):
try:
# Try to execute the operation.
response = api_func.execute()
last_exception = None
break
except Exception as e:
# Exponential backoff.
last_exception = str(e)
sleep_time = random.uniform(1, SLEEP_TIME * (1 << i))
time.sleep(sleep_time)
continue
if last_exception is not None:
# Failed, log exception with as much information as we can.
if hasattr(api_func, 'uri'):
uri = api_func.uri
else:
uri = 'unknown'
logs.log_error('Compute engine API call "%s" failed with exception:\n%s' %
(uri, last_exception))
return None
return response |
Return the compute engine api object. | def _get_api():
"""Return the compute engine api object."""
return build('compute', 'v1', cache_discovery=False) |
Return the instance information for a given instance. | def _get_instance_info(instance_name, project, zone):
"""Return the instance information for a given instance."""
api = _get_api()
instance_info_func = api.instances().get(
instance=instance_name, project=project, zone=zone)
return _execute_api_call_with_retries(instance_info_func) |
Return the metadata values and fingerprint for the given instance. | def _get_metadata_and_fingerprint(instance_name, project, zone):
"""Return the metadata values and fingerprint for the given instance."""
instance_info = _get_instance_info(instance_name, project, zone)
if not instance_info:
logs.log_error('Failed to fetch instance metadata')
return None, None
fingerprint = instance_info['metadata']['fingerprint']
metadata_items = instance_info['metadata']['items']
return metadata_items, fingerprint |
Wait for the given operation to complete. | def _wait_for_operation(response, project, zone):
"""Wait for the given operation to complete."""
if 'status' in response and response['status'] == 'DONE':
return
if 'kind' not in response or response['kind'] != 'compute#operation':
logs.log_error('Compute api response not an operation.')
return
api = _get_api()
operation = response['name']
start_time = datetime.datetime.utcnow()
while not dates.time_has_expired(start_time, seconds=OPERATION_TIMEOUT):
operation_func = api.zoneOperations().get(
operation=operation, project=project, zone=zone)
response = _execute_api_call_with_retries(operation_func)
if 'status' not in response:
logs.log_error('Invalid compute engine operation %s.' % str(operation))
return
if response['status'] == 'DONE':
return
time.sleep(POLL_INTERVAL)
logs.log_error('Compute engine operation %s timed out.' % str(operation)) |
Add metadata to an existing instance. Replaces existing metadata values
with the same key. | def add_metadata(instance_name, project, zone, key, value, wait_for_completion):
"""Add metadata to an existing instance. Replaces existing metadata values
with the same key."""
existing_metadata, fingerprint = _get_metadata_and_fingerprint(
instance_name, project, zone)
if not existing_metadata:
return False
_add_metadata_key_value(existing_metadata, key, value)
api = _get_api()
operation = api.instances().setMetadata(
body={
'fingerprint': fingerprint,
'items': existing_metadata,
},
instance=instance_name,
project=project,
zone=zone)
return _do_operation_with_retries(operation, project, zone,
wait_for_completion) |
Create a disk. | def create_disk(disk_name,
source_image,
size_gb,
project,
zone,
wait_for_completion=False):
"""Create a disk."""
api = _get_api()
operation = api.disks().insert(
body={
'name': disk_name,
'sizeGb': size_gb,
},
sourceImage=source_image,
project=project,
zone=zone)
return _do_operation_with_retries(
operation, project, zone, wait_for_completion=wait_for_completion) |
Delete a disk. | def delete_disk(disk_name, project, zone, wait_for_completion=False):
"""Delete a disk."""
api = _get_api()
operation = api.disks().delete(disk=disk_name, project=project, zone=zone)
return _do_operation_with_retries(
operation, project, zone, wait_for_completion=wait_for_completion) |
Recreate an instance and its disk. | def recreate_instance_with_disks(instance_name,
project,
zone,
additional_metadata=None,
wait_for_completion=False):
"""Recreate an instance and its disk."""
# Get existing instance information.
# First, try to get instance info from cache.
# TODO(ochang): Make this more general in case anything else needs to use
# this method (e.g. appengine).
instance_info = persistent_cache.get_value(GCE_INSTANCE_INFO_KEY)
if instance_info is None:
instance_info = _get_instance_info(instance_name, project, zone)
# Bail out if we don't have a valid instance information.
if (not instance_info or 'disks' not in instance_info or
not instance_info['disks']):
logs.log_error(
'Failed to get disk info from existing instance, bailing on instance '
'recreation.')
return False
# Add any additional metadata required for instance booting.
if additional_metadata:
for key, value in additional_metadata.items():
items = instance_info.setdefault('metadata', {}).setdefault('items', [])
_add_metadata_key_value(items, key, value)
# Cache the latest instance information.
persistent_cache.set_value(
GCE_INSTANCE_INFO_KEY, instance_info, persist_across_reboots=True)
# Delete the instance.
if not _do_instance_operation(
'delete', instance_name, project, zone, wait_for_completion=True):
logs.log_error('Failed to delete instance.')
return False
# Get existing disks information, and recreate.
api = _get_api()
disks = instance_info['disks']
for disk in disks:
disk_source = disk['source']
disk_name = disk_source.split('/')[-1]
disk_info_func = api.disks().get(disk=disk_name, project=project, zone=zone)
disk_info = _execute_api_call_with_retries(disk_info_func)
if 'sourceImage' not in disk_info or 'sizeGb' not in disk_info:
logs.log_error(
'Failed to get source image and size from existing disk, bailing on '
'instance recreation.')
return False
size_gb = disk_info['sizeGb']
source_image = disk_info['sourceImage']
# Recreate the disk.
if not delete_disk(disk_name, project, zone, wait_for_completion=True):
logs.log_error('Failed to delete disk.')
return False
if not create_disk(
disk_name,
source_image,
size_gb,
project,
zone,
wait_for_completion=True):
logs.log_error('Failed to recreate disk.')
return False
# Recreate the instance with the exact same configurations, but not
# necessarily the same IPs.
try:
del instance_info['networkInterfaces'][0]['accessConfigs'][0]['natIP']
except:
# This is not a failure. When a bot is stopped, it has no ip/interface.
pass
try:
del instance_info['networkInterfaces'][0]['networkIP']
except:
# This is not a failure. When a bot is stopped, it has no ip/interface.
pass
operation = api.instances().insert(
body=instance_info, project=project, zone=zone)
return _do_operation_with_retries(
operation, project, zone, wait_for_completion=wait_for_completion) |
Remove a metadata key/value from an existing instance. | def remove_metadata(instance_name, project, zone, key, wait_for_completion):
"""Remove a metadata key/value from an existing instance."""
existing_metadata, fingerprint = _get_metadata_and_fingerprint(
instance_name, project, zone)
if not existing_metadata:
return False
filtered_metadata = []
for item in existing_metadata:
if item['key'] != key:
filtered_metadata.append(item)
if len(filtered_metadata) == len(existing_metadata):
# Nothing to do.
return True
api = _get_api()
operation = api.instances().setMetadata(
body={
'fingerprint': fingerprint,
'items': filtered_metadata,
},
instance=instance_name,
project=project,
zone=zone)
return _do_operation_with_retries(operation, project, zone,
wait_for_completion) |
Reset an instance. | def reset_instance(instance_name, project, zone, wait_for_completion=False):
"""Reset an instance."""
return _do_instance_operation('reset', instance_name, project, zone,
wait_for_completion) |
Process instance template, normalizing some of metadata key values. | def _process_instance_template(instance_template):
"""Process instance template, normalizing some of metadata key values."""
# Load metadata items for a particular instance template.
items = instance_template['properties']['metadata']['items']
for item in items:
# If the item value is a relative file path specified using the file://
# scheme, then subtitute it with the actual file content. This is needed
# since compute engine instance manager cannot read files from our repo.
if (isinstance(item['value'], str) and
item['value'].startswith(FILE_SCHEME)):
file_path = item['value'][len(FILE_SCHEME):]
with open(
os.path.join(environment.get_gce_config_directory(), file_path),
encoding='utf-8') as f:
item['value'] = f.read() |
Read a project config. | def _config_to_project(name, config):
"""Read a project config."""
clusters = []
for cluster_name, zone in config['clusters'].items():
clusters.append(
Cluster(
name=cluster_name,
gce_zone=zone['gce_zone'],
instance_count=zone['instance_count'],
instance_template=zone['instance_template'],
distribute=zone.get('distribute', False),
auto_healing_policy=zone.get('auto_healing_policy', {}),
worker=zone.get('worker', False),
high_end=zone.get('high_end', False)))
for instance_template in config['instance_templates']:
_process_instance_template(instance_template)
host_worker_assignments = []
for assignment in config.get('host_worker_assignments', []):
host_worker_assignments.append(
HostWorkerAssignment(
host=assignment['host'],
worker=assignment['worker'],
workers_per_host=assignment['workers_per_host']))
return Project(name, clusters, config['instance_templates'],
host_worker_assignments) |
Get GCE metadata value. | def get(path):
"""Get GCE metadata value."""
attribute_url = (
'http://{}/computeMetadata/v1/'.format(_METADATA_SERVER) + path)
headers = {'Metadata-Flavor': 'Google'}
operations_timeout = environment.get_value('URL_BLOCKING_OPERATIONS_TIMEOUT')
response = requests.get(
attribute_url, headers=headers, timeout=operations_timeout)
response.raise_for_status()
return response.text |
Return whether or not we're on GCE. | def is_gce():
"""Return whether or not we're on GCE."""
try:
sock = socket.create_connection((_METADATA_SERVER, 80))
sock.close()
except Exception:
return False
return True |
Returns whether or not to use anonymous credentials. | def _use_anonymous_credentials():
"""Returns whether or not to use anonymous credentials."""
if (environment.get_value('INTEGRATION') or
environment.get_value('UNTRUSTED_RUNNER_TESTS') or
environment.get_value('UTASK_TESTS')):
# Integration tests need real credentials.
return False
return (environment.get_value('LOCAL_DEVELOPMENT') or
environment.get_value('PY_UNITTESTS')) |
Get default Google Cloud credentials. | def get_default(scopes=None):
"""Get default Google Cloud credentials."""
if _use_anonymous_credentials():
return credentials.AnonymousCredentials(), ''
return google.auth.default(scopes=scopes) |
Gets a dedicated signing account for signing storage objects. | def get_storage_signing_service_account():
"""Gets a dedicated signing account for signing storage objects."""
if _use_anonymous_credentials():
return None
project_id = utils.get_application_id()
return json.loads(secret_manager.get(_SIGNING_KEY_SECRET_ID, project_id)) |
Returns signing credentials for signing URLs. | def get_signing_credentials(service_account_info):
"""Returns signing credentials for signing URLs."""
if _use_anonymous_credentials():
return None
if service_account_info is not None:
signing_creds = service_account.Credentials.from_service_account_info(
service_account_info, scopes=_SCOPES)
request = requests.Request()
signing_creds.refresh(request)
token = None
else:
# Fallback for when a dedicated singing account is not configured.
logs.log_error('Please configure dedicated signing credentials.')
creds, _ = get_default()
request = requests.Request()
creds.refresh(request)
signing_creds = compute_engine.IDTokenCredentials(
request, '', service_account_email=creds.service_account_email)
token = creds.token
return signing_creds, token |
Get path to gsutil executable.
Returns:
Path to gsutil executable on the system. | def _get_gsutil_path():
"""Get path to gsutil executable.
Returns:
Path to gsutil executable on the system.
"""
gsutil_executable = 'gsutil'
if environment.platform() == 'WINDOWS':
gsutil_executable += '.cmd'
gsutil_directory = environment.get_value('GSUTIL_PATH')
if not gsutil_directory:
# Try searching the binary in path.
gsutil_absolute_path = shutil.which(gsutil_executable)
if gsutil_absolute_path:
return gsutil_absolute_path
logs.log_error('Cannot locate gsutil in PATH, set GSUTIL_PATH to directory '
'containing gsutil binary.')
return None
gsutil_absolute_path = os.path.join(gsutil_directory, gsutil_executable)
return gsutil_absolute_path |
Get multiprocessing args for gsutil. | def _multiprocessing_args():
"""Get multiprocessing args for gsutil."""
if utils.cpu_count() == 1:
# GSUtil's default thread count is 5 as it assumes the common configuration
# is many CPUs (GSUtil uses num_cpu processes).
return ['-o', 'GSUtil:parallel_thread_count=16']
return [] |
Filters path if needed. In local development environment, this uses local
paths from an emulated GCS instead of real GCS. `write` indicates whether if
`path` is a GCS write destination and that intermediate paths should be
automatically created. | def _filter_path(path, write=False):
"""Filters path if needed. In local development environment, this uses local
paths from an emulated GCS instead of real GCS. `write` indicates whether if
`path` is a GCS write destination and that intermediate paths should be
automatically created."""
if not path.startswith(storage.GS_PREFIX):
# Only applicable to GCS paths.
return path
local_buckets_path = environment.get_value('LOCAL_GCS_BUCKETS_PATH')
if not local_buckets_path:
return path
if write:
local_path = storage.FileSystemProvider(
local_buckets_path).convert_path_for_write(path)
else:
local_path = storage.FileSystemProvider(local_buckets_path).convert_path(
path)
return local_path |
Get subscription name. | def subscription_name(project, name):
"""Get subscription name."""
return 'projects/{project}/subscriptions/{name}'.format(
project=project, name=name) |
Get topic name. | def topic_name(project, name):
"""Get topic name."""
return 'projects/{project}/topics/{name}'.format(project=project, name=name) |
Parse the topic or subscription name. | def parse_name(name):
"""Parse the topic or subscription name."""
components = name.split('/')
if len(components) != 4:
raise ValueError('Invalid pubsub name.')
project = components[1]
name = components[3]
return project, name |
Decode Pub/Sub data. | def _decode_data(raw_message):
"""Decode Pub/Sub data."""
return (base64.b64decode(raw_message['data'])
if 'data' in raw_message else None) |
Convert a raw message response to a Message. | def raw_message_to_message(raw_message_response):
"""Convert a raw message response to a Message."""
raw_message = raw_message_response['message']
return Message(_decode_data(raw_message), raw_message.get('attributes')) |
Convert a raw message response to a Message. | def _raw_message_to_received_message(client, subscription,
raw_message_response):
"""Convert a raw message response to a Message."""
raw_message = raw_message_response['message']
return ReceivedMessage(client, subscription, _decode_data(raw_message),
raw_message.get('attributes'),
raw_message['messageId'], raw_message['publishTime'],
raw_message_response['ackId']) |
Convert the message to a dict. | def _message_to_dict(message):
"""Convert the message to a dict."""
result = {}
if message.data:
result['data'] = base64.b64encode(message.data).decode('utf-8')
if message.attributes:
result['attributes'] = message.attributes
return result |
Returns the secretmanager client. | def get_secret_manager_client():
"""Returns the secretmanager client."""
return secretmanager.SecretManagerServiceClient() |
Returns the value of the secret identified by |secret_id| in
|project|. | def get(secret_id, project):
"""Returns the value of the secret identified by |secret_id| in
|project|."""
client = get_secret_manager_client()
name = f'projects/{project}/secrets/{secret_id}/versions/1'
response = client.access_secret_version(request={'name': name})
return response.payload.data |
Returns a signed URL for |remote_path| with |method|. | def _sign_url(remote_path, minutes=SIGNED_URL_EXPIRATION_MINUTES, method='GET'):
"""Returns a signed URL for |remote_path| with |method|."""
if _integration_test_env_doesnt_support_signed_urls():
return remote_path
minutes = datetime.timedelta(minutes=minutes)
bucket_name, object_path = get_bucket_name_and_path(remote_path)
signing_creds, access_token = _signing_creds()
client = _storage_client()
bucket = client.bucket(bucket_name)
blob = bucket.blob(object_path)
return blob.generate_signed_url(
version='v4',
expiration=minutes,
method=method,
credentials=signing_creds,
access_token=access_token,
service_account_email=signing_creds.service_account_email) |
Get the current storage provider. | def _provider():
"""Get the current storage provider."""
local_buckets_path = environment.get_value('LOCAL_GCS_BUCKETS_PATH')
if local_buckets_path:
return FileSystemProvider(local_buckets_path)
return GcsProvider() |
Create a storage client. | def _create_storage_client_new():
"""Create a storage client."""
creds, project = credentials.get_default()
if not project:
project = utils.get_application_id()
return gcs.Client(project=project, credentials=creds) |
Get the storage client, creating it if it does not exist. | def _storage_client():
"""Get the storage client, creating it if it does not exist."""
if not hasattr(_local, 'client'):
_local.client = _create_storage_client_new()
return _local.client |
Return bucket name and path given a full cloud storage path. | def get_bucket_name_and_path(cloud_storage_file_path):
"""Return bucket name and path given a full cloud storage path."""
filtered_path = utils.strip_from_left(cloud_storage_file_path, GS_PREFIX)
_, bucket_name_and_path = filtered_path.split('/', 1)
if '/' in bucket_name_and_path:
bucket_name, path = bucket_name_and_path.split('/', 1)
else:
bucket_name = bucket_name_and_path
path = ''
return bucket_name, path |
Get the full GCS file path. | def get_cloud_storage_file_path(bucket, path):
"""Get the full GCS file path."""
return GS_PREFIX + '/' + bucket + '/' + path |
Get error reason from googleapiclient.errors.HttpError. | def _get_error_reason(http_error):
"""Get error reason from googleapiclient.errors.HttpError."""
try:
data = json.loads(http_error.content.decode('utf-8'))
return data['error']['message']
except (ValueError, KeyError):
logs.log_error('Failed to decode error content: %s' % http_error.content)
return None |
Attempt to add a single bucket IAM. Returns the modified iam policy, or
None on failure. | def add_single_bucket_iam(storage, iam_policy, role, bucket_name, member):
"""Attempt to add a single bucket IAM. Returns the modified iam policy, or
None on failure."""
binding = get_bucket_iam_binding(iam_policy, role)
binding['members'].append(member)
result = set_bucket_iam_policy(storage, bucket_name, iam_policy)
binding['members'].pop()
return result |
Get the binding matching a role, or None. | def get_bucket_iam_binding(iam_policy, role):
"""Get the binding matching a role, or None."""
return next((
binding for binding in iam_policy['bindings'] if binding['role'] == role),
None) |
Get or create the binding matching a role. | def get_or_create_bucket_iam_binding(iam_policy, role):
"""Get or create the binding matching a role."""
binding = get_bucket_iam_binding(iam_policy, role)
if not binding:
binding = {'role': role, 'members': []}
iam_policy['bindings'].append(binding)
return binding |
Remove existing binding matching the role. | def remove_bucket_iam_binding(iam_policy, role):
"""Remove existing binding matching the role."""
iam_policy['bindings'] = [
binding for binding in iam_policy['bindings'] if binding['role'] != role
] |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.