response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings).
def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs
Encode whitespaces to extra tokens. >>> encode_whitespaces('a\n b\n c', 10, 10) 'a\n<|extratoken_10|>b\n<|extratoken_11|>c'
def encode_whitespaces(text: str, start_extra_id: int=10, max_len: int=10): """Encode whitespaces to extra tokens. >>> encode_whitespaces('a\\n b\\n c', 10, 10) 'a\\n<|extratoken_10|>b\\n<|extratoken_11|>c' """ for i in np.arange(max_len, 1, -1): text = text.replace(" " * i, f"<|extratoken_{start_extra_id + i - 2}|>") return text
Decode the whitespace-encoded strings produced by encode_whitespace. >>> text = 'a\n b\n c' >>> s, l = 10, 10 >>> text == decode_whitespaces(encode_whitespaces(text, s, l), s, l) True
def decode_whitespaces(text: str, start_extra_id: int=10, max_len: int=10): """Decode the whitespace-encoded strings produced by encode_whitespace. >>> text = 'a\\n b\\n c' >>> s, l = 10, 10 >>> text == decode_whitespaces(encode_whitespaces(text, s, l), s, l) True """ for l in range(2, max_len + 1): token_id = start_extra_id - 2 + l token = f"<|extratoken_{token_id}|>" text = text.replace(token, " " * l) return text
Initialize tokenizer.
def build_hgf_tokenizer(args): """Initialize tokenizer.""" tokenizer_path = args.tokenizer_path if args.rank == 0: print(f"> building huggingface tokenizer from {tokenizer_path} ...", flush=True) assert tokenizer_path is not None, "Tokenizer path must be provided." tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) if args.rank == 0: print(f" > eos_token = {tokenizer.eos_token}", flush=True) ws_start_id = args.ws_encoding_start_id if "ws_encoding_start_id" in args else None ws_len = args.ws_encoding_length if "ws_encoding_length" in args else None return HgfTokenizerWrapper( tokenizer, ws_start=ws_start_id, ws_len=ws_len )
Initialize tokenizer.
def build_tokenizer(args): """Initialize tokenizer.""" if "tokenizer_path" in args and args.tokenizer_path is not None: # build huggingface tokenizer tokenizer = build_hgf_tokenizer(args) args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args) return tokenizer if args.rank == 0: print("> building {} tokenizer ...".format(args.tokenizer_type), flush=True) # Select and instantiate the tokenizer. assert args.vocab_file is not None if args.tokenizer_type == "GPT2BPETokenizer": assert args.merge_file is not None tokenizer = _GPT2BPETokenizer(args.vocab_file, args.merge_file) else: raise NotImplementedError( "{} tokenizer is not " "implemented.".format(args.tokenizer_type) ) # Add vocab size. args.padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size, args) return tokenizer
Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.
def _vocab_size_with_padding(orig_vocab_size, args): """Pad vocab size so it is divisible by model parallel size and still having GPU friendly size.""" after = orig_vocab_size if args.make_vocab_size_divisible_by > orig_vocab_size: multiple = args.make_vocab_size_divisible_by else: multiple = args.make_vocab_size_divisible_by * args.tensor_model_parallel_size while (after % multiple) != 0: after += 1 if args.rank == 0: print( " > padded vocab (size: {}) with {} dummy tokens " "(new size: {})".format(orig_vocab_size, after - orig_vocab_size, after), flush=True, ) return after
Build the model.
def model_provider(pre_process=True, post_process=True): """Build the model.""" print_rank_0("building GPT model ...") see_memory_usage(f"Before Building Model", force=True) args = get_args() with deepspeed.zero.Init( data_parallel_group=mpu.get_data_parallel_group(), remote_device=None if args.remote_device == "none" else args.remote_device, config_dict_or_path=args.deepspeed_config, enabled=args.zero_stage == 3, mpu=mpu, ): if args.deepspeed and not args.no_pipeline_parallel: model = CodeGeeXModelPipe(num_tokentypes=0, parallel_output=True) # This is a hack to give us a reference to get_batch_pipe from within training.py # We need to call model.set_batch_fn after deepspeed.initialize model._megatron_batch_fn = get_batch_pipe # Predompute the attention mask and store it in args. This avoids having to # pipeline it as an activation during training. The mask is constant, and thus # we can reuse it. attention_mask = torch.tril( torch.ones( (1, args.seq_length, args.seq_length), device=torch.cuda.current_device(), ) ).view(1, 1, args.seq_length, args.seq_length) # Convert attention mask to binary: attention_mask = attention_mask < 0.5 if args.fp16: attention_mask = attention_mask.half() elif args.bf16: attention_mask = attention_mask.bfloat16() # Attention mask must be bool. args.attn_mask = attention_mask.to(torch.bool) else: model = CodeGeeXModel( num_tokentypes=0, parallel_output=True, ) if args.load_state is not None: timers = get_timers() print_rank_0("Loading warmstarting model states ...") timers("load-model-states").start() mp_rank = mpu.get_tensor_model_parallel_rank() if os.path.isdir(args.load_state): model_path = os.path.join( args.load_state, "mp_rank_{:02d}_model_states.pt".format(mp_rank) ) else: model_path = args.load_state print_rank_0(f"Loading model from {model_path} ...") state_dict = torch.load(model_path, map_location="cpu") if "module" in state_dict: state_dict = state_dict["module"] # strip other client states model.load_state_dict(state_dict) timers("load-model-states").stop() timers.log(["load-model-states"]) see_memory_usage(f"After Building Model", force=True) return model
Generate a batch
def get_batch(data_iterator): """Generate a batch""" args = get_args() tokenizer = get_tokenizer() # Items and their type. keys = ["input_ids", "attention_mask", "labels"] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b["input_ids"].contiguous() # attn_mask_ = data_b["attention_mask"].contiguous() labels_ = data_b["labels"].contiguous() tokens = tokens_[:, :-1] labels = labels_[:, 1:] # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss, ) # mask loss to avoid predicting prompt and paddings prompt_loss_mask = labels >= 0 loss_mask = prompt_loss_mask * loss_mask return tokens, labels, loss_mask, attention_mask, position_ids
Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`
def get_batch_pipe(data): """Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`""" args = get_args() tokenizer = get_tokenizer() # Items and their type. keys = ["input_ids"] datatype = torch.int64 # Broadcast data. data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b["input_ids"].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss, ) return (tokens, position_ids, attention_mask), (labels, loss_mask)
Forward step.
def forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers("batch-generator").start() tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator) timers("batch-generator").stop() output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask)
Forward step.
def valid_forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers("batch-generator").start() tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator) timers("batch-generator").stop() output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(valid_loss_func, loss_mask)
Build train, valid, and test datasets.
def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() print_rank_0("> building train, validation, and test datasets " "for GPT ...") if args.co_evaluation: def dataset_partition_path_parsing(data_path): dataset_path = {} for index in range(len(data_path)): dataset_path[data_path[index]] = data_path[index] return dataset_path assert args.valid_data_path is not None, "Valid data path must be given when --co-evaluation is turned on." valid_data_path = dataset_partition_path_parsing(args.valid_data_path) if args.test_data_path is not None: test_data_path = dataset_partition_path_parsing(args.test_data_path) else: test_data_path = None train_ds, _, _ = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string="1,0,0", train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) valid_ds = {} for key, value in valid_data_path.items(): _, valid_ds_item, _ = build_train_valid_test_datasets( data_prefix=[value], data_impl=args.data_impl, splits_string="0,1,0", train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) valid_ds[key] = valid_ds_item if test_data_path is not None: test_ds = {} for key, value in test_data_path.items(): _, _, test_ds_item = build_train_valid_test_datasets( data_prefix=[value], data_impl=args.data_impl, splits_string="0,0,1", train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) test_ds[key] = test_ds_item else: test_ds = None elif args.valid_data_path is None: train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) else: train_ds, _, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string="100,0,0", train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) _, valid_ds, _ = build_train_valid_test_datasets( data_prefix=args.valid_data_path, data_impl=args.data_impl, splits_string="0,100,0", train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) print_rank_0("> finished creating GPT datasets ...") return train_ds, valid_ds, test_ds
Build the model.
def model_provider(pre_process=True, post_process=True): """Build the model.""" print_rank_0("building GPT model ...") see_memory_usage(f"Before Building Model", force=True) args = get_args() with deepspeed.zero.Init( data_parallel_group=mpu.get_data_parallel_group(), remote_device=None if args.remote_device == "none" else args.remote_device, config_dict_or_path=args.deepspeed_config, enabled=args.zero_stage == 3, mpu=mpu, ): if args.deepspeed and not args.no_pipeline_parallel: model = CodeGeeXModelPipe(num_tokentypes=0, parallel_output=True) # This is a hack to give us a reference to get_batch_pipe from within training.py # We need to call model.set_batch_fn after deepspeed.initialize model._megatron_batch_fn = get_batch_pipe # Predompute the attention mask and store it in args. This avoids having to # pipeline it as an activation during training. The mask is constant, and thus # we can reuse it. attention_mask = torch.tril( torch.ones( (1, args.seq_length, args.seq_length), device=torch.cuda.current_device(), ) ).view(1, 1, args.seq_length, args.seq_length) # Convert attention mask to binary: attention_mask = attention_mask < 0.5 if args.fp16: attention_mask = attention_mask.half() elif args.bf16: attention_mask = attention_mask.bfloat16() # Attention mask must be bool. args.attn_mask = attention_mask.to(torch.bool) else: model = CodeGeeXModel( num_tokentypes=0, parallel_output=True, ) if args.load_state is not None: timers = get_timers() print_rank_0("Loading warmstarting model states ...") timers("load-model-states").start() mp_rank = mpu.get_tensor_model_parallel_rank() if os.path.isdir(args.load_state): model_path = os.path.join( args.load_state, "mp_rank_{:02d}_model_states.pt".format(mp_rank) ) else: model_path = args.load_state print_rank_0(f"Loading model from {model_path} ...") state_dict = torch.load(model_path, map_location="cpu") if "module" in state_dict: state_dict = state_dict["module"] # strip other client states model.load_state_dict(state_dict) timers("load-model-states").stop() timers.log(["load-model-states"]) see_memory_usage(f"After Building Model", force=True) return model
Generate a batch
def get_batch(data_iterator): """Generate a batch""" args = get_args() tokenizer = get_tokenizer() # Items and their type. keys = ["input_ids"] datatype = torch.int64 # Broadcast data. if data_iterator is not None: data = next(data_iterator) else: data = None data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b["input_ids"].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss, ) return tokens, labels, loss_mask, attention_mask, position_ids
Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`
def get_batch_pipe(data): """Modification of `get_batch` to work on `next(data_iterator)` instead of `data_iterator`""" args = get_args() tokenizer = get_tokenizer() # Items and their type. keys = ["input_ids"] datatype = torch.int64 # Broadcast data. data_b = mpu.broadcast_data(keys, data, datatype) # Unpack. tokens_ = data_b["input_ids"].long() labels = tokens_[:, 1:].contiguous() tokens = tokens_[:, :-1].contiguous() # Get the masks and postition ids. attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids( tokens, tokenizer.eod, args.reset_position_ids, args.reset_attention_mask, args.eod_mask_loss, ) return (tokens, position_ids, attention_mask), (labels, loss_mask)
Forward step.
def forward_step(data_iterator, model): """Forward step.""" args = get_args() timers = get_timers() # Get the batch. timers("batch-generator").start() tokens, labels, loss_mask, attention_mask, position_ids = get_batch(data_iterator) timers("batch-generator").stop() output_tensor = model(tokens, position_ids, attention_mask, labels=labels) return output_tensor, partial(loss_func, loss_mask)
Build train, valid, and test datasets.
def train_valid_test_datasets_provider(train_val_test_num_samples): """Build train, valid, and test datasets.""" args = get_args() print_rank_0("> building train, validation, and test datasets " "for GPT ...") train_ds, valid_ds, test_ds = build_train_valid_test_datasets( data_prefix=args.data_path, data_impl=args.data_impl, splits_string=args.split, train_valid_test_num_samples=train_val_test_num_samples, seq_length=args.seq_length, seed=args.seed, skip_warmup=(not args.mmap_warmup), ) print_rank_0("> finished creating GPT datasets ...") return train_ds, valid_ds, test_ds
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property print("===args_opt: ", args_opt, flush=True) print("===device_num is: ", device_num, flush=True) args_opt.op_level_model_parallel_num = 1 model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) print("===data_parallel_num is: ", data_parallel_num, flush=True) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num # Now only support single batch_size for predict if args_opt.run_type == "predict": batch_size = 1 config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) print("======start load_distributed checkpoint", flush=True) time.sleep(rank * 0.5) if not os.path.exists(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")): os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B0-50.ckpt" # TODO: set to current ckpt name if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, "rank_0", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, "rank_0", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) # TODO: add them back if not for the 1st run! if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) if not os.path.exists(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}'): os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) if not os.path.exists("/home/work/sfs/cache/ckpts_npy/"): os.mkdir("/home/work/sfs/cache/ckpts_npy/") for k, weight in pangu_alpha.parameters_dict().items(): print(k) np.save(os.path.join("/home/work/sfs/cache/ckpts_npy/", f"{k}.npy"), weight.asnumpy()) rank_obs_save_path = "./" # TODO: set to current obs path for saving if not mox.file.exists(rank_obs_save_path): mox.file.make_dirs(rank_obs_save_path) mox.file.copy_parallel("/home/work/sfs/cache/ckpts_npy/", rank_obs_save_path) print("======= npy saved") return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate import generate, generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids samples = [ "# language: Python\ndef add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "def add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "# language: Python\ndef optimization():\n '''\n Find the maximum of P=E**2*R/(R + r)**2 if E and r are fixed but R varies. Import sympy. Use sympy. Find where the derivative is equal to zero. Substitute the value of R into P.\n '''\n", "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "// language: C++\nint add(int a, int b) {\n /* Find the sum of a and b. */\n", "int add(int a, int b) {\n /* Find the sum of a and b. */\n", "bool prime(int n) {\n // Find whether n is a prime number\n", "// language: JavaScript\nfunction add(a, b) {\n // Find the sum of a and b.\n", "# language: R\nadd<-function(a, b) {\n # Find the sum of a and b.\n", ] verbose = False for i, sample in enumerate(samples): for _ in range(1): tokenized_token = tokenizer.encode_code(sample) input_ids = np.array(tokenized_token).reshape(1, -1) # Call inference generate_func = generate_increment if config.use_past else generate t0 = time.perf_counter() output_ids = generate_func(model_predict, input_ids, args_opt, verbose) # Decode output ids to sentence t1 = time.perf_counter() output_samples = tokenizer.decode_code(output_ids.tolist()) output_samples_str = "".join(output_samples) if rank % 8 == 0: print(f"=================== prompt {i} ====================") print(sample, flush=True) print(f"=================== generation {i} ====================") print(output_samples_str, flush=True) print( f"=== Total time (s): {t1 - t0}, {output_ids.shape[-1] - input_ids.shape[-1]} tokens, {(output_ids.shape[-1] - input_ids.shape[-1]) / (t1 - t0)} token/s")
Main process for predict or export model
def main(): """Main process for predict or export model""" opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest
def set_weight_decay(params): """ Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest """ decay_filter = lambda x: 'layernorm' not in x.name.lower() and "bias" not in x.name.lower() decay_params = list(filter(decay_filter, params)) other_params = list(filter(lambda x: not decay_filter(x), params)) group_params = [ {"params": decay_params, "weight_decay": 1e-1}, {"params": other_params, "weight_decay": 0.0}, {"order_params": params}, ] return group_params
Add checkpoint policy to callback.
def add_checkpoint_callback_policy(args_param, callback, rank_id): r""" Add checkpoint policy to callback. """ if args_param.save_checkpoint: # checkpoint store epoch_num and step_num info ckpt_append_info = [{"epoch_num": args_param.has_trained_epoches, "step_num": args_param.has_trained_steps}] ckpt_config = CheckpointConfig( save_checkpoint_steps=args_param.save_checkpoint_steps, keep_checkpoint_max=args_param.keep_checkpoint_max, integrated_save=False, append_info=ckpt_append_info, ) # save checkpoint into rank directory ckpoint_cb = ModelCheckpoint(prefix=args_param.ckpt_name_prefix + str(rank_id), directory=os.path.join(args_param.save_checkpoint_path, f"rank_{rank_id}"), config=ckpt_config) callback.append(ckpoint_cb) saveckpt_cb = SaveCheckpointCallback(cache_dir=args_param.save_checkpoint_path, bucket=args_param.save_checkpoint_obs_path, local_rank=rank_id, has_trained_epoch=args_param.has_trained_epoches, has_trained_step=args_param.has_trained_steps, syn_times=args_param.save_checkpoint_steps) callback.append(saveckpt_cb)
Set parallel context
def set_parallel_context(args_opt): r"""Set parallel context""" D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) if device_num < 128: args_opt.optimizer_shard = 0 context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=bool(args_opt.full_batch), strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path, enable_parallel_optimizer=bool(args_opt.optimizer_shard), strategy_ckpt_save_file='strategy.ckpt', ) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() return rank, device_num
The main training process.
def run_train(args_opt): r"""The main training process.""" os.environ["HCCL_CONNECT_TIMEOUT"] = "2000" # Set execution mode context.set_context( mode=context.GRAPH_MODE, device_target=args_opt.device_target ) if args_opt.profiling: profiler = Profiler(output_path="/cache/profiler_data") context.set_context(variable_memory_max_size="30GB") # Set parallel context rank = 0 device_num = 1 if args_opt.distribute == "true": rank, device_num = set_parallel_context(args_opt) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) # copy data from the cloud to the /cache/Data cache_url = '/cache/Data/' eval_cache_url = '/cache/EvalData/' if not args_opt.offline: download_data(src_data_url=args_opt.data_url, tgt_data_path=cache_url, rank=rank) download_data(src_data_url=args_opt.eval_data_url, tgt_data_path=eval_cache_url, rank=rank) # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) batch_size = args_opt.per_batch_size * data_parallel_num parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=bool(args_opt.optimizer_shard), vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True, gradient_aggregation_group=args_opt.gradient_aggregation_group) micro_interleaved_size = args_opt.micro_interleaved_size config = PanguAlphaConfig( batch_size=batch_size // micro_interleaved_size, num_heads=args_opt.num_heads, hidden_size=args_opt.embedding_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, num_layers=args_opt.num_layers, ffn_hidden_size=args_opt.embedding_size * 4, eod_token=args_opt.eod_id, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == "fp32" else mstype.float16, dropout_rate=args_opt.dropout_rate, enable_offload=bool(args_opt.opt_offload), use_moe=bool(args_opt.use_moe), per_dp_dim_expert_num=args_opt.per_dp_dim_expert_num, hidden_act="fast_gelu" if args_opt.device_target != "GPU" else "gelu", parallel_config=parallel_config, ) print("===config is: ", config, flush=True) # Define network pangu_alpha = PanguAlphaModel(config=config) loss = CrossEntropyLoss(config.parallel_config.dp_mp_config) if micro_interleaved_size > 1: print("===using MicroBatchInterleaved", flush=True) pangu_alpha_with_loss_net = MicroBatchInterleaved(PanGUAlphaWithFinetuneLoss(config, pangu_alpha, loss), micro_interleaved_size) else: pangu_alpha_with_loss_net = PanGUAlphaWithFinetuneLoss(config, pangu_alpha, loss) pangu_alpha_with_loss = _VirtualDatasetCell(pangu_alpha_with_loss_net) print("=====args_opt is: ", args_opt, flush=True) # Warm-up and cosine decay learning rate lr = LearningRate(learning_rate=args_opt.start_lr, end_learning_rate=args_opt.end_lr, warmup_steps=args_opt.warmup_step, decay_steps=args_opt.decay_steps) params = pangu_alpha_with_loss.trainable_params() group_params = set_weight_decay(params) if args_opt.optimizer == "lamb": optimizer = nn.Lamb(group_params, learning_rate=lr) elif args_opt.opt_offload: optimizer = AdamWeightDecayOp(group_params, learning_rate=lr, eps=1e-8, beta1=0.9, beta2=0.95, param_init_type=config.param_init_type) else: optimizer = FP32StateAdamWeightDecay(group_params, learning_rate=lr, eps=1e-8, beta1=0.9, beta2=0.95) # Initial scaling sens loss_scale_value = math.pow(2, 32) epoch_num = args_opt.epoch_size if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.05) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}_21-{args_opt.load_ckpt_epoch}_2.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) # TODO: remove after warming-up! param_dict.pop('global_step') # TODO: add them back if not for the 1st run! # if param_dict.get("epoch_num") and param_dict.get("step_num"): # args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) # args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) # args_opt.has_trained_steps = 9000 os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 64 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) # if args_opt.tb_dir is not None and rank == device_num - 1: if args_opt.tb_dir is not None and rank == 0: os.makedirs(args_opt.tb_dir, exist_ok=True) summary_writer = SummaryWriter(args_opt.tb_dir) os.system(f'chmod 777 -R {args_opt.tb_dir}') else: summary_writer = None # Dataset loading mindrecord files ds, ds_eval = create_dataset(config.batch_size * micro_interleaved_size, data_path=args_opt.code_data, args_opt=args_opt, data_start_index=0, eod_reset=config.eod_reset, full_batch=bool(args_opt.full_batch), eod_id=args_opt.eod_id, device_num=device_num, rank=rank, epoch=epoch_num, train_and_eval=bool(args_opt.train_and_eval_mode), val_ratio=0.001) actual_epoch_num = int(ds.get_dataset_size() / args_opt.sink_size) callback = [ TimeMonitor(args_opt.sink_size), ] update_cell = DynamicLossScaleUpdateCell(loss_scale_value=loss_scale_value, scale_factor=2, scale_window=1000) pangu_alpha_with_grads = PanguAlphaTrainOneStepWithLossScaleCell( pangu_alpha_with_loss, optimizer=optimizer, scale_update_cell=update_cell, enable_global_norm=True, config=config) if ds_eval: ppl_metric = PPLMetric(config.seq_length) validation_loss = ValidationLoss(config.seq_length) model = Model(pangu_alpha_with_grads, eval_network=pangu_alpha_with_loss, metrics={"ppl": ppl_metric, "validation_loss": validation_loss}) callback.append( EvalCallBack( model=model, eval_dataset=ds_eval, ppl_metric=ppl_metric, validation_loss=validation_loss, print_per_step=20, has_trained_step=args_opt.has_trained_steps, local_rank=rank, rank_size=device_num, tb_writer=summary_writer ) ) else: model = Model(pangu_alpha_with_grads) if args_opt.load_ckpt_epoch > 0: print("===build model and load ckpt") time_stamp = datetime.datetime.now() print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')} before building", flush=True) model.build(train_dataset=ds, sink_size=args_opt.sink_size, epoch=actual_epoch_num) time_stamp = datetime.datetime.now() print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')} before loading ckpt", flush=True) load_param_into_net(pangu_alpha_with_loss, param_dict) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/2/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/2')) if num == device_num: break if rank % 64 == 0: print("Loaded ckpt in step 2: ", num) time.sleep(1) callback.append( LossCallBack( name=args_opt.ckpt_name_prefix, dataset_size=args_opt.sink_size, local_rank=rank, rank_size=device_num, has_trained_epoch=args_opt.has_trained_epoches, has_trained_step=args_opt.has_trained_steps, micro_size=args_opt.micro_size * micro_interleaved_size, tb_writer=summary_writer, ) ) if not args_opt.profiling: add_checkpoint_callback_policy(args_opt, callback, rank) if args_opt.incremental_training: strategy = model.infer_train_layout(train_dataset=ds, sink_size=args_opt.sink_size) print("======start load_distributed checkpoint", flush=True) # For 2.6B and 13B models, the number of ckpt files is 512. ckpt_file_list = [os.path.join(args_opt.load_ckpt_path, f"filerted_{ckpt_rank}.ckpt") for ckpt_rank in range(0, 512)] print(f"Loading from path {ckpt_file_list[0]}", flush=True) load_distributed_checkpoint(model.train_network, ckpt_file_list, strategy) print("Dataset size: {}, actual_epoch_num: {}".format(ds.get_dataset_size(), actual_epoch_num), flush=True) try: model.train(10 if args_opt.profiling else actual_epoch_num, ds, callbacks=callback, sink_size=args_opt.sink_size, dataset_sink_mode=True) finally: if args_opt.profiling: jobid = os.environ["BATCH_JOB_ID"] profiler.analyse() rank_id = rank if context.get_context("save_graphs"): mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) if rank_id % 8 == 0: mox.file.make_dirs("s3://wudao-1/yyf/profiler_" + jobid) mox.file.copy_parallel(src_url="/cache/profiler_data", dst_url="s3://wudao-1/yyf/profiler_" + jobid + "/" + str(rank_id))
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num if args_opt.run_type == "predict": batch_size = 1 config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.1) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate import generate, generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids samples = [ "Hello there!", "# language: Python\ndef add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "def add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "# language: Python\ndef optimization():\n '''\n Find the maximum of P=E**2*R/(R + r)**2 if E and r are fixed but R varies. Import sympy. Use sympy. Find where the derivative is equal to zero. Substitute the value of R into P.\n '''\n", "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "// language: JavaScript\nfunction prime(n) {\n // Find whether n is a prime number.\n", "string morse_encoder(string text) {\n // Translate text into Morse code\n", "def morse_encoder(text):\n # Translate text into Morse code separated by spaces\n", f"% language: MATLAB\nfunction x = solve(A, b)\n % Solve Ax = b\n", f"% language: MATLAB\nfunction [L, U] = lu(A)\n % Return LU factorization of A\n", "def TCPState(state):\n # given a state in TCP protocol, return a list of next possible states\n", "def coordinates(p1, p2, precision=0)\n # p1 is (x1, y1), p2 is (x2, y2), return the distance between p1 and p2 on a cartesian plane, rounded to precision\n", "double travel(double total_time, double run_time, double rest_time, double speed) {\n // the horse runs for run_time with speed speed and rests for rest_time, return the distance it travels after total_time\n", "def travel(total_time, run_time, rest_time, speed):\n # the horse runs for run_time with speed speed and rests for rest_time, return the distance it travels after total_time\n", "// language: C++\nint add(int a, int b) {\n /* Find the sum of a and b. */\n", "int add(int a, int b) {\n /* Find the sum of a and b. */\n", "// language: C++\nvoid sort(int *array, int len) {\n // Sort the array with length len\n", "bool prime(int n) {\n // Find whether n is a prime number\n", "def prime(n):\n # Find whether n is a prime number\n", f"% language: MATLAB\nfunction H = hilbert(n)\n % Return Hilbert matrix of size n * n\n", f"% language: MATLAB\nfunction L = cholesky(A)\n % Return Cholesky factorization of symmetric positive definete matrix A\n", "// language: JavaScript\nfunction add(a, b) {\n // Find the sum of a and b.\n", "# language: R\nadd<-function(a, b) {\n # Find the sum of a and b.\n", ] verbose = False for i, sample in enumerate(samples): for _ in range(1): tokenized_token = tokenizer.encode_code(sample) input_ids = np.array(tokenized_token).reshape(1, -1) # Call inference generate_func = generate_increment if config.use_past else generate t0 = time.perf_counter() output_ids = generate_func(model_predict, input_ids, args_opt, verbose) # Decode output ids to sentence t1 = time.perf_counter() output_samples = tokenizer.decode_code(output_ids.tolist()) output_samples_str = "".join(output_samples) if rank % 8 == 0: print(f"=================== prompt {i} ====================") print(sample, flush=True) print(f"=================== generation {i} ====================") print(output_samples_str, flush=True) print( f"=== Total time (s): {t1 - t0}, {output_ids.shape[-1] - input_ids.shape[-1]} tokens, {(output_ids.shape[-1] - input_ids.shape[-1]) / (t1 - t0)} token/s")
Main process for predict or export model
def main(): """Main process for predict or export model""" opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property print("===args_opt: ", args_opt, flush=True) print("===device_num is: ", device_num, flush=True) args_opt.op_level_model_parallel_num = 1 model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) print("===data_parallel_num is: ", data_parallel_num, flush=True) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num # Now only support single batch_size for predict if args_opt.run_type == "predict": batch_size = 1 config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.5) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B0-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) # TODO: add them back if not for the 1st run! if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate import generate, generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids samples = [ "# language: Python\ndef add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "def add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "# language: Python\ndef optimization():\n '''\n Find the maximum of P=E**2*R/(R + r)**2 if E and r are fixed but R varies. Import sympy. Use sympy. Find where the derivative is equal to zero. Substitute the value of R into P.\n '''\n", "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "// language: C++\nint add(int a, int b) {\n /* Find the sum of a and b. */\n", "int add(int a, int b) {\n /* Find the sum of a and b. */\n", "bool prime(int n) {\n // Find whether n is a prime number\n", "// language: JavaScript\nfunction add(a, b) {\n // Find the sum of a and b.\n", "# language: R\nadd<-function(a, b) {\n # Find the sum of a and b.\n", ] verbose = False for i, sample in enumerate(samples): for _ in range(1): tokenized_token = tokenizer.encode_code(sample) input_ids = np.array(tokenized_token).reshape(1, -1) # Call inference generate_func = generate_increment if config.use_past else generate t0 = time.perf_counter() output_ids = generate_func(model_predict, input_ids, args_opt, verbose) # Decode output ids to sentence t1 = time.perf_counter() output_samples = tokenizer.decode_code(output_ids.tolist()) output_samples_str = "".join(output_samples) if rank % 8 == 0: print(f"=================== prompt {i} ====================") print(sample, flush=True) print(f"=================== generation {i} ====================") print(output_samples_str, flush=True) print( f"=== Total time (s): {t1 - t0}, {output_ids.shape[-1] - input_ids.shape[-1]} tokens, {(output_ids.shape[-1] - input_ids.shape[-1]) / (t1 - t0)} token/s") break
Main process for predict or export model
def main(): """Main process for predict or export model""" opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.1) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate_finetune import generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids samples = [ "Hello there!", "# language: Python\ndef add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "def add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "# language: Python\ndef optimization():\n '''\n Find the maximum of P=E**2*R/(R + r)**2 if E and r are fixed but R varies. Import sympy. Use sympy. Find where the derivative is equal to zero. Substitute the value of R into P.\n '''\n", "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "// language: JavaScript\nfunction prime(n) {\n // Find whether n is a prime number.\n", "string morse_encoder(string text) {\n // Translate text into Morse code\n", "def morse_encoder(text):\n # Translate text into Morse code separated by spaces\n", f"% language: MATLAB\nfunction x = solve(A, b)\n % Solve Ax = b\n", f"% language: MATLAB\nfunction [L, U] = lu(A)\n % Return LU factorization of A\n", "def TCPState(state):\n # given a state in TCP protocol, return a list of next possible states\n", "def coordinates(p1, p2, precision=0)\n # p1 is (x1, y1), p2 is (x2, y2), return the distance between p1 and p2 on a cartesian plane, rounded to precision\n", "double travel(double total_time, double run_time, double rest_time, double speed) {\n // the horse runs for run_time with speed speed and rests for rest_time, return the distance it travels after total_time\n", "def travel(total_time, run_time, rest_time, speed):\n # the horse runs for run_time with speed speed and rests for rest_time, return the distance it travels after total_time\n", "// language: C++\nint add(int a, int b) {\n /* Find the sum of a and b. */\n", "int add(int a, int b) {\n /* Find the sum of a and b. */\n", "// language: C++\nvoid sort(int *array, int len) {\n // Sort the array with length len\n", "bool prime(int n) {\n // Find whether n is a prime number\n", "def prime(n):\n # Find whether n is a prime number\n", f"% language: MATLAB\nfunction H = hilbert(n)\n % Return Hilbert matrix of size n * n\n", f"% language: MATLAB\nfunction L = cholesky(A)\n % Return Cholesky factorization of symmetric positive definete matrix A\n", "// language: JavaScript\nfunction add(a, b) {\n // Find the sum of a and b.\n", "# language: R\nadd<-function(a, b) {\n # Find the sum of a and b.\n", ] samples = [tokenizer.encode_code(l) for l in samples] generations = [] batch_size = config.batch_size verbose = (rank % 8 == 0) save_path = f'/home/work/sfs/xx/pangu_alpha_code/generation_batch/{args_opt.temperature}.txt' # TODO: set as current save path save_dir = os.path.split(save_path)[0] if rank == 0: if not os.path.exists(save_dir): os.makedirs(save_dir) if not os.path.exists(save_path): f = open(save_path, 'w') f.close() os.system(f'sudo chmod 777 -R {save_dir}') batch = [] input_length = [] sample_ids = [] for i, sample in enumerate(samples): tokenized_token = sample input_ids = np.array(tokenized_token).reshape(1, -1) batch.append(input_ids) input_length.append(input_ids.shape[1]) sample_ids.append(i) if (i + 1) % batch_size == 0: valid_length = max(input_length) for j in range(len(batch)): batch[j] = np.pad(batch[j], ((0, 0), (0, valid_length - input_length[j])), 'constant', constant_values=(args_opt.end_token, args_opt.end_token)) input_ids = np.concatenate(batch, axis=0) t0 = time.perf_counter() output_ids = generate_increment(model_predict, input_ids, input_length, args_opt, tokenizer, verbose) t1 = time.perf_counter() batch, input_length = [], [] if rank % 8 == 0: print(f"=== Batch time: {t1 - t0}s") for k, out in enumerate(output_ids): if not out.endswith('\n'): out = out + '\n' print(f"=================== generation {sample_ids[k]} ====================") print(out, flush=True) generations.append(out) if rank == 0: f = open(save_path, 'a') f.write(generations[-1]) f.close() sample_ids = [] if len(batch) > 0: for j in range(batch_size - len(sample_ids)): batch.append(np.zeros((1, 1))) input_length.append(-1) valid_length = max(input_length) for j in range(len(batch)): batch[j] = np.pad(batch[j], ((0, 0), (0, valid_length - batch[j].shape[1])), 'constant', constant_values=(args_opt.end_token, args_opt.end_token)) input_ids = np.concatenate(batch, axis=0) t0 = time.perf_counter() output_ids = generate_increment(model_predict, input_ids, input_length, args_opt, tokenizer, verbose) t1 = time.perf_counter() if rank % 8 == 0: print(f"=== Batch time: {t1 - t0}s") for k, out in enumerate(output_ids): if input_length[k] == -1: break if not out.endswith('\n'): out = out + '\n' print(f"=================== generation {sample_ids[k]} ====================") print(out, flush=True) generations.append(out) if rank == 0: f = open(save_path, 'a') f.write(generations[-1]) f.close()
Main process for predict or export model
def main(): """Main process for predict or export model""" print("===Enter main!") opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) # data_parallel_num = 1 parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.1) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate_finetune import generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids lang = args_opt.language data_path = os.path.join(args_opt.code_data, lang, 'test') dataset = LMDBDataset(data_path) samples = [] for i in range(len(dataset)): prompt, length = dataset[i] samples.append(prompt[:length]) generations = [] batch_size = config.batch_size verbose = (rank % 8 == 0) save_path = f'/home/work/sfs/xx/pangu_alpha_code/generation_finetune/code_translation/{lang}/temp_{args_opt.temperature}.txt' # TODO: set as current save path save_dir = os.path.split(save_path)[0] if rank == 0: if not os.path.exists(save_dir): os.makedirs(save_dir) if not os.path.exists(save_path): f = open(save_path, 'w') f.close() os.system(f'sudo chmod 777 -R {os.path.split(save_dir)[0]}') batch = [] input_length = [] sample_ids = [] for i, sample in enumerate(samples): tokenized_token = sample input_ids = np.array(tokenized_token).reshape(1, -1) batch.append(input_ids) input_length.append(input_ids.shape[1]) sample_ids.append(i) if (i + 1) % batch_size == 0: valid_length = max(input_length) for j in range(len(batch)): batch[j] = np.pad(batch[j], ((0, 0), (0, valid_length - input_length[j])), 'constant', constant_values=(args_opt.end_token, args_opt.end_token)) input_ids = np.concatenate(batch, axis=0) t0 = time.perf_counter() output_ids = generate_increment(model_predict, input_ids, input_length, args_opt, tokenizer, verbose) t1 = time.perf_counter() batch, input_length = [], [] if rank % 8 == 0: print(f"=== Batch time: {t1 - t0}s") for k, out in enumerate(output_ids): print(f"=================== generation {sample_ids[k]} ====================") print(out, flush=True) generations.append(out) if rank == 0: f = open(save_path, 'a') f.write(generations[-1]) if not generations[-1].endswith('\n'): f.write('\n') f.close() sample_ids = [] if len(batch) > 0: valid_length = max(input_length) for j in range(batch_size - len(sample_ids)): batch.append(np.zeros((1, 1))) input_length.append(-1) for j in range(len(batch)): batch[j] = np.pad(batch[j], ((0, 0), (0, valid_length - batch[j].shape[1])), 'constant', constant_values=(args_opt.end_token, args_opt.end_token)) input_ids = np.concatenate(batch, axis=0) t0 = time.perf_counter() output_ids = generate_increment(model_predict, input_ids, input_length, args_opt, tokenizer, verbose) t1 = time.perf_counter() if rank % 8 == 0: print(f"=== Batch time: {t1 - t0}s") print(f"=== Input lengths: {input_length}, length: {len(input_length)}") print(f"=== Input ids shape: {input_ids.shape}") print(f"=== Num of outputs: {len(output_ids)}") for k, out in enumerate(output_ids): if input_length[k] == -1: break print(f"=================== generation {sample_ids[k]} ====================") print(out, flush=True) generations.append(out) if rank == 0: f = open(save_path, 'a') f.write(generations[-1]) if not generations[-1].endswith('\n'): f.write('\n') f.close()
Main process for predict or export model
def main(): """Main process for predict or export model""" print("===Enter main!") opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.1) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate_humaneval import generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids humaneval_path = '/home/work/sfs/xx/human_eval_x/data/humaneval_cpp.jsonl' # TODO: set as current humaneval path humaneval = open(humaneval_path, 'r').readlines() humaneval = [json.loads(task) for task in humaneval if len(task) != 0] samples = [task['prompt'] for task in humaneval] generations = [] batch_size = config.batch_size verbose = (rank % 8 == 0) part = int(args_opt.part) gen_times = 12 # TODO: set as generation times of current task print(f"gen times: {gen_times}, part: {part}") save_path = f'/home/work/sfs/xx/pangu_alpha_code/generation_humanevalx/cpp/temp_{args_opt.temperature}/samples_{args_opt.load_ckpt_epoch}_part_{part}.jsonl' # TODO: set as current save path if rank == 0 and not os.path.exists(save_path): os.makedirs(os.path.split(save_path)[0], exist_ok=True) f = open(save_path, 'w') f.close() os.system(f'sudo chmod 777 {save_path}') for i, sample in enumerate(samples): tag = "// language: C++\n" sample = tag + sample if rank % 8 == 0: print(f"=================== prompt {i} ====================") print(sample, flush=True) for j in range((gen_times + batch_size - 1) // batch_size): tokenized_token = tokenizer.encode_code(sample) input_ids = np.array(tokenized_token).reshape(1, -1).repeat(batch_size, axis=0) # Call inference mindspore.set_seed(j + 8 * part) generate_func = generate_increment t0 = time.perf_counter() output_ids = generate_func(model_predict, input_ids, args_opt, tokenizer, verbose) t1 = time.perf_counter() if rank % 8 == 0: print(f"=== Batch time: {t1 - t0}s") for k, out in enumerate(output_ids): print(f"=================== generation {j * batch_size + k} ====================") print(out, flush=True) generations.append(json.dumps({'task_id': humaneval[i]['task_id'], 'completion': out})) if rank == 0: f = open(save_path, 'a') f.write(generations[-1] + '\n') f.close()
Main process for predict or export model
def main(): """Main process for predict or export model""" print("===Enter main!") opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = LogitsNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0 for _ in range(batch_size)]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.1) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids batch_size = config.batch_size input_ids = np.array( [8189, 11059, 198, 29584, 25, 198, 11377, 1398, 28186, 1391, 198, 50268, 11377, 9037, 25131, 468, 26125, 36, 3639, 7, 600, 21737, 997, 82, 11, 493, 11387, 8, 1391, 198, 50272, 1640, 357, 600, 1312, 796, 657, 26, 1312, 1279, 997, 82, 13, 13664, 532, 352, 26, 1312, 29577, 1391, 198, 50276, 1640, 357, 600, 474, 796, 1312, 1343, 352, 26, 474, 1279, 997, 82, 13, 13664, 26, 474, 29577, 1391, 198, 50280, 361, 357, 37372, 13, 8937, 7, 77, 5700, 58, 72, 60, 532, 997, 82, 58, 73, 12962, 1279, 11387, 8, 1391, 198, 50284, 7783, 2081, 26, 198, 50280, 92, 198, 50276, 92, 198, 50272, 92, 198, 50272, 7783, 3991, 26, 198, 50268, 92, 198, 92, 198, 5247, 25, 198], dtype=np.int32) valid_length = input_ids.shape[0] input_ids = np.concatenate((input_ids, np.ones(2048 - valid_length, dtype=np.int32) * 50256)) attention_mask = np.tril(np.ones((2048, 2048))) attention_mask[valid_length:] = 0 input_ids = input_ids.reshape(1, -1).repeat(config.batch_size, axis=0) current_index = valid_length - 1 if valid_length - 1 > 0 else 0 init = Tensor([False], mstype.bool_) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) batch_valid_length = Tensor(np.array([current_index for _ in range(batch_size)]), mstype.int32) output_logits = model_predict.predict(Tensor(input_ids, mstype.int32), init, batch_valid_length) output = output_logits.asnumpy() if rank == 0: np.save("/home/work/sfs/xx/pangu_alpha_code/output_6_7375_8.13.npy", output) # TODO: set as current save path os.system( "chmod 777 /home/work/sfs/xx/pangu_alpha_code/output_6_7375_8.13.npy") # TODO: set as current save path print("== Output shape: ", output.shape)
Main process for predict or export model
def main(): """Main process for predict or export model""" print("===Enter main!") opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) run_predict(model_predict, config, opt, rank)
The main function for load model
def load_model(args_opt): r""" The main function for load model """ # Set execution mode context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) context.set_context(variable_memory_max_size="30GB") # Set parallel context if args_opt.distribute == "true": D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=True, loss_repeated_mean=True, enable_parallel_optimizer=False, pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() else: rank = 0 device_num = 1 context.reset_auto_parallel_context() context.set_auto_parallel_context( strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) use_past = (args_opt.use_past == "true") print('local_rank:{}, start to run...'.format(rank), flush=True) if args_opt.export: use_past = True # Set model property print("===args_opt: ", args_opt, flush=True) print("===device_num is: ", device_num, flush=True) args_opt.op_level_model_parallel_num = 1 model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) print("===data_parallel_num is: ", data_parallel_num, flush=True) parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=False, vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True) per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num if args_opt.run_type == "predict": batch_size = 1 config = PanguAlphaConfig( batch_size=batch_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, hidden_size=args_opt.embedding_size, num_layers=args_opt.num_layers, num_heads=args_opt.num_heads, post_layernorm_residual=False, dropout_rate=0.0, ffn_hidden_size=args_opt.embedding_size * 4, use_past=use_past, eod_token=args_opt.eod_id, eod_reset=False, parallel_config=parallel_config, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == 'fp32' else mstype.float16, ) print("===config is: ", config, flush=True) print("=====args_opt is: ", args_opt, flush=True) ckpt_name = args_opt.load_ckpt_name # Define network pangu_alpha = PanguAlphaModel(config) eval_net = EvalNet(pangu_alpha, pad_token=50256) eval_net.set_train(False) model_predict = Model(eval_net) # Compile network and obtain tensor layout for loading ckpt inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) if args_opt.distribute == "false": predict_layout = None elif config.use_past: batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) print("Input shape:", inputs_np.shape, flush=True) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) print("is_first_iteration=True", flush=True) predict_layout = model_predict.infer_predict_layout(inputs_np, current_index, init_true, batch_valid_length) model_predict.predict_network.add_flags_recursive(is_first_iteration=False) print("is_first_iteration=False", flush=True) init_false = Tensor([False], mstype.bool_) _ = model_predict.infer_predict_layout(inputs_np_1, current_index, init_false, batch_valid_length) else: predict_layout = model_predict.infer_predict_layout(inputs_np, current_index) if context.get_context("save_graphs"): print("==============save_graph", flush=True) jobid = os.environ["BATCH_JOB_ID"] rank_id = rank mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) print("======start load_distributed checkpoint", flush=True) if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.5) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B0-{args_opt.load_ckpt_epoch}.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) # TODO: add them back if not for the 1st run! if param_dict.get("epoch_num") and param_dict.get("step_num"): args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 8 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) net_not_load = load_param_into_net(pangu_alpha, param_dict) print("====== load_distributed checkpoint done, net_not_load: ", net_not_load, flush=True) return model_predict, config, rank
Export mindir model
def export_mindir(model_predict, config): """Export mindir model""" inputs_np = Tensor(np.ones(shape=(config.batch_size, config.seq_length)), mstype.int32) current_index = Tensor(np.array([0]), mstype.int32) batch_valid_length = Tensor(np.array([0]), mstype.int32) init_true = Tensor([True], mstype.bool_) inputs_np_1 = Tensor(np.ones(shape=(config.batch_size, 1)), mstype.int32) model_predict.predict_network.add_flags_recursive(is_first_iteration=True) export(model_predict.predict_network, inputs_np, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1024', file_format='MINDIR') model_predict.predict_network.add_flags_recursive(is_first_iteration=False) export(model_predict.predict_network, inputs_np_1, current_index, init_true, batch_valid_length, file_name='pangu_alpha_1', file_format='MINDIR') print("Export finished and now exit.")
run predict
def run_predict(model_predict, config, args_opt, rank): """run predict""" from src.generate import generate, generate_increment # Define tokenizer tokenizer = CodeTokenizer(mode='6b') # Tokenize input sentence to ids samples = [ "# language: Python\ndef add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "def add(a, b):\n '''\n Find the sum of a and b.\n '''\n", "# language: Python\ndef optimization():\n '''\n Find the maximum of P=E**2*R/(R + r)**2 if E and r are fixed but R varies. Import sympy. Use sympy. Find where the derivative is equal to zero. Substitute the value of R into P.\n '''\n", "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n", "// language: C++\nint add(int a, int b) {\n /* Find the sum of a and b. */\n", "int add(int a, int b) {\n /* Find the sum of a and b. */\n", "bool prime(int n) {\n // Find whether n is a prime number\n", "// language: JavaScript\nfunction add(a, b) {\n // Find the sum of a and b.\n", "# language: R\nadd<-function(a, b) {\n # Find the sum of a and b.\n", ] # verbose = (rank == 0) verbose = False for i, sample in enumerate(samples): for _ in range(1): tokenized_token = tokenizer.encode_code(sample) input_ids = np.array(tokenized_token).reshape(1, -1) # Call inference generate_func = generate_increment if config.use_past else generate t0 = time.perf_counter() output_ids = generate_func(model_predict, input_ids, args_opt, verbose) # Decode output ids to sentence t1 = time.perf_counter() output_samples = tokenizer.decode_code(output_ids.tolist()) output_samples_str = "".join(output_samples) if rank % 8 == 0: print(f"=================== prompt {i} ====================") print(sample, flush=True) print(f"=================== generation {i} ====================") print(output_samples_str, flush=True) print( f"=== Total time (s): {t1 - t0}, {output_ids.shape[-1] - input_ids.shape[-1]} tokens, {(output_ids.shape[-1] - input_ids.shape[-1]) / (t1 - t0)} token/s") break
Main process for predict or export model
def main(): """Main process for predict or export model""" opt = get_args(True) set_parse(opt) model_predict, config, rank = load_model(opt) if opt.export: export_mindir(model_predict, config) else: run_predict(model_predict, config, opt, rank)
Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest
def set_weight_decay(params): """ Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest """ decay_filter = lambda x: 'layernorm' not in x.name.lower() and "bias" not in x.name.lower() decay_params = list(filter(decay_filter, params)) other_params = list(filter(lambda x: not decay_filter(x), params)) group_params = [ {"params": decay_params, "weight_decay": 1e-1}, {"params": other_params, "weight_decay": 0.0}, {"order_params": params}, ] return group_params
Add checkpoint policy to callback.
def add_checkpoint_callback_policy(args_param, callback, rank_id): r""" Add checkpoint policy to callback. """ if args_param.save_checkpoint: # checkpoint store epoch_num and step_num info ckpt_append_info = [{"epoch_num": args_param.has_trained_epoches, "step_num": args_param.has_trained_steps}] ckpt_config = CheckpointConfig( save_checkpoint_steps=args_param.save_checkpoint_steps, keep_checkpoint_max=args_param.keep_checkpoint_max, integrated_save=False, append_info=ckpt_append_info, ) # save checkpoint into rank directory ckpoint_cb = ModelCheckpoint(prefix=args_param.ckpt_name_prefix + str(rank_id), directory=os.path.join(args_param.save_checkpoint_path, f"rank_{rank_id}"), config=ckpt_config) callback.append(ckpoint_cb) saveckpt_cb = SaveCheckpointCallback(cache_dir=args_param.save_checkpoint_path, bucket=args_param.save_checkpoint_obs_path, local_rank=rank_id, has_trained_epoch=args_param.has_trained_epoches, has_trained_step=args_param.has_trained_steps, syn_times=args_param.save_checkpoint_steps) callback.append(saveckpt_cb)
Set parallel context
def set_parallel_context(args_opt): r"""Set parallel context""" D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=bool(args_opt.full_batch), strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path, enable_parallel_optimizer=bool(args_opt.optimizer_shard), strategy_ckpt_save_file='strategy.ckpt', optimizer_weight_shard_size=16, optimizer_weight_shard_aggregated_save=True) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() return rank, device_num
Set parallel context
def set_parallel_context(args_opt): r"""Set parallel context""" D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=bool(args_opt.full_batch), strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path, enable_parallel_optimizer=bool(args_opt.optimizer_shard), strategy_ckpt_save_file='strategy.ckpt', optimizer_weight_shard_size=16, optimizer_weight_shard_aggregated_save=True) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() return rank, device_num
Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest
def set_weight_decay(params): """ Set weight decay coefficient, zero for bias and layernorm, 1e-1 for rest """ decay_filter = lambda x: 'layernorm' not in x.name.lower() and "bias" not in x.name.lower() decay_params = list(filter(decay_filter, params)) other_params = list(filter(lambda x: not decay_filter(x), params)) group_params = [ {"params": decay_params, "weight_decay": 1e-1}, {"params": other_params, "weight_decay": 0.0}, {"order_params": params}, ] return group_params
Add checkpoint policy to callback.
def add_checkpoint_callback_policy(args_param, callback, rank_id): r""" Add checkpoint policy to callback. """ if args_param.save_checkpoint: # checkpoint store epoch_num and step_num info ckpt_append_info = [{"epoch_num": args_param.has_trained_epoches, "step_num": args_param.has_trained_steps}] ckpt_config = CheckpointConfig( save_checkpoint_steps=args_param.save_checkpoint_steps, keep_checkpoint_max=args_param.keep_checkpoint_max, integrated_save=False, append_info=ckpt_append_info, ) # save checkpoint into rank directory ckpoint_cb = ModelCheckpoint(prefix=args_param.ckpt_name_prefix + str(rank_id), directory=os.path.join(args_param.save_checkpoint_path, f"rank_{rank_id}"), config=ckpt_config) callback.append(ckpoint_cb) saveckpt_cb = SaveCheckpointCallback(cache_dir=args_param.save_checkpoint_path, bucket=args_param.save_checkpoint_obs_path, local_rank=rank_id, has_trained_epoch=args_param.has_trained_epoches, has_trained_step=args_param.has_trained_steps, syn_times=args_param.save_checkpoint_steps) callback.append(saveckpt_cb)
Set parallel context
def set_parallel_context(args_opt): r"""Set parallel context""" D.init() device_num = D.get_group_size() rank = D.get_rank() print("rank_id is {}, device_num is {}".format(rank, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=bool(args_opt.full_batch), strategy_ckpt_load_file=args_opt.strategy_load_ckpt_path, enable_parallel_optimizer=bool(args_opt.optimizer_shard), strategy_ckpt_save_file='strategy.ckpt', optimizer_weight_shard_size=16) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() return rank, device_num
The main training process.
def run_train(args_opt): r"""The main training process.""" os.environ["HCCL_CONNECT_TIMEOUT"] = "2000" # Set execution mode context.set_context( mode=context.GRAPH_MODE, device_target=args_opt.device_target ) if args_opt.profiling: profiler = Profiler(output_path="/cache/profiler_data") context.set_context(variable_memory_max_size="30GB") # Set parallel context rank = 0 device_num = 1 if args_opt.distribute == "true": rank, device_num = set_parallel_context(args_opt) context.set_context( save_graphs=False, save_graphs_path="/cache/graphs_of_device_id_" + str(rank), ) cache_url = '/cache/Data/' eval_cache_url = '/cache/EvalData/' if not args_opt.offline: download_data(src_data_url=args_opt.data_url, tgt_data_path=cache_url, rank=rank) download_data(src_data_url=args_opt.eval_data_url, tgt_data_path=eval_cache_url, rank=rank) # Set model property model_parallel_num = args_opt.op_level_model_parallel_num data_parallel_num = int(device_num / model_parallel_num) batch_size = args_opt.per_batch_size * data_parallel_num parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=bool(args_opt.optimizer_shard), vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True, gradient_aggregation_group=args_opt.gradient_aggregation_group) micro_interleaved_size = args_opt.micro_interleaved_size config = PanguAlphaConfig( batch_size=batch_size // micro_interleaved_size, num_heads=args_opt.num_heads, hidden_size=args_opt.embedding_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, num_layers=args_opt.num_layers, ffn_hidden_size=args_opt.embedding_size * 4, eod_token=args_opt.eod_id, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == "fp32" else mstype.float16, dropout_rate=args_opt.dropout_rate, enable_offload=bool(args_opt.opt_offload), use_moe=bool(args_opt.use_moe), per_dp_dim_expert_num=args_opt.per_dp_dim_expert_num, hidden_act="fast_gelu" if args_opt.device_target != "GPU" else "gelu", parallel_config=parallel_config, ) print("===config is: ", config, flush=True) # Define network pangu_alpha = PanguAlphaModel(config=config) loss = CrossEntropyLoss(config.parallel_config.dp_mp_config) if micro_interleaved_size > 1: print("===using MicroBatchInterleaved", flush=True) pangu_alpha_with_loss_net = MicroBatchInterleaved(PanGUAlphaWithLoss(config, pangu_alpha, loss), micro_interleaved_size) else: pangu_alpha_with_loss_net = PanGUAlphaWithLoss(config, pangu_alpha, loss) pangu_alpha_with_loss = _VirtualDatasetCell(pangu_alpha_with_loss_net) print("=====args_opt is: ", args_opt, flush=True) # Warm-up and cosine decay learning rate lr = LearningRate(learning_rate=args_opt.start_lr, end_learning_rate=args_opt.end_lr, warmup_steps=args_opt.warmup_step, decay_steps=args_opt.decay_steps) params = pangu_alpha_with_loss.trainable_params() group_params = set_weight_decay(params) if args_opt.optimizer == "lamb": optimizer = nn.Lamb(group_params, learning_rate=lr) elif args_opt.opt_offload: optimizer = AdamWeightDecayOp(group_params, learning_rate=lr, eps=1e-8, beta1=0.9, beta2=0.95, param_init_type=config.param_init_type) else: optimizer = FP32StateAdamWeightDecay(group_params, learning_rate=lr, eps=1e-8, beta1=0.9, beta2=0.95) # Initial scaling sens loss_scale_value = math.pow(2, 32) epoch_num = args_opt.epoch_size if args_opt.load_ckpt_epoch > 0: time.sleep(rank * 0.05) os.mkdir(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}")) ckpt_name = f"code-13B{rank}_20-{args_opt.load_ckpt_epoch}_2.ckpt" if not mox.file.exists(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name)): print(f"Checkpoint from rank {rank} doesn't exist!") mox.file.copy(os.path.join(args_opt.load_ckpt_path, f"rank_{rank}", ckpt_name), os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) param_dict = load_checkpoint(os.path.join(args_opt.save_checkpoint_path, f"rank_{rank}", ckpt_name)) # TODO: remove after warming-up! # param_dict.pop('global_step') # TODO: add them back if not for the 1st run! # if param_dict.get("epoch_num") and param_dict.get("step_num"): # args_opt.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) # args_opt.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) # args_opt.has_trained_steps = 9000 os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/1')) if num == device_num: break if rank % 64 == 0: print("Loaded ckpt in step 1: ", num) time.sleep(1) if args_opt.tb_dir is not None and rank == device_num - 1: os.makedirs(args_opt.tb_dir, exist_ok=True) summary_writer = SummaryWriter(args_opt.tb_dir) os.system(f'chomd 777 -R {args_opt.tb_dir}') else: summary_writer = None # Dataset loading mindrecord files ds, ds_eval = create_dataset(config.batch_size * micro_interleaved_size, data_path=args_opt.code_data, args_opt=args_opt, data_start_index=0, eod_reset=config.eod_reset, full_batch=bool(args_opt.full_batch), eod_id=args_opt.eod_id, device_num=device_num, rank=rank, epoch=epoch_num, train_and_eval=bool(args_opt.train_and_eval_mode), val_ratio=0.001) actual_epoch_num = int(ds.get_dataset_size() / args_opt.sink_size) callback = [ TimeMonitor(args_opt.sink_size), ] update_cell = DynamicLossScaleUpdateCell(loss_scale_value=loss_scale_value, scale_factor=2, scale_window=1000) pangu_alpha_with_grads = PanguAlphaTrainOneStepWithLossScaleCell( pangu_alpha_with_loss, optimizer=optimizer, scale_update_cell=update_cell, enable_global_norm=True, config=config) if ds_eval: ppl_metric = PPLMetric(config.seq_length) validation_loss = ValidationLoss(eod_token=args_opt.eod_id) model = Model(pangu_alpha_with_grads, eval_network=pangu_alpha_with_loss, metrics={"ppl": ppl_metric, "validation_loss": validation_loss}) callback.append( EvalCallBack( model=model, eval_dataset=ds_eval, ppl_metric=ppl_metric, validation_loss=validation_loss, print_per_step=10, has_trained_step=args_opt.has_trained_steps, local_rank=rank, rank_size=device_num, tb_writer=summary_writer ) ) else: model = Model(pangu_alpha_with_grads) if args_opt.load_ckpt_epoch > 0: print("===build model and load ckpt") time_stamp = datetime.datetime.now() print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')} before building", flush=True) model.build(train_dataset=ds, sink_size=args_opt.sink_size, epoch=actual_epoch_num) time_stamp = datetime.datetime.now() print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')} before loading ckpt", flush=True) net_not_load = load_param_into_net(pangu_alpha_with_loss, param_dict) opt_not_load = load_param_into_net(optimizer, param_dict) os.mkdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/2/rank_{rank}') while True: num = len(os.listdir(f'/home/work/sfs/cache/{os.environ["BATCH_JOB_ID"]}/2')) if num == device_num: break if rank % 64 == 0: print("Loaded ckpt in step 2: ", num) time.sleep(1) callback.append( LossCallBack( name=args_opt.ckpt_name_prefix, dataset_size=args_opt.sink_size, local_rank=rank, rank_size=device_num, has_trained_epoch=args_opt.has_trained_epoches, has_trained_step=args_opt.has_trained_steps, micro_size=args_opt.micro_size * micro_interleaved_size, tb_writer=summary_writer, ) ) if not args_opt.profiling: add_checkpoint_callback_policy(args_opt, callback, rank) if args_opt.incremental_training: strategy = model.infer_train_layout(train_dataset=ds, sink_size=args_opt.sink_size) print("======start load_distributed checkpoint", flush=True) # For 2.6B and 13B models, the number of ckpt files is 512. ckpt_file_list = [os.path.join(args_opt.load_ckpt_path, f"filerted_{ckpt_rank}.ckpt") for ckpt_rank in range(0, 512)] print(f"Loading from path {ckpt_file_list[0]}", flush=True) load_distributed_checkpoint(model.train_network, ckpt_file_list, strategy) print("Dataset size: {}, actual_epoch_num: {}".format(ds.get_dataset_size(), actual_epoch_num), flush=True) try: model.train(10 if args_opt.profiling else actual_epoch_num, ds, callbacks=callback, sink_size=args_opt.sink_size, dataset_sink_mode=True) finally: if args_opt.profiling: jobid = os.environ["BATCH_JOB_ID"] profiler.analyse() rank_id = rank if context.get_context("save_graphs"): mox.file.make_dirs("s3://wudao-1/yyf/graphs_" + jobid) mox.file.copy_parallel(src_url="/cache/graphs_of_device_id_" + str(rank_id), dst_url="s3://wudao-1/yyf/graphs_" + jobid + "/" + str(rank_id)) if rank_id % 8 == 0: mox.file.make_dirs("s3://wudao-1/yyf/profiler_" + jobid) mox.file.copy_parallel(src_url="/cache/profiler_data", dst_url="s3://wudao-1/yyf/profiler_" + jobid + "/" + str(rank_id))
Load checkpoint process.
def restore_checkpoint(args_param, sink_size, dataset, model, network, epoch): r""" Load checkpoint process. """ print("======start single checkpoint", flush=True) ckpt_name = args_param.ckpt_name_prefix ckpt_pattern = os.path.join(args_param.save_checkpoint_path, "rank_{}".format(D.get_rank()), f"{ckpt_name}*.ckpt") ckpt_all_files = glob.glob(ckpt_pattern) if not ckpt_all_files: print(f"There is no ckpt file in {args_param.save_checkpoint_path}, " f"current ckpt_files found is {ckpt_all_files} " f"with pattern {ckpt_pattern}, so skip the loading.") return ckpt_exp_pattern = os.path.join(args_param.save_checkpoint_path, "rank_{}".format(D.get_rank()), f"{ckpt_name}*_breakpoint.ckpt") ckpt_exp_files = glob.glob(ckpt_exp_pattern) ckpt_files = [] for file in ckpt_all_files: if file not in ckpt_exp_files: ckpt_files.append(file) if not ckpt_files: print(f"There is no ckpt file in {args_param.save_checkpoint_path}, " f"current ckpt_files found is {ckpt_files} " f"with pattern {ckpt_pattern}, so skip the loading.") return ckpt_files.sort(key=os.path.getmtime, reverse=True) time_stamp = datetime.datetime.now() print(f"time stamp {time_stamp.strftime('%Y.%m.%d-%H:%M:%S')} pre trained ckpt model {ckpt_files} loading", flush=True) # Load checkpoint files latest file print(f'Start to load from {ckpt_files[0]}') param_dict = load_checkpoint(ckpt_files[0]) if param_dict.get("epoch_num") and param_dict.get("step_num"): args_param.has_trained_epoches = int(param_dict["epoch_num"].data.asnumpy()) args_param.has_trained_steps = int(param_dict["step_num"].data.asnumpy()) model.build(train_dataset=dataset, sink_size=sink_size, epoch=epoch) load_param_into_net(network, param_dict)
Get exception checkpoint based on restore ranks Args: args_param: training model parameters Returns: exception checkpoint list
def get_exception_checkpoints(args_param): """ Get exception checkpoint based on restore ranks Args: args_param: training model parameters Returns: exception checkpoint list """ print("======start exception checkpoint", flush=True) restore_ranks = os.getenv("RESTORE_RANKS") if not restore_ranks: return None restore_rank_list = list(map(int, restore_ranks.split(","))) ckpt_file_list = [] ckpt_name = args_param.ckpt_name_prefix for ckpt_rank in restore_rank_list: ckpt_pattern = os.path.join(args_param.save_checkpoint_path, f"rank_{ckpt_rank}", f"{ckpt_name}*_breakpoint.ckpt") ckpt_files = glob.glob(ckpt_pattern) if not ckpt_files: print( f"There is no ckpt file in {args_param.save_checkpoint_path}, " f"current ckpt_files found is {ckpt_files} " f"with pattern {ckpt_pattern}, so skip the loading.") return None ckpt_files.sort(key=os.path.getmtime, reverse=True) ckpt_file_list.append(ckpt_files[0]) print(f"checkpoint file {ckpt_file_list}") return ckpt_file_list
Checkpoint exception checkpoints size. Args: ckpt_file_list: exception checkpoints Returns: result of exception checkpoints size check.
def check_exception_checkpoints(ckpt_file_list): """ Checkpoint exception checkpoints size. Args: ckpt_file_list: exception checkpoints Returns: result of exception checkpoints size check. """ ckpt_size_list = [] for ckpt_file in ckpt_file_list: ckpt_size_list.append(os.path.getsize(ckpt_file)) if len(set(ckpt_size_list)) > 1: return False return True
Restore exception checkpoint. Args: args_param: training job params sink_size: training job sink size dataset: dataset for training model: model network: pangu_alpha network epoch: training epoch Returns: load exception checkpoint success or not.
def restore_exception_checkpoint(args_param, sink_size, dataset, model, network, epoch): """ Restore exception checkpoint. Args: args_param: training job params sink_size: training job sink size dataset: dataset for training model: model network: pangu_alpha network epoch: training epoch Returns: load exception checkpoint success or not. """ if os.getenv("RESTORE_RANKS") == "-1": return False ckpt_file_list = get_exception_checkpoints(args_param) restore_flag = False if ckpt_file_list: restore_flag = check_exception_checkpoints(ckpt_file_list) if not restore_flag: return False ckpt_name = args_param.ckpt_name_prefix restore_ranks_map = os.getenv("RESTORE_RANKS_MAP") if not restore_ranks_map: return False try: print("whether run into load process") restore_ranks_map_json = json.loads(restore_ranks_map) map_rank_id = D.get_rank() for key in restore_ranks_map_json.keys(): key_list = list(key.split(",")) if str(D.get_rank()) in key_list: map_rank_id = restore_ranks_map_json.get(key) print(f"loading map rank id {map_rank_id}") ckpt_pattern = os.path.join(args_param.save_checkpoint_path, f"rank_{map_rank_id}", f"{ckpt_name}*breakpoint.ckpt") ckpt_files = glob.glob(ckpt_pattern) ckpt_files.sort(key=os.path.getmtime, reverse=True) print(f" checkpoint files {ckpt_files[0]}") param_dict = load_checkpoint(ckpt_files[0]) print(f" checkpoint param dict epoch num {param_dict.get('epoch_num')}") if param_dict.get("epoch_num") and param_dict.get("step_num"): args_param.has_trained_epoches = int( param_dict["epoch_num"].data.asnumpy()) args_param.has_trained_steps = int( param_dict["step_num"].data.asnumpy()) # Load checkpoint files model.build(train_dataset=dataset, sink_size=sink_size, epoch=epoch) load_param_into_net(network, param_dict) except TypeError: return False else: return True
Set prarllel context in pipeline training process
def set_pipeline_parallel_context(args_opt): """ Set prarllel context in pipeline training process """ D.init() device_num = D.get_group_size() rank_id = D.get_rank() print("rank_id is {}, device_num is {}".format(rank_id, device_num)) context.reset_auto_parallel_context() context.set_auto_parallel_context( parallel_mode=ParallelMode.SEMI_AUTO_PARALLEL, gradients_mean=False, full_batch=bool(args_opt.full_batch), loss_repeated_mean=True, device_num=device_num, enable_parallel_optimizer=bool(args_opt.optimizer_shard), pipeline_stages=args_opt.stage_num) set_algo_parameters(elementwise_op_strategy_follow=True) _set_multi_subgraphs() return rank_id, device_num
The main training process in pipeline.
def run_train_pipeline(args_opt): r"""The main training process in pipeline.""" # Set hccl connect time os.environ['HCCL_CONNECT_TIMEOUT'] = "6000" context.set_context(save_graphs=False, mode=context.GRAPH_MODE, device_target=args_opt.device_target) if args_opt.profiling: profiler = Profiler(output_path="./profiler_data") context.set_context(variable_memory_max_size="30GB") rank_id = 0 device_num = 1 if args_opt.distribute == "true": rank_id, device_num = set_pipeline_parallel_context(args_opt) # copy data from the cloud to the /cache/Data cache_url = '/cache/Data/' eval_cache_url = '/cache/EvalData/' if not args_opt.offline: download_data(src_data_url=args_opt.data_url, tgt_data_path=cache_url, rank=rank_id) download_data(src_data_url=args_opt.eval_data_url, tgt_data_path=eval_cache_url, rank=rank_id) model_parallel_num = args_opt.op_level_model_parallel_num stage_device_num = int(device_num / args_opt.stage_num) data_parallel_num = int(stage_device_num / model_parallel_num) print("Topology:", model_parallel_num, data_parallel_num, stage_device_num) if data_parallel_num <= 1 and args_opt.optimizer_shard == 1: raise ValueError("The dp must large than 1 when applying optimizer shard.") per_batch_size = args_opt.per_batch_size batch_size = per_batch_size * data_parallel_num * args_opt.micro_size parallel_config = TransformerOpParallelConfig(data_parallel=data_parallel_num, model_parallel=model_parallel_num, pipeline_stage=args_opt.stage_num, micro_batch_num=args_opt.micro_size, optimizer_shard=bool(args_opt.optimizer_shard), vocab_emb_dp=bool(args_opt.word_emb_dp), recompute=True, ) config = PanguAlphaConfig( batch_size=batch_size // parallel_config.micro_batch_num, num_heads=args_opt.num_heads, hidden_size=args_opt.embedding_size, seq_length=args_opt.seq_length, vocab_size=args_opt.vocab_size, num_layers=args_opt.num_layers, ffn_hidden_size=args_opt.embedding_size * 4, eod_token=args_opt.eod_id, load_ckpt_path=args_opt.load_ckpt_path, param_init_type=mstype.float32 if args_opt.param_init_type == "fp32" else mstype.float16, enable_offload=bool(args_opt.opt_offload), parallel_config=parallel_config, apply_scale_normalization=args_opt.apply_scale_normalization, ) print("===config is: ", config, flush=True) pangu_alpha = PanguAlphaModel(config=config) loss = CrossEntropyLoss(config.parallel_config.dp_mp_config) pangu_alpha_with_loss_net = PipelineCell(PanGUAlphaWithLoss(config, pangu_alpha, loss), config.parallel_config.micro_batch_num) pangu_alpha_with_loss = _VirtualDatasetCell(pangu_alpha_with_loss_net) print("=====args_opt is: ", args_opt, flush=True) lr = LearningRate(learning_rate=args_opt.start_lr, end_learning_rate=args_opt.end_lr, warmup_steps=args_opt.warmup_step, decay_steps=args_opt.decay_steps) params = pangu_alpha.infer_param_pipeline_stage() group_params = set_weight_decay(params) if args_opt.optimizer == "lamb": optimizer = nn.Lamb(group_params, learning_rate=lr) elif args_opt.opt_offload: optimizer = AdamWeightDecayOp(group_params, learning_rate=lr, eps=1e-8, beta1=0.9, beta2=0.95, param_init_type=config.param_init_type) else: optimizer = nn.AdamWeightDecay(group_params, learning_rate=lr, beta1=0.9, beta2=0.95, eps=1e-8) ds = create_dataset(config.batch_size * parallel_config.micro_batch_num, data_path=args_opt.code_data, device_num=stage_device_num, args_opt=args_opt, rank=rank_id % stage_device_num, eod_reset=True, data_start_index=0, full_batch=context.get_auto_parallel_context("full_batch"), column_name=args_opt.data_column_name) epoch_num = args_opt.epoch_size step_per_epoch = ds.get_dataset_size() callback_size = args_opt.sink_size actual_epoch_num = int(epoch_num * step_per_epoch / callback_size) callback = [ TimeMonitor(callback_size), LossCallBack( args_opt.ckpt_name_prefix, callback_size, rank_id, device_num, micro_size=parallel_config.micro_batch_num, tb_dir=args_opt.tb_dir, ), ] loss_scale_value = math.pow(2, 32) update_cell = DynamicLossScaleUpdateCell(loss_scale_value=loss_scale_value, scale_factor=2, scale_window=1000) pangu_alpha_with_grads = PanguAlphaTrainPipelineWithLossScaleCell( pangu_alpha_with_loss, optimizer=optimizer, config=config, scale_update_cell=update_cell) if args_opt.train_and_eval_mode: ds_eval = create_dataset(config.batch_size * parallel_config.micro_batch_num, data_path=eval_cache_url, args_opt=args_opt, device_num=stage_device_num, rank=rank_id % stage_device_num, eod_reset=True, data_start_index=0, full_batch=bool(args_opt.full_batch), column_name=args_opt.data_column_name, num_samples=args_opt.eval_steps * config.batch_size) ppl_metric = PPLMetric(config.seq_length) pangu_alpha_with_loss_eval_net = _VirtualDatasetCell(PanGUAlphaWithLoss(config, pangu_alpha, loss)) model = Model(pangu_alpha_with_grads, eval_network=pangu_alpha_with_loss_eval_net, metrics={"ppl": ppl_metric}) model.build(ds, ds_eval, sink_size=callback_size) eval_callback = EvalCallBack(model, ds_eval, ppl_metric) callback.append(eval_callback) else: model = Model(pangu_alpha_with_grads) if args_opt.pre_trained: flag = restore_exception_checkpoint(args_opt, callback_size, ds, model, pangu_alpha_with_grads, epoch=actual_epoch_num) if not flag: restore_checkpoint(args_opt, callback_size, ds, model, pangu_alpha_with_grads, epoch=actual_epoch_num) callback = [ TimeMonitor(callback_size), LossCallBack( args_opt.ckpt_name_prefix, callback_size, rank_id, device_num, args_opt.has_trained_epoches, args_opt.has_trained_steps, tb_dir=args_opt.tb_dir, ), ] # add_checkpoint_callback_policy(args_opt, callback, rank_id) print("------ train start -------") model.train(10 if args_opt.profiling else actual_epoch_num, ds, callbacks=callback, sink_size=callback_size, dataset_sink_mode=True) if args_opt.profiling: profiler.analyse()
get_op_support_info
def get_op_support_info(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon=1e-12, kernel_name="layer_norm", impl_mode="high_performance"): """ get_op_support_info """ format_x = input_x.get("format").upper() shape_x = input_x.get("shape") ori_shape_x = input_x.get("ori_shape") begin_norm_axis = shape_util.axis_check(len(shape_x), begin_norm_axis) begin_params_axis = shape_util.axis_check(len(shape_x), begin_params_axis) axis_split_matrix = [] if format_x in ("ND", "NCHW", "NHWC", "NC1HWC0"): if begin_params_axis == 0: for i in range(begin_norm_axis): split_0 = [SplitInput([0, [i], [-1], [-1]], [1, [i], [-1], [-1]], [2, [i], [-1], [-1]]), SplitOutput([0, [i]], [1, [i]], [2, [i]])] axis_split_matrix.append(split_0) else: if begin_norm_axis <= begin_params_axis: for i in range(begin_norm_axis): split_0 = [SplitInput([0, [i], [-1], [-1]]), SplitOutput([0, [i]], [1, [i]], [2, [i]])] axis_split_matrix.append(split_0) else: for i in range(begin_params_axis): split_0 = [SplitInput([0, [i], [-1], [-1]]), SplitOutput([0, [i]], [1, [i]], [2, [i]])] axis_split_matrix.append(split_0) elif format_x == "FRACTAL_NZ": index_list = tuple(index for index, _ in enumerate(ori_shape_x)) start_axis = min(begin_norm_axis, begin_params_axis) no_split_axis = index_list[start_axis:] no_split_axis = to_frac_z_axis(ori_shape_x, no_split_axis) for i in range(len(shape_x)): if i not in no_split_axis: split_0 = [SplitInput([0, [i], [-1], [-1]]), SplitOutput([0, [i]], [1, [i]], [2, [i]])] axis_split_matrix.append(split_0) else: axis_split_matrix = None axis_reduce_list = None op_cal_info_in_json = get_op_cal_info(axis_split_matrix, axis_reduce_list, 0, 0) return op_cal_info_in_json
division_sixteen
def _division_sixteen(shape, begin_norm_axis): """ division_sixteen """ if len(shape) < 2: if shape[-1] == 0: error_detail = "value of shape_x is illegal" error_manager_vector.raise_err_input_shape_invalid("layer_norm", "input_x", error_detail) return False if shape[-1] == 0 or shape[-2] == 0: error_detail = "value of shape_x is illegal" error_manager_vector.raise_err_input_shape_invalid("layer_norm", "input_x", error_detail) is_reduce_last = begin_norm_axis in (-1, len(shape) - 1) # if shape[-2] % constant.C0_SIZE == 0: # if shape[-1] % constant.C0_SIZE == 0 or (shape[-1] % constant.C0_SIZE != 0 and is_reduce_last): # return True return False
select format dynamically
def op_select_format(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, kernel_name="layer_norm"): """ select format dynamically """ shape_x = input_x.get("ori_shape") shape_x = shape_util.scalar2tensor_one(shape_x) shape_gamma = input_gamma.get("ori_shape") shape_gamma = shape_util.scalar2tensor_one(shape_gamma) if begin_params_axis == 0: if len(shape_gamma) >= 2 or (not _division_sixteen(shape_x, begin_norm_axis)): input0 = util_select_op_base.gen_param(classify="input0", name="x", datatype="float16,float16,float16,float16," "float,float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="gamma", datatype="float16,float16,float16,float16,float," "float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="beta", datatype="float16,float16,float16,float16,float," "float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="y", datatype="float16,float16,float16,float16,float," "float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="mean", datatype="float16,float16,float16,float16,float," "float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") output2 = util_select_op_base.gen_param(classify="output2", name="variance", datatype="float16,float16,float16,float16,float," "float,float,float", format="NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0,NHWC,ND") else: input0 = util_select_op_base.gen_param(classify="input0", name="x", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NC1HWC0,NHWC," "ND,NCHW,NC1HWC0,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="gamma", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="ND,ND,NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0," "NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="beta", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="ND,ND,NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0," "NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="y", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NC1HWC0,NHWC,ND," "NCHW,NC1HWC0,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="mean", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="ND,ND,NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0," "NHWC,ND") output2 = util_select_op_base.gen_param(classify="output2", name="variance", datatype="float16,float,float16,float16,float16," "float16,float,float,float,float", format="ND,ND,NCHW,NC1HWC0,NHWC,ND,NCHW,NC1HWC0," "NHWC,ND") else: if len(shape_gamma) >= 2 or (not _division_sixteen(shape_x, begin_norm_axis)): input0 = util_select_op_base.gen_param(classify="input0", name="x", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="gamma", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="beta", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="y", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="mean", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") output2 = util_select_op_base.gen_param(classify="output2", name="variance", datatype="float16,float16,float16," "float,float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") else: input0 = util_select_op_base.gen_param(classify="input0", name="x", datatype="float16,float,float16,float16," "float16,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC," "ND,NCHW,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="gamma", datatype="float16,float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="beta", datatype="float16,float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="y", datatype="float16,float,float16,float16," "float16,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC,ND," "NCHW,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="mean", datatype="float16,float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") output2 = util_select_op_base.gen_param(classify="output2", name="variance", datatype="float16,float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") param_list = [input0, input1, input2, output0, output1, output2] param_dynamic_in_json = util_select_op_base.get_dynamic_param_in_json(param_list) return param_dynamic_in_json
judge the format is fractal NZ Parameters ---------- ori_shape: list or tuple original shape of input ori_axis: list or tuple original axis of original shape to operate Returns ------- output: list axis of the fractal Nz shape
def to_frac_z_axis(ori_shape, ori_axis): """ judge the format is fractal NZ Parameters ---------- ori_shape: list or tuple original shape of input ori_axis: list or tuple original axis of original shape to operate Returns ------- output: list axis of the fractal Nz shape """ frac_z_axis = list(ori_axis) shape_len = len(ori_shape) axis_count = len(frac_z_axis) axis_negative_1 = shape_len - 1 axis_negative_2 = shape_len - 2 for i in range(axis_count): axis_index = (frac_z_axis[i] + shape_len) % shape_len if axis_index == axis_negative_1: if frac_z_axis[i] > shape_len - 2: frac_z_axis[i] = axis_index - 1 frac_z_axis.append(axis_index + 1) else: frac_z_axis[i] = axis_index - 1 frac_z_axis.append(axis_index + 2) elif axis_index == axis_negative_2: frac_z_axis[i] = axis_index + 1 frac_z_axis.append(axis_index + 2) else: frac_z_axis[i] = axis_index return frac_z_axis
broadcast_nz
def _broadcast_nz(tensor, shape): """ broadcast_nz """ broadcast_axes = [] src_shape = shape_util.shape_to_list(tensor.shape) for i, _ in enumerate(shape): if shape[i] != src_shape[i]: broadcast_axes.append(i) if len(broadcast_axes) == 2 and \ broadcast_axes[1] - broadcast_axes[0] != 1 and \ broadcast_axes[1] + 1 == len(shape): temp_shape = src_shape[:-1] + [shape[-1]] tensor = tbe.broadcast(tensor, temp_shape) tensor = tbe.broadcast(tensor, shape) return tensor
judge case using cube to handle reducesum only supported follow case in Ascend910 and Ascend710: ori_shape: ((batch), m, 1024(768)), "shape": ((batch), 64(48), m//16, 16, 16), "dtype": fp16
def _check_vector_to_cube(dtype, ori_shape_x, shape_x, begin_norm_axis, impl_mode): """ judge case using cube to handle reducesum only supported follow case in Ascend910 and Ascend710: ori_shape: ((batch), m, 1024(768)), "shape": ((batch), 64(48), m//16, 16, 16), "dtype": fp16 """ def _check_shape_and_dtype(): if dtype != "float16": return False if len(ori_shape_x) not in (2, 3) or ori_shape_x[-1] not in (1024, 768, 96, 384, 192, 128, 512, 256): return False if len(shape_x) not in (4, 5) or shape_x[-4] not in (64, 48, 6, 12, 24, 16, 32): return False if "Ascend910" not in get_soc_spec(SOC_VERSION) and "Ascend710" not in get_soc_spec(SOC_VERSION): return False if begin_norm_axis != (len(ori_shape_x) - 1): return False return True return impl_mode == "high_performance" and _check_shape_and_dtype()
DSL description of the layernorm operator's mathematical calculation process for non_aligned scene
def nz_non_aligned(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, ori_shape, epsilon, kernel_name="layer_norm", impl_mode="high_performance"): """ DSL description of the layernorm operator's mathematical calculation process for non_aligned scene """ shape_x = shape_util.shape_to_list(input_x.shape) dtype = input_x.dtype.lower() cast_dtype = "float16" if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): cast_dtype = "float32" input_x = tbe.cast_to(input_x, "float32") input_gamma = tbe.cast_to(input_gamma, "float32") input_beta = tbe.cast_to(input_beta, "float32") else: input_x = tbe.vadds(input_x, 0) # Calculate the scaling ratio of the average reduce_elts = 1.0 index_list = tuple(index for index, _ in enumerate(ori_shape)) reduce_axis = index_list[begin_norm_axis:] for i in reduce_axis: reduce_elts *= ori_shape[i] reduce_axis = to_frac_z_axis(ori_shape, reduce_axis) mean_cof = reduce_elts ** (-1) # DSL description of the mean calculation process with tvm.tag_scope("tail_block_pretreatment"): lambda_func = lambda *indice: tvm.const(0, input_x.dtype) temp = tvm.compute(input_x.shape, lambda_func, name="tail_block_pretreatment") input_x = tbe.vadd(input_x, temp) mean_muls = tbe.vmuls(input_x, mean_cof) mean = tbe.sum(mean_muls, axis=reduce_axis, keepdims=True) mean_square = tbe.vmul(mean, mean) x_square = tbe.vmul(input_x, input_x) x_square = tbe.vmuls(x_square, mean_cof) x_square_mean = tbe.sum(x_square, axis=reduce_axis, keepdims=True) variance = tbe.vsub(x_square_mean, mean_square) # DSL description of the normalize calculation process mean_normalize_broadcast = _broadcast_nz(mean, shape_x) normalize_sub = tbe.vsub(input_x, mean_normalize_broadcast) epsilon = tvm.const(epsilon, dtype=cast_dtype) normalize_add = tbe.vadds(variance, epsilon) normalize_log = tbe.vlog(normalize_add) normalize_log_mul = \ tbe.vmuls(normalize_log, tvm.const(-0.5, dtype=cast_dtype)) normalize_exp = tbe.vexp(normalize_log_mul) variance_normalize_broadcast = _broadcast_nz(normalize_exp, shape_x) normalize_mul = tbe.vmul(normalize_sub, variance_normalize_broadcast) # DSL description of the scale and translate calculation process gamma_broadcast = _broadcast_nz(input_gamma, shape_x) beta_broadcast = _broadcast_nz(input_beta, shape_x) scale_mul = tbe.vmul(gamma_broadcast, normalize_mul) res = tbe.vadd(scale_mul, beta_broadcast) if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): mean = tbe.cast_to(mean, "float16") variance = tbe.cast_to(variance, "float16") res = tbe.cast_to(res, "float16") return mean, variance, res
DSL description of the layernorm operator's mathematical calculation process Parameters ---------- input_x: TVM tensor the placeholder of x input data input_gamma: TVM tensor the placeholder of gamma input data input_beta: TVM tensor the placeholder of beta input data output_data: dict shape and dtype of output begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "cce_layernorm" Returns ------- res_tuple: tuple (mean, variance, result)
def layer_norm_compute_nz(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, ori_shape, epsilon, kernel_name="layer_norm", impl_mode="high_performance"): """ DSL description of the layernorm operator's mathematical calculation process Parameters ---------- input_x: TVM tensor the placeholder of x input data input_gamma: TVM tensor the placeholder of gamma input data input_beta: TVM tensor the placeholder of beta input data output_data: dict shape and dtype of output begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "cce_layernorm" Returns ------- res_tuple: tuple (mean, variance, result) """ shape_x = shape_util.shape_to_list(input_x.shape) dtype = input_x.dtype.lower() cast_dtype, cast_fp16_dtype = "float16", "float16" cast_dtype_precision = dtype if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): cast_dtype = "float32" cast_dtype_precision = "float32" input_x = tbe.cast_to(input_x, "float32") input_gamma = tbe.cast_to(input_gamma, "float32") input_beta = tbe.cast_to(input_beta, "float32") # Calculate the scaling ratio of the average reduce_elts = 1.0 index_list = tuple(index for index, _ in enumerate(ori_shape)) reduce_axis = index_list[begin_norm_axis:] for i in reduce_axis: reduce_elts *= ori_shape[i] reduce_axis = to_frac_z_axis(ori_shape, reduce_axis) mean_cof = reduce_elts ** (-1) if impl_mode != "keep_fp16": # DSL description of the mean calculation process mean_muls = tbe.vmuls(input_x, mean_cof) mean = tbe.sum(mean_muls, axis=reduce_axis, keepdims=True) # DSL description of the variance calculation process mean_variance_broadcast = _broadcast_nz(mean, shape_x) variance_sub = tbe.vsub(input_x, mean_variance_broadcast) variance_mul = tbe.vmul(variance_sub, variance_sub) variance_muls = tbe.vmuls(variance_mul, mean_cof) variance = tbe.sum(variance_muls, axis=reduce_axis, keepdims=True) else: # DSL description of the mean calculation process x_sum = tbe.sum(input_x, axis=reduce_axis, keepdims=True) mean = tbe.vmuls(x_sum, mean_cof) # DSL description of the variance calculation process mean_variance_broadcast = _broadcast_nz(mean, shape_x) variance_sub = tbe.vsub(input_x, mean_variance_broadcast) variance_mul = tbe.vmul(variance_sub, variance_sub) variance_sum = tbe.sum(variance_mul, axis=reduce_axis, keepdims=True) variance = tbe.vmuls(variance_sum, mean_cof) # DSL description of the normalize calculation process if impl_mode == "high_performance": mean_normalize_broadcast = _broadcast_nz(mean, shape_x) normalize_sub = tbe.vsub(input_x, mean_normalize_broadcast) epsilon = tvm.const(epsilon, dtype=cast_dtype) variance_normalize_broadcast = _broadcast_nz(variance, shape_x) normalize_add = tbe.vadds(variance_normalize_broadcast, epsilon) normalize_log = tbe.vlog(normalize_add) normalize_log_mul = \ tbe.vmuls(normalize_log, tvm.const(-0.5, dtype=cast_dtype)) normalize_exp = tbe.vexp(normalize_log_mul) normalize_mul = tbe.vmul(normalize_sub, normalize_exp) elif impl_mode == "high_precision": tesor_one = tbe.broadcast(tvm.const (1, cast_dtype_precision), shape_x) mean_normalize_broadcast = _broadcast_nz(mean, shape_x) normalize_sub = tbe.vsub(input_x, mean_normalize_broadcast) variance_normalize_broadcast = _broadcast_nz(variance, shape_x) epsilon = tvm.const(epsilon, dtype=cast_dtype_precision) normalize_add = tbe.vadds(variance_normalize_broadcast, epsilon) normalize_sqrt = tbe.vsqrt(normalize_add, 0) normalize_rsqrt = tbe.vdiv(tesor_one, normalize_sqrt) normalize_mul = tbe.vmul(normalize_sub, normalize_rsqrt) else: epsilon = tvm.const(epsilon, dtype=cast_fp16_dtype) normalize_add = tbe.vadds(variance, epsilon) normalize_log = tbe.vlog(normalize_add) normalize_log_mul = \ tbe.vmuls(normalize_log, tvm.const(-0.5, dtype=cast_fp16_dtype)) normalize_exp = tbe.vexp(normalize_log_mul) variance_normalize_broadcast = _broadcast_nz(normalize_exp, shape_x) normalize_mul = tbe.vmul(variance_sub, variance_normalize_broadcast) # DSL description of the scale and translate calculation process if begin_params_axis == 0: scale_mul = tbe.vmul(input_gamma, normalize_mul) res = tbe.vadd(scale_mul, input_beta) else: gamma_broadcast = _broadcast_nz(input_gamma, shape_x) beta_broadcast = _broadcast_nz(input_beta, shape_x) scale_mul = tbe.vmul(gamma_broadcast, normalize_mul) res = tbe.vadd(scale_mul, beta_broadcast) if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): mean = tbe.cast_to(mean, "float16") variance = tbe.cast_to(variance, "float16") res = tbe.cast_to(res, "float16") return mean, variance, res
DSL description of the layernorm operator's mathematical calculation process Parameters ---------- input_x: TVM tensor the placeholder of x input data input_gamma: TVM tensor the placeholder of gamma input data input_beta: TVM tensor the placeholder of beta input data output_data: dict shape and dtype of output begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "cce_layernorm" Returns ------- res_tuple: tuple (mean, variance, result)
def layer_norm_compute(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon, kernel_name="layer_norm", impl_mode="high_performance"): """ DSL description of the layernorm operator's mathematical calculation process Parameters ---------- input_x: TVM tensor the placeholder of x input data input_gamma: TVM tensor the placeholder of gamma input data input_beta: TVM tensor the placeholder of beta input data output_data: dict shape and dtype of output begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "cce_layernorm" Returns ------- res_tuple: tuple (mean, variance, result) """ shape_x = shape_util.shape_to_list(input_x.shape) dtype = input_x.dtype.lower() cast_dtype, cast_fp16_dtype = "float16", "float16" cast_dtype_precision = dtype if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): cast_dtype = "float32" cast_dtype_precision = "float32" input_x = tbe.cast_to(input_x, "float32") input_gamma = tbe.cast_to(input_gamma, "float32") input_beta = tbe.cast_to(input_beta, "float32") # Calculate the scaling ratio of the average index_list = tuple(index for index, _ in enumerate(shape_x)) reduce_axis = index_list[begin_norm_axis:] reduce_elts = 1.0 for i in reduce_axis: reduce_elts *= shape_x[i] mean_cof = reduce_elts ** (-1) if impl_mode != "keep_fp16": # DSL description of the mean calculation process mean_muls = tbe.vmuls(input_x, mean_cof) mean = tbe.sum(mean_muls, axis=reduce_axis, keepdims=True) # DSL description of the variance calculation process mean_variance_broadcast = tbe.broadcast(mean, shape_x) variance_sub = tbe.vsub(input_x, mean_variance_broadcast) variance_mul = tbe.vmul(variance_sub, variance_sub) variance_muls = tbe.vmuls(variance_mul, mean_cof) variance = tbe.sum(variance_muls, axis=reduce_axis, keepdims=True) else: # DSL description of the mean calculation process x_sum = tbe.sum(input_x, axis=reduce_axis, keepdims=True) mean = tbe.vmuls(x_sum, mean_cof) # DSL description of the variance calculation process mean_variance_broadcast = tbe.broadcast(mean, shape_x) variance_sub = tbe.vsub(input_x, mean_variance_broadcast) variance_mul = tbe.vmul(variance_sub, variance_sub) variance_sum = tbe.sum(variance_mul, axis=reduce_axis, keepdims=True) variance = tbe.vmuls(variance_sum, mean_cof) # DSL description of the normalize calculation process if impl_mode == "high_performance": mean_normalize_broadcast = tbe.broadcast(mean, shape_x) normalize_sub = tbe.vsub(input_x, mean_normalize_broadcast) epsilon = tvm.const(epsilon, dtype=cast_dtype) variance_normalize_broadcast = tbe.broadcast(variance, shape_x) normalize_add = tbe.vadds(variance_normalize_broadcast, epsilon) normalize_log = tbe.vlog(normalize_add) normalize_log_mul = \ tbe.vmuls(normalize_log, tvm.const(-0.5, dtype=cast_dtype)) normalize_exp = tbe.vexp(normalize_log_mul) normalize_mul = tbe.vmul(normalize_sub, normalize_exp) elif impl_mode == "high_precision": tesor_one = tbe.broadcast(tvm.const (1, cast_dtype_precision), shape_x) mean_normalize_broadcast = tbe.broadcast(mean, shape_x) normalize_sub = tbe.vsub(input_x, mean_normalize_broadcast) variance_normalize_broadcast = tbe.broadcast(variance, shape_x) epsilon = tvm.const(epsilon, dtype=cast_dtype_precision) normalize_add = tbe.vadds(variance_normalize_broadcast, epsilon) normalize_sqrt = tbe.vsqrt(normalize_add, 0) normalize_rsqrt = tbe.vdiv(tesor_one, normalize_sqrt) normalize_mul = tbe.vmul(normalize_sub, normalize_rsqrt) else: epsilon = tvm.const(epsilon, dtype=cast_fp16_dtype) normalize_add = tbe.vadds(variance, epsilon) normalize_log = tbe.vlog(normalize_add) normalize_log_mul = \ tbe.vmuls(normalize_log, tvm.const(-0.5, dtype=cast_fp16_dtype)) normalize_exp = tbe.vexp(normalize_log_mul) variance_normalize_broadcast = tbe.broadcast(normalize_exp, shape_x) normalize_mul = tbe.vmul(variance_sub, variance_normalize_broadcast) # DSL description of the scale and translate calculation process if begin_params_axis == 0: scale_mul = tbe.vmul(input_gamma, normalize_mul) res = tbe.vadd(scale_mul, input_beta) else: gamma_broadcast = tbe.broadcast(input_gamma, shape_x) beta_broadcast = tbe.broadcast(input_beta, shape_x) scale_mul = tbe.vmul(gamma_broadcast, normalize_mul) res = tbe.vadd(scale_mul, beta_broadcast) if dtype == "float16" and \ ((tbe_platform.cce_conf.api_check_support ("te.lang.cce.vexp", "float32") and impl_mode == "high_performance") or impl_mode == "high_precision"): mean = tbe.cast_to(mean, "float16") variance = tbe.cast_to(variance, "float16") res = tbe.cast_to(res, "float16") return mean, variance, res
is_support_nz_non_aligned
def is_support_nz_non_aligned(ori_shape_x, begin_params_axis, impl_mode): """ is_support_nz_non_aligned """ if ori_shape_x[-1] % constant.C0_SIZE != 0: if begin_params_axis != 0: return True return False
layernorm operator interface implementation calculating: x, gamma, beta mean = np.mean(x, reduce_axis, keepdims=True) variance = np.mean(np.power((x - mean),2), reduce_axis, keepdims=True) result = gamma*((x - mean) / np.sqrt(variance + 0.001)) + beta Parameters ---------- input_x : dict shape and dtype of input x, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 input_beta: dict shape and dtype of input beta, only support float16, float32 output_y: dict shape and dtype of output, only support float16, float32 begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "layernorm" Returns ------- None
def layer_norm(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon=1e-12, kernel_name="layer_norm", impl_mode="high_performance"): """ layernorm operator interface implementation calculating: x, gamma, beta mean = np.mean(x, reduce_axis, keepdims=True) variance = np.mean(np.power((x - mean),2), reduce_axis, keepdims=True) result = gamma*((x - mean) / np.sqrt(variance + 0.001)) + beta Parameters ---------- input_x : dict shape and dtype of input x, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 input_beta: dict shape and dtype of input beta, only support float16, float32 output_y: dict shape and dtype of output, only support float16, float32 begin_norm_axis: int The first normalization dimension: normalization will be performed along dimensions `begin_norm_axis : rank(inputs)` begin_params_axis: int The first parameter (beta, gamma) dimension: scale and centering parameters will have dimensions `begin_params_axis : rank(inputs)` and will be broadcast with the normalized inputs accordingly. epsilon: float, Minimum positive number greater than 0 kernel_name: str cce kernel name, default value is "layernorm" Returns ------- None """ shape_x = list(input_x.get("shape")) input_gamma_shape = input_gamma.get("shape") input_beta_shape = input_beta.get("shape") ori_shape_x = list(input_x.get("ori_shape")) input_format = input_x.get("format").upper() input_gamma_format = input_gamma.get("format").upper() input_beta_format = input_beta.get("format").upper() para_check.check_shape(input_gamma_shape, param_name="input_gamma") para_check.check_shape(input_beta_shape, param_name="input_beta") para_check.check_shape(shape_x, param_name="input_x") check_list = ("float16", "float32") dtype = input_x.get("dtype").lower() dtype_gamma = input_gamma.get("dtype").lower() dtype_beta = input_gamma.get("dtype").lower() para_check.check_dtype(dtype, check_list, param_name="input_x") para_check.check_dtype(dtype_gamma, check_list, param_name="input_gamma") para_check.check_dtype(dtype_beta, check_list, param_name="input_gamma") shape_gamma = list(input_gamma.get("shape")) shape_beta = list(input_beta.get("shape")) flag_vector2cube = False tik_support = if_tik_support(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon) if tik_support: layer_normalize(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon, kernel_name) else: if input_format == "FRACTAL_NZ": begin_norm_axis = shape_util.axis_check(len(ori_shape_x), begin_norm_axis) begin_params_axis = shape_util.axis_check(len(ori_shape_x), begin_params_axis) flag_vector2cube = _check_vector_to_cube(dtype, ori_shape_x, shape_x, begin_norm_axis, impl_mode) if input_gamma_format == "FRACTAL_NZ" or input_beta_format == "FRACTAL_NZ": error_detail = "gamma and beta not support Nz in bert" error_manager_vector.raise_err_two_input_format_invalid(kernel_name, "input_gamma", "input_beta", error_detail) if shape_gamma != shape_beta: error_detail = "gamma and beta's shape must be same." error_manager_vector.raise_err_two_input_shape_invalid(kernel_name, "input_gamma", "input_beta", error_detail) if ori_shape_x[begin_params_axis:] != shape_gamma: error_detail = "x or gamma or begin_params_axis is wrong." error_manager_vector.raise_err_two_input_shape_invalid(kernel_name, "x", "input_gamma", error_detail) if len(shape_gamma) > 1: error_detail = "shape of gamma or beta only support 1D in bert" error_manager_vector.raise_err_input_shape_invalid(kernel_name, "input_gamma", error_detail) # make shape_x,shape_gamma,shape_beta dim same in vector case if not flag_vector2cube: if begin_params_axis != 0: for i in range(begin_params_axis): shape_gamma.insert(i, 1) shape_gamma[-2] = shape_x[-4] shape_gamma[-1] = 1 shape_gamma.append(1) shape_gamma.append(shape_x[-1]) if begin_params_axis > len(ori_shape_x) - 2: shape_x[-3:] = [shape_x[-3] * shape_x[-2], shape_x[-1]] shape_gamma[-3:] = [shape_gamma[-3] * shape_gamma[-2], shape_gamma[-1]] shape_beta = shape_gamma else: begin_norm_axis = shape_util.axis_check(len(shape_x), begin_norm_axis) begin_params_axis = shape_util.axis_check(len(shape_x), begin_params_axis) if shape_gamma != shape_beta: error_detail = "gamma and beta's shape must be same." error_manager_vector.raise_err_two_input_shape_invalid(kernel_name, "input_gamma", "input_beta", error_detail) no_need_fix_gamma = False no_need_fix_beta = False if shape_x[begin_params_axis:] != shape_gamma: if len(shape_x) == len(shape_gamma): no_need_fix_gamma = True else: error_detail = "x or gamma or begin_params_axis is wrong." error_manager_vector.raise_err_two_input_shape_invalid(kernel_name, "x", "input_gamma", error_detail) if shape_x[begin_params_axis:] != shape_beta: if len(shape_x) == len(shape_beta): no_need_fix_beta = True else: error_detail = "x or gamma or begin_params_axis is wrong." error_manager_vector.raise_err_two_input_shape_invalid(kernel_name, "x", "input_beta", error_detail) # make shape_x,shape_gamma,shape_beta dim same if begin_params_axis != 0 and not no_need_fix_gamma: for i in range(begin_params_axis): shape_gamma.insert(i, 1) if begin_params_axis != 0 and not no_need_fix_beta: for i in range(begin_params_axis): shape_beta.insert(i, 1) attr = {"ori_shape": ori_shape_x} data_x = tvm.placeholder(shape_x, name="x", dtype=dtype, attrs=attr) data_gamma = tvm.placeholder(shape_gamma, name="gamma", dtype=dtype) data_beta = tvm.placeholder(shape_beta, name="beta", dtype=dtype) if input_format == "FRACTAL_NZ": dyn_input_x = deepcopy(input_x) dyn_input_x["shape"] = shape_x if flag_vector2cube: layer_norm_cube = LayerNormCube({"ori_shape": ori_shape_x, "epsilon" : epsilon}) mean, variance, res = \ layer_norm_cube.layer_norm_cube_compute(data_x, data_gamma, data_beta) elif is_support_nz_non_aligned(ori_shape_x, begin_params_axis, impl_mode): mean, variance, res = \ nz_non_aligned(data_x, data_gamma, data_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, ori_shape_x, epsilon, kernel_name, impl_mode) elif layer_norm_unify.is_special_cases(dyn_input_x, input_gamma, input_beta, begin_norm_axis, impl_mode): __dynamic_template_api(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon, kernel_name, impl_mode) return else: mean, variance, res = \ layer_norm_compute_nz(data_x, data_gamma, data_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, ori_shape_x, epsilon, kernel_name, impl_mode) else: if layer_norm_unify.is_special_cases(input_x, input_gamma, input_beta, begin_norm_axis, impl_mode): __dynamic_template_api(input_x, input_gamma, input_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon, kernel_name, impl_mode) return else: mean, variance, res = \ layer_norm_compute(data_x, data_gamma, data_beta, output_y, output_mean, output_variance, begin_norm_axis, begin_params_axis, epsilon, kernel_name, impl_mode) with tvm.target.cce(): sch = tbe.auto_schedule([res, mean, variance]) config = {"print_ir" : False, "name" : kernel_name, "tensor_list": [data_x, data_gamma, data_beta, res, mean, variance]} tbe.cce_build_code(sch, config)
get_op_support_info
def get_op_support_info(input_dy, input_x, input_variance, input_mean, input_gamma, output_pd_x, res_for_gamma, kernel_name="layer_norm_x_backprop_v2"): """ get_op_support_info """ shape_x = input_x.get("shape") shape_mean = input_mean.get("shape") shape_gamma = input_gamma.get("shape") format_dy = input_dy.get("format").upper() if format_dy in ("ND", "NCHW", "NHWC", "NC1HWC0"): if len(shape_x) == len(shape_gamma): axis_split_matrix = [] flag = -1 for i, (xtem, mean) in enumerate(zip(shape_x, shape_mean)): if xtem != mean: flag = i break if flag == -1: for i in range(len(shape_x) - 1): split_0 = [ SplitInput([0, [i], [-1], [-1]], [1, [i], [-1], [-1]], [2, [i], [-1], [-1]], [3, [i], [-1], [-1]], [4, [i], [-1], [-1]]), SplitOutput([0, [i]]) ] axis_split_matrix.append(split_0) else: for i in range(flag): split_0 = [ SplitInput([0, [i], [-1], [-1]], [1, [i], [-1], [-1]], [2, [i], [-1], [-1]], [3, [i], [-1], [-1]], [4, [i], [-1], [-1]]), SplitOutput([0, [i]], [1, [i]]) ] axis_split_matrix.append(split_0) else: axis_split_matrix = None else: axis_split_matrix = None axis_reduce_list = None op_cal_info_in_json = get_op_cal_info(axis_split_matrix, axis_reduce_list, 0, 0) return op_cal_info_in_json
check dynamic format branch
def _check_dynamic_format(shape_dy, shape_gamma, c_0): """ check dynamic format branch """ if len(shape_dy) < 2 or len(shape_gamma) != 1: return True if shape_dy[-1] % c_0 != 0 or shape_dy[-2] % c_0 != 0 \ or shape_gamma[-1] % c_0 != 0: return True return True
function of selecting dynamic format Parameters ---------- input_dy : dict shape and dtype of input dy, only support float16, float32 input_x: dict shape and dtype of input x, only support float16, float32 input_variance: dict shape and dtype of input variance, only support float16, float32 input_mean: dict shape and dtype of input mean, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 output_pd_x: dict shape and dtype of output, only support float16, float32 kernel_name: str cce kernel name, default value is "layer_norm_x_backprop_v2" Returns ------- None
def op_select_format(input_dy, input_x, input_variance, input_mean, input_gamma, output_pd_x, res_for_gamma, kernel_name="layer_norm_x_backprop_v2"): """ function of selecting dynamic format Parameters ---------- input_dy : dict shape and dtype of input dy, only support float16, float32 input_x: dict shape and dtype of input x, only support float16, float32 input_variance: dict shape and dtype of input variance, only support float16, float32 input_mean: dict shape and dtype of input mean, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 output_pd_x: dict shape and dtype of output, only support float16, float32 kernel_name: str cce kernel name, default value is "layer_norm_x_backprop_v2" Returns ------- None """ shape_dy = input_dy.get("ori_shape") shape_gamma = input_gamma.get("ori_shape") shape_dy = shape_util.scalar2tensor_one(shape_dy) shape_gamma = shape_util.scalar2tensor_one(shape_gamma) c_0 = 16 if _check_dynamic_format(shape_dy, shape_gamma, c_0): input0 = util_select_op_base.gen_param(classify="input0", name="dy", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="x", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="variance", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input3 = util_select_op_base.gen_param(classify="input3", name="mean", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") input4 = util_select_op_base.gen_param(classify="input4", name="gamma", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="pd_x", datatype="float16,float16,float16,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="res_for_gamma", datatype="float,float,float,float," "float,float", format="NCHW,NHWC,ND,NCHW,NHWC,ND") else: input0 = util_select_op_base.gen_param(classify="input0", name="dy", datatype="float16, float,float16,float16," "float16,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC,ND," "NCHW,NHWC,ND") input1 = util_select_op_base.gen_param(classify="input1", name="x", datatype="float16, float,float16,float16," "float16,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC,ND," "NCHW,NHWC,ND") input2 = util_select_op_base.gen_param(classify="input2", name="variance", datatype="float16, float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") input3 = util_select_op_base.gen_param(classify="input3", name="mean", datatype="float16, float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") input4 = util_select_op_base.gen_param(classify="input4", name="gamma", datatype="float16, float,float16,float16," "float16,float,float,float", format="ND,ND,NCHW,NHWC,ND,NCHW," "NHWC,ND") output0 = util_select_op_base.gen_param(classify="output0", name="pd_x", datatype="float16, float,float16,float16," "float16,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC," "ND,NCHW,NHWC,ND") output1 = util_select_op_base.gen_param(classify="output1", name="res_for_gamma", datatype="float, float,float,float," "float,float,float,float", format="FRACTAL_NZ,FRACTAL_NZ,NCHW,NHWC," "ND,NCHW,NHWC,ND") param_list = [input0, input1, input2, input3, input4, output0, output1] param_dynamic_in_json = util_select_op_base.get_dynamic_param_in_json(param_list) return param_dynamic_in_json
check parameters including shape_dy, shape_x, shape_var, shape_mean, shape_gamma, dtype and kernel_name Parameters ---------- params_map: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma, "dtype": dtype, "kernel_name": kernel_name} Returns ------- None
def _check_params(params_map): """ check parameters including shape_dy, shape_x, shape_var, shape_mean, shape_gamma, dtype and kernel_name Parameters ---------- params_map: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma, "dtype": dtype, "kernel_name": kernel_name} Returns ------- None """ check_list = ("float16", "float32") para_check.check_dtype(params_map.get("dtype"), check_list, param_name="input_dy") _check_shape(params_map)
check parameters including shape_dy, shape_x, shape_var, shape_mean and shape_gamma Parameters ---------- params_map: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma, "dtype": dtype, "kernel_name": kernel_name} Returns ------- None
def _check_shape(params_map): """ check parameters including shape_dy, shape_x, shape_var, shape_mean and shape_gamma Parameters ---------- params_map: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma, "dtype": dtype, "kernel_name": kernel_name} Returns ------- None """ if operator.ne(tuple(params_map.get("shape_dy")), tuple(params_map.get("shape_x"))): error_detail = "shape of input_dy and input_x should be same" error_manager_vector.raise_err_two_input_shape_invalid("layer_norm_x_backprop_v2", "input_dy", "input_x", error_detail) if operator.ne(tuple(params_map.get("shape_var")), tuple(params_map.get("shape_mean"))): error_detail = "shape of input_variance and input_mean should be same" error_manager_vector.raise_err_two_input_shape_invalid("layer_norm_x_backprop_v2", "input_variance", "input_mean", error_detail) shape_x = params_map.get("shape_x") shape_mean = params_map.get("shape_mean") shape_gamma = params_map.get("shape_gamma") para_check.check_shape(shape_x, param_name="input_x") para_check.check_shape(shape_mean, param_name="input_mean") para_check.check_shape(shape_gamma, param_name="input_gamma") _check_shape_mean(shape_x, shape_mean) _check_shape_gamma(shape_x, shape_gamma)
check if parameter shape_mean meets the requirements of function Parameters ---------- shape_x: list or tuple shape of x shape_mean: list or tuple shape of mean Returns ------- None
def _check_shape_mean(shape_x, shape_mean): """ check if parameter shape_mean meets the requirements of function Parameters ---------- shape_x: list or tuple shape of x shape_mean: list or tuple shape of mean Returns ------- None """ if len(shape_x) != len(shape_mean): error_detail = "length of shape_x and shape_mean should be same" error_manager_vector.raise_err_two_input_shape_invalid("layer_norm_x_backprop_v2", "input_x", "input_mean", error_detail) if shape_mean[-1] != 1: error_detail = "value of shape_mean's last dim must be 1" error_manager_vector.raise_err_input_shape_invalid("layer_norm_x_backprop_v2", "input_mean", error_detail) flag = -1 for i, (xtem, mean) in enumerate(zip(shape_x, shape_mean)): if xtem != mean: flag = i break if flag != -1: for i, mean in enumerate(shape_mean): if i < flag: continue if mean != 1: error_detail = "value of shape_mean must be 1" error_manager_vector.raise_err_input_shape_invalid("layer_norm_x_backprop_v2", "input_mean", error_detail)
check if parameter shape_gamma meets the requirements of function Parameters ---------- shape_x: list or tuple shape of x shape_gamma: list or tuple shape of gamma Returns ------- None
def _check_shape_gamma(shape_x, shape_gamma): """ check if parameter shape_gamma meets the requirements of function Parameters ---------- shape_x: list or tuple shape of x shape_gamma: list or tuple shape of gamma Returns ------- None """ if len(shape_gamma) > len(shape_x): error_detail = "length of shape_gamma can not be longer than shape_x" error_manager_vector.raise_err_two_input_shape_invalid("layer_norm_x_backprop_v2", "input_gamma", "input_x", error_detail) for xtem, gamma in zip(reversed(shape_x), reversed(shape_gamma)): if xtem != gamma: error_detail = "value of shape_gamma is wrong" error_manager_vector.raise_err_input_shape_invalid("layer_norm_x_backprop_v2", "input_gamma", error_detail)
update shape_gamma for subsequent calculation Parameters ---------- shape_x: list or tuple shape of x shape_gamma: list or tuple shape of gamma Returns ------- shape_gamma_new: tuple new shape_gamma after update params_axis: tuple the list of axis for gamma reduce_sum
def _update_gamma_shape(shape_x, shape_gamma): """ update shape_gamma for subsequent calculation Parameters ---------- shape_x: list or tuple shape of x shape_gamma: list or tuple shape of gamma Returns ------- shape_gamma_new: tuple new shape_gamma after update params_axis: tuple the list of axis for gamma reduce_sum """ params_axis_tmp = [] if len(shape_x) != len(shape_gamma): sub = len(shape_x) - len(shape_gamma) shape_gamma = list(shape_gamma) for i in range(sub): shape_gamma.insert(0, 1) params_axis_tmp.append(i) shape_gamma_new = tuple(shape_gamma) params_axis = tuple(params_axis_tmp) return shape_gamma_new, params_axis
get placeholders of data_dy, data_x, data_variance, data_mean and data_gamma Parameters ---------- shapes: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma} dtype: str the data type Returns ------- data_gm: tuple (data_dy, data_x, data_variance, data_mean, data_gamma)
def _get_data_gm(shapes, dtype): """ get placeholders of data_dy, data_x, data_variance, data_mean and data_gamma Parameters ---------- shapes: dict {"shape_dy": shape_dy, "shape_x": shape_x, "shape_var": shape_variance, "shape_mean": shape_mean, "shape_gamma": shape_gamma} dtype: str the data type Returns ------- data_gm: tuple (data_dy, data_x, data_variance, data_mean, data_gamma) """ data_dy = tvm.placeholder(shapes.get("shape_dy"), name="data_dy", dtype=dtype) data_x = tvm.placeholder(shapes.get("shape_x"), name="data_x", dtype=dtype) data_variance = tvm.placeholder(shapes.get("shape_var"), name="data_variance", dtype=dtype) data_mean = tvm.placeholder(shapes.get("shape_mean"), name="data_mean", dtype=dtype) data_gamma = tvm.placeholder(shapes.get("shape_gamma"), name="data_gamma", dtype=dtype) data_gm = (data_dy, data_x, data_variance, data_mean, data_gamma) return data_gm
compute parameters including param_axis, reduce_axis and mean_num Parameters ---------- shape_x: list or tuple shape of x shape_mean: list or tuple shape of mean shape_gamma: list or tuple shape of gamma Returns ------- params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num}
def _get_params(shape_x, shape_mean, shape_gamma): """ compute parameters including param_axis, reduce_axis and mean_num Parameters ---------- shape_x: list or tuple shape of x shape_mean: list or tuple shape of mean shape_gamma: list or tuple shape of gamma Returns ------- params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} """ param_axis = _update_gamma_shape(shape_x, shape_gamma)[1] reduce_axis_tmp = [] flag = -1 for i, (xtem, mean) in enumerate(zip(shape_x, shape_mean)): if xtem != mean: flag = i break if flag != -1: for i in range(flag, len(shape_x)): reduce_axis_tmp.append(i) else: reduce_axis_tmp.append(len(shape_x) - 1) reduce_axis = tuple(reduce_axis_tmp) mean_num = 1.0 for i in reduce_axis: mean_num *= shape_x[i] params = {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} return params
compute pd_xl according to data_dy, data_gamma and shape_x Parameters ---------- data: dict placeholders after cast shape_x: list or tuple shape of x Returns ------- pd_xl: tvm.tensor data_dy*data_gamma
def _get_pd_xl(data, shape_x): """ compute pd_xl according to data_dy, data_gamma and shape_x Parameters ---------- data: dict placeholders after cast shape_x: list or tuple shape of x Returns ------- pd_xl: tvm.tensor data_dy*data_gamma """ data_gamma_cast = tbe.broadcast(data.get("data_gamma"), shape_x) pd_xl = tbe.vmul(data_gamma_cast, data.get("data_dy")) return pd_xl
compute front part of pd_var according to data_variance Parameters ---------- data: dict placeholders after cast cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_var_1: tvm.tensor np.power((data_variance + EPSLON), (-1.5)) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5))
def _get_pd_var_front(data, cast_dtype): """ compute front part of pd_var according to data_variance Parameters ---------- data: dict placeholders after cast cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_var_1: tvm.tensor np.power((data_variance + EPSLON), (-1.5)) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5)) """ var_elta = tbe.vadds(data.get("data_variance"), tvm.const(EPSLON, dtype=cast_dtype)) var_elta_log = tbe.vlog(var_elta) var_elta_mul = tbe.vmuls(var_elta_log, tvm.const(-0.5, dtype=cast_dtype)) var_elta_2 = tbe.vexp(var_elta_mul) pdvar1_mul = tbe.vmul(var_elta_2, var_elta_2) pd_var_1 = tbe.vmul(pdvar1_mul, var_elta_2) return pd_var_1, var_elta_2
compute pd_var according to data_x, data_mean, reduce_axis and pd_xl Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x pd_xl: tvm.tensor data_dy*data_gamma cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_var: tvm.tensor np.sum(((-0.5)*pd_xl*(data_x - data_mean) *np.power((data_variance + EPSLON), (-1.5))), reduce_axis, keepdims=True) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5)) sub_x_mean: tvm.tensor data_x - data_mean
def _get_pd_var(data, params, shape_x, pd_xl, cast_dtype): """ compute pd_var according to data_x, data_mean, reduce_axis and pd_xl Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x pd_xl: tvm.tensor data_dy*data_gamma cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_var: tvm.tensor np.sum(((-0.5)*pd_xl*(data_x - data_mean) *np.power((data_variance + EPSLON), (-1.5))), reduce_axis, keepdims=True) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5)) sub_x_mean: tvm.tensor data_x - data_mean """ pd_var_1, var_elta_2 = _get_pd_var_front(data, cast_dtype) data_mean_cast = tbe.broadcast(data.get("data_mean"), shape_x) sub_x_mean = tbe.vsub(data.get("data_x"), data_mean_cast) pdvar_mul1 = tbe.vmul(sub_x_mean, pd_xl) pdvar_sum = tbe.sum(pdvar_mul1, params.get("reduce_axis"), keepdims=True) pdvar_mul3 = tbe.vmul(pdvar_sum, pd_var_1) pd_var = tbe.vmuls(pdvar_mul3, tvm.const(-0.5, dtype=cast_dtype)) return pd_var, var_elta_2, sub_x_mean
compute pd_mean according to reduce_axis, pd_xl, pd_var, var_elta_2 and sub_x_mean Parameters ---------- params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} pd_xl: tvm.tensor data_dy*data_gamma pd_var: tvm.tensor np.sum(((-0.5)*pd_xl*(data_x - data_mean) *np.power((data_variance + EPSLON), (-1.5))), reduce_axis, keepdims=True) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5)) sub_x_mean: tvm.tensor data_x - data_mean cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_mean: tvm.tensor np.sum(((-1.0)*pd_xl *np.power((data_variance + EPSLON), (-0.5))), reduce_axis, keepdims=True) + pd_var*(1.0/m)*np.sum(((-2.0)*(data_x - data_mean)), reduce_axis, keepdims=True)
def _get_pd_mean(params, pd_xl, pd_var, var_elta_2, sub_x_mean, cast_dtype): """ compute pd_mean according to reduce_axis, pd_xl, pd_var, var_elta_2 and sub_x_mean Parameters ---------- params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} pd_xl: tvm.tensor data_dy*data_gamma pd_var: tvm.tensor np.sum(((-0.5)*pd_xl*(data_x - data_mean) *np.power((data_variance + EPSLON), (-1.5))), reduce_axis, keepdims=True) var_elta_2: tvm.tensor np.power((data_variance + EPSLON), (-0.5)) sub_x_mean: tvm.tensor data_x - data_mean cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_mean: tvm.tensor np.sum(((-1.0)*pd_xl *np.power((data_variance + EPSLON), (-0.5))), reduce_axis, keepdims=True) + pd_var*(1.0/m)*np.sum(((-2.0)*(data_x - data_mean)), reduce_axis, keepdims=True) """ pdmean1_sum = tbe.sum(pd_xl, params.get("reduce_axis"), keepdims=True) pdmean1_mul = tbe.vmul(pdmean1_sum, var_elta_2) pd_mean_1 = tbe.vmuls(pdmean1_mul, tvm.const(-1.0, dtype=cast_dtype)) return pd_mean_1
compute pd_x, res_for_gamma according to data, params and shape_x `pd_x = pd_xl * np.power((data_variance + EPSLON), (-0.5))` `+ pd_var * (2.0 / m) * (data_x - data_mean) + pd_mean * (1.0 / m)` `res_for_gamma = (data_x - data_mean) * np.power((data_variance + EPSLON), (-0.5))` Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x dtype: str the data type cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_x: tvm.tensor partial derivation of x res_for_gamma: tvm.tensor `(data_x - data_mean)*np.power((data_variance + EPSLON), (-0.5))`
def _get_pd_x(data, params, shape_x, dtype, cast_dtype): """ compute pd_x, res_for_gamma according to data, params and shape_x `pd_x = pd_xl * np.power((data_variance + EPSLON), (-0.5))` `+ pd_var * (2.0 / m) * (data_x - data_mean) + pd_mean * (1.0 / m)` `res_for_gamma = (data_x - data_mean) * np.power((data_variance + EPSLON), (-0.5))` Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x dtype: str the data type cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_x: tvm.tensor partial derivation of x res_for_gamma: tvm.tensor `(data_x - data_mean)*np.power((data_variance + EPSLON), (-0.5))` """ pd_xl = _get_pd_xl(data, shape_x) pd_var, var_elta_2, sub_x_mean = _get_pd_var(data, params, shape_x, pd_xl, cast_dtype) pd_mean = _get_pd_mean(params, pd_xl, pd_var, var_elta_2, sub_x_mean, cast_dtype) var_elta_2_cast = tbe.broadcast(var_elta_2, shape_x) pd_x_1 = tbe.vmul(var_elta_2_cast, pd_xl) res_for_gamma = tbe.vmul(var_elta_2_cast, sub_x_mean) pd_var = tbe.vmuls(pd_var, tvm.const((2 * (params.get("mean_num") ** (-1))), dtype=cast_dtype)) pdx2_broad = tbe.broadcast(pd_var, shape_x) pd_x_2 = tbe.vmul(pdx2_broad, sub_x_mean) pd_x_3 = tbe.vmuls(pd_mean, tvm.const((params.get("mean_num") ** (-1)), dtype=cast_dtype)) pdx_broad = tbe.broadcast(pd_x_3, shape_x) pdx_add = tbe.vadd(pd_x_1, pd_x_2) pd_x_ub = tbe.vadd(pdx_add, pdx_broad) if dtype == "float16" and cast_dtype == "float32": pd_x = tbe.cast_to(pd_x_ub, dtype) else: return pd_x_ub, res_for_gamma return pd_x, res_for_gamma
compute pd_x, pd_gamma, pd_beta according to data, params and shape_x Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x dtype: str the data type cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_x: tvm.tensor partial derivation of x pd_gamma: tvm.tensor partial derivation of gamma pd_beta: tvm.tensor partial derivation of beta
def _get_res(data, params, shape_x, dtype, cast_dtype): """ compute pd_x, pd_gamma, pd_beta according to data, params and shape_x Parameters ---------- data: dict placeholders after cast params: dict {"param_axis": param_axis, "reduce_axis": reduce_axis, "mean_num": mean_num} shape_x: list or tuple shape of x dtype: str the data type cast_dtype: str if api_check_support float32, then equal to float32 else float16 Returns ------- pd_x: tvm.tensor partial derivation of x pd_gamma: tvm.tensor partial derivation of gamma pd_beta: tvm.tensor partial derivation of beta """ pd_x, res_for_gamma = _get_pd_x(data, params, shape_x, dtype, cast_dtype) return pd_x, res_for_gamma
get params and data, compute pd_x, pd_gamma, pd_beta. Parameters ---------- data_dy: TVM tensor the placeholder of dy input data data_x: TVM tensor the placeholder of x input data data_variance: TVM tensor the placeholder of variance input data data_mean: TVM tensor the placeholder of mean input data data_gamma: TVM tensor the placeholder of gamma input data shape_gamma_ori: list or tuple original shape of gamma Returns ------- pd_x: tvm.tensor partial derivation of x pd_gamma: tvm.tensor partial derivation of gamma pd_beta: tvm.tensor partial derivation of beta
def _get_pds(data_dy, data_x, data_variance, data_mean, data_gamma, shape_gamma_ori): """ get params and data, compute pd_x, pd_gamma, pd_beta. Parameters ---------- data_dy: TVM tensor the placeholder of dy input data data_x: TVM tensor the placeholder of x input data data_variance: TVM tensor the placeholder of variance input data data_mean: TVM tensor the placeholder of mean input data data_gamma: TVM tensor the placeholder of gamma input data shape_gamma_ori: list or tuple original shape of gamma Returns ------- pd_x: tvm.tensor partial derivation of x pd_gamma: tvm.tensor partial derivation of gamma pd_beta: tvm.tensor partial derivation of beta """ dtype = data_dy.dtype.lower() shape_x = shape_util.shape_to_list(data_x.shape) shape_mean = shape_util.shape_to_list(data_mean.shape) has_improve_precision = False cast_dtype = dtype if dtype == "float16" and tbe_platform.cce_conf.api_check_support("te.lang.cce.vexp", "float32"): has_improve_precision = True cast_dtype = "float32" params = _get_params(shape_x, shape_mean, shape_gamma_ori) if has_improve_precision: data_dy = tbe.cast_to(data_dy, "float32") data_x = tbe.cast_to(data_x, "float32") data_variance = tbe.cast_to(data_variance, "float32") data_mean = tbe.cast_to(data_mean, "float32") data_gamma = tbe.cast_to(data_gamma, "float32") data = { "data_dy" : data_dy, "data_x" : data_x, "data_variance": data_variance, "data_mean" : data_mean, "data_gamma" : data_gamma } pd_x, res_for_gamma = _get_res(data, params, shape_x, dtype, cast_dtype) return pd_x, res_for_gamma
DSL description of the layernorm_grad operator's mathematical calculation process Parameters ---------- input_dy : dict shape and dtype of input dy, only support float16, float32 input_x: dict shape and dtype of input x, only support float16, float32 input_variance: dict shape and dtype of input variance, only support float16, float32 input_mean: dict shape and dtype of input mean, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 output_pd_x: dict shape and dtype of output, only support float16, float32 kernel_name: str cce kernel name, default value is "layer_norm_x_backprop_v2" Returns ------- res_tuple: tuple (pd_x, pd_gamma, pd_beta)
def layer_norm_x_backprop_v2_compute(input_dy, input_x, input_variance, input_mean, input_gamma, output_pd_x, kernel_name="layer_norm_x_backprop_v2"): """ DSL description of the layernorm_grad operator's mathematical calculation process Parameters ---------- input_dy : dict shape and dtype of input dy, only support float16, float32 input_x: dict shape and dtype of input x, only support float16, float32 input_variance: dict shape and dtype of input variance, only support float16, float32 input_mean: dict shape and dtype of input mean, only support float16, float32 input_gamma: dict shape and dtype of input gamma, only support float16, float32 output_pd_x: dict shape and dtype of output, only support float16, float32 kernel_name: str cce kernel name, default value is "layer_norm_x_backprop_v2" Returns ------- res_tuple: tuple (pd_x, pd_gamma, pd_beta) """ pd_x, res_for_gamma = _get_pds(input_dy, input_x, input_variance, input_mean, input_gamma, input_gamma.shape) res_list = [pd_x, res_for_gamma] return res_list
function of updating Nz shape
def update_shape_nz(shape_x, shape_var, shape_gamma): """ function of updating Nz shape """ # ND shape of x >= two dim # Nz shape of x >= four dim len_x = len(shape_x) nz_begin = len_x - 4 shape_x_nz = [] for i in range(0, nz_begin): shape_x_nz.append(shape_x[i]) shape_x_nz.append(shape_x[nz_begin]) shape_x_nz.append(shape_x[nz_begin + 1] * shape_x[nz_begin + 2]) shape_x_nz.append(shape_x[nz_begin + 2]) # ND shape of var >= two dim shape_var_nz = [] len_var = len(shape_var) var_nz_begin = len_var - 2 for i in range(0, var_nz_begin): shape_var_nz.append(shape_var[i]) shape_var_nz.append(1) shape_var_nz.append(shape_var[var_nz_begin]) shape_var_nz.append(1) # ND shape of gamma is one dim shape_gamma_nz = [] for i in range(0, nz_begin): shape_gamma_nz.append(1) shape_gamma_nz.append(shape_x[nz_begin]) shape_gamma_nz.append(1) shape_gamma_nz.append(shape_x[nz_begin + 2]) reduce_nz_axis = [] param_nz_axis = [] for i, (xtem, var) in enumerate(zip(shape_x_nz, shape_var_nz)): if xtem != var: reduce_nz_axis.append(i) for i, (xtem, gamma) in enumerate(zip(shape_x_nz, shape_gamma_nz)): if xtem != gamma or (xtem == 1 and gamma == 1): param_nz_axis.append(i) mean_nz_num = 1.0 for i in reduce_nz_axis: mean_nz_num *= shape_x_nz[i] param_nz = { "shape_x_nz" : shape_x_nz, "shape_var_nz" : shape_var_nz, "shape_gamma_nz": shape_gamma_nz, "reduce_axis" : reduce_nz_axis, "param_axis" : param_nz_axis, "mean_num" : mean_nz_num } return param_nz
get placeholders of data_dy, data_x, data_variance, data_mean and data_gamma
def _get_data_nz(param_nz, dtype): """ get placeholders of data_dy, data_x, data_variance, data_mean and data_gamma """ data_dy = tvm.placeholder(param_nz.get("shape_x_nz"), name="data_dy", dtype=dtype) data_x = tvm.placeholder(param_nz.get("shape_x_nz"), name="data_x", dtype=dtype) data_variance = tvm.placeholder(param_nz.get("shape_var_nz"), name="data_variance", dtype=dtype) data_mean = tvm.placeholder(param_nz.get("shape_var_nz"), name="data_mean", dtype=dtype) data_gamma = tvm.placeholder(param_nz.get("shape_gamma_nz"), name="data_gamma", dtype=dtype) data_gm = (data_dy, data_x, data_variance, data_mean, data_gamma) return data_gm
compute pd_xl according to data_dy, data_gamma and shape_x
def _get_pd_xl_nz(data, param_nz): """ compute pd_xl according to data_dy, data_gamma and shape_x """ data_gamma_cast = tbe.broadcast(data.get("data_gamma"), param_nz.get("shape_x_nz")) pd_xl = tbe.vmul(data_gamma_cast, data.get("data_dy")) return pd_xl
compute front part of pd_var according to data_variance
def _get_pd_var_front_nz(data, cast_dtype): """ compute front part of pd_var according to data_variance """ var_elta = tbe.vadds(data.get("data_variance"), tvm.const(EPSLON, dtype=cast_dtype)) var_elta_log = tbe.vlog(var_elta) var_elta_mul = tbe.vmuls(var_elta_log, tvm.const(-0.5, dtype=cast_dtype)) var_elta_2 = tbe.vexp(var_elta_mul) pdvar1_mul = tbe.vmul(var_elta_2, var_elta_2) pd_var_1 = tbe.vmul(pdvar1_mul, var_elta_2) return pd_var_1, var_elta_2
compute pd_var according to data_x, data_mean, reduce_axis and pd_xl
def _get_pd_var_nz(data, param_nz, pd_xl, cast_dtype): """ compute pd_var according to data_x, data_mean, reduce_axis and pd_xl """ pd_var_1, var_elta_2 = _get_pd_var_front_nz(data, cast_dtype) data_mean_cast = tbe.broadcast(data.get("data_mean"), param_nz.get("shape_x_nz")) sub_x_mean = tbe.vsub(data.get("data_x"), data_mean_cast) pdvar_mul1 = tbe.vmul(sub_x_mean, pd_xl) pdvar_sum = tbe.sum(pdvar_mul1, param_nz.get("reduce_axis"), keepdims=True) pdvar_mul3 = tbe.vmul(pdvar_sum, pd_var_1) pd_var = tbe.vmuls(pdvar_mul3, tvm.const(-0.5, dtype=cast_dtype)) return pd_var, var_elta_2, sub_x_mean