response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Run checks that will generate a sqlite3 exception if there is corruption.
def run_checks_on_open_db(dbpath: str, cursor: SQLiteCursor) -> None: """Run checks that will generate a sqlite3 exception if there is corruption.""" sanity_check_passed = basic_sanity_check(cursor) last_run_was_clean = last_run_was_recently_clean(cursor) if sanity_check_passed and last_run_was_clean: _LOGGER.debug( "The system was restarted cleanly and passed the basic sanity check" ) return if not sanity_check_passed: _LOGGER.warning( "The database sanity check failed to validate the sqlite3 database at %s", dbpath, ) if not last_run_was_clean: _LOGGER.warning( ( "The system could not validate that the sqlite3 database at %s was" " shutdown cleanly" ), dbpath, )
Move away a broken sqlite3 database.
def move_away_broken_database(dbfile: str) -> None: """Move away a broken sqlite3 database.""" isotime = dt_util.utcnow().isoformat() corrupt_postfix = f".corrupt.{isotime}" _LOGGER.error( ( "The system will rename the corrupt database file %s to %s in order to" " allow startup to proceed" ), dbfile, f"{dbfile}{corrupt_postfix}", ) for postfix in SQLITE3_POSTFIXES: path = f"{dbfile}{postfix}" if not os.path.exists(path): continue os.rename(path, f"{path}{corrupt_postfix}")
Execute a single statement with a dbapi connection.
def execute_on_connection(dbapi_connection: DBAPIConnection, statement: str) -> None: """Execute a single statement with a dbapi connection.""" cursor = dbapi_connection.cursor() cursor.execute(statement) cursor.close()
Execute a single statement with a dbapi connection and return the result.
def query_on_connection(dbapi_connection: DBAPIConnection, statement: str) -> Any: """Execute a single statement with a dbapi connection and return the result.""" cursor = dbapi_connection.cursor() cursor.execute(statement) result = cursor.fetchall() cursor.close() return result
Warn about unsupported database version.
def _fail_unsupported_dialect(dialect_name: str) -> NoReturn: """Warn about unsupported database version.""" _LOGGER.error( ( "Database %s is not supported; Home Assistant supports %s. " "Starting with Home Assistant 2022.6 this prevents the recorder from " "starting. Please migrate your database to a supported software" ), dialect_name, "MariaDB ≥ 10.3, MySQL ≥ 8.0, PostgreSQL ≥ 12, SQLite ≥ 3.31.0", ) raise UnsupportedDialect
Warn about unsupported database version.
def _fail_unsupported_version( server_version: str, dialect_name: str, minimum_version: str ) -> NoReturn: """Warn about unsupported database version.""" _LOGGER.error( ( "Version %s of %s is not supported; minimum supported version is %s. " "Starting with Home Assistant 2022.6 this prevents the recorder from " "starting. Please upgrade your database software" ), server_version, dialect_name, minimum_version, ) raise UnsupportedDialect
Attempt to extract version from server response.
def _extract_version_from_server_response( server_response: str, ) -> AwesomeVersion | None: """Attempt to extract version from server response.""" try: return AwesomeVersion( server_response, ensure_strategy=AwesomeVersionStrategy.SIMPLEVER, find_first_match=True, ) except AwesomeVersionException: return None
Fast version of mysqldb DateTime_or_None. https://github.com/PyMySQL/mysqlclient/blob/v2.1.0/MySQLdb/times.py#L66
def _datetime_or_none(value: str) -> datetime | None: """Fast version of mysqldb DateTime_or_None. https://github.com/PyMySQL/mysqlclient/blob/v2.1.0/MySQLdb/times.py#L66 """ try: return ciso8601.parse_datetime(value) except ValueError: return None
Build a MySQLDB conv dict that uses cisco8601 to parse datetimes.
def build_mysqldb_conv() -> dict: """Build a MySQLDB conv dict that uses cisco8601 to parse datetimes.""" # Late imports since we only call this if they are using mysqldb # pylint: disable=import-outside-toplevel from MySQLdb.constants import FIELD_TYPE from MySQLdb.converters import conversions return {**conversions, FIELD_TYPE.DATETIME: _datetime_or_none}
Create an issue for the index range regression in older MariaDB. The range scan issue was fixed in MariaDB 10.5.17, 10.6.9, 10.7.5, 10.8.4 and later.
def _async_create_mariadb_range_index_regression_issue( hass: HomeAssistant, version: AwesomeVersion ) -> None: """Create an issue for the index range regression in older MariaDB. The range scan issue was fixed in MariaDB 10.5.17, 10.6.9, 10.7.5, 10.8.4 and later. """ if version >= MARIA_DB_108: min_version = RECOMMENDED_MIN_VERSION_MARIA_DB_108 elif version >= MARIA_DB_107: min_version = RECOMMENDED_MIN_VERSION_MARIA_DB_107 elif version >= MARIA_DB_106: min_version = RECOMMENDED_MIN_VERSION_MARIA_DB_106 else: min_version = RECOMMENDED_MIN_VERSION_MARIA_DB ir.async_create_issue( hass, DOMAIN, "maria_db_range_index_regression", is_fixable=False, severity=ir.IssueSeverity.CRITICAL, learn_more_url="https://jira.mariadb.org/browse/MDEV-25020", translation_key="maria_db_range_index_regression", translation_placeholders={"min_version": str(min_version)}, )
Create an issue when the backup fails because we run out of resources.
def async_create_backup_failure_issue( hass: HomeAssistant, local_start_time: datetime, ) -> None: """Create an issue when the backup fails because we run out of resources.""" ir.async_create_issue( hass, DOMAIN, "backup_failed_out_of_resources", is_fixable=False, severity=ir.IssueSeverity.CRITICAL, learn_more_url="https://www.home-assistant.io/integrations/recorder", translation_key="backup_failed_out_of_resources", translation_placeholders={"start_time": local_start_time.strftime("%H:%M:%S")}, )
Execute statements needed for dialect connection.
def setup_connection_for_dialect( instance: Recorder, dialect_name: str, dbapi_connection: DBAPIConnection, first_connection: bool, ) -> DatabaseEngine | None: """Execute statements needed for dialect connection.""" version: AwesomeVersion | None = None slow_range_in_select = False if dialect_name == SupportedDialect.SQLITE: max_bind_vars = SQLITE_MAX_BIND_VARS if first_connection: old_isolation = dbapi_connection.isolation_level # type: ignore[attr-defined] dbapi_connection.isolation_level = None # type: ignore[attr-defined] execute_on_connection(dbapi_connection, "PRAGMA journal_mode=WAL") dbapi_connection.isolation_level = old_isolation # type: ignore[attr-defined] # WAL mode only needs to be setup once # instead of every time we open the sqlite connection # as its persistent and isn't free to call every time. result = query_on_connection(dbapi_connection, "SELECT sqlite_version()") version_string = result[0][0] version = _extract_version_from_server_response(version_string) if not version or version < MIN_VERSION_SQLITE: _fail_unsupported_version( version or version_string, "SQLite", MIN_VERSION_SQLITE ) if version and version > MIN_VERSION_SQLITE_MODERN_BIND_VARS: max_bind_vars = SQLITE_MODERN_MAX_BIND_VARS # The upper bound on the cache size is approximately 16MiB of memory execute_on_connection(dbapi_connection, "PRAGMA cache_size = -16384") # # Enable FULL synchronous if they have a commit interval of 0 # or NORMAL if they do not. # # https://sqlite.org/pragma.html#pragma_synchronous # The synchronous=NORMAL setting is a good choice for most applications # running in WAL mode. # synchronous = "NORMAL" if instance.commit_interval else "FULL" execute_on_connection(dbapi_connection, f"PRAGMA synchronous={synchronous}") # enable support for foreign keys execute_on_connection(dbapi_connection, "PRAGMA foreign_keys=ON") elif dialect_name == SupportedDialect.MYSQL: max_bind_vars = DEFAULT_MAX_BIND_VARS execute_on_connection(dbapi_connection, "SET session wait_timeout=28800") if first_connection: result = query_on_connection(dbapi_connection, "SELECT VERSION()") version_string = result[0][0] version = _extract_version_from_server_response(version_string) is_maria_db = "mariadb" in version_string.lower() if is_maria_db: if not version or version < MIN_VERSION_MARIA_DB: _fail_unsupported_version( version or version_string, "MariaDB", MIN_VERSION_MARIA_DB ) if version and ( (version < RECOMMENDED_MIN_VERSION_MARIA_DB) or (MARIA_DB_106 <= version < RECOMMENDED_MIN_VERSION_MARIA_DB_106) or (MARIA_DB_107 <= version < RECOMMENDED_MIN_VERSION_MARIA_DB_107) or (MARIA_DB_108 <= version < RECOMMENDED_MIN_VERSION_MARIA_DB_108) ): instance.hass.add_job( _async_create_mariadb_range_index_regression_issue, instance.hass, version, ) elif not version or version < MIN_VERSION_MYSQL: _fail_unsupported_version( version or version_string, "MySQL", MIN_VERSION_MYSQL ) slow_range_in_select = bool( not version or version < MARIADB_WITH_FIXED_IN_QUERIES_105 or MARIA_DB_106 <= version < MARIADB_WITH_FIXED_IN_QUERIES_106 or MARIA_DB_107 <= version < MARIADB_WITH_FIXED_IN_QUERIES_107 or MARIA_DB_108 <= version < MARIADB_WITH_FIXED_IN_QUERIES_108 ) # Ensure all times are using UTC to avoid issues with daylight savings execute_on_connection(dbapi_connection, "SET time_zone = '+00:00'") elif dialect_name == SupportedDialect.POSTGRESQL: max_bind_vars = DEFAULT_MAX_BIND_VARS if first_connection: # server_version_num was added in 2006 result = query_on_connection(dbapi_connection, "SHOW server_version") version_string = result[0][0] version = _extract_version_from_server_response(version_string) if not version or version < MIN_VERSION_PGSQL: _fail_unsupported_version( version or version_string, "PostgreSQL", MIN_VERSION_PGSQL ) else: _fail_unsupported_dialect(dialect_name) if not first_connection: return None return DatabaseEngine( dialect=SupportedDialect(dialect_name), version=version, optimizer=DatabaseOptimizer(slow_range_in_select=slow_range_in_select), max_bind_vars=max_bind_vars, )
End any incomplete recorder runs.
def end_incomplete_runs(session: Session, start_time: datetime) -> None: """End any incomplete recorder runs.""" for run in session.query(RecorderRuns).filter_by(end=None): run.closed_incorrect = True run.end = start_time _LOGGER.warning( "Ended unfinished session (id=%s from %s)", run.run_id, run.start ) session.add(run)
Return True if the error is retryable.
def _is_retryable_error(instance: Recorder, err: OperationalError) -> bool: """Return True if the error is retryable.""" assert instance.engine is not None return bool( instance.engine.dialect.name == SupportedDialect.MYSQL and isinstance(err.orig, BaseException) and err.orig.args and err.orig.args[0] in RETRYABLE_MYSQL_ERRORS )
Try to execute a database job. The job should return True if it finished, and False if it needs to be rescheduled.
def retryable_database_job( description: str, ) -> Callable[[_FuncType[_RecorderT, _P]], _FuncType[_RecorderT, _P]]: """Try to execute a database job. The job should return True if it finished, and False if it needs to be rescheduled. """ def decorator(job: _FuncType[_RecorderT, _P]) -> _FuncType[_RecorderT, _P]: @functools.wraps(job) def wrapper(instance: _RecorderT, *args: _P.args, **kwargs: _P.kwargs) -> bool: try: return job(instance, *args, **kwargs) except OperationalError as err: if _is_retryable_error(instance, err): assert isinstance(err.orig, BaseException) # noqa: PT017 _LOGGER.info( "%s; %s not completed, retrying", err.orig.args[1], description ) time.sleep(instance.db_retry_wait) # Failed with retryable error return False _LOGGER.warning("Error executing %s: %s", description, err) # Failed with permanent error return True return wrapper return decorator
Try to execute a database job multiple times. This wrapper handles InnoDB deadlocks and lock timeouts. This is different from retryable_database_job in that it will retry the job attempts number of times instead of returning False if the job fails.
def database_job_retry_wrapper( description: str, attempts: int = 5 ) -> Callable[[_WrappedFuncType[_RecorderT, _P]], _WrappedFuncType[_RecorderT, _P]]: """Try to execute a database job multiple times. This wrapper handles InnoDB deadlocks and lock timeouts. This is different from retryable_database_job in that it will retry the job attempts number of times instead of returning False if the job fails. """ def decorator( job: _WrappedFuncType[_RecorderT, _P], ) -> _WrappedFuncType[_RecorderT, _P]: @functools.wraps(job) def wrapper(instance: _RecorderT, *args: _P.args, **kwargs: _P.kwargs) -> None: for attempt in range(attempts): try: job(instance, *args, **kwargs) except OperationalError as err: if attempt == attempts - 1 or not _is_retryable_error( instance, err ): raise assert isinstance(err.orig, BaseException) # noqa: PT017 _LOGGER.info( "%s; %s failed, retrying", err.orig.args[1], description ) time.sleep(instance.db_retry_wait) # Failed with retryable error else: return return wrapper return decorator
Run any database cleanups that need to happen periodically. These cleanups will happen nightly or after any purge.
def periodic_db_cleanups(instance: Recorder) -> None: """Run any database cleanups that need to happen periodically. These cleanups will happen nightly or after any purge. """ assert instance.engine is not None if instance.engine.dialect.name == SupportedDialect.SQLITE: # Execute sqlite to create a wal checkpoint and free up disk space _LOGGER.debug("WAL checkpoint") with instance.engine.connect() as connection: connection.execute(text("PRAGMA wal_checkpoint(TRUNCATE);")) connection.execute(text("PRAGMA OPTIMIZE;"))
Lock database for writes.
def write_lock_db_sqlite(instance: Recorder) -> Generator[None, None, None]: """Lock database for writes.""" assert instance.engine is not None with instance.engine.connect() as connection: # Execute sqlite to create a wal checkpoint # This is optional but makes sure the backup is going to be minimal connection.execute(text("PRAGMA wal_checkpoint(TRUNCATE)")) # Create write lock _LOGGER.debug("Lock database") connection.execute(text("BEGIN IMMEDIATE;")) try: yield finally: _LOGGER.debug("Unlock database") connection.execute(text("END;"))
Determine if a migration is in progress. This is a thin wrapper that allows us to change out the implementation later.
def async_migration_in_progress(hass: HomeAssistant) -> bool: """Determine if a migration is in progress. This is a thin wrapper that allows us to change out the implementation later. """ if DATA_INSTANCE not in hass.data: return False instance = get_instance(hass) return instance.migration_in_progress
Determine if a migration is live. This is a thin wrapper that allows us to change out the implementation later.
def async_migration_is_live(hass: HomeAssistant) -> bool: """Determine if a migration is live. This is a thin wrapper that allows us to change out the implementation later. """ if DATA_INSTANCE not in hass.data: return False instance: Recorder = hass.data[DATA_INSTANCE] return instance.migration_is_live
Return the datetime.date for the second sunday of a month.
def second_sunday(year: int, month: int) -> date: """Return the datetime.date for the second sunday of a month.""" second = date(year, month, FIRST_POSSIBLE_SUNDAY) day_of_week = second.weekday() if day_of_week == SUNDAY_WEEKDAY: return second return second.replace( day=(FIRST_POSSIBLE_SUNDAY + (SUNDAY_WEEKDAY - day_of_week) % DAYS_IN_WEEK) )
Check if a time is the second sunday of the month.
def is_second_sunday(date_time: datetime) -> bool: """Check if a time is the second sunday of the month.""" return bool(second_sunday(date_time.year, date_time.month).day == date_time.day)
Get the recorder instance.
def get_instance(hass: HomeAssistant) -> Recorder: """Get the recorder instance.""" instance: Recorder = hass.data[DATA_INSTANCE] return instance
Return start and end datetimes for a statistic period definition.
def resolve_period( period_def: StatisticPeriod, ) -> tuple[datetime | None, datetime | None]: """Return start and end datetimes for a statistic period definition.""" start_time = None end_time = None if "calendar" in period_def: calendar_period = period_def["calendar"]["period"] start_of_day = dt_util.start_of_local_day() cal_offset = period_def["calendar"].get("offset", 0) if calendar_period == "hour": start_time = dt_util.now().replace(minute=0, second=0, microsecond=0) start_time += timedelta(hours=cal_offset) end_time = start_time + timedelta(hours=1) elif calendar_period == "day": start_time = start_of_day start_time += timedelta(days=cal_offset) end_time = start_time + timedelta(days=1) elif calendar_period == "week": start_time = start_of_day - timedelta(days=start_of_day.weekday()) start_time += timedelta(days=cal_offset * 7) end_time = start_time + timedelta(weeks=1) elif calendar_period == "month": start_time = start_of_day.replace(day=28) # This works for up to 48 months of offset start_time = (start_time + timedelta(days=cal_offset * 31)).replace(day=1) end_time = (start_time + timedelta(days=31)).replace(day=1) else: # calendar_period = "year" start_time = start_of_day.replace(month=12, day=31) # This works for 100+ years of offset start_time = (start_time + timedelta(days=cal_offset * 366)).replace( month=1, day=1 ) end_time = (start_time + timedelta(days=365)).replace(day=1) start_time = dt_util.as_utc(start_time) end_time = dt_util.as_utc(end_time) elif "fixed_period" in period_def: start_time = period_def["fixed_period"].get("start_time") end_time = period_def["fixed_period"].get("end_time") elif "rolling_window" in period_def: duration = period_def["rolling_window"]["duration"] now = dt_util.utcnow() start_time = now - duration end_time = start_time + duration if offset := period_def["rolling_window"].get("offset"): start_time += offset end_time += offset return (start_time, end_time)
Return first n items of the iterable as a list. From itertools recipes
def take(take_num: int, iterable: Iterable) -> list[Any]: """Return first n items of the iterable as a list. From itertools recipes """ return list(islice(iterable, take_num))
Break *iterable* into lists of length *n*. From more-itertools
def chunked(iterable: Iterable, chunked_num: int) -> Iterable[Any]: """Break *iterable* into lists of length *n*. From more-itertools """ return iter(partial(take, chunked_num, iter(iterable)), [])
Break *collection* into iterables of length *n*. Returns the collection if its length is less than *n*. Unlike chunked, this function requires a collection so it can determine the length of the collection and return the collection if it is less than *n*.
def chunked_or_all(iterable: Collection[Any], chunked_num: int) -> Iterable[Any]: """Break *collection* into iterables of length *n*. Returns the collection if its length is less than *n*. Unlike chunked, this function requires a collection so it can determine the length of the collection and return the collection if it is less than *n*. """ if len(iterable) <= chunked_num: return (iterable,) return chunked(iterable, chunked_num)
Get an index by name.
def get_index_by_name(session: Session, table_name: str, index_name: str) -> str | None: """Get an index by name.""" connection = session.connection() inspector = inspect(connection) indexes = inspector.get_indexes(table_name) return next( ( possible_index["name"] for possible_index in indexes if possible_index["name"] and ( possible_index["name"] == index_name or possible_index["name"].endswith(f"_{index_name}") ) ), None, )
Create a filter for unique constraint integrity errors.
def filter_unique_constraint_integrity_error( instance: Recorder, row_type: str ) -> Callable[[Exception], bool]: """Create a filter for unique constraint integrity errors.""" def _filter_unique_constraint_integrity_error(err: Exception) -> bool: """Handle unique constraint integrity errors.""" if not isinstance(err, StatementError): return False assert instance.engine is not None dialect_name = instance.engine.dialect.name ignore = False if ( dialect_name == SupportedDialect.SQLITE and "UNIQUE constraint failed" in str(err) ): ignore = True if ( dialect_name == SupportedDialect.POSTGRESQL and err.orig and hasattr(err.orig, "pgcode") and err.orig.pgcode == "23505" ): ignore = True if ( dialect_name == SupportedDialect.MYSQL and err.orig and hasattr(err.orig, "args") ): with contextlib.suppress(TypeError): if err.orig.args[0] == 1062: ignore = True if ignore: _LOGGER.warning( ( "Blocked attempt to insert duplicated %s rows, please report" " at %s" ), row_type, "https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue+label%3A%22integration%3A+recorder%22", exc_info=err, ) return ignore return _filter_unique_constraint_integrity_error
Set up the recorder websocket API.
def async_setup(hass: HomeAssistant) -> None: """Set up the recorder websocket API.""" websocket_api.async_register_command(hass, ws_adjust_sum_statistics) websocket_api.async_register_command(hass, ws_change_statistics_unit) websocket_api.async_register_command(hass, ws_clear_statistics) websocket_api.async_register_command(hass, ws_get_statistic_during_period) websocket_api.async_register_command(hass, ws_get_statistics_during_period) websocket_api.async_register_command(hass, ws_get_statistics_metadata) websocket_api.async_register_command(hass, ws_list_statistic_ids) websocket_api.async_register_command(hass, ws_import_statistics) websocket_api.async_register_command(hass, ws_info) websocket_api.async_register_command(hass, ws_update_statistics_metadata) websocket_api.async_register_command(hass, ws_validate_statistics)
Fetch statistics and convert them to json in the executor.
def _ws_get_statistic_during_period( hass: HomeAssistant, msg_id: int, start_time: dt | None, end_time: dt | None, statistic_id: str, types: set[Literal["max", "mean", "min", "change"]] | None, units: dict[str, str], ) -> bytes: """Fetch statistics and convert them to json in the executor.""" return json_bytes( messages.result_message( msg_id, statistic_during_period( hass, start_time, end_time, statistic_id, types, units=units ), ) )
Fetch statistics and convert them to json in the executor.
def _ws_get_statistics_during_period( hass: HomeAssistant, msg_id: int, start_time: dt, end_time: dt | None, statistic_ids: set[str] | None, period: Literal["5minute", "day", "hour", "week", "month"], units: dict[str, str], types: set[Literal["change", "last_reset", "max", "mean", "min", "state", "sum"]], ) -> bytes: """Fetch statistics and convert them to json in the executor.""" result = statistics_during_period( hass, start_time, end_time, statistic_ids, period, units, types, ) for statistic_id in result: for item in result[statistic_id]: if (start := item.get("start")) is not None: item["start"] = int(start * 1000) if (end := item.get("end")) is not None: item["end"] = int(end * 1000) if (last_reset := item.get("last_reset")) is not None: item["last_reset"] = int(last_reset * 1000) return json_bytes(messages.result_message(msg_id, result))
Fetch a list of available statistic_id and convert them to JSON. Runs in the executor.
def _ws_get_list_statistic_ids( hass: HomeAssistant, msg_id: int, statistic_type: Literal["mean", "sum"] | None = None, ) -> bytes: """Fetch a list of available statistic_id and convert them to JSON. Runs in the executor. """ return json_bytes( messages.result_message(msg_id, list_statistic_ids(hass, None, statistic_type)) )
Clear statistics for a list of statistic_ids. Note: The WS call posts a job to the recorder's queue and then returns, it doesn't wait until the job is completed.
def ws_clear_statistics( hass: HomeAssistant, connection: websocket_api.ActiveConnection, msg: dict[str, Any] ) -> None: """Clear statistics for a list of statistic_ids. Note: The WS call posts a job to the recorder's queue and then returns, it doesn't wait until the job is completed. """ get_instance(hass).async_clear_statistics(msg["statistic_ids"]) connection.send_result(msg["id"])
Update statistics metadata for a statistic_id. Only the normalized unit of measurement can be updated.
def ws_update_statistics_metadata( hass: HomeAssistant, connection: websocket_api.ActiveConnection, msg: dict[str, Any] ) -> None: """Update statistics metadata for a statistic_id. Only the normalized unit of measurement can be updated. """ get_instance(hass).async_update_statistics_metadata( msg["statistic_id"], new_unit_of_measurement=msg["unit_of_measurement"] ) connection.send_result(msg["id"])
Change the unit_of_measurement for a statistic_id. All existing statistics will be converted to the new unit.
def ws_change_statistics_unit( hass: HomeAssistant, connection: websocket_api.ActiveConnection, msg: dict[str, Any] ) -> None: """Change the unit_of_measurement for a statistic_id. All existing statistics will be converted to the new unit. """ async_change_statistics_unit( hass, msg["statistic_id"], new_unit_of_measurement=msg["new_unit_of_measurement"], old_unit_of_measurement=msg["old_unit_of_measurement"], ) connection.send_result(msg["id"])
Import statistics.
def ws_import_statistics( hass: HomeAssistant, connection: websocket_api.ActiveConnection, msg: dict[str, Any] ) -> None: """Import statistics.""" metadata = msg["metadata"] stats = msg["stats"] if valid_entity_id(metadata["statistic_id"]): async_import_statistics(hass, metadata, stats) else: async_add_external_statistics(hass, metadata, stats) connection.send_result(msg["id"])
Return status of the recorder.
def ws_info( hass: HomeAssistant, connection: websocket_api.ActiveConnection, msg: dict[str, Any] ) -> None: """Return status of the recorder.""" if instance := get_instance(hass): backlog = instance.backlog migration_in_progress = instance.migration_in_progress migration_is_live = instance.migration_is_live recording = instance.recording # We avoid calling is_alive() as it can block waiting # for the thread state lock which will block the event loop. is_running = instance.is_running max_backlog = instance.max_backlog else: backlog = None migration_in_progress = False migration_is_live = False recording = False is_running = False max_backlog = None recorder_info = { "backlog": backlog, "max_backlog": max_backlog, "migration_in_progress": migration_in_progress, "migration_is_live": migration_is_live, "recording": recording, "thread_running": is_running, } connection.send_result(msg["id"], recorder_info)
Validate database URL.
def validate_db_url(db_url: str) -> Any: """Validate database URL.""" # Don't allow on-memory sqlite databases if ( db_url == SQLITE_URL_PREFIX or (db_url.startswith(SQLITE_URL_PREFIX) and ":memory:" in db_url) ) and not ALLOW_IN_MEMORY_DB: raise vol.Invalid("In-memory SQLite database is not supported") return db_url
Check if an entity is being recorded. Async friendly.
def is_entity_recorded(hass: HomeAssistant, entity_id: str) -> bool: """Check if an entity is being recorded. Async friendly. """ if DATA_INSTANCE not in hass.data: return False instance = get_instance(hass) return instance.entity_filter(entity_id)
Get the column names for the columns that need to be checked for precision.
def _get_precision_column_types( table_object: type[DeclarativeBase], ) -> list[str]: """Get the column names for the columns that need to be checked for precision.""" return [ column.key for column in table_object.__table__.columns if column.type is DOUBLE_TYPE ]
Do some basic checks for common schema errors caused by manual migration.
def validate_table_schema_supports_utf8( instance: Recorder, table_object: type[DeclarativeBase], columns: tuple[InstrumentedAttribute, ...], ) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() # Lack of full utf8 support is only an issue for MySQL / MariaDB if instance.dialect_name != SupportedDialect.MYSQL: return schema_errors try: schema_errors = _validate_table_schema_supports_utf8( instance, table_object, columns ) except Exception: # pylint: disable=broad-except _LOGGER.exception("Error when validating DB schema") _log_schema_errors(table_object, schema_errors) return schema_errors
Verify the table has the correct collation.
def validate_table_schema_has_correct_collation( instance: Recorder, table_object: type[DeclarativeBase], ) -> set[str]: """Verify the table has the correct collation.""" schema_errors: set[str] = set() # Lack of full utf8 support is only an issue for MySQL / MariaDB if instance.dialect_name != SupportedDialect.MYSQL: return schema_errors try: schema_errors = _validate_table_schema_has_correct_collation( instance, table_object ) except Exception: # pylint: disable=broad-except _LOGGER.exception("Error when validating DB schema") _log_schema_errors(table_object, schema_errors) return schema_errors
Ensure the table has the correct collation to avoid union errors with mixed collations.
def _validate_table_schema_has_correct_collation( instance: Recorder, table_object: type[DeclarativeBase], ) -> set[str]: """Ensure the table has the correct collation to avoid union errors with mixed collations.""" schema_errors: set[str] = set() # Mark the session as read_only to ensure that the test data is not committed # to the database and we always rollback when the scope is exited with session_scope(session=instance.get_session(), read_only=True) as session: table = table_object.__tablename__ metadata_obj = MetaData() reflected_table = Table(table, metadata_obj, autoload_with=instance.engine) connection = session.connection() dialect_kwargs = reflected_table.dialect_kwargs # Check if the table has a collation set, if its not set than its # using the server default collation for the database collate = ( dialect_kwargs.get("mysql_collate") or dialect_kwargs.get("mariadb_collate") # pylint: disable-next=protected-access or connection.dialect._fetch_setting(connection, "collation_server") # type: ignore[attr-defined] ) if collate and collate != "utf8mb4_unicode_ci": _LOGGER.debug( "Database %s collation is not utf8mb4_unicode_ci", table, ) schema_errors.add(f"{table}.utf8mb4_unicode_ci") return schema_errors
Do some basic checks for common schema errors caused by manual migration.
def _validate_table_schema_supports_utf8( instance: Recorder, table_object: type[DeclarativeBase], columns: tuple[InstrumentedAttribute, ...], ) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() # Mark the session as read_only to ensure that the test data is not committed # to the database and we always rollback when the scope is exited with session_scope(session=instance.get_session(), read_only=True) as session: db_object = table_object(**{column.key: UTF8_NAME for column in columns}) table = table_object.__tablename__ # Try inserting some data which needs utf8mb4 support session.add(db_object) try: session.flush() except OperationalError as err: if err.orig and err.orig.args[0] == MYSQL_ERR_INCORRECT_STRING_VALUE: _LOGGER.debug( "Database %s statistics_meta does not support 4-byte UTF-8", table, ) schema_errors.add(f"{table}.4-byte UTF-8") return schema_errors raise finally: session.rollback() return schema_errors
Do some basic checks for common schema errors caused by manual migration.
def validate_db_schema_precision( instance: Recorder, table_object: type[DeclarativeBase], ) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() # Wrong precision is only an issue for MySQL / MariaDB / PostgreSQL if instance.dialect_name not in ( SupportedDialect.MYSQL, SupportedDialect.POSTGRESQL, ): return schema_errors try: schema_errors = _validate_db_schema_precision(instance, table_object) except Exception: # pylint: disable=broad-except _LOGGER.exception("Error when validating DB schema") _log_schema_errors(table_object, schema_errors) return schema_errors
Do some basic checks for common schema errors caused by manual migration.
def _validate_db_schema_precision( instance: Recorder, table_object: type[DeclarativeBase], ) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() columns = _get_precision_column_types(table_object) # Mark the session as read_only to ensure that the test data is not committed # to the database and we always rollback when the scope is exited with session_scope(session=instance.get_session(), read_only=True) as session: db_object = table_object(**{column: PRECISE_NUMBER for column in columns}) table = table_object.__tablename__ try: session.add(db_object) session.flush() session.refresh(db_object) _check_columns( schema_errors=schema_errors, stored={column: getattr(db_object, column) for column in columns}, expected={column: PRECISE_NUMBER for column in columns}, columns=columns, table_name=table, supports="double precision", ) finally: session.rollback() return schema_errors
Log schema errors.
def _log_schema_errors( table_object: type[DeclarativeBase], schema_errors: set[str] ) -> None: """Log schema errors.""" if not schema_errors: return _LOGGER.debug( "Detected %s schema errors: %s", table_object.__tablename__, ", ".join(sorted(schema_errors)), )
Check that the columns in the table support the given feature. Errors are logged and added to the schema_errors set.
def _check_columns( schema_errors: set[str], stored: Mapping, expected: Mapping, columns: Iterable[str], table_name: str, supports: str, ) -> None: """Check that the columns in the table support the given feature. Errors are logged and added to the schema_errors set. """ for column in columns: if stored[column] == expected[column]: continue schema_errors.add(f"{table_name}.{supports}") _LOGGER.error( "Column %s in database table %s does not support %s (stored=%s != expected=%s)", column, table_name, supports, stored[column], expected[column], )
Correct utf8 issues detected by validate_db_schema.
def correct_db_schema_utf8( instance: Recorder, table_object: type[DeclarativeBase], schema_errors: set[str] ) -> None: """Correct utf8 issues detected by validate_db_schema.""" table_name = table_object.__tablename__ if ( f"{table_name}.4-byte UTF-8" in schema_errors or f"{table_name}.utf8mb4_unicode_ci" in schema_errors ): from ..migration import ( # pylint: disable=import-outside-toplevel _correct_table_character_set_and_collation, ) _correct_table_character_set_and_collation(table_name, instance.get_session)
Correct precision issues detected by validate_db_schema.
def correct_db_schema_precision( instance: Recorder, table_object: type[DeclarativeBase], schema_errors: set[str], ) -> None: """Correct precision issues detected by validate_db_schema.""" table_name = table_object.__tablename__ if f"{table_name}.double precision" in schema_errors: from ..migration import ( # pylint: disable=import-outside-toplevel _modify_columns, ) precision_columns = _get_precision_column_types(table_object) # Attempt to convert timestamp columns to µs precision session_maker = instance.get_session engine = instance.engine assert engine is not None, "Engine should be set" _modify_columns( session_maker, engine, table_name, [f"{column} {DOUBLE_PRECISION_TYPE_SQL}" for column in precision_columns], )
Do some basic checks for common schema errors caused by manual migration.
def validate_db_schema(instance: Recorder) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors = validate_table_schema_supports_utf8( instance, EventData, (EventData.shared_data,) ) | validate_db_schema_precision(instance, Events) for table in (Events, EventData): schema_errors |= validate_table_schema_has_correct_collation(instance, table) return schema_errors
Correct issues detected by validate_db_schema.
def correct_db_schema( instance: Recorder, schema_errors: set[str], ) -> None: """Correct issues detected by validate_db_schema.""" for table in (Events, EventData): correct_db_schema_utf8(instance, table, schema_errors) correct_db_schema_precision(instance, Events, schema_errors)
Do some basic checks for common schema errors caused by manual migration.
def validate_db_schema(instance: Recorder) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() for table, columns in TABLE_UTF8_COLUMNS.items(): schema_errors |= validate_table_schema_supports_utf8(instance, table, columns) schema_errors |= validate_db_schema_precision(instance, States) for table in (States, StateAttributes): schema_errors |= validate_table_schema_has_correct_collation(instance, table) return schema_errors
Correct issues detected by validate_db_schema.
def correct_db_schema( instance: Recorder, schema_errors: set[str], ) -> None: """Correct issues detected by validate_db_schema.""" for table in (States, StateAttributes): correct_db_schema_utf8(instance, table, schema_errors) correct_db_schema_precision(instance, States, schema_errors)
Find duplicated statistics.
def _find_duplicates( session: Session, table: type[StatisticsBase] ) -> tuple[list[int], list[dict]]: """Find duplicated statistics.""" subquery = ( session.query( table.start, table.metadata_id, literal_column("1").label("is_duplicate"), ) .group_by(table.metadata_id, table.start) .having(func.count() > 1) .subquery() ) query = ( session.query( table.id, table.metadata_id, table.created, table.start, table.mean, table.min, table.max, table.last_reset, table.state, table.sum, ) .outerjoin( subquery, (subquery.c.metadata_id == table.metadata_id) & (subquery.c.start == table.start), ) .filter(subquery.c.is_duplicate == 1) .order_by(table.metadata_id, table.start, table.id.desc()) .limit(1000 * SQLITE_MAX_BIND_VARS) ) duplicates = execute(query) original_as_dict = {} start = None metadata_id = None duplicate_ids: list[int] = [] non_identical_duplicates_as_dict: list[dict] = [] if not duplicates: return (duplicate_ids, non_identical_duplicates_as_dict) def columns_to_dict(duplicate: Row) -> dict: """Convert a SQLAlchemy row to dict.""" dict_ = {} for key in ( "id", "metadata_id", "start", "created", "mean", "min", "max", "last_reset", "state", "sum", ): dict_[key] = getattr(duplicate, key) return dict_ def compare_statistic_rows(row1: dict, row2: dict) -> bool: """Compare two statistics rows, ignoring id and created.""" ignore_keys = {"id", "created"} keys1 = set(row1).difference(ignore_keys) keys2 = set(row2).difference(ignore_keys) return keys1 == keys2 and all(row1[k] == row2[k] for k in keys1) for duplicate in duplicates: if start != duplicate.start or metadata_id != duplicate.metadata_id: original_as_dict = columns_to_dict(duplicate) start = duplicate.start metadata_id = duplicate.metadata_id continue duplicate_as_dict = columns_to_dict(duplicate) duplicate_ids.append(duplicate.id) if not compare_statistic_rows(original_as_dict, duplicate_as_dict): non_identical_duplicates_as_dict.append( {"duplicate": duplicate_as_dict, "original": original_as_dict} ) return (duplicate_ids, non_identical_duplicates_as_dict)
Identify and delete duplicated statistics from a specified table.
def _delete_duplicates_from_table( session: Session, table: type[StatisticsBase] ) -> tuple[int, list[dict]]: """Identify and delete duplicated statistics from a specified table.""" all_non_identical_duplicates: list[dict] = [] total_deleted_rows = 0 while True: duplicate_ids, non_identical_duplicates = _find_duplicates(session, table) if not duplicate_ids: break all_non_identical_duplicates.extend(non_identical_duplicates) for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS): deleted_rows = ( session.query(table) .filter(table.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS])) .delete(synchronize_session=False) ) total_deleted_rows += deleted_rows return (total_deleted_rows, all_non_identical_duplicates)
Identify and delete duplicated statistics. A backup will be made of duplicated statistics before it is deleted.
def delete_statistics_duplicates( instance: Recorder, hass: HomeAssistant, session: Session ) -> None: """Identify and delete duplicated statistics. A backup will be made of duplicated statistics before it is deleted. """ deleted_statistics_rows, non_identical_duplicates = _delete_duplicates_from_table( session, Statistics ) if deleted_statistics_rows: _LOGGER.info("Deleted %s duplicated statistics rows", deleted_statistics_rows) if non_identical_duplicates: isotime = dt_util.utcnow().isoformat() backup_file_name = f"deleted_statistics.{isotime}.json" backup_path = hass.config.path(STORAGE_DIR, backup_file_name) os.makedirs(os.path.dirname(backup_path), exist_ok=True) with open(backup_path, "w", encoding="utf8") as backup_file: json.dump( non_identical_duplicates, backup_file, indent=4, sort_keys=True, cls=JSONEncoder, ) _LOGGER.warning( ( "Deleted %s non identical duplicated %s rows, a backup of the deleted" " rows has been saved to %s" ), len(non_identical_duplicates), Statistics.__tablename__, backup_path, ) deleted_short_term_statistics_rows, _ = _delete_duplicates_from_table( session, StatisticsShortTerm ) if deleted_short_term_statistics_rows: _LOGGER.warning( "Deleted duplicated short term statistic rows, please report at %s", "https://github.com/home-assistant/core/issues?q=is%3Aopen+is%3Aissue+label%3A%22integration%3A+recorder%22", )
Find duplicated statistics_meta.
def _find_statistics_meta_duplicates(session: Session) -> list[int]: """Find duplicated statistics_meta.""" # When querying the database, be careful to only explicitly query for columns # which were present in schema version 29. If querying the table, SQLAlchemy # will refer to future columns. subquery = ( session.query( StatisticsMeta.statistic_id, literal_column("1").label("is_duplicate"), ) .group_by(StatisticsMeta.statistic_id) .having(func.count() > 1) .subquery() ) query = ( session.query(StatisticsMeta.statistic_id, StatisticsMeta.id) .outerjoin( subquery, (subquery.c.statistic_id == StatisticsMeta.statistic_id), ) .filter(subquery.c.is_duplicate == 1) .order_by(StatisticsMeta.statistic_id, StatisticsMeta.id.desc()) .limit(1000 * SQLITE_MAX_BIND_VARS) ) duplicates = execute(query) statistic_id = None duplicate_ids: list[int] = [] if not duplicates: return duplicate_ids for duplicate in duplicates: if statistic_id != duplicate.statistic_id: statistic_id = duplicate.statistic_id continue duplicate_ids.append(duplicate.id) return duplicate_ids
Identify and delete duplicated statistics from a specified table.
def _delete_statistics_meta_duplicates(session: Session) -> int: """Identify and delete duplicated statistics from a specified table.""" total_deleted_rows = 0 while True: duplicate_ids = _find_statistics_meta_duplicates(session) if not duplicate_ids: break for i in range(0, len(duplicate_ids), SQLITE_MAX_BIND_VARS): deleted_rows = ( session.query(StatisticsMeta) .filter( StatisticsMeta.id.in_(duplicate_ids[i : i + SQLITE_MAX_BIND_VARS]) ) .delete(synchronize_session=False) ) total_deleted_rows += deleted_rows return total_deleted_rows
Identify and delete duplicated statistics_meta. This is used when migrating from schema version 28 to schema version 29.
def delete_statistics_meta_duplicates(instance: Recorder, session: Session) -> None: """Identify and delete duplicated statistics_meta. This is used when migrating from schema version 28 to schema version 29. """ deleted_statistics_rows = _delete_statistics_meta_duplicates(session) if deleted_statistics_rows: statistics_meta_manager = instance.statistics_meta_manager statistics_meta_manager.reset() statistics_meta_manager.load(session) _LOGGER.info( "Deleted %s duplicated statistics_meta rows", deleted_statistics_rows )
Do some basic checks for common schema errors caused by manual migration.
def validate_db_schema(instance: Recorder) -> set[str]: """Do some basic checks for common schema errors caused by manual migration.""" schema_errors: set[str] = set() schema_errors |= validate_table_schema_supports_utf8( instance, StatisticsMeta, (StatisticsMeta.statistic_id,) ) for table in (Statistics, StatisticsShortTerm): schema_errors |= validate_db_schema_precision(instance, table) schema_errors |= validate_table_schema_has_correct_collation(instance, table) if schema_errors: _LOGGER.debug( "Detected statistics schema errors: %s", ", ".join(sorted(schema_errors)) ) return schema_errors
Correct issues detected by validate_db_schema.
def correct_db_schema( instance: Recorder, schema_errors: set[str], ) -> None: """Correct issues detected by validate_db_schema.""" correct_db_schema_utf8(instance, StatisticsMeta, schema_errors) for table in (Statistics, StatisticsShortTerm): correct_db_schema_precision(instance, table, schema_errors) correct_db_schema_utf8(instance, table, schema_errors)
Return the lambda_stmt and if StateAttributes should be joined. Because these are lambda_stmt the values inside the lambdas need to be explicitly written out to avoid caching the wrong values.
def _lambda_stmt_and_join_attributes( schema_version: int, no_attributes: bool, include_last_changed: bool = True ) -> tuple[StatementLambdaElement, bool]: """Return the lambda_stmt and if StateAttributes should be joined. Because these are lambda_stmt the values inside the lambdas need to be explicitly written out to avoid caching the wrong values. """ # If no_attributes was requested we do the query # without the attributes fields and do not join the # state_attributes table if no_attributes: if schema_version >= 31: if include_last_changed: return ( lambda_stmt(lambda: select(*_QUERY_STATE_NO_ATTR)), False, ) return ( lambda_stmt(lambda: select(*_QUERY_STATE_NO_ATTR_NO_LAST_CHANGED)), False, ) if include_last_changed: return ( lambda_stmt(lambda: select(*_QUERY_STATE_NO_ATTR_PRE_SCHEMA_31)), False, ) return ( lambda_stmt( lambda: select(*_QUERY_STATE_NO_ATTR_NO_LAST_CHANGED_PRE_SCHEMA_31) ), False, ) # If we in the process of migrating schema we do # not want to join the state_attributes table as we # do not know if it will be there yet if schema_version < 25: if include_last_changed: return ( lambda_stmt(lambda: select(*_QUERY_STATES_PRE_SCHEMA_25)), False, ) return ( lambda_stmt(lambda: select(*_QUERY_STATES_PRE_SCHEMA_25_NO_LAST_CHANGED)), False, ) if schema_version >= 31: if include_last_changed: return lambda_stmt(lambda: select(*_QUERY_STATES)), True return lambda_stmt(lambda: select(*_QUERY_STATES_NO_LAST_CHANGED)), True # Finally if no migration is in progress and no_attributes # was not requested, we query both attributes columns and # join state_attributes if include_last_changed: return lambda_stmt(lambda: select(*_QUERY_STATES_PRE_SCHEMA_31)), True return ( lambda_stmt(lambda: select(*_QUERY_STATES_NO_LAST_CHANGED_PRE_SCHEMA_31)), True, )
Wrap get_significant_states_with_session with an sql session.
def get_significant_states( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Wrap get_significant_states_with_session with an sql session.""" with session_scope(hass=hass, read_only=True) as session: return get_significant_states_with_session( hass, session, start_time, end_time, entity_ids, filters, include_start_time_state, significant_changes_only, minimal_response, no_attributes, compressed_state_format, )
Query the database for significant state changes.
def _significant_states_stmt( schema_version: int, start_time: datetime, end_time: datetime | None, entity_ids: list[str], significant_changes_only: bool, no_attributes: bool, ) -> StatementLambdaElement: """Query the database for significant state changes.""" stmt, join_attributes = _lambda_stmt_and_join_attributes( schema_version, no_attributes, include_last_changed=not significant_changes_only ) if ( len(entity_ids) == 1 and significant_changes_only and split_entity_id(entity_ids[0])[0] not in SIGNIFICANT_DOMAINS ): if schema_version >= 31: stmt += lambda q: q.filter( (States.last_changed_ts == States.last_updated_ts) | States.last_changed_ts.is_(None) ) else: stmt += lambda q: q.filter( (States.last_changed == States.last_updated) | States.last_changed.is_(None) ) elif significant_changes_only: if schema_version >= 31: stmt += lambda q: q.filter( or_( *[ States.entity_id.like(entity_domain) for entity_domain in SIGNIFICANT_DOMAINS_ENTITY_ID_LIKE ], ( (States.last_changed_ts == States.last_updated_ts) | States.last_changed_ts.is_(None) ), ) ) else: stmt += lambda q: q.filter( or_( *[ States.entity_id.like(entity_domain) for entity_domain in SIGNIFICANT_DOMAINS_ENTITY_ID_LIKE ], ( (States.last_changed == States.last_updated) | States.last_changed.is_(None) ), ) ) stmt += lambda q: q.filter(States.entity_id.in_(entity_ids)) if schema_version >= 31: start_time_ts = start_time.timestamp() stmt += lambda q: q.filter(States.last_updated_ts > start_time_ts) if end_time: end_time_ts = end_time.timestamp() stmt += lambda q: q.filter(States.last_updated_ts < end_time_ts) else: stmt += lambda q: q.filter(States.last_updated > start_time) if end_time: stmt += lambda q: q.filter(States.last_updated < end_time) if join_attributes: stmt += lambda q: q.outerjoin( StateAttributes, States.attributes_id == StateAttributes.attributes_id ) if schema_version >= 31: stmt += lambda q: q.order_by(States.entity_id, States.last_updated_ts) else: stmt += lambda q: q.order_by(States.entity_id, States.last_updated) return stmt
Return states changes during UTC period start_time - end_time. entity_ids is an optional iterable of entities to include in the results. filters is an optional SQLAlchemy filter which will be applied to the database queries unless entity_ids is given, in which case its ignored. Significant states are all states where there is a state change, as well as all states from certain domains (for instance thermostat so that we get current temperature in our graphs).
def get_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Return states changes during UTC period start_time - end_time. entity_ids is an optional iterable of entities to include in the results. filters is an optional SQLAlchemy filter which will be applied to the database queries unless entity_ids is given, in which case its ignored. Significant states are all states where there is a state change, as well as all states from certain domains (for instance thermostat so that we get current temperature in our graphs). """ if filters is not None: raise NotImplementedError("Filters are no longer supported") if not entity_ids: raise ValueError("entity_ids must be provided") stmt = _significant_states_stmt( _schema_version(hass), start_time, end_time, entity_ids, significant_changes_only, no_attributes, ) states = execute_stmt_lambda_element(session, stmt, None, end_time) return _sorted_states_to_dict( hass, session, states, start_time, entity_ids, include_start_time_state, minimal_response, no_attributes, compressed_state_format, )
Variant of get_significant_states_with_session. Difference with get_significant_states_with_session is that it does not return minimal responses.
def get_full_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, no_attributes: bool = False, ) -> dict[str, list[State]]: """Variant of get_significant_states_with_session. Difference with get_significant_states_with_session is that it does not return minimal responses. """ return cast( dict[str, list[State]], get_significant_states_with_session( hass=hass, session=session, start_time=start_time, end_time=end_time, entity_ids=entity_ids, filters=filters, include_start_time_state=include_start_time_state, significant_changes_only=significant_changes_only, minimal_response=False, no_attributes=no_attributes, ), )
Return states changes during UTC period start_time - end_time.
def state_changes_during_period( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_id: str | None = None, no_attributes: bool = False, descending: bool = False, limit: int | None = None, include_start_time_state: bool = True, ) -> dict[str, list[State]]: """Return states changes during UTC period start_time - end_time.""" if not entity_id: raise ValueError("entity_id must be provided") entity_ids = [entity_id.lower()] with session_scope(hass=hass, read_only=True) as session: stmt = _state_changed_during_period_stmt( _schema_version(hass), start_time, end_time, entity_id, no_attributes, descending, limit, ) states = execute_stmt_lambda_element(session, stmt, None, end_time) return cast( dict[str, list[State]], _sorted_states_to_dict( hass, session, states, start_time, entity_ids, include_start_time_state=include_start_time_state, ), )
Return the last number_of_states.
def get_last_state_changes( hass: HomeAssistant, number_of_states: int, entity_id: str ) -> dict[str, list[State]]: """Return the last number_of_states.""" entity_id_lower = entity_id.lower() entity_ids = [entity_id_lower] with session_scope(hass=hass, read_only=True) as session: stmt = _get_last_state_changes_stmt( _schema_version(hass), number_of_states, entity_id_lower ) states = list(execute_stmt_lambda_element(session, stmt)) return cast( dict[str, list[State]], _sorted_states_to_dict( hass, session, reversed(states), dt_util.utcnow(), entity_ids, include_start_time_state=False, ), )
Baked query to get states for specific entities.
def _get_states_for_entities_stmt( schema_version: int, run_start: datetime, utc_point_in_time: datetime, entity_ids: list[str], no_attributes: bool, ) -> StatementLambdaElement: """Baked query to get states for specific entities.""" stmt, join_attributes = _lambda_stmt_and_join_attributes( schema_version, no_attributes, include_last_changed=True ) # We got an include-list of entities, accelerate the query by filtering already # in the inner query. if schema_version >= 31: run_start_ts = process_timestamp(run_start).timestamp() utc_point_in_time_ts = dt_util.utc_to_timestamp(utc_point_in_time) stmt += lambda q: q.join( ( most_recent_states_for_entities_by_date := ( select( States.entity_id.label("max_entity_id"), func.max(States.last_updated_ts).label("max_last_updated"), ) .filter( (States.last_updated_ts >= run_start_ts) & (States.last_updated_ts < utc_point_in_time_ts) ) .filter(States.entity_id.in_(entity_ids)) .group_by(States.entity_id) .subquery() ) ), and_( States.entity_id == most_recent_states_for_entities_by_date.c.max_entity_id, States.last_updated_ts == most_recent_states_for_entities_by_date.c.max_last_updated, ), ) else: stmt += lambda q: q.join( ( most_recent_states_for_entities_by_date := select( States.entity_id.label("max_entity_id"), func.max(States.last_updated).label("max_last_updated"), ) .filter( (States.last_updated >= run_start) & (States.last_updated < utc_point_in_time) ) .filter(States.entity_id.in_(entity_ids)) .group_by(States.entity_id) .subquery() ), and_( States.entity_id == most_recent_states_for_entities_by_date.c.max_entity_id, States.last_updated == most_recent_states_for_entities_by_date.c.max_last_updated, ), ) if join_attributes: stmt += lambda q: q.outerjoin( StateAttributes, (States.attributes_id == StateAttributes.attributes_id) ) return stmt
Return the states at a specific point in time.
def _get_rows_with_session( hass: HomeAssistant, session: Session, utc_point_in_time: datetime, entity_ids: list[str], run: RecorderRuns | None = None, no_attributes: bool = False, ) -> Iterable[Row]: """Return the states at a specific point in time.""" schema_version = _schema_version(hass) if len(entity_ids) == 1: return execute_stmt_lambda_element( session, _get_single_entity_states_stmt( schema_version, utc_point_in_time, entity_ids[0], no_attributes ), ) if run is None: run = recorder.get_instance(hass).recorder_runs_manager.get(utc_point_in_time) if run is None or process_timestamp(run.start) > utc_point_in_time: # History did not run before utc_point_in_time return [] # We have more than one entity to look at so we need to do a query on states # since the last recorder run started. stmt = _get_states_for_entities_stmt( schema_version, run.start, utc_point_in_time, entity_ids, no_attributes ) return execute_stmt_lambda_element(session, stmt)
Convert SQL results into JSON friendly data structure. This takes our state list and turns it into a JSON friendly data structure {'entity_id': [list of states], 'entity_id2': [list of states]} States must be sorted by entity_id and last_updated We also need to go back and create a synthetic zero data point for each list of states, otherwise our graphs won't start on the Y axis correctly.
def _sorted_states_to_dict( hass: HomeAssistant, session: Session, states: Iterable[Row], start_time: datetime, entity_ids: list[str], include_start_time_state: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Convert SQL results into JSON friendly data structure. This takes our state list and turns it into a JSON friendly data structure {'entity_id': [list of states], 'entity_id2': [list of states]} States must be sorted by entity_id and last_updated We also need to go back and create a synthetic zero data point for each list of states, otherwise our graphs won't start on the Y axis correctly. """ schema_version = _schema_version(hass) _process_timestamp: Callable[[datetime], float | str] field_map = _FIELD_MAP if schema_version >= 31 else _FIELD_MAP_PRE_SCHEMA_31 state_class: Callable[ [Row, dict[str, dict[str, Any]], datetime | None], State | dict[str, Any] ] if compressed_state_format: if schema_version >= 31: state_class = legacy_row_to_compressed_state else: state_class = legacy_row_to_compressed_state_pre_schema_31 _process_timestamp = process_datetime_to_timestamp attr_time = COMPRESSED_STATE_LAST_UPDATED attr_state = COMPRESSED_STATE_STATE else: if schema_version >= 31: state_class = LegacyLazyState else: state_class = LegacyLazyStatePreSchema31 _process_timestamp = process_timestamp_to_utc_isoformat attr_time = LAST_CHANGED_KEY attr_state = STATE_KEY result: dict[str, list[State | dict[str, Any]]] = defaultdict(list) # Set all entity IDs to empty lists in result set to maintain the order for ent_id in entity_ids: result[ent_id] = [] # Get the states at the start time time.perf_counter() initial_states: dict[str, Row] = {} if include_start_time_state: initial_states = { row.entity_id: row for row in _get_rows_with_session( hass, session, start_time, entity_ids, no_attributes=no_attributes, ) } if len(entity_ids) == 1: states_iter: Iterable[tuple[str, Iterator[Row]]] = ( (entity_ids[0], iter(states)), ) else: key_func = attrgetter("entity_id") states_iter = groupby(states, key_func) # Append all changes to it for ent_id, group in states_iter: attr_cache: dict[str, dict[str, Any]] = {} prev_state: Column | str ent_results = result[ent_id] if row := initial_states.pop(ent_id, None): prev_state = row.state ent_results.append(state_class(row, attr_cache, start_time)) if not minimal_response or split_entity_id(ent_id)[0] in NEED_ATTRIBUTE_DOMAINS: ent_results.extend( state_class(db_state, attr_cache, None) for db_state in group ) continue # With minimal response we only provide a native # State for the first and last response. All the states # in-between only provide the "state" and the # "last_changed". if not ent_results: if (first_state := next(group, None)) is None: continue prev_state = first_state.state ent_results.append(state_class(first_state, attr_cache, None)) state_idx = field_map["state"] # # minimal_response only makes sense with last_updated == last_updated # # We use last_updated for for last_changed since its the same # # With minimal response we do not care about attribute # changes so we can filter out duplicate states if schema_version < 31: last_updated_idx = field_map["last_updated"] for row in group: if (state := row[state_idx]) != prev_state: ent_results.append( { attr_state: state, attr_time: _process_timestamp(row[last_updated_idx]), } ) prev_state = state continue last_updated_ts_idx = field_map["last_updated_ts"] if compressed_state_format: for row in group: if (state := row[state_idx]) != prev_state: ent_results.append( { attr_state: state, attr_time: row[last_updated_ts_idx], } ) prev_state = state continue for row in group: if (state := row[state_idx]) != prev_state: ent_results.append( { attr_state: state, attr_time: process_timestamp_to_utc_isoformat( dt_util.utc_from_timestamp(row[last_updated_ts_idx]) ), } ) prev_state = state # If there are no states beyond the initial state, # the state a was never popped from initial_states for ent_id, row in initial_states.items(): result[ent_id].append(state_class(row, {}, start_time)) # Filter out the empty lists if some states had 0 results. return {key: val for key, val in result.items() if val}
Return the statement and if StateAttributes should be joined.
def _stmt_and_join_attributes( no_attributes: bool, include_last_changed: bool, include_last_reported: bool, ) -> Select: """Return the statement and if StateAttributes should be joined.""" _select = select(States.metadata_id, States.state, States.last_updated_ts) if include_last_changed: _select = _select.add_columns(States.last_changed_ts) if include_last_reported: _select = _select.add_columns(States.last_reported_ts) if not no_attributes: _select = _select.add_columns(SHARED_ATTR_OR_LEGACY_ATTRIBUTES) return _select
Return the statement and if StateAttributes should be joined.
def _stmt_and_join_attributes_for_start_state( no_attributes: bool, include_last_changed: bool, include_last_reported: bool, ) -> Select: """Return the statement and if StateAttributes should be joined.""" _select = select(States.metadata_id, States.state) _select = _select.add_columns(literal(value=0).label("last_updated_ts")) if include_last_changed: _select = _select.add_columns(literal(value=0).label("last_changed_ts")) if include_last_reported: _select = _select.add_columns(literal(value=0).label("last_reported_ts")) if not no_attributes: _select = _select.add_columns(SHARED_ATTR_OR_LEGACY_ATTRIBUTES) return _select
Return the statement to select from the union.
def _select_from_subquery( subquery: Subquery | CompoundSelect, no_attributes: bool, include_last_changed: bool, include_last_reported: bool, ) -> Select: """Return the statement to select from the union.""" base_select = select( subquery.c.metadata_id, subquery.c.state, subquery.c.last_updated_ts, ) if include_last_changed: base_select = base_select.add_columns(subquery.c.last_changed_ts) if include_last_reported: base_select = base_select.add_columns(subquery.c.last_reported_ts) if no_attributes: return base_select return base_select.add_columns(subquery.c.attributes)
Wrap get_significant_states_with_session with an sql session.
def get_significant_states( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Wrap get_significant_states_with_session with an sql session.""" with session_scope(hass=hass, read_only=True) as session: return get_significant_states_with_session( hass, session, start_time, end_time, entity_ids, filters, include_start_time_state, significant_changes_only, minimal_response, no_attributes, compressed_state_format, )
Query the database for significant state changes.
def _significant_states_stmt( start_time_ts: float, end_time_ts: float | None, single_metadata_id: int | None, metadata_ids: list[int], metadata_ids_in_significant_domains: list[int], significant_changes_only: bool, no_attributes: bool, include_start_time_state: bool, run_start_ts: float | None, ) -> Select | CompoundSelect: """Query the database for significant state changes.""" include_last_changed = not significant_changes_only stmt = _stmt_and_join_attributes(no_attributes, include_last_changed, False) if significant_changes_only: # Since we are filtering on entity_id (metadata_id) we can avoid # the join of the states_meta table since we already know which # metadata_ids are in the significant domains. if metadata_ids_in_significant_domains: stmt = stmt.filter( States.metadata_id.in_(metadata_ids_in_significant_domains) | (States.last_changed_ts == States.last_updated_ts) | States.last_changed_ts.is_(None) ) else: stmt = stmt.filter( (States.last_changed_ts == States.last_updated_ts) | States.last_changed_ts.is_(None) ) stmt = stmt.filter(States.metadata_id.in_(metadata_ids)).filter( States.last_updated_ts > start_time_ts ) if end_time_ts: stmt = stmt.filter(States.last_updated_ts < end_time_ts) if not no_attributes: stmt = stmt.outerjoin( StateAttributes, States.attributes_id == StateAttributes.attributes_id ) if not include_start_time_state or not run_start_ts: return stmt.order_by(States.metadata_id, States.last_updated_ts) unioned_subquery = union_all( _select_from_subquery( _get_start_time_state_stmt( run_start_ts, start_time_ts, single_metadata_id, metadata_ids, no_attributes, include_last_changed, ).subquery(), no_attributes, include_last_changed, False, ), _select_from_subquery( stmt.subquery(), no_attributes, include_last_changed, False ), ).subquery() return _select_from_subquery( unioned_subquery, no_attributes, include_last_changed, False, ).order_by(unioned_subquery.c.metadata_id, unioned_subquery.c.last_updated_ts)
Return states changes during UTC period start_time - end_time. entity_ids is an optional iterable of entities to include in the results. filters is an optional SQLAlchemy filter which will be applied to the database queries unless entity_ids is given, in which case its ignored. Significant states are all states where there is a state change, as well as all states from certain domains (for instance thermostat so that we get current temperature in our graphs).
def get_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Return states changes during UTC period start_time - end_time. entity_ids is an optional iterable of entities to include in the results. filters is an optional SQLAlchemy filter which will be applied to the database queries unless entity_ids is given, in which case its ignored. Significant states are all states where there is a state change, as well as all states from certain domains (for instance thermostat so that we get current temperature in our graphs). """ if filters is not None: raise NotImplementedError("Filters are no longer supported") if not entity_ids: raise ValueError("entity_ids must be provided") entity_id_to_metadata_id: dict[str, int | None] | None = None metadata_ids_in_significant_domains: list[int] = [] instance = recorder.get_instance(hass) if not ( entity_id_to_metadata_id := instance.states_meta_manager.get_many( entity_ids, session, False ) ) or not (possible_metadata_ids := extract_metadata_ids(entity_id_to_metadata_id)): return {} metadata_ids = possible_metadata_ids if significant_changes_only: metadata_ids_in_significant_domains = [ metadata_id for entity_id, metadata_id in entity_id_to_metadata_id.items() if metadata_id is not None and split_entity_id(entity_id)[0] in SIGNIFICANT_DOMAINS ] run_start_ts: float | None = None if include_start_time_state and not ( run_start_ts := _get_run_start_ts_for_utc_point_in_time(hass, start_time) ): include_start_time_state = False start_time_ts = dt_util.utc_to_timestamp(start_time) end_time_ts = datetime_to_timestamp_or_none(end_time) single_metadata_id = metadata_ids[0] if len(metadata_ids) == 1 else None stmt = lambda_stmt( lambda: _significant_states_stmt( start_time_ts, end_time_ts, single_metadata_id, metadata_ids, metadata_ids_in_significant_domains, significant_changes_only, no_attributes, include_start_time_state, run_start_ts, ), track_on=[ bool(single_metadata_id), bool(metadata_ids_in_significant_domains), bool(end_time_ts), significant_changes_only, no_attributes, include_start_time_state, ], ) return _sorted_states_to_dict( execute_stmt_lambda_element(session, stmt, None, end_time, orm_rows=False), start_time_ts if include_start_time_state else None, entity_ids, entity_id_to_metadata_id, minimal_response, compressed_state_format, no_attributes=no_attributes, )
Variant of get_significant_states_with_session. Difference with get_significant_states_with_session is that it does not return minimal responses.
def get_full_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, no_attributes: bool = False, ) -> dict[str, list[State]]: """Variant of get_significant_states_with_session. Difference with get_significant_states_with_session is that it does not return minimal responses. """ return cast( dict[str, list[State]], get_significant_states_with_session( hass=hass, session=session, start_time=start_time, end_time=end_time, entity_ids=entity_ids, filters=filters, include_start_time_state=include_start_time_state, significant_changes_only=significant_changes_only, minimal_response=False, no_attributes=no_attributes, ), )
Return states changes during UTC period start_time - end_time.
def state_changes_during_period( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_id: str | None = None, no_attributes: bool = False, descending: bool = False, limit: int | None = None, include_start_time_state: bool = True, ) -> dict[str, list[State]]: """Return states changes during UTC period start_time - end_time.""" has_last_reported = ( recorder.get_instance(hass).schema_version >= LAST_REPORTED_SCHEMA_VERSION ) if not entity_id: raise ValueError("entity_id must be provided") entity_ids = [entity_id.lower()] with session_scope(hass=hass, read_only=True) as session: instance = recorder.get_instance(hass) if not ( possible_metadata_id := instance.states_meta_manager.get( entity_id, session, False ) ): return {} single_metadata_id = possible_metadata_id entity_id_to_metadata_id: dict[str, int | None] = { entity_id: single_metadata_id } run_start_ts: float | None = None if include_start_time_state and not ( run_start_ts := _get_run_start_ts_for_utc_point_in_time(hass, start_time) ): include_start_time_state = False start_time_ts = dt_util.utc_to_timestamp(start_time) end_time_ts = datetime_to_timestamp_or_none(end_time) stmt = lambda_stmt( lambda: _state_changed_during_period_stmt( start_time_ts, end_time_ts, single_metadata_id, no_attributes, limit, include_start_time_state, run_start_ts, has_last_reported, ), track_on=[ bool(end_time_ts), no_attributes, bool(limit), include_start_time_state, has_last_reported, ], ) return cast( dict[str, list[State]], _sorted_states_to_dict( execute_stmt_lambda_element( session, stmt, None, end_time, orm_rows=False ), start_time_ts if include_start_time_state else None, entity_ids, entity_id_to_metadata_id, descending=descending, no_attributes=no_attributes, ), )
Return the last number_of_states.
def get_last_state_changes( hass: HomeAssistant, number_of_states: int, entity_id: str ) -> dict[str, list[State]]: """Return the last number_of_states.""" has_last_reported = ( recorder.get_instance(hass).schema_version >= LAST_REPORTED_SCHEMA_VERSION ) entity_id_lower = entity_id.lower() entity_ids = [entity_id_lower] # Calling this function with number_of_states > 1 can cause instability # because it has to scan the table to find the last number_of_states states # because the metadata_id_last_updated_ts index is in ascending order. with session_scope(hass=hass, read_only=True) as session: instance = recorder.get_instance(hass) if not ( possible_metadata_id := instance.states_meta_manager.get( entity_id, session, False ) ): return {} metadata_id = possible_metadata_id entity_id_to_metadata_id: dict[str, int | None] = {entity_id_lower: metadata_id} if number_of_states == 1: stmt = lambda_stmt( lambda: _get_last_state_changes_single_stmt(metadata_id), ) else: stmt = lambda_stmt( lambda: _get_last_state_changes_multiple_stmt( number_of_states, metadata_id, has_last_reported ), track_on=[has_last_reported], ) states = list(execute_stmt_lambda_element(session, stmt, orm_rows=False)) return cast( dict[str, list[State]], _sorted_states_to_dict( reversed(states), None, entity_ids, entity_id_to_metadata_id, no_attributes=False, ), )
Baked query to get states for specific entities.
def _get_start_time_state_for_entities_stmt( run_start_ts: float, epoch_time: float, metadata_ids: list[int], no_attributes: bool, include_last_changed: bool, ) -> Select: """Baked query to get states for specific entities.""" # We got an include-list of entities, accelerate the query by filtering already # in the inner and the outer query. stmt = ( _stmt_and_join_attributes_for_start_state( no_attributes, include_last_changed, False ) .join( ( most_recent_states_for_entities_by_date := ( select( States.metadata_id.label("max_metadata_id"), func.max(States.last_updated_ts).label("max_last_updated"), ) .filter( (States.last_updated_ts >= run_start_ts) & (States.last_updated_ts < epoch_time) & States.metadata_id.in_(metadata_ids) ) .group_by(States.metadata_id) .subquery() ) ), and_( States.metadata_id == most_recent_states_for_entities_by_date.c.max_metadata_id, States.last_updated_ts == most_recent_states_for_entities_by_date.c.max_last_updated, ), ) .filter( (States.last_updated_ts >= run_start_ts) & (States.last_updated_ts < epoch_time) & States.metadata_id.in_(metadata_ids) ) ) if no_attributes: return stmt return stmt.outerjoin( StateAttributes, (States.attributes_id == StateAttributes.attributes_id) )
Return the start time of a run.
def _get_run_start_ts_for_utc_point_in_time( hass: HomeAssistant, utc_point_in_time: datetime ) -> float | None: """Return the start time of a run.""" run = recorder.get_instance(hass).recorder_runs_manager.get(utc_point_in_time) if ( run is not None and (run_start := process_timestamp(run.start)) < utc_point_in_time ): return run_start.timestamp() # History did not run before utc_point_in_time but we still return None
Return the states at a specific point in time.
def _get_start_time_state_stmt( run_start_ts: float, epoch_time: float, single_metadata_id: int | None, metadata_ids: list[int], no_attributes: bool, include_last_changed: bool, ) -> Select: """Return the states at a specific point in time.""" if single_metadata_id: # Use an entirely different (and extremely fast) query if we only # have a single entity id return _get_single_entity_start_time_stmt( epoch_time, single_metadata_id, no_attributes, include_last_changed, False, ) # We have more than one entity to look at so we need to do a query on states # since the last recorder run started. return _get_start_time_state_for_entities_stmt( run_start_ts, epoch_time, metadata_ids, no_attributes, include_last_changed, )
Convert SQL results into JSON friendly data structure. This takes our state list and turns it into a JSON friendly data structure {'entity_id': [list of states], 'entity_id2': [list of states]} States must be sorted by entity_id and last_updated We also need to go back and create a synthetic zero data point for each list of states, otherwise our graphs won't start on the Y axis correctly.
def _sorted_states_to_dict( states: Iterable[Row], start_time_ts: float | None, entity_ids: list[str], entity_id_to_metadata_id: dict[str, int | None], minimal_response: bool = False, compressed_state_format: bool = False, descending: bool = False, no_attributes: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Convert SQL results into JSON friendly data structure. This takes our state list and turns it into a JSON friendly data structure {'entity_id': [list of states], 'entity_id2': [list of states]} States must be sorted by entity_id and last_updated We also need to go back and create a synthetic zero data point for each list of states, otherwise our graphs won't start on the Y axis correctly. """ field_map = _FIELD_MAP state_class: Callable[ [Row, dict[str, dict[str, Any]], float | None, str, str, float | None, bool], State | dict[str, Any], ] if compressed_state_format: state_class = row_to_compressed_state attr_time = COMPRESSED_STATE_LAST_UPDATED attr_state = COMPRESSED_STATE_STATE else: state_class = LazyState attr_time = LAST_CHANGED_KEY attr_state = STATE_KEY # Set all entity IDs to empty lists in result set to maintain the order result: dict[str, list[State | dict[str, Any]]] = { entity_id: [] for entity_id in entity_ids } metadata_id_to_entity_id: dict[int, str] = {} metadata_id_to_entity_id = { v: k for k, v in entity_id_to_metadata_id.items() if v is not None } # Get the states at the start time if len(entity_ids) == 1: metadata_id = entity_id_to_metadata_id[entity_ids[0]] assert metadata_id is not None # should not be possible if we got here states_iter: Iterable[tuple[int, Iterator[Row]]] = ( (metadata_id, iter(states)), ) else: key_func = itemgetter(field_map["metadata_id"]) states_iter = groupby(states, key_func) state_idx = field_map["state"] last_updated_ts_idx = field_map["last_updated_ts"] # Append all changes to it for metadata_id, group in states_iter: entity_id = metadata_id_to_entity_id[metadata_id] attr_cache: dict[str, dict[str, Any]] = {} ent_results = result[entity_id] if ( not minimal_response or split_entity_id(entity_id)[0] in NEED_ATTRIBUTE_DOMAINS ): ent_results.extend( state_class( db_state, attr_cache, start_time_ts, entity_id, db_state[state_idx], db_state[last_updated_ts_idx], False, ) for db_state in group ) continue prev_state: str | None = None # With minimal response we only provide a native # State for the first and last response. All the states # in-between only provide the "state" and the # "last_changed". if not ent_results: if (first_state := next(group, None)) is None: continue prev_state = first_state[state_idx] ent_results.append( state_class( first_state, attr_cache, start_time_ts, entity_id, prev_state, # type: ignore[arg-type] first_state[last_updated_ts_idx], no_attributes, ) ) # # minimal_response only makes sense with last_updated == last_updated # # We use last_updated for for last_changed since its the same # # With minimal response we do not care about attribute # changes so we can filter out duplicate states if compressed_state_format: # Compressed state format uses the timestamp directly ent_results.extend( { attr_state: (prev_state := state), attr_time: row[last_updated_ts_idx], } for row in group if (state := row[state_idx]) != prev_state ) continue # Non-compressed state format returns an ISO formatted string _utc_from_timestamp = dt_util.utc_from_timestamp ent_results.extend( { attr_state: (prev_state := state), attr_time: _utc_from_timestamp(row[last_updated_ts_idx]).isoformat(), } for row in group if (state := row[state_idx]) != prev_state ) if descending: for ent_results in result.values(): ent_results.reverse() # Filter out the empty lists if some states had 0 results. return {key: val for key, val in result.items() if val}
Return a dict of significant states during a time period.
def get_full_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, no_attributes: bool = False, ) -> dict[str, list[State]]: """Return a dict of significant states during a time period.""" if not recorder.get_instance(hass).states_meta_manager.active: from .legacy import ( # pylint: disable=import-outside-toplevel get_full_significant_states_with_session as _legacy_get_full_significant_states_with_session, ) _target = _legacy_get_full_significant_states_with_session else: _target = _modern_get_full_significant_states_with_session return _target( hass, session, start_time, end_time, entity_ids, filters, include_start_time_state, significant_changes_only, no_attributes, )
Return the last number_of_states.
def get_last_state_changes( hass: HomeAssistant, number_of_states: int, entity_id: str ) -> dict[str, list[State]]: """Return the last number_of_states.""" if not recorder.get_instance(hass).states_meta_manager.active: from .legacy import ( # pylint: disable=import-outside-toplevel get_last_state_changes as _legacy_get_last_state_changes, ) _target = _legacy_get_last_state_changes else: _target = _modern_get_last_state_changes return _target(hass, number_of_states, entity_id)
Return a dict of significant states during a time period.
def get_significant_states( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Return a dict of significant states during a time period.""" if not recorder.get_instance(hass).states_meta_manager.active: from .legacy import ( # pylint: disable=import-outside-toplevel get_significant_states as _legacy_get_significant_states, ) _target = _legacy_get_significant_states else: _target = _modern_get_significant_states return _target( hass, start_time, end_time, entity_ids, filters, include_start_time_state, significant_changes_only, minimal_response, no_attributes, compressed_state_format, )
Return a dict of significant states during a time period.
def get_significant_states_with_session( hass: HomeAssistant, session: Session, start_time: datetime, end_time: datetime | None = None, entity_ids: list[str] | None = None, filters: Filters | None = None, include_start_time_state: bool = True, significant_changes_only: bool = True, minimal_response: bool = False, no_attributes: bool = False, compressed_state_format: bool = False, ) -> dict[str, list[State | dict[str, Any]]]: """Return a dict of significant states during a time period.""" if not recorder.get_instance(hass).states_meta_manager.active: from .legacy import ( # pylint: disable=import-outside-toplevel get_significant_states_with_session as _legacy_get_significant_states_with_session, ) _target = _legacy_get_significant_states_with_session else: _target = _modern_get_significant_states_with_session return _target( hass, session, start_time, end_time, entity_ids, filters, include_start_time_state, significant_changes_only, minimal_response, no_attributes, compressed_state_format, )
Return a list of states that changed during a time period.
def state_changes_during_period( hass: HomeAssistant, start_time: datetime, end_time: datetime | None = None, entity_id: str | None = None, no_attributes: bool = False, descending: bool = False, limit: int | None = None, include_start_time_state: bool = True, ) -> dict[str, list[State]]: """Return a list of states that changed during a time period.""" if not recorder.get_instance(hass).states_meta_manager.active: from .legacy import ( # pylint: disable=import-outside-toplevel state_changes_during_period as _legacy_state_changes_during_period, ) _target = _legacy_state_changes_during_period else: _target = _modern_state_changes_during_period return _target( hass, start_time, end_time, entity_id, no_attributes, descending, limit, include_start_time_state, )
Convert an ulid to bytes.
def ulid_to_bytes_or_none(ulid: str | None) -> bytes | None: """Convert an ulid to bytes.""" if ulid is None: return None try: return ulid_to_bytes(ulid) except ValueError: _LOGGER.exception("Error converting ulid %s to bytes", ulid) return None
Convert bytes to a ulid.
def bytes_to_ulid_or_none(_bytes: bytes | None) -> str | None: """Convert bytes to a ulid.""" if _bytes is None: return None try: return bytes_to_ulid(_bytes) except ValueError: _LOGGER.exception("Error converting bytes %s to ulid", _bytes) return None
Convert a uuid hex to bytes.
def uuid_hex_to_bytes_or_none(uuid_hex: str | None) -> bytes | None: """Convert a uuid hex to bytes.""" if uuid_hex is None: return None with suppress(ValueError): return UUID(hex=uuid_hex).bytes return None
Convert bytes to a uuid hex.
def bytes_to_uuid_hex_or_none(_bytes: bytes | None) -> str | None: """Convert bytes to a uuid hex.""" if _bytes is None: return None with suppress(ValueError): return UUID(bytes=_bytes).hex return None
Extract event_type ids from event_type_to_event_type_id.
def extract_event_type_ids( event_type_to_event_type_id: dict[EventType[Any] | str, int | None], ) -> list[int]: """Extract event_type ids from event_type_to_event_type_id.""" return [ event_type_id for event_type_id in event_type_to_event_type_id.values() if event_type_id is not None ]
Convert a database row to a compressed state before schema 31.
def legacy_row_to_compressed_state_pre_schema_31( row: Row, attr_cache: dict[str, dict[str, Any]], start_time: datetime | None, ) -> dict[str, Any]: """Convert a database row to a compressed state before schema 31.""" comp_state = { COMPRESSED_STATE_STATE: row.state, COMPRESSED_STATE_ATTRIBUTES: decode_attributes_from_row_legacy(row, attr_cache), } if start_time: comp_state[COMPRESSED_STATE_LAST_UPDATED] = start_time.timestamp() else: row_last_updated: datetime = row.last_updated comp_state[COMPRESSED_STATE_LAST_UPDATED] = process_datetime_to_timestamp( row_last_updated ) if ( row_changed_changed := row.last_changed ) and row_last_updated != row_changed_changed: comp_state[COMPRESSED_STATE_LAST_CHANGED] = process_datetime_to_timestamp( row_changed_changed ) return comp_state
Convert a database row to a compressed state schema 31 and later.
def legacy_row_to_compressed_state( row: Row, attr_cache: dict[str, dict[str, Any]], start_time: datetime | None, entity_id: str | None = None, ) -> dict[str, Any]: """Convert a database row to a compressed state schema 31 and later.""" comp_state = { COMPRESSED_STATE_STATE: row.state, COMPRESSED_STATE_ATTRIBUTES: decode_attributes_from_row_legacy(row, attr_cache), } if start_time: comp_state[COMPRESSED_STATE_LAST_UPDATED] = dt_util.utc_to_timestamp(start_time) else: row_last_updated_ts: float = row.last_updated_ts comp_state[COMPRESSED_STATE_LAST_UPDATED] = row_last_updated_ts if ( row_last_changed_ts := row.last_changed_ts ) and row_last_updated_ts != row_last_changed_ts: comp_state[COMPRESSED_STATE_LAST_CHANGED] = row_last_changed_ts return comp_state
Decode attributes from a database row.
def decode_attributes_from_row_legacy( row: Row, attr_cache: dict[str, dict[str, Any]] ) -> dict[str, Any]: """Decode attributes from a database row.""" return decode_attributes_from_source( getattr(row, "shared_attrs", None) or getattr(row, "attributes", None), attr_cache, )
Extract metadata ids from entity_id_to_metadata_id.
def extract_metadata_ids( entity_id_to_metadata_id: dict[str, int | None], ) -> list[int]: """Extract metadata ids from entity_id_to_metadata_id.""" return [ metadata_id for metadata_id in entity_id_to_metadata_id.values() if metadata_id is not None ]