response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Tests that the 'fail_task' method of the OpenLineageAdapter is invoked with the correct arguments. This test ensures that the job name is accurately retrieved and included, along with the generated run_id and task metadata. By mocking the job name retrieval and the run_id generation, the test verifies the integrity and consistency of the data passed to the adapter during task failure events, thus confirming that the adapter's failure handling is functioning as expected.
def test_adapter_fail_task_is_called_with_proper_arguments(mock_get_job_name, mocked_adapter, mock_disabled): """Tests that the 'fail_task' method of the OpenLineageAdapter is invoked with the correct arguments. This test ensures that the job name is accurately retrieved and included, along with the generated run_id and task metadata. By mocking the job name retrieval and the run_id generation, the test verifies the integrity and consistency of the data passed to the adapter during task failure events, thus confirming that the adapter's failure handling is functioning as expected. """ def mock_task_id(dag_id, task_id, execution_date, try_number): return f"{dag_id}.{task_id}.{execution_date}.{try_number}" listener, task_instance = _create_listener_and_task_instance() mock_get_job_name.return_value = "job_name" mocked_adapter.build_task_instance_run_id.side_effect = mock_task_id mocked_adapter.build_dag_run_id.side_effect = lambda x, y: f"{x}.{y}" mock_disabled.return_value = False listener.on_task_instance_failed(None, task_instance, None) listener.adapter.fail_task.assert_called_once_with( end_time="2023-01-03T13:01:01", job_name="job_name", parent_job_name="dag_id", parent_run_id="dag_id.dag_run_run_id", run_id="dag_id.task_id.execution_date.1", task=listener.extractor_manager.extract_metadata(), )
Tests that the 'complete_task' method of the OpenLineageAdapter is called with the correct arguments. It checks that the job name is correctly retrieved and passed, along with the run_id and task metadata. The test also simulates changes in the try_number attribute of the task instance, as it would occur in Airflow, to ensure that the run_id is updated accordingly. This helps confirm the consistency and correctness of the data passed to the adapter during the task's lifecycle events.
def test_adapter_complete_task_is_called_with_proper_arguments( mock_get_job_name, mocked_adapter, mock_disabled ): """Tests that the 'complete_task' method of the OpenLineageAdapter is called with the correct arguments. It checks that the job name is correctly retrieved and passed, along with the run_id and task metadata. The test also simulates changes in the try_number attribute of the task instance, as it would occur in Airflow, to ensure that the run_id is updated accordingly. This helps confirm the consistency and correctness of the data passed to the adapter during the task's lifecycle events. """ def mock_task_id(dag_id, task_id, execution_date, try_number): return f"{dag_id}.{task_id}.{execution_date}.{try_number}" listener, task_instance = _create_listener_and_task_instance() mock_get_job_name.return_value = "job_name" mocked_adapter.build_task_instance_run_id.side_effect = mock_task_id mocked_adapter.build_dag_run_id.side_effect = lambda x, y: f"{x}.{y}" mock_disabled.return_value = False listener.on_task_instance_success(None, task_instance, None) # This run_id will be different as we did NOT simulate increase of the try_number attribute, # which happens in Airflow. listener.adapter.complete_task.assert_called_once_with( end_time="2023-01-03T13:01:01", job_name="job_name", parent_job_name="dag_id", parent_run_id="dag_id.dag_run_run_id", run_id="dag_id.task_id.execution_date.0", task=listener.extractor_manager.extract_metadata(), ) # Now we simulate the increase of try_number, and the run_id should reflect that change. listener.adapter.complete_task.reset_mock() task_instance.try_number += 1 listener.on_task_instance_success(None, task_instance, None) listener.adapter.complete_task.assert_called_once_with( end_time="2023-01-03T13:01:01", job_name="job_name", parent_job_name="dag_id", parent_run_id="dag_id.dag_run_run_id", run_id="dag_id.task_id.execution_date.1", task=listener.extractor_manager.extract_metadata(), )
Tests that the run_id remains constant across different methods of the listener. It ensures that the run_id generated for starting, failing, and completing a task is consistent, reflecting the task's identity and execution context. The test also simulates the change in the try_number attribute, as it would occur in Airflow, to verify that the run_id updates accordingly.
def test_run_id_is_constant_across_all_methods(mocked_adapter): """Tests that the run_id remains constant across different methods of the listener. It ensures that the run_id generated for starting, failing, and completing a task is consistent, reflecting the task's identity and execution context. The test also simulates the change in the try_number attribute, as it would occur in Airflow, to verify that the run_id updates accordingly. """ def mock_task_id(dag_id, task_id, execution_date, try_number): return f"{dag_id}.{task_id}.{execution_date}.{try_number}" listener, task_instance = _create_listener_and_task_instance() mocked_adapter.build_task_instance_run_id.side_effect = mock_task_id listener.on_task_instance_running(None, task_instance, None) expected_run_id = listener.adapter.start_task.call_args.kwargs["run_id"] assert expected_run_id == "dag_id.task_id.execution_date.1" listener.on_task_instance_failed(None, task_instance, None) assert listener.adapter.fail_task.call_args.kwargs["run_id"] == expected_run_id # This run_id will be different as we did NOT simulate increase of the try_number attribute, # which happens in Airflow. listener.on_task_instance_success(None, task_instance, None) assert listener.adapter.complete_task.call_args.kwargs["run_id"] == "dag_id.task_id.execution_date.0" # Now we simulate the increase of try_number, and the run_id should reflect that change. # This is how airflow works, and that's why we expect the run_id to remain constant across all methods. task_instance.try_number += 1 listener.on_task_instance_success(None, task_instance, None) assert listener.adapter.complete_task.call_args.kwargs["run_id"] == expected_run_id
Tests the OpenLineageListener's response when a task instance is in the running state. This test ensures that when an Airflow task instance transitions to the running state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance.
def test_running_task_correctly_calls_openlineage_adapter_run_id_method(): """Tests the OpenLineageListener's response when a task instance is in the running state. This test ensures that when an Airflow task instance transitions to the running state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance. """ listener, task_instance = _create_listener_and_task_instance() listener.on_task_instance_running(None, task_instance, None) listener.adapter.build_task_instance_run_id.assert_called_once_with( dag_id="dag_id", task_id="task_id", execution_date="execution_date", try_number=1, )
Tests the OpenLineageListener's response when a task instance is in the failed state. This test ensures that when an Airflow task instance transitions to the failed state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance.
def test_failed_task_correctly_calls_openlineage_adapter_run_id_method(mock_adapter): """Tests the OpenLineageListener's response when a task instance is in the failed state. This test ensures that when an Airflow task instance transitions to the failed state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance. """ listener, task_instance = _create_listener_and_task_instance() listener.on_task_instance_failed(None, task_instance, None) mock_adapter.build_task_instance_run_id.assert_called_once_with( dag_id="dag_id", task_id="task_id", execution_date="execution_date", try_number=1, )
Tests the OpenLineageListener's response when a task instance is in the success state. This test ensures that when an Airflow task instance transitions to the success state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance.
def test_successful_task_correctly_calls_openlineage_adapter_run_id_method(mock_adapter): """Tests the OpenLineageListener's response when a task instance is in the success state. This test ensures that when an Airflow task instance transitions to the success state, the OpenLineageAdapter's `build_task_instance_run_id` method is called exactly once with the correct parameters derived from the task instance. """ listener, task_instance = _create_listener_and_task_instance() listener.on_task_instance_success(None, task_instance, None) mock_adapter.build_task_instance_run_id.assert_called_once_with( dag_id="dag_id", task_id="task_id", execution_date="execution_date", try_number=0, )
Validates the listener's on-failure method is called before try_number increment happens. This test ensures that when a task instance fails, Airflow's listener method for task failure (`on_task_instance_failed`) is invoked before the increment of the `try_number` attribute happens. A custom exception simulates task failure, and the test captures the `try_number` at the moment of this method call.
def test_listener_on_task_instance_failed_is_called_before_try_number_increment(mock_listener): """Validates the listener's on-failure method is called before try_number increment happens. This test ensures that when a task instance fails, Airflow's listener method for task failure (`on_task_instance_failed`) is invoked before the increment of the `try_number` attribute happens. A custom exception simulates task failure, and the test captures the `try_number` at the moment of this method call. """ captured_try_numbers = {} _setup_mock_listener(mock_listener, captured_try_numbers) # Just to make sure no error interferes with the test, and we do not suppress it by accident class CustomError(Exception): pass def fail_callable(**kwargs): raise CustomError("Simulated task failure") _, task_instance = _create_test_dag_and_task(fail_callable, "failure") # try_number before execution assert task_instance.try_number == 1 with suppress(CustomError): task_instance.run() # try_number at the moment of function being called assert captured_try_numbers["running"] == 1 assert captured_try_numbers["failed"] == 1 # try_number after task has been executed assert task_instance.try_number == 2
Validates the listener's on-success method is called before try_number increment happens. This test ensures that when a task instance successfully completes, the `on_task_instance_success` method of Airflow's listener is called with an incremented `try_number` compared to the `try_number` before execution. The test simulates a successful task execution and captures the `try_number` at the method call.
def test_listener_on_task_instance_success_is_called_after_try_number_increment(mock_listener): """Validates the listener's on-success method is called before try_number increment happens. This test ensures that when a task instance successfully completes, the `on_task_instance_success` method of Airflow's listener is called with an incremented `try_number` compared to the `try_number` before execution. The test simulates a successful task execution and captures the `try_number` at the method call. """ captured_try_numbers = {} _setup_mock_listener(mock_listener, captured_try_numbers) def success_callable(**kwargs): return None _, task_instance = _create_test_dag_and_task(success_callable, "success") # try_number before execution assert task_instance.try_number == 1 task_instance.run() # try_number at the moment of function being called assert captured_try_numbers["running"] == 1 assert captured_try_numbers["success"] == 2 # try_number after task has been executed assert task_instance.try_number == 2
Fixture to provide a dummy Airflow DAG for testing.
def dummy_dag(): """Fixture to provide a dummy Airflow DAG for testing.""" return DAG(dag_id="test_dag", start_date=datetime(2023, 9, 29))
Test that PostgreSQL operator could template the same fields as SQLExecuteQueryOperator
def test_parameters_are_templatized(create_task_instance_of_operator): """Test that PostgreSQL operator could template the same fields as SQLExecuteQueryOperator""" ti = create_task_instance_of_operator( PostgresOperator, postgres_conn_id="{{ param.conn_id }}", sql="SELECT * FROM {{ param.table }} WHERE spam = %(spam)s;", parameters={"spam": "{{ param.bar }}"}, dag_id="test-postgres-op-parameters-are-templatized", task_id="test-task", ) task: PostgresOperator = ti.render_templates({"param": {"conn_id": "pg", "table": "foo", "bar": "egg"}}) assert task.conn_id == "pg" assert task.sql == "SELECT * FROM foo WHERE spam = %(spam)s;" assert task.parameters == {"spam": "egg"}
Create tests connections.
def slack_api_connections(): """Create tests connections.""" connections = [ Connection( conn_id=SLACK_API_DEFAULT_CONN_ID, conn_type=CONN_TYPE, password=MOCK_SLACK_API_TOKEN, ), Connection( conn_id="compat_http_type", conn_type="http", password=MOCK_SLACK_API_TOKEN, ), Connection( conn_id="empty_slack_connection", conn_type=CONN_TYPE, ), ] with pytest.MonkeyPatch.context() as mp: for conn in connections: mp.setenv(f"AIRFLOW_CONN_{conn.conn_id.upper()}", conn.get_uri()) yield
Create tests connections.
def slack_webhook_connections(): """Create tests connections.""" connections = [ Connection( conn_id=SlackWebhookHook.default_conn_name, conn_type=CONN_TYPE, password=TEST_TOKEN, ), Connection( conn_id="conn_full_url_connection", conn_type=CONN_TYPE, password=TEST_WEBHOOK_URL, ), Connection( conn_id="conn_full_url_connection_with_host", conn_type=CONN_TYPE, host="http://example.org/hooks/", password=TEST_WEBHOOK_URL, ), Connection( conn_id="conn_host_with_schema", conn_type=CONN_TYPE, host="https://hooks.slack.com/services/", password=f"/{TEST_TOKEN}", ), Connection( conn_id="conn_host_without_schema", conn_type=CONN_TYPE, host="hooks.slack.com/services/", password=f"/{TEST_TOKEN}", ), Connection( conn_id="conn_parts", conn_type=CONN_TYPE, host="hooks.slack.com/services", schema="https", password=f"/{TEST_TOKEN}", ), Connection( conn_id="conn_deprecated_extra", conn_type=CONN_TYPE, host="https://hooks.slack.com/services/", extra={"webhook_token": TEST_TOKEN}, ), Connection( conn_id="conn_custom_endpoint_1", conn_type=CONN_TYPE, schema=TEST_CUSTOM_SCHEMA, host=TEST_CUSTOM_ENDPOINT, password=TEST_TOKEN, ), Connection( conn_id="conn_custom_endpoint_2", conn_type=CONN_TYPE, host=f"{TEST_CUSTOM_SCHEMA}://{TEST_CUSTOM_ENDPOINT}", password=TEST_TOKEN, ), Connection( conn_id="conn_custom_endpoint_3", conn_type=CONN_TYPE, password=TEST_CUSTOM_WEBHOOK_URL, ), Connection( conn_id="conn_empty", conn_type=CONN_TYPE, ), Connection( conn_id="conn_password_empty_1", conn_type=CONN_TYPE, host="https://hooks.slack.com/services/", ), Connection( conn_id="conn_password_empty_2", conn_type=CONN_TYPE, schema="http", host="some.netloc", ), # Not supported anymore Connection(conn_id="conn_token_in_host_1", conn_type=CONN_TYPE, host=TEST_WEBHOOK_URL), Connection( conn_id="conn_token_in_host_2", conn_type=CONN_TYPE, schema="https", host="hooks.slack.com/services/T00000000/B00000000/XXXXXXXXXXXXXXXXXXXXXXXX", ), ] with pytest.MonkeyPatch.context() as mp: for conn in connections: mp.setenv(f"AIRFLOW_CONN_{conn.conn_id.upper()}", conn.get_uri()) yield
Create mock response for success state
def create_successful_response_mock(content): """Create mock response for success state""" response = mock.MagicMock() response.json.return_value = content response.status_code = 200 return response
create mock response for post side effect
def create_post_side_effect(status_code=429): """create mock response for post side effect""" response = mock.MagicMock() response.status_code = status_code response.reason = "test" response.raise_for_status.side_effect = requests.exceptions.HTTPError(response=response) return response
Test the execute function in case where SQL query was successful.
def test_exec_success(sql, return_last, split_statement, hook_results, hook_descriptions, expected_results): """ Test the execute function in case where SQL query was successful. """ with patch("airflow.providers.common.sql.operators.sql.BaseSQLOperator.get_db_hook") as get_db_hook_mock: op = SnowflakeOperator( task_id=TASK_ID, sql=sql, do_xcom_push=True, return_last=return_last, split_statements=split_statement, ) dbapi_hook = MagicMock() get_db_hook_mock.return_value = dbapi_hook dbapi_hook.run.return_value = hook_results dbapi_hook.descriptions = hook_descriptions execute_results = op.execute(None) assert execute_results == expected_results dbapi_hook.run.assert_called_once_with( sql=sql, parameters=None, handler=fetch_all_handler, autocommit=False, return_last=return_last, split_statements=split_statement, )
Fixture to create a WeaviateHook instance for testing.
def weaviate_hook(): """ Fixture to create a WeaviateHook instance for testing. """ mock_conn = Mock() # Patch the WeaviateHook get_connection method to return the mock connection with mock.patch.object(WeaviateHook, "get_connection", return_value=mock_conn): hook = WeaviateHook(conn_id=TEST_CONN_ID) return hook
Test the create_class method of WeaviateHook.
def test_create_class(weaviate_hook): """ Test the create_class method of WeaviateHook. """ # Mock the Weaviate Client mock_client = MagicMock() weaviate_hook.get_conn = MagicMock(return_value=mock_client) # Define test class JSON test_class_json = { "class": "TestClass", "description": "Test class for unit testing", } # Test the create_class method weaviate_hook.create_class(test_class_json) # Assert that the create_class method was called with the correct arguments mock_client.schema.create_class.assert_called_once_with(test_class_json)
Test the create_schema method of WeaviateHook.
def test_create_schema(weaviate_hook): """ Test the create_schema method of WeaviateHook. """ # Mock the Weaviate Client mock_client = MagicMock() weaviate_hook.get_conn = MagicMock(return_value=mock_client) # Define test schema JSON test_schema_json = { "classes": [ { "class": "TestClass", "description": "Test class for unit testing", } ] } # Test the create_schema method weaviate_hook.create_schema(test_schema_json) # Assert that the create_schema method was called with the correct arguments mock_client.schema.create.assert_called_once_with(test_schema_json)
Test the batch_data method of WeaviateHook.
def test_batch_data(data, expected_length, weaviate_hook): """ Test the batch_data method of WeaviateHook. """ # Mock the Weaviate Client mock_client = MagicMock() weaviate_hook.get_conn = MagicMock(return_value=mock_client) # Define test data test_class_name = "TestClass" # Test the batch_data method weaviate_hook.batch_data(test_class_name, data) # Assert that the batch_data method was called with the correct arguments mock_client.batch.configure.assert_called_once() mock_batch_context = mock_client.batch.__enter__.return_value assert mock_batch_context.add_data_object.call_count == expected_length
Test to ensure retrying working as expected
def test_batch_data_retry(get_conn, weaviate_hook): """Test to ensure retrying working as expected""" data = [{"name": "chandler"}, {"name": "joey"}, {"name": "ross"}] response = requests.Response() response.status_code = 429 error = requests.exceptions.HTTPError() error.response = response side_effect = [None, error, None, error, None] get_conn.return_value.batch.__enter__.return_value.add_data_object.side_effect = side_effect weaviate_hook.batch_data("TestClass", data) assert get_conn.return_value.batch.__enter__.return_value.add_data_object.call_count == len(side_effect)
Test if schema_json is path to a json file
def test_upsert_schema_json_file_param(get_schema, create_schema, load, open, weaviate_hook): """Test if schema_json is path to a json file""" get_schema.return_value = {"classes": [{"class": "A"}, {"class": "B"}]} load.return_value = { "B": {"class": "B"}, "C": {"class": "C"}, } weaviate_hook.create_or_replace_classes(schema_json="/tmp/some_temp_file.json", existing="ignore") create_schema.assert_called_once_with({"classes": [{"class": "C"}]})
Create a DagBag with DAGs looking like this. The dotted lines represent external dependencies set up using ExternalTaskMarker and ExternalTaskSensor. dag_0: task_a_0 >> task_b_0 | | dag_1: ---> task_a_1 >> task_b_1 | | dag_2: ---> task_a_2 >> task_b_2 | | dag_3: ---> task_a_3 >> task_b_3
def dag_bag_ext(): """ Create a DagBag with DAGs looking like this. The dotted lines represent external dependencies set up using ExternalTaskMarker and ExternalTaskSensor. dag_0: task_a_0 >> task_b_0 | | dag_1: ---> task_a_1 >> task_b_1 | | dag_2: ---> task_a_2 >> task_b_2 | | dag_3: ---> task_a_3 >> task_b_3 """ clear_db_runs() dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) dag_0 = DAG("dag_0", start_date=DEFAULT_DATE, schedule=None) task_a_0 = EmptyOperator(task_id="task_a_0", dag=dag_0) task_b_0 = ExternalTaskMarker( task_id="task_b_0", external_dag_id="dag_1", external_task_id="task_a_1", recursion_depth=3, dag=dag_0 ) task_a_0 >> task_b_0 dag_1 = DAG("dag_1", start_date=DEFAULT_DATE, schedule=None) task_a_1 = ExternalTaskSensor( task_id="task_a_1", external_dag_id=dag_0.dag_id, external_task_id=task_b_0.task_id, dag=dag_1 ) task_b_1 = ExternalTaskMarker( task_id="task_b_1", external_dag_id="dag_2", external_task_id="task_a_2", recursion_depth=2, dag=dag_1 ) task_a_1 >> task_b_1 dag_2 = DAG("dag_2", start_date=DEFAULT_DATE, schedule=None) task_a_2 = ExternalTaskSensor( task_id="task_a_2", external_dag_id=dag_1.dag_id, external_task_id=task_b_1.task_id, dag=dag_2 ) task_b_2 = ExternalTaskMarker( task_id="task_b_2", external_dag_id="dag_3", external_task_id="task_a_3", recursion_depth=1, dag=dag_2 ) task_a_2 >> task_b_2 dag_3 = DAG("dag_3", start_date=DEFAULT_DATE, schedule=None) task_a_3 = ExternalTaskSensor( task_id="task_a_3", external_dag_id=dag_2.dag_id, external_task_id=task_b_2.task_id, dag=dag_3 ) task_b_3 = EmptyOperator(task_id="task_b_3", dag=dag_3) task_a_3 >> task_b_3 for dag in [dag_0, dag_1, dag_2, dag_3]: dag_bag.bag_dag(dag=dag, root_dag=dag) yield dag_bag clear_db_runs()
Create a DagBag with two DAGs looking like this. task_1 of child_dag_1 on day 1 depends on task_0 of parent_dag_0 on day 1. Therefore, when task_0 of parent_dag_0 on day 1 and day 2 are cleared, parent_dag_0 DagRuns need to be set to running on both days, but child_dag_1 only needs to be set to running on day 1. day 1 day 2 parent_dag_0 task_0 task_0 | | v child_dag_1 task_1 task_1
def dag_bag_parent_child(): """ Create a DagBag with two DAGs looking like this. task_1 of child_dag_1 on day 1 depends on task_0 of parent_dag_0 on day 1. Therefore, when task_0 of parent_dag_0 on day 1 and day 2 are cleared, parent_dag_0 DagRuns need to be set to running on both days, but child_dag_1 only needs to be set to running on day 1. day 1 day 2 parent_dag_0 task_0 task_0 | | v child_dag_1 task_1 task_1 """ clear_db_runs() dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) day_1 = DEFAULT_DATE with DAG("parent_dag_0", start_date=day_1, schedule=None) as dag_0: task_0 = ExternalTaskMarker( task_id="task_0", external_dag_id="child_dag_1", external_task_id="task_1", execution_date=day_1.isoformat(), recursion_depth=3, ) with DAG("child_dag_1", start_date=day_1, schedule=None) as dag_1: ExternalTaskSensor( task_id="task_1", external_dag_id=dag_0.dag_id, external_task_id=task_0.task_id, execution_date_fn=lambda logical_date: day_1 if logical_date == day_1 else [], mode="reschedule", ) for dag in [dag_0, dag_1]: dag_bag.bag_dag(dag=dag, root_dag=dag) yield dag_bag clear_db_runs()
Run all tasks in the DAGs in the given dag_bag. Return the TaskInstance objects as a dict keyed by task_id.
def run_tasks(dag_bag, execution_date=DEFAULT_DATE, session=None): """ Run all tasks in the DAGs in the given dag_bag. Return the TaskInstance objects as a dict keyed by task_id. """ tis = {} for dag in dag_bag.dags.values(): dagrun = dag.create_dagrun( state=State.RUNNING, execution_date=execution_date, start_date=execution_date, run_type=DagRunType.MANUAL, session=session, ) # we use sorting by task_id here because for the test DAG structure of ours # this is equivalent to topological sort. It would not work in general case # but it works for our case because we specifically constructed test DAGS # in the way that those two sort methods are equivalent tasks = sorted(dagrun.task_instances, key=lambda ti: ti.task_id) for ti in tasks: ti.refresh_from_task(dag.get_task(ti.task_id)) tis[ti.task_id] = ti ti.run(session=session) session.flush() session.merge(ti) assert_ti_state_equal(ti, State.SUCCESS) return tis
Assert state of task_instances equals the given state.
def assert_ti_state_equal(task_instance, state): """ Assert state of task_instances equals the given state. """ task_instance.refresh_from_db() assert task_instance.state == state
Clear the task and its downstream tasks recursively for the dag in the given dagbag.
def clear_tasks( dag_bag, dag, task, session, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, dry_run=False, ): """ Clear the task and its downstream tasks recursively for the dag in the given dagbag. """ partial: DAG = dag.partial_subset(task_ids_or_regex=[task.task_id], include_downstream=True) return partial.clear( start_date=start_date, end_date=end_date, dag_bag=dag_bag, dry_run=dry_run, session=session, )
Test clearing tasks across DAGs.
def test_external_task_marker_transitive(dag_bag_ext): """ Test clearing tasks across DAGs. """ tis = run_tasks(dag_bag_ext) dag_0 = dag_bag_ext.get_dag("dag_0") task_a_0 = dag_0.get_task("task_a_0") clear_tasks(dag_bag_ext, dag_0, task_a_0) ti_a_0 = tis["task_a_0"] ti_b_3 = tis["task_b_3"] assert_ti_state_equal(ti_a_0, State.NONE) assert_ti_state_equal(ti_b_3, State.NONE)
Test clearing tasks across DAGs and make sure the right DagRuns are activated.
def test_external_task_marker_clear_activate(dag_bag_parent_child, session): """ Test clearing tasks across DAGs and make sure the right DagRuns are activated. """ dag_bag = dag_bag_parent_child day_1 = DEFAULT_DATE day_2 = DEFAULT_DATE + timedelta(days=1) run_tasks(dag_bag, execution_date=day_1) run_tasks(dag_bag, execution_date=day_2) # Assert that dagruns of all the affected dags are set to SUCCESS before tasks are cleared. for dag, execution_date in itertools.product(dag_bag.dags.values(), [day_1, day_2]): dagrun = dag.get_dagrun(execution_date=execution_date, session=session) dagrun.set_state(State.SUCCESS) session.flush() dag_0 = dag_bag.get_dag("parent_dag_0") task_0 = dag_0.get_task("task_0") clear_tasks(dag_bag, dag_0, task_0, start_date=day_1, end_date=day_2, session=session) # Assert that dagruns of all the affected dags are set to QUEUED after tasks are cleared. # Unaffected dagruns should be left as SUCCESS. dagrun_0_1 = dag_bag.get_dag("parent_dag_0").get_dagrun(execution_date=day_1, session=session) dagrun_0_2 = dag_bag.get_dag("parent_dag_0").get_dagrun(execution_date=day_2, session=session) dagrun_1_1 = dag_bag.get_dag("child_dag_1").get_dagrun(execution_date=day_1, session=session) dagrun_1_2 = dag_bag.get_dag("child_dag_1").get_dagrun(execution_date=day_2, session=session) assert dagrun_0_1.state == State.QUEUED assert dagrun_0_2.state == State.QUEUED assert dagrun_1_1.state == State.QUEUED assert dagrun_1_2.state == State.SUCCESS
Test clearing tasks with no end_date. This is the case when users clear tasks with Future, Downstream and Recursive selected.
def test_external_task_marker_future(dag_bag_ext): """ Test clearing tasks with no end_date. This is the case when users clear tasks with Future, Downstream and Recursive selected. """ date_0 = DEFAULT_DATE date_1 = DEFAULT_DATE + timedelta(days=1) tis_date_0 = run_tasks(dag_bag_ext, execution_date=date_0) tis_date_1 = run_tasks(dag_bag_ext, execution_date=date_1) dag_0 = dag_bag_ext.get_dag("dag_0") task_a_0 = dag_0.get_task("task_a_0") # This should clear all tasks on dag_0 to dag_3 on both date_0 and date_1 clear_tasks(dag_bag_ext, dag_0, task_a_0, end_date=None) ti_a_0_date_0 = tis_date_0["task_a_0"] ti_b_3_date_0 = tis_date_0["task_b_3"] ti_b_3_date_1 = tis_date_1["task_b_3"] assert_ti_state_equal(ti_a_0_date_0, State.NONE) assert_ti_state_equal(ti_b_3_date_0, State.NONE) assert_ti_state_equal(ti_b_3_date_1, State.NONE)
Clearing across multiple DAGs should raise AirflowException if more levels are being cleared than allowed by the recursion_depth of the first ExternalTaskMarker being cleared.
def test_external_task_marker_exception(dag_bag_ext): """ Clearing across multiple DAGs should raise AirflowException if more levels are being cleared than allowed by the recursion_depth of the first ExternalTaskMarker being cleared. """ run_tasks(dag_bag_ext) dag_0 = dag_bag_ext.get_dag("dag_0") task_a_0 = dag_0.get_task("task_a_0") task_b_0 = dag_0.get_task("task_b_0") task_b_0.recursion_depth = 2 with pytest.raises(AirflowException, match="Maximum recursion depth 2"): clear_tasks(dag_bag_ext, dag_0, task_a_0)
Create a DagBag with DAGs having cyclic dependencies set up by ExternalTaskMarker and ExternalTaskSensor. dag_0: task_a_0 >> task_b_0 ^ | | | dag_1: | ---> task_a_1 >> task_b_1 | ^ | | dag_n: | ---> task_a_n >> task_b_n | | -----------------------------------------------------
def dag_bag_cyclic(): """ Create a DagBag with DAGs having cyclic dependencies set up by ExternalTaskMarker and ExternalTaskSensor. dag_0: task_a_0 >> task_b_0 ^ | | | dag_1: | ---> task_a_1 >> task_b_1 | ^ | | dag_n: | ---> task_a_n >> task_b_n | | ----------------------------------------------------- """ def _factory(depth: int) -> DagBag: dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) dags = [] with DAG("dag_0", start_date=DEFAULT_DATE, schedule=None) as dag: dags.append(dag) task_a_0 = EmptyOperator(task_id="task_a_0") task_b_0 = ExternalTaskMarker( task_id="task_b_0", external_dag_id="dag_1", external_task_id="task_a_1", recursion_depth=3 ) task_a_0 >> task_b_0 for n in range(1, depth): with DAG(f"dag_{n}", start_date=DEFAULT_DATE, schedule=None) as dag: dags.append(dag) task_a = ExternalTaskSensor( task_id=f"task_a_{n}", external_dag_id=f"dag_{n-1}", external_task_id=f"task_b_{n-1}", ) task_b = ExternalTaskMarker( task_id=f"task_b_{n}", external_dag_id=f"dag_{n+1}", external_task_id=f"task_a_{n+1}", recursion_depth=3, ) task_a >> task_b # Create the last dag which loops back with DAG(f"dag_{depth}", start_date=DEFAULT_DATE, schedule=None) as dag: dags.append(dag) task_a = ExternalTaskSensor( task_id=f"task_a_{depth}", external_dag_id=f"dag_{depth-1}", external_task_id=f"task_b_{depth-1}", ) task_b = ExternalTaskMarker( task_id=f"task_b_{depth}", external_dag_id="dag_0", external_task_id="task_a_0", recursion_depth=2, ) task_a >> task_b for dag in dags: dag_bag.bag_dag(dag=dag, root_dag=dag) return dag_bag return _factory
Tests clearing across multiple DAGs that have cyclic dependencies. AirflowException should be raised.
def test_external_task_marker_cyclic_deep(dag_bag_cyclic): """ Tests clearing across multiple DAGs that have cyclic dependencies. AirflowException should be raised. """ dag_bag = dag_bag_cyclic(10) run_tasks(dag_bag) dag_0 = dag_bag.get_dag("dag_0") task_a_0 = dag_0.get_task("task_a_0") with pytest.raises(AirflowException, match="Maximum recursion depth 3"): clear_tasks(dag_bag, dag_0, task_a_0)
Tests clearing across multiple DAGs that have cyclic dependencies shallower than recursion_depth
def test_external_task_marker_cyclic_shallow(dag_bag_cyclic): """ Tests clearing across multiple DAGs that have cyclic dependencies shallower than recursion_depth """ dag_bag = dag_bag_cyclic(2) run_tasks(dag_bag) dag_0 = dag_bag.get_dag("dag_0") task_a_0 = dag_0.get_task("task_a_0") tis = clear_tasks(dag_bag, dag_0, task_a_0, dry_run=True) assert [ ("dag_0", "task_a_0"), ("dag_0", "task_b_0"), ("dag_1", "task_a_1"), ("dag_1", "task_b_1"), ("dag_2", "task_a_2"), ("dag_2", "task_b_2"), ] == sorted((ti.dag_id, ti.task_id) for ti in tis)
Create a DagBag containing two DAGs, linked by multiple ExternalTaskMarker.
def dag_bag_multiple(): """ Create a DagBag containing two DAGs, linked by multiple ExternalTaskMarker. """ dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) daily_dag = DAG("daily_dag", start_date=DEFAULT_DATE, schedule="@daily") agg_dag = DAG("agg_dag", start_date=DEFAULT_DATE, schedule="@daily") dag_bag.bag_dag(dag=daily_dag, root_dag=daily_dag) dag_bag.bag_dag(dag=agg_dag, root_dag=agg_dag) daily_task = EmptyOperator(task_id="daily_tas", dag=daily_dag) begin = EmptyOperator(task_id="begin", dag=agg_dag) for i in range(8): task = ExternalTaskMarker( task_id=f"{daily_task.task_id}_{i}", external_dag_id=daily_dag.dag_id, external_task_id=daily_task.task_id, execution_date=f"{{{{ macros.ds_add(ds, -1 * {i}) }}}}", dag=agg_dag, ) begin >> task return dag_bag
Test clearing a dag that has multiple ExternalTaskMarker.
def test_clear_multiple_external_task_marker(dag_bag_multiple): """ Test clearing a dag that has multiple ExternalTaskMarker. """ agg_dag = dag_bag_multiple.get_dag("agg_dag") tis = run_tasks(dag_bag_multiple, execution_date=DEFAULT_DATE) session = settings.Session() try: qry = session.query(TaskInstance).filter( TaskInstance.state == State.NONE, TaskInstance.dag_id.in_(dag_bag_multiple.dag_ids) ) assert agg_dag.clear(dag_bag=dag_bag_multiple) == len(tis) == qry.count() == 10 finally: session.close()
Create a DagBag containing one DAG, with task "head" depending on task "tail" of the previous execution_date. 20200501 20200502 20200510 +------+ +------+ +------+ | head | -->head | --> -->head | | | | / | | | / / | | | | v | / | v | / / | v | | body | / | body | / ... / | body | | | |/ | | |/ / | | | | v / | v / / | v | | tail/| | tail/| / | tail | +------+ +------+ +------+
def dag_bag_head_tail(): """ Create a DagBag containing one DAG, with task "head" depending on task "tail" of the previous execution_date. 20200501 20200502 20200510 +------+ +------+ +------+ | head | -->head | --> -->head | | | | / | | | / / | | | | v | / | v | / / | v | | body | / | body | / ... / | body | | | |/ | | |/ / | | | | v / | v / / | v | | tail/| | tail/| / | tail | +------+ +------+ +------+ """ dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) with DAG("head_tail", start_date=DEFAULT_DATE, schedule="@daily") as dag: head = ExternalTaskSensor( task_id="head", external_dag_id=dag.dag_id, external_task_id="tail", execution_delta=timedelta(days=1), mode="reschedule", ) body = EmptyOperator(task_id="body") tail = ExternalTaskMarker( task_id="tail", external_dag_id=dag.dag_id, external_task_id=head.task_id, execution_date="{{ macros.ds_add(ds, 1) }}", ) head >> body >> tail dag_bag.bag_dag(dag=dag, root_dag=dag) return dag_bag
Create a DagBag containing one DAG, with task "head" depending on task "tail" of the previous execution_date. 20200501 20200502 20200510 +------+ +------+ +------+ | head | -->head | --> -->head | | | | / | | | / / | | | | v | / | v | / / | v | | body | / | body | / ... / | body | | | |/ | | |/ / | | | | v / | v / / | v | | tail/| | tail/| / | tail | +------+ +------+ +------+
def dag_bag_head_tail_mapped_tasks(): """ Create a DagBag containing one DAG, with task "head" depending on task "tail" of the previous execution_date. 20200501 20200502 20200510 +------+ +------+ +------+ | head | -->head | --> -->head | | | | / | | | / / | | | | v | / | v | / / | v | | body | / | body | / ... / | body | | | |/ | | |/ / | | | | v / | v / / | v | | tail/| | tail/| / | tail | +------+ +------+ +------+ """ dag_bag = DagBag(dag_folder=DEV_NULL, include_examples=False) with DAG("head_tail", start_date=DEFAULT_DATE, schedule="@daily") as dag: @task_deco def dummy_task(x: int): return x head = ExternalTaskSensor( task_id="head", external_dag_id=dag.dag_id, external_task_id="tail", execution_delta=timedelta(days=1), mode="reschedule", ) body = dummy_task.expand(x=range(5)) tail = ExternalTaskMarker( task_id="tail", external_dag_id=dag.dag_id, external_task_id=head.task_id, execution_date="{{ macros.ds_add(ds, 1) }}", ) head >> body >> tail dag_bag.bag_dag(dag=dag, root_dag=dag) return dag_bag
Loads DAGs from a module for test.
def make_example_dags(module_path): """Loads DAGs from a module for test.""" dagbag = DagBag(module_path) return dagbag.dags
Make very simple DAG to verify serialization result.
def make_simple_dag(): """Make very simple DAG to verify serialization result.""" with DAG( dag_id="simple_dag", default_args={ "retries": 1, "retry_delay": timedelta(minutes=5), "max_retry_delay": timedelta(minutes=10), "depends_on_past": False, "sla": timedelta(seconds=100), }, start_date=datetime(2019, 8, 1), is_paused_upon_creation=False, access_control={"test_role": {permissions.ACTION_CAN_READ, permissions.ACTION_CAN_EDIT}}, doc_md="### DAG Tutorial Documentation", ) as dag: CustomOperator(task_id="custom_task") BashOperator( task_id="bash_task", bash_command="echo {{ task.task_id }}", owner="airflow", executor_config={"pod_override": executor_config_pod}, doc_md="### Task Tutorial Documentation", ) return {"simple_dag": dag}
Make DAGs with user defined macros and filters using locally defined methods. For Webserver, we do not include ``user_defined_macros`` & ``user_defined_filters``. The examples here test: (1) functions can be successfully displayed on UI; (2) templates with function macros have been rendered before serialization.
def make_user_defined_macro_filter_dag(): """Make DAGs with user defined macros and filters using locally defined methods. For Webserver, we do not include ``user_defined_macros`` & ``user_defined_filters``. The examples here test: (1) functions can be successfully displayed on UI; (2) templates with function macros have been rendered before serialization. """ def compute_next_execution_date(dag, execution_date): return dag.following_schedule(execution_date) default_args = {"start_date": datetime(2019, 7, 10)} dag = DAG( "user_defined_macro_filter_dag", default_args=default_args, user_defined_macros={ "next_execution_date": compute_next_execution_date, }, user_defined_filters={"hello": lambda name: f"Hello {name}"}, catchup=False, ) BashOperator( task_id="echo", bash_command='echo "{{ next_execution_date(dag, execution_date) }}"', dag=dag, ) return {dag.dag_id: dag}
Collects DAGs to test.
def collect_dags(dag_folder=None): """Collects DAGs to test.""" dags = {} dags.update(make_simple_dag()) dags.update(make_user_defined_macro_filter_dag()) if dag_folder: if isinstance(dag_folder, (list, tuple)): patterns = dag_folder else: patterns = [dag_folder] else: patterns = [ "airflow/example_dags", "airflow/providers/*/example_dags", # TODO: Remove once AIP-47 is completed "airflow/providers/*/*/example_dags", # TODO: Remove once AIP-47 is completed "tests/system/providers/*/", "tests/system/providers/*/*/", ] excluded_patterns = [f"{ROOT_FOLDER}/{excluded_pattern}" for excluded_pattern in get_excluded_patterns()] for pattern in patterns: for directory in glob(f"{ROOT_FOLDER}/{pattern}"): if any([directory.startswith(excluded_pattern) for excluded_pattern in excluded_patterns]): continue dags.update(make_example_dags(directory)) # Filter subdags as they are stored in same row in Serialized Dag table dags = {dag_id: dag for dag_id, dag in dags.items() if not dag.is_subdag} return dags
Create a simple_dag variant that uses timetable instead of schedule_interval.
def get_timetable_based_simple_dag(timetable): """Create a simple_dag variant that uses timetable instead of schedule_interval.""" dag = collect_dags(["airflow/example_dags"])["simple_dag"] dag.timetable = timetable dag.schedule_interval = timetable.summary return dag
Validate pickle in a subprocess.
def serialize_subprocess(queue, dag_folder): """Validate pickle in a subprocess.""" dags = collect_dags(dag_folder) for dag in dags.values(): queue.put(SerializedDAG.to_json(dag)) queue.put(None)
Patch plugins manager to always and only return our custom timetable.
def timetable_plugin(monkeypatch): """Patch plugins manager to always and only return our custom timetable.""" from airflow import plugins_manager monkeypatch.setattr(plugins_manager, "initialize_timetables_plugins", lambda: None) monkeypatch.setattr( plugins_manager, "timetable_classes", {"tests.test_utils.timetables.CustomSerializationTimetable": CustomSerializationTimetable}, )
Serialisation / deserialisation continues to work without kubernetes installed
def test_kubernetes_optional(): """Serialisation / deserialisation continues to work without kubernetes installed""" def mock__import__(name, globals_=None, locals_=None, fromlist=(), level=0): if level == 0 and name.partition(".")[0] == "kubernetes": raise ImportError("No module named 'kubernetes'") return importlib.__import__(name, globals=globals_, locals=locals_, fromlist=fromlist, level=level) with mock.patch("builtins.__import__", side_effect=mock__import__) as import_mock: # load module from scratch, this does not replace any already imported # airflow.serialization.serialized_objects module in sys.modules spec = importlib.util.find_spec("airflow.serialization.serialized_objects") module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) # if we got this far, the module did not try to load kubernetes, but # did it try to access airflow.providers.cncf.kubernetes.*? imported_airflow = { c.args[0].split(".", 2)[1] for c in import_mock.call_args_list if c.args[0].startswith("airflow.") } assert "kubernetes" not in imported_airflow # pod loading is not supported when kubernetes is not available pod_override = { "__type": "k8s.V1Pod", "__var": PodGenerator.serialize_pod(executor_config_pod), } with pytest.raises(RuntimeError): module.BaseSerialization.from_dict(pod_override) # basic serialization should succeed module.SerializedDAG.to_dict(make_simple_dag()["simple_dag"])
Unmap a deserialized mapped operator should be similar to deserializing an non-mapped operator.
def test_operator_expand_deserialized_unmap(): """Unmap a deserialized mapped operator should be similar to deserializing an non-mapped operator.""" normal = BashOperator(task_id="a", bash_command=[1, 2], executor_config={"a": "b"}) mapped = BashOperator.partial(task_id="a", executor_config={"a": "b"}).expand(bash_command=[1, 2]) ser_mapped = BaseSerialization.serialize(mapped) deser_mapped = BaseSerialization.deserialize(ser_mapped) ser_normal = BaseSerialization.serialize(normal) deser_normal = BaseSerialization.deserialize(ser_normal) assert deser_mapped.unmap(None) == deser_normal
Unmap a deserialized mapped sensor should be similar to deserializing a non-mapped sensor
def test_sensor_expand_deserialized_unmap(): """Unmap a deserialized mapped sensor should be similar to deserializing a non-mapped sensor""" normal = BashSensor(task_id="a", bash_command=[1, 2], mode="reschedule") mapped = BashSensor.partial(task_id="a", mode="reschedule").expand(bash_command=[1, 2]) serialize = SerializedBaseOperator.serialize deserialize = SerializedBaseOperator.deserialize assert deserialize(serialize(mapped)).unmap(None) == deserialize(serialize(normal))
Test task resources serialization/deserialization.
def test_task_resources_serde(): """ Test task resources serialization/deserialization. """ from airflow.operators.empty import EmptyOperator execution_date = datetime(2020, 1, 1) task_id = "task1" with DAG("test_task_resources", start_date=execution_date) as _: task = EmptyOperator(task_id=task_id, resources={"cpus": 0.1, "ram": 2048}) serialized = BaseSerialization.serialize(task) assert serialized["__var"]["resources"] == { "cpus": {"name": "CPU", "qty": 0.1, "units_str": "core(s)"}, "disk": {"name": "Disk", "qty": 512, "units_str": "MB"}, "gpus": {"name": "GPU", "qty": 0, "units_str": "gpu(s)"}, "ram": {"name": "RAM", "qty": 2048, "units_str": "MB"}, }
Any time we recurse cls.serialize, we must forward all kwargs.
def test_recursive_serialize_calls_must_forward_kwargs(): """Any time we recurse cls.serialize, we must forward all kwargs.""" import ast valid_recursive_call_count = 0 skipped_recursive_calls = 0 # when another serialize method called file = REPO_ROOT / "airflow/serialization/serialized_objects.py" content = file.read_text() tree = ast.parse(content) class_def = None for stmt in ast.walk(tree): if isinstance(stmt, ast.ClassDef) and stmt.name == "BaseSerialization": class_def = stmt method_def = None for elem in ast.walk(class_def): if isinstance(elem, ast.FunctionDef) and elem.name == "serialize": method_def = elem break kwonly_args = [x.arg for x in method_def.args.kwonlyargs] for elem in ast.walk(method_def): if isinstance(elem, ast.Call) and getattr(elem.func, "attr", "") == "serialize": if not elem.func.value.id == "cls": skipped_recursive_calls += 1 break kwargs = {y.arg: y.value for y in elem.keywords} for name in kwonly_args: if name not in kwargs or getattr(kwargs[name], "id", "") != name: ref = f"{file}:{elem.lineno}" message = ( f"Error at {ref}; recursive calls to `cls.serialize` " f"must forward the `{name}` argument" ) raise Exception(message) valid_recursive_call_count += 1 print(f"validated calls: {valid_recursive_call_count}") assert valid_recursive_call_count > 0 assert skipped_recursive_calls == 1
If strict=True, serialization should fail when object is not JSON serializable.
def test_strict_mode(): """If strict=True, serialization should fail when object is not JSON serializable.""" class Test: a = 1 from airflow.serialization.serialized_objects import BaseSerialization obj = [[[Test()]]] # nested to verify recursive behavior BaseSerialization.serialize(obj) # does not raise with pytest.raises(SerializationError, match="Encountered unexpected type"): BaseSerialization.serialize(obj, strict=True)
Test deserialize connection which serialised by previous serializer implementation.
def test_backcompat_deserialize_connection(conn_uri): """Test deserialize connection which serialised by previous serializer implementation.""" from airflow.serialization.serialized_objects import BaseSerialization conn_obj = {Encoding.TYPE: DAT.CONNECTION, Encoding.VAR: {"conn_id": "TEST_ID", "uri": conn_uri}} deserialized = BaseSerialization.deserialize(conn_obj) assert deserialized.get_uri() == conn_uri
If use_pydantic_models=True the objects should be serialized to Pydantic objects.
def test_serialize_deserialize_pydantic(input, pydantic_class, encoded_type, cmp_func): """If use_pydantic_models=True the objects should be serialized to Pydantic objects.""" pydantic = pytest.importorskip("pydantic", minversion="2.0.0") from airflow.serialization.serialized_objects import BaseSerialization with warnings.catch_warnings(): warnings.simplefilter("error", category=pydantic.warnings.PydanticDeprecationWarning) serialized = BaseSerialization.serialize(input, use_pydantic_models=True) # does not raise # Verify the result is JSON-serializable json.dumps(serialized) # does not raise assert serialized["__type"] == encoded_type assert serialized["__var"] is not None deserialized = BaseSerialization.deserialize(serialized, use_pydantic_models=True) assert isinstance(deserialized, pydantic_class) assert cmp_func(input, deserialized) # verify that when we round trip a pydantic model we get the same thing reserialized = BaseSerialization.serialize(deserialized, use_pydantic_models=True) dereserialized = BaseSerialization.deserialize(reserialized, use_pydantic_models=True) assert isinstance(dereserialized, pydantic_class) assert dereserialized == deserialized # Verify recursive behavior obj = [[input]] BaseSerialization.serialize(obj, use_pydantic_models=True)
This is for AIP-44 when we need to send certain non-error exceptions as part of an RPC call e.g. TaskDeferred or AirflowRescheduleException.
def test_roundtrip_exceptions(): """This is for AIP-44 when we need to send certain non-error exceptions as part of an RPC call e.g. TaskDeferred or AirflowRescheduleException.""" some_date = pendulum.now() resched_exc = AirflowRescheduleException(reschedule_date=some_date) ser = BaseSerialization.serialize(resched_exc) deser = BaseSerialization.deserialize(ser) assert isinstance(deser, AirflowRescheduleException) assert deser.reschedule_date == some_date del ser del deser exc = TaskDeferred( trigger=MyTrigger(hi="yo"), method_name="meth_name", kwargs={"have": "pie"}, timeout=timedelta(seconds=30), ) ser = BaseSerialization.serialize(exc) deser = BaseSerialization.deserialize(ser) assert deser.trigger.hi == "yo" assert deser.method_name == "meth_name" assert deser.kwargs == {"have": "pie"} assert deser.timeout == timedelta(seconds=30)
Override this fixture in provider's conftest.py
def provider_env_vars(): """Override this fixture in provider's conftest.py""" return ()
Add @pytest.mark.system(provider_name) for every system test.
def pytest_collection_modifyitems(config: pytest.Config, items: list[pytest.Item]) -> None: """Add @pytest.mark.system(provider_name) for every system test.""" rootdir = config.rootpath for item in items: rel_path = item.path.relative_to(rootdir) # Provider system tests match = re.match(".+/system/providers/([^/]+)", str(rel_path)) if match: provider = match.group(1) item.add_marker(pytest.mark.system(provider)) # Core system tests match = re.match(".+/system/[^/]+", str(rel_path)) if match: item.add_marker(pytest.mark.system("core"))
creates a flow that takes a CSV and converts it to a json containing the same data
def create_s3_to_s3_flow(flow_name: str, bucket_name: str, source_folder: str): """creates a flow that takes a CSV and converts it to a json containing the same data""" client = boto3.client("appflow") client.create_flow( flowName=flow_name, triggerConfig={"triggerType": "OnDemand"}, sourceFlowConfig={ "connectorType": "S3", "sourceConnectorProperties": { "S3": { "bucketName": bucket_name, "bucketPrefix": source_folder, "s3InputFormatConfig": {"s3InputFileType": "CSV"}, }, }, }, destinationFlowConfigList=[ { "connectorType": "S3", "destinationConnectorProperties": { "S3": { "bucketName": bucket_name, "s3OutputFormatConfig": { "fileType": "JSON", "aggregationConfig": { "aggregationType": "None", }, }, } }, }, ], tasks=[ { "sourceFields": ["col1", "col2"], "connectorOperator": {"S3": "PROJECTION"}, "taskType": "Filter", }, { "sourceFields": ["col1"], "connectorOperator": {"S3": "NO_OP"}, "destinationField": "col1", "taskType": "Map", "taskProperties": {"DESTINATION_DATA_TYPE": "string", "SOURCE_DATA_TYPE": "string"}, }, { "sourceFields": ["col2"], "connectorOperator": {"S3": "NO_OP"}, "destinationField": "col2", "taskType": "Map", "taskProperties": {"DESTINATION_DATA_TYPE": "string", "SOURCE_DATA_TYPE": "string"}, }, ], )
Returns the AMI ID of the most recently-created Amazon Linux image
def get_latest_ami_id(): """Returns the AMI ID of the most recently-created Amazon Linux image""" # Amazon is retiring AL2 in 2023 and replacing it with Amazon Linux 2022. # This image prefix should be futureproof, but may need adjusting depending # on how they name the new images. This page should have AL2022 info when # it comes available: https://aws.amazon.com/linux/amazon-linux-2022/faqs/ image_prefix = "Amazon Linux*" root_device_name = "/dev/xvda" images = boto3.client("ec2").describe_images( Filters=[ {"Name": "description", "Values": [image_prefix]}, { "Name": "architecture", "Values": ["x86_64"], }, # t3 instances are only compatible with x86 architecture { "Name": "root-device-type", "Values": ["ebs"], }, # instances which are capable of hibernation need to use an EBS-backed AMI {"Name": "root-device-name", "Values": [root_device_name]}, ], Owners=["amazon"], ) # Sort on CreationDate return max(images["Images"], key=itemgetter("CreationDate"))["ImageId"]
Creates an ECS cluster.
def create_cluster(cluster_name: str) -> None: """Creates an ECS cluster.""" boto3.client("ecs").create_cluster(clusterName=cluster_name)
Creates a Task Definition.
def register_task_definition(task_name: str, container_name: str) -> str: """Creates a Task Definition.""" response = boto3.client("ecs").register_task_definition( family=task_name, # CPU and Memory are required for Fargate and are set to the lowest currently allowed values. cpu="256", memory="512", containerDefinitions=[ { "name": container_name, "image": "ubuntu", "workingDirectory": "/usr/bin", "entryPoint": ["sh", "-c"], "command": ["ls"], } ], requiresCompatibilities=["FARGATE"], networkMode="awsvpc", ) return response["taskDefinition"]["taskDefinitionArn"]
Deletes the Task Definition.
def delete_task_definition(task_definition_arn: str) -> None: """Deletes the Task Definition.""" boto3.client("ecs").deregister_task_definition(taskDefinition=task_definition_arn)
Deletes the ECS cluster.
def delete_cluster(cluster_name: str) -> None: """Deletes the ECS cluster.""" boto3.client("ecs").delete_cluster(cluster=cluster_name)
A DynamoDB table has an ItemCount value, but it is only updated every six hours. To verify this DAG worked, we will scan the table and count the items manually.
def get_dynamodb_item_count(table_name): """ A DynamoDB table has an ItemCount value, but it is only updated every six hours. To verify this DAG worked, we will scan the table and count the items manually. """ table = DynamoDBHook(resource_type="dynamodb").conn.Table(table_name) response = table.scan(Select="COUNT") item_count = response["Count"] while "LastEvaluatedKey" in response: response = table.scan(Select="COUNT", ExclusiveStartKey=response["LastEvaluatedKey"]) item_count += response["Count"] print(f"DynamoDB table contains {item_count} items.")
We need a Docker image with the following requirements: - Has numpy, pandas, requests, and boto3 installed - Has our data preprocessing script mounted and set as the entry point
def _build_and_upload_docker_image(preprocess_script, repository_uri): """ We need a Docker image with the following requirements: - Has numpy, pandas, requests, and boto3 installed - Has our data preprocessing script mounted and set as the entry point """ with NamedTemporaryFile(mode="w+t") as preprocessing_script, NamedTemporaryFile(mode="w+t") as dockerfile: preprocessing_script.write(preprocess_script) preprocessing_script.flush() dockerfile.write( f""" FROM public.ecr.aws/amazonlinux/amazonlinux COPY {preprocessing_script.name.split('/')[2]} /preprocessing.py ADD credentials /credentials ENV AWS_SHARED_CREDENTIALS_FILE=/credentials RUN yum install python3 pip -y RUN pip3 install boto3 pandas requests CMD [ "python3", "/preprocessing.py"] """ ) dockerfile.flush() ecr_region = repository_uri.split(".")[3] docker_build_and_push_commands = f""" cp /root/.aws/credentials /tmp/credentials && # login to public ecr repo containing amazonlinux image (public login is always on us east 1) aws ecr-public get-login-password --region us-east-1 | docker login --username AWS --password-stdin public.ecr.aws && docker build --platform=linux/amd64 -f {dockerfile.name} -t {repository_uri} /tmp && rm /tmp/credentials && # login again, this time to the private repo we created to hold that specific image aws ecr get-login-password --region {ecr_region} | docker login --username AWS --password-stdin {repository_uri} && docker push {repository_uri} """ logger.info("building and uploading docker image for preprocessing...") docker_build = subprocess.Popen( docker_build_and_push_commands, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, ) _, stderr = docker_build.communicate() if docker_build.returncode != 0: raise RuntimeError( "Failed to prepare docker image for the preprocessing job.\n" "The following error happened while executing the sequence of bash commands:\n" f"{stderr.decode()}" )
generates a very simple csv dataset with headers
def generate_data() -> str: """generates a very simple csv dataset with headers""" content = "class,x,y\n" # headers for i in range(SAMPLE_SIZE): content += f"{i%100},{i},{SAMPLE_SIZE-i}\n" return content
Checks the CIDR blocks of existing subnets and attempts to extrapolate the next available block.
def _get_next_available_cidr(vpc_id: str) -> str: """Checks the CIDR blocks of existing subnets and attempts to extrapolate the next available block.""" error_msg_template = "Can not calculate the next available CIDR block: {}" vpc_filter = {"Name": "vpc-id", "Values": [vpc_id]} existing_subnets = boto3.client("ec2").describe_subnets(Filters=[vpc_filter])["Subnets"] if not existing_subnets: raise ValueError(error_msg_template.format("No subnets are found on the provided VPC.")) # Pull all CIDR blocks from the JSON response and convert them # to IPv4Network objects which can be sorted and manipulated. existing_cidr_blocks = [IPv4Network(subnet["CidrBlock"]) for subnet in existing_subnets] # Can not predict the next block if existing block sizes (prefixlen) are not consistent. if len({block.prefixlen for block in existing_cidr_blocks}) > 1: raise ValueError(error_msg_template.format("Subnets do not all use the same CIDR block size.")) last_used_block = max(existing_cidr_blocks) *_, last_reserved_ip = last_used_block return f"{last_reserved_ip + 1}/{last_used_block.prefixlen}"
Returns the VPC ID of the account's default VPC.
def get_default_vpc_id() -> str: """Returns the VPC ID of the account's default VPC.""" filters = [{"Name": "is-default", "Values": ["true"]}] return boto3.client("ec2").describe_vpcs(Filters=filters)["Vpcs"][0]["VpcId"]
Allocate a new IP address
def create_address_allocation(): """Allocate a new IP address""" return boto3.client("ec2").allocate_address()["AllocationId"]
Create a NAT gateway
def create_nat_gateway(allocation_id: str, subnet_id: str): """Create a NAT gateway""" client = boto3.client("ec2") nat_gateway_id = client.create_nat_gateway( AllocationId=allocation_id, SubnetId=subnet_id, ConnectivityType="public", )["NatGateway"]["NatGatewayId"] waiter = client.get_waiter("nat_gateway_available") waiter.wait(NatGatewayIds=[nat_gateway_id]) return nat_gateway_id
Create a route table for private subnets.
def create_route_table(vpc_id: str, nat_gateway_id: str, test_name: str): """Create a route table for private subnets.""" client = boto3.client("ec2") tags = [{"Key": "Name", "Value": f"Route table for {test_name}"}] route_table_id = client.create_route_table( VpcId=vpc_id, TagSpecifications=[{"ResourceType": "route-table", "Tags": tags}], )["RouteTable"]["RouteTableId"] client.create_route( RouteTableId=route_table_id, DestinationCidrBlock="0.0.0.0/0", NatGatewayId=nat_gateway_id, ) return route_table_id
Fargate Profiles require two private subnets in two different availability zones. These subnets require as well an egress route to the internet, using a NAT gateway to achieve this.
def create_private_subnets( vpc_id: str, route_table_id: str, test_name: str, number_to_make: int = 1, cidr_block: str | None = None, ): """ Fargate Profiles require two private subnets in two different availability zones. These subnets require as well an egress route to the internet, using a NAT gateway to achieve this. """ client = boto3.client("ec2") subnet_ids = [] tags = [{"Key": "Name", "Value": f"Private Subnet for {test_name}"}] zone_names = [zone["ZoneName"] for zone in client.describe_availability_zones()["AvailabilityZones"]] # Create the requested number of subnets. for counter in range(number_to_make): new_subnet = client.create_subnet( VpcId=vpc_id, CidrBlock=cidr_block or _get_next_available_cidr(vpc_id), AvailabilityZone=zone_names[counter], TagSpecifications=[{"ResourceType": "subnet", "Tags": tags}], )["Subnet"]["SubnetId"] subnet_ids.append(new_subnet) # Testing shows that a new subnet takes a very short but measurable # time to create; wait to prevent a possible race condition. client.get_waiter("subnet_available").wait(SubnetIds=[new_subnet]) # Associate the new subnets with the black hole route table to make them private. client.associate_route_table(RouteTableId=route_table_id, SubnetId=new_subnet) return subnet_ids
Returns an operator that'll print the output of a `k describe pod` in the airflow logs.
def get_describe_pod_operator(cluster_name: str, pod_name: str) -> Operator: """Returns an operator that'll print the output of a `k describe pod` in the airflow logs.""" return BashOperator( task_id="describe_pod", bash_command=f""" install_aws.sh; install_kubectl.sh; # configure kubectl to hit the right cluster aws eks update-kubeconfig --name {cluster_name}; # once all this setup is done, actually describe the pod echo "vvv pod description below vvv"; kubectl describe pod {pod_name}; echo "^^^ pod description above ^^^" """, )
Extracts the module name from the test module. :return: The name of the test module that called the helper method.
def _get_test_name() -> str: """ Extracts the module name from the test module. :return: The name of the test module that called the helper method. """ # The exact layer of the stack will depend on if this is called directly # or from another helper, but the test will always contain the identifier. test_filename: str = next( frame.filename for frame in inspect.stack() if any(identifier in frame.filename for identifier in TEST_FILE_IDENTIFIERS) ) return Path(test_filename).stem
Verifies that a prospective Environment ID value fits requirements. An Environment ID for an AWS System test must be a lowercase alphanumeric string which starts with a letter. :param env_id: An Environment ID to validate. :return: A validated string cast to lowercase.
def _validate_env_id(env_id: str) -> str: """ Verifies that a prospective Environment ID value fits requirements. An Environment ID for an AWS System test must be a lowercase alphanumeric string which starts with a letter. :param env_id: An Environment ID to validate. :return: A validated string cast to lowercase. """ if any(char.isupper() for char in str(env_id)): print(LOWERCASE_ENV_ID_MSG) if not env_id.isalnum() or not env_id[0].isalpha(): raise ValueError(INVALID_ENV_ID_MSG) return env_id.lower()
Test values are stored in the SSM Value as a JSON-encoded dict of key/value pairs. :param key: The key to search for within the returned Parameter Value. :return: The value of the provided key from SSM
def _fetch_from_ssm(key: str, test_name: str | None = None) -> str: """ Test values are stored in the SSM Value as a JSON-encoded dict of key/value pairs. :param key: The key to search for within the returned Parameter Value. :return: The value of the provided key from SSM """ _test_name: str = test_name or _get_test_name() hook = SsmHook(aws_conn_id=None) value: str = "" try: value = json.loads(hook.get_parameter_value(_test_name))[key] # Since a default value after the SSM check is allowed, these exceptions should not stop execution. except NoCredentialsError as e: log.info("No boto credentials found: %s", e) except ClientError as e: log.info("Client error when connecting to SSM: %s", e) except hook.conn.exceptions.ParameterNotFound as e: log.info("SSM does not contain any parameter for this test: %s", e) except KeyError as e: log.info("SSM contains one parameter for this test, but not the requested value: %s", e) return value
Given a Parameter name: first check for an existing Environment Variable, then check SSM for a value. If neither are available, fall back on the optional default value. :param key: The name of the Parameter to fetch a value for. :param default_value: The default value to use if no value can be found. :param test_name: The system test name. :param optional: Whether the variable is optional. If True, does not raise `ValueError` if variable does not exist :return: The value of the parameter.
def fetch_variable( key: str, default_value: str | None = None, test_name: str | None = None, optional: bool = False, ) -> str | None: """ Given a Parameter name: first check for an existing Environment Variable, then check SSM for a value. If neither are available, fall back on the optional default value. :param key: The name of the Parameter to fetch a value for. :param default_value: The default value to use if no value can be found. :param test_name: The system test name. :param optional: Whether the variable is optional. If True, does not raise `ValueError` if variable does not exist :return: The value of the parameter. """ value: str | None = os.getenv(key, _fetch_from_ssm(key, test_name)) or default_value if not optional and not value: raise ValueError(NO_VALUE_MSG.format(key=key)) return value
Retrieves or generates an Environment ID, validate that it is suitable, export it as an Environment Variable, and return it. If an Environment ID has already been generated, use that. Otherwise, try to fetch it and export it as an Environment Variable. If there is not one available to fetch then generate one and export it as an Environment Variable. :return: A valid System Test Environment ID.
def set_env_id() -> str: """ Retrieves or generates an Environment ID, validate that it is suitable, export it as an Environment Variable, and return it. If an Environment ID has already been generated, use that. Otherwise, try to fetch it and export it as an Environment Variable. If there is not one available to fetch then generate one and export it as an Environment Variable. :return: A valid System Test Environment ID. """ env_id: str = str(fetch_variable(ENV_ID_ENVIRON_KEY, DEFAULT_ENV_ID)) env_id = _validate_env_id(env_id) os.environ[ENV_ID_ENVIRON_KEY] = env_id return env_id
If all tasks in this dagrun have succeeded, then delete the associated logs. Otherwise, append the logs with a retention policy. This allows the logs to be used for troubleshooting but assures they won't build up indefinitely. :param logs: A list of log_group/stream_prefix tuples to delete. :param force_delete: Whether to check log streams within the log group before removal. If True, removes the log group and all its log streams inside it. :param retry: Whether to retry if the log group/stream was not found. In some cases, the log group/stream is created seconds after the main resource has been created. By default, it retries for 3 times with a 5s waiting period. :param retry_times: Number of retries. :param ti: Used to check the status of the tasks. This gets pulled from the DAG's context and does not need to be passed manually.
def prune_logs( logs: list[tuple[str, str | None]], force_delete: bool = False, retry: bool = False, retry_times: int = 3, ti=None, ): """ If all tasks in this dagrun have succeeded, then delete the associated logs. Otherwise, append the logs with a retention policy. This allows the logs to be used for troubleshooting but assures they won't build up indefinitely. :param logs: A list of log_group/stream_prefix tuples to delete. :param force_delete: Whether to check log streams within the log group before removal. If True, removes the log group and all its log streams inside it. :param retry: Whether to retry if the log group/stream was not found. In some cases, the log group/stream is created seconds after the main resource has been created. By default, it retries for 3 times with a 5s waiting period. :param retry_times: Number of retries. :param ti: Used to check the status of the tasks. This gets pulled from the DAG's context and does not need to be passed manually. """ if all_tasks_passed(ti): _purge_logs(logs, force_delete, retry, retry_times) else: client: BaseClient = boto3.client("logs") for group, _ in logs: client.put_retention_policy(logGroupName=group, retentionInDays=30)
Accepts a tuple in the format: ('log group name', 'log stream prefix'). For each log group, it will delete any log streams matching the provided prefix then if the log group is empty, delete the group. If the group is not empty that indicates there are logs not generated by the test and those are left intact. If `check_log_streams` is True, it will simply delete the log group regardless of log streams within that log group. :param test_logs: A list of log_group/stream_prefix tuples to delete. :param force_delete: Whether to check log streams within the log group before removal. If True, removes the log group and all its log streams inside it :param retry: Whether to retry if the log group/stream was not found. In some cases, the log group/stream is created seconds after the main resource has been created. By default, it retries for 3 times with a 5s waiting period :param retry_times: Number of retries
def _purge_logs( test_logs: list[tuple[str, str | None]], force_delete: bool = False, retry: bool = False, retry_times: int = 3, ) -> None: """ Accepts a tuple in the format: ('log group name', 'log stream prefix'). For each log group, it will delete any log streams matching the provided prefix then if the log group is empty, delete the group. If the group is not empty that indicates there are logs not generated by the test and those are left intact. If `check_log_streams` is True, it will simply delete the log group regardless of log streams within that log group. :param test_logs: A list of log_group/stream_prefix tuples to delete. :param force_delete: Whether to check log streams within the log group before removal. If True, removes the log group and all its log streams inside it :param retry: Whether to retry if the log group/stream was not found. In some cases, the log group/stream is created seconds after the main resource has been created. By default, it retries for 3 times with a 5s waiting period :param retry_times: Number of retries """ client: BaseClient = boto3.client("logs") for group, prefix in test_logs: try: if prefix: log_streams = client.describe_log_streams( logGroupName=group, logStreamNamePrefix=prefix, )["logStreams"] for stream_name in [stream["logStreamName"] for stream in log_streams]: client.delete_log_stream(logGroupName=group, logStreamName=stream_name) if force_delete or not client.describe_log_streams(logGroupName=group)["logStreams"]: client.delete_log_group(logGroupName=group) except ClientError as e: if not retry or retry_times == 0 or e.response["Error"]["Code"] != "ResourceNotFoundException": raise e time.sleep(PURGE_LOGS_INTERVAL_PERIOD) _purge_logs( test_logs=test_logs, force_delete=force_delete, retry=retry, retry_times=retry_times - 1, )
This task should call Twitter API and retrieve tweets from yesterday from and to for the four twitter users (Twitter_A,..,Twitter_D) There should be eight csv output files generated by this task and naming convention is direction(from or to)_twitterHandle_date.csv
def fetch_tweets(): """ This task should call Twitter API and retrieve tweets from yesterday from and to for the four twitter users (Twitter_A,..,Twitter_D) There should be eight csv output files generated by this task and naming convention is direction(from or to)_twitterHandle_date.csv """
This is a placeholder to clean the eight files. In this step you can get rid of or cherry pick columns and different parts of the text.
def clean_tweets(): """ This is a placeholder to clean the eight files. In this step you can get rid of or cherry pick columns and different parts of the text. """
This is a placeholder to analyze the twitter data. Could simply be a sentiment analysis through algorithms like bag of words or something more complicated. You can also take a look at Web Services to do such tasks.
def analyze_tweets(): """ This is a placeholder to analyze the twitter data. Could simply be a sentiment analysis through algorithms like bag of words or something more complicated. You can also take a look at Web Services to do such tasks. """
This is a placeholder to extract summary from Hive data and store it to MySQL.
def transfer_to_db(): """ This is a placeholder to extract summary from Hive data and store it to MySQL. """
### Example Pyspark DAG This is an example DAG which uses pyspark
def example_pyspark(): """ ### Example Pyspark DAG This is an example DAG which uses pyspark """ # [START task_pyspark] @task.pyspark(conn_id="spark-local") def spark_task(spark: SparkSession, sc: SparkContext) -> pd.DataFrame: df = spark.createDataFrame( [ (1, "John Doe", 21), (2, "Jane Doe", 22), (3, "Joe Bloggs", 23), ], ["id", "name", "age"], ) df.show() return df.toPandas() # [END task_pyspark] @task def print_df(df: pd.DataFrame): print(df) df = spark_task() print_df(df)
The function that will be executed on failure. :param context: The context of the executed task.
def failure_callback(context): """ The function that will be executed on failure. :param context: The context of the executed task. """ message = f"The task {context['ti'].task_id} failed" DingdingHook(message_type="text", message=message, at_all=True).send()
### TaskFlow API Tutorial Documentation This is a simple data pipeline example which demonstrates the use of the TaskFlow API using three simple tasks for Extract, Transform, and Load. Documentation that goes along with the Airflow TaskFlow API tutorial is located [here](https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html)
def tutorial_taskflow_api_docker_virtualenv(): """ ### TaskFlow API Tutorial Documentation This is a simple data pipeline example which demonstrates the use of the TaskFlow API using three simple tasks for Extract, Transform, and Load. Documentation that goes along with the Airflow TaskFlow API tutorial is located [here](https://airflow.apache.org/docs/apache-airflow/stable/tutorial_taskflow_api.html) """ # [START extract_virtualenv] @task.virtualenv( use_dill=True, system_site_packages=False, requirements=["funcsigs"], ) def extract(): """ #### Extract task A simple Extract task to get data ready for the rest of the data pipeline. In this case, getting data is simulated by reading from a hardcoded JSON string. """ import json data_string = '{"1001": 301.27, "1002": 433.21, "1003": 502.22}' order_data_dict = json.loads(data_string) return order_data_dict # [END extract_virtualenv] # [START transform_docker] @task.docker(image="python:3.9-slim-bookworm", multiple_outputs=True) def transform(order_data_dict: dict): """ #### Transform task A simple Transform task which takes in the collection of order data and computes the total order value. """ total_order_value = 0 for value in order_data_dict.values(): total_order_value += value return {"total_order_value": total_order_value} # [END transform_docker] # [START load] @task() def load(total_order_value: float): """ #### Load task A simple Load task which takes in the result of the Transform task and instead of saving it to end user review, just prints it out. """ print(f"Total order value is: {total_order_value:.2f}") # [END load] # [START main_flow] order_data = extract() order_summary = transform(order_data) load(order_summary["total_order_value"])
show_tables queries elasticsearch to list available tables
def show_tables(): """ show_tables queries elasticsearch to list available tables """ # [START howto_elasticsearch_query] es = ElasticsearchSQLHook(elasticsearch_conn_id=CONN_ID) # Handle ES conn with context manager with es.get_conn() as es_conn: tables = es_conn.execute("SHOW TABLES") for table, *_ in tables: print(f"table: {table}") return True
Use ElasticSearchPythonHook to print results from a local Elasticsearch
def use_elasticsearch_hook(): """ Use ElasticSearchPythonHook to print results from a local Elasticsearch """ es_hosts = ["http://localhost:9200"] es_hook = ElasticsearchPythonHook(hosts=es_hosts) query = {"query": {"match_all": {}}} result = es_hook.search(query=query) print(result) return True
Using column name returns spec of the column.
def get_target_column_spec(columns_specs: list[dict], column_name: str) -> str: """ Using column name returns spec of the column. """ for column in columns_specs: if column["display_name"] == column_name: return extract_object_id(column) raise Exception(f"Unknown target column: {column_name}")
Using column name returns spec of the column.
def get_target_column_spec(columns_specs: list[dict], column_name: str) -> str: """ Using column name returns spec of the column. """ for column in columns_specs: if column["display_name"] == column_name: return extract_object_id(column) raise Exception(f"Unknown target column: {column_name}")
Generates an ip configuration for a CloudSQL instance creation body
def ip_configuration() -> dict[str, Any]: """Generates an ip configuration for a CloudSQL instance creation body""" if run_in_composer(): # Use connection to Cloud SQL instance via Private IP within the Cloud Composer's network. return { "ipv4Enabled": True, "requireSsl": False, "enablePrivatePathForGoogleCloudServices": True, "privateNetwork": """{{ task_instance.xcom_pull('get_composer_network')}}""", } else: # Use connection to Cloud SQL instance via Public IP from anywhere (mask 0.0.0.0/0). # Consider specifying your network mask # for allowing requests only from the trusted sources, not from anywhere. return { "ipv4Enabled": True, "requireSsl": False, "authorizedNetworks": [ {"value": "0.0.0.0/0"}, ], }
Generates a CloudSQL instance creation body
def cloud_sql_instance_create_body(database_provider: dict[str, Any]) -> dict[str, Any]: """Generates a CloudSQL instance creation body""" create_body: dict[str, Any] = deepcopy(CLOUD_SQL_INSTANCE_CREATE_BODY_TEMPLATE) create_body["name"] = database_provider["cloud_sql_instance_name"] create_body["databaseVersion"] = database_provider["database_version"] create_body["settings"]["ipConfiguration"] = ip_configuration() return create_body
Generates a CloudSQL database creation body
def cloud_sql_database_create_body(instance: str) -> dict[str, Any]: """Generates a CloudSQL database creation body""" return { "instance": instance, "name": CLOUD_SQL_DATABASE_NAME, "project": PROJECT_ID, }
Generates an ip configuration for a CloudSQL instance creation body
def ip_configuration() -> dict[str, Any]: """Generates an ip configuration for a CloudSQL instance creation body""" if run_in_composer(): # Use connection to Cloud SQL instance via Private IP within the Cloud Composer's network. return { "ipv4Enabled": True, "requireSsl": False, "sslMode": "ENCRYPTED_ONLY", "enablePrivatePathForGoogleCloudServices": True, "privateNetwork": """{{ task_instance.xcom_pull('get_composer_network')}}""", } else: # Use connection to Cloud SQL instance via Public IP from anywhere (mask 0.0.0.0/0). # Consider specifying your network mask # for allowing requests only from the trusted sources, not from anywhere. return { "ipv4Enabled": True, "requireSsl": False, "sslMode": "ENCRYPTED_ONLY", "authorizedNetworks": [ {"value": "0.0.0.0/0"}, ], }
Generates a CloudSQL instance creation body
def cloud_sql_instance_create_body(database_provider: dict[str, Any]) -> dict[str, Any]: """Generates a CloudSQL instance creation body""" create_body: dict[str, Any] = deepcopy(CLOUD_SQL_INSTANCE_CREATE_BODY_TEMPLATE) create_body["name"] = database_provider["cloud_sql_instance_name"] create_body["databaseVersion"] = database_provider["database_version"] create_body["settings"]["ipConfiguration"] = ip_configuration() return create_body
Generates a CloudSQL database creation body
def cloud_sql_database_create_body(instance: str) -> dict[str, Any]: """Generates a CloudSQL database creation body""" return { "instance": instance, "name": CLOUD_SQL_DATABASE_NAME, "project": PROJECT_ID, }
DebugExecutor change sensor mode from poke to reschedule. Some sensors don't work correctly in reschedule mode. They are decorated with `poke_mode_only` decorator to fail when mode is changed. This method creates dummy property to overwrite it and force poke method to always return True.
def workaround_in_debug_executor(cls): """ DebugExecutor change sensor mode from poke to reschedule. Some sensors don't work correctly in reschedule mode. They are decorated with `poke_mode_only` decorator to fail when mode is changed. This method creates dummy property to overwrite it and force poke method to always return True. """ cls.mode = dummy_mode_property() cls.poke = lambda self, context: True
A callable to upload file from GCS to AWS bucket
def upload_file(): """A callable to upload file from GCS to AWS bucket""" gcs_hook = GCSHook() s3_hook = S3Hook() with gcs_hook.provide_file(bucket_name=RESOURCES_BUCKET_NAME, object_name=UPLOAD_FILE) as gcs_file: s3_hook.load_file_obj(file_obj=gcs_file, key=UPLOAD_FILE, bucket_name=BUCKET_NAME)
Remove invalid characters for filename
def safe_name(s: str) -> str: """ Remove invalid characters for filename """ return re.sub("[^0-9a-zA-Z_]+", "_", s)
Take the raw `request.Response` object, and check for a cursor. If a cursor exists, this function creates and return parameters to call the next page of result.
def get_next_page_cursor(response) -> dict | None: """ Take the raw `request.Response` object, and check for a cursor. If a cursor exists, this function creates and return parameters to call the next page of result. """ next_cursor = response.json().get("cursor") if next_cursor: return dict(data={"cursor": next_cursor}) return None
Create a fileshare with directory
def create_fileshare(): """Create a fileshare with directory""" hook = AzureFileShareHook() hook.create_share(NAME) hook.create_directory(share_name=NAME, directory_name=DIRECTORY) exists = hook.check_for_directory(share_name=NAME, directory_name=DIRECTORY) if not exists: raise Exception