response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
A slightly modified version of the ERFA function ``eraAticq``. ``eraAticq`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of aticq in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAtciqz`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's aticq assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric GCRS or CIRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- rc : float or `~numpy.ndarray` Right Ascension in radians dc : float or `~numpy.ndarray` Declination in radians
def aticq(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAticq``. ``eraAticq`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of aticq in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAtciqz`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's aticq assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric GCRS or CIRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- rc : float or `~numpy.ndarray` Right Ascension in radians dc : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # RA, Dec to cartesian unit vectors pos = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Bias-precession-nutation, giving GCRS proper direction. ppr = erfa.trxp(astrom["bpn"], pos) # Aberration, giving GCRS natural direction d = np.zeros_like(ppr) for j in range(2): before = norm(ppr - d) after = erfa.ab(before, astrom["v"], astrom["em"], astrom["bm1"]) d = after - before pnat = norm(ppr - d) # Light deflection by the Sun, giving BCRS coordinate direction d = np.zeros_like(pnat) for j in range(5): before = norm(pnat - d) if ignore_distance: # No distance to object, assume a long way away q = before else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom["em"][..., np.newaxis] * astrom["eh"] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * before sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, before) after = erfa.ld(1.0, before, q, astrom["eh"], astrom["em"], 1e-6) d = after - before pco = norm(pnat - d) # ICRS astrometric RA, Dec rc, dc = erfa.c2s(pco) return erfa.anp(rc), dc
A slightly modified version of the ERFA function ``eraAtciqz``. ``eraAtciqz`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of atciqz in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAticq`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's atciqz assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric ICRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- ri : float or `~numpy.ndarray` Right Ascension in radians di : float or `~numpy.ndarray` Declination in radians
def atciqz(srepr, astrom): """ A slightly modified version of the ERFA function ``eraAtciqz``. ``eraAtciqz`` performs the transformations between two coordinate systems, with the details of the transformation being encoded into the ``astrom`` array. There are two issues with the version of atciqz in ERFA. Both are associated with the handling of light deflection. The companion function ``eraAticq`` is meant to be its inverse. However, this is not true for directions close to the Solar centre, since the light deflection calculations are numerically unstable and therefore not reversible. This version sidesteps that problem by artificially reducing the light deflection for directions which are within 90 arcseconds of the Sun's position. This is the same approach used by the ERFA functions above, except that they use a threshold of 9 arcseconds. In addition, ERFA's atciqz assumes a distant source, so there is no difference between the object-Sun vector and the observer-Sun vector. This can lead to errors of up to a few arcseconds in the worst case (e.g a Venus transit). Parameters ---------- srepr : `~astropy.coordinates.SphericalRepresentation` Astrometric ICRS position of object from observer astrom : eraASTROM array ERFA astrometry context, as produced by, e.g. ``eraApci13`` or ``eraApcs13`` Returns ------- ri : float or `~numpy.ndarray` Right Ascension in radians di : float or `~numpy.ndarray` Declination in radians """ # ignore parallax effects if no distance, or far away srepr_distance = srepr.distance ignore_distance = srepr_distance.unit == u.one # BCRS coordinate direction (unit vector). pco = erfa.s2c(srepr.lon.radian, srepr.lat.radian) # Find BCRS direction of Sun to object if ignore_distance: # No distance to object, assume a long way away q = pco else: # Find BCRS direction of Sun to object. # astrom['eh'] and astrom['em'] contain Sun to observer unit vector, # and distance, respectively. eh = astrom["em"][..., np.newaxis] * astrom["eh"] # unit vector from Sun to object q = eh + srepr_distance[..., np.newaxis].to_value(u.au) * pco sundist, q = erfa.pn(q) sundist = sundist[..., np.newaxis] # calculation above is extremely unstable very close to the sun # in these situations, default back to ldsun-style behaviour, # since this is reversible and drops to zero within stellar limb q = np.where(sundist > 1.0e-10, q, pco) # Light deflection by the Sun, giving BCRS natural direction. pnat = erfa.ld(1.0, pco, q, astrom["eh"], astrom["em"], 1e-6) # Aberration, giving GCRS proper direction. ppr = erfa.ab(pnat, astrom["v"], astrom["em"], astrom["bm1"]) # Bias-precession-nutation, giving CIRS proper direction. # Has no effect if matrix is identity matrix, in which case gives GCRS ppr. pi = erfa.rxp(astrom["bpn"], ppr) # CIRS (GCRS) RA, Dec ri, di = erfa.c2s(pi) return erfa.anp(ri), di
Get barycentric position and velocity, and heliocentric position of Earth. Parameters ---------- time : `~astropy.time.Time` time at which to calculate position and velocity of Earth Returns ------- earth_pv : `np.ndarray` Barycentric position and velocity of Earth, in au and au/day earth_helio : `np.ndarray` Heliocentric position of Earth in au
def prepare_earth_position_vel(time): """ Get barycentric position and velocity, and heliocentric position of Earth. Parameters ---------- time : `~astropy.time.Time` time at which to calculate position and velocity of Earth Returns ------- earth_pv : `np.ndarray` Barycentric position and velocity of Earth, in au and au/day earth_helio : `np.ndarray` Heliocentric position of Earth in au """ # this goes here to avoid circular import errors from astropy.coordinates.solar_system import ( get_body_barycentric, get_body_barycentric_posvel, solar_system_ephemeris, ) # get barycentric position and velocity of earth ephemeris = solar_system_ephemeris.get() # if we are using the builtin erfa based ephemeris, # we can use the fact that epv00 already provides all we need. # This avoids calling epv00 twice, once # in get_body_barycentric_posvel('earth') and once in # get_body_barycentric('sun') if ephemeris == "builtin": jd1, jd2 = get_jd12(time, "tdb") earth_pv_heliocentric, earth_pv = erfa.epv00(jd1, jd2) earth_heliocentric = earth_pv_heliocentric["p"] # all other ephemeris providers probably don't have a shortcut like this else: earth_p, earth_v = get_body_barycentric_posvel("earth", time) # get heliocentric position of earth, preparing it for passing to erfa. sun = get_body_barycentric("sun", time) earth_heliocentric = (earth_p - sun).get_xyz(xyz_axis=-1).to_value(u.au) # Also prepare earth_pv for passing to erfa, which wants it as # a structured dtype. earth_pv = pav2pv( earth_p.get_xyz(xyz_axis=-1).to_value(u.au), earth_v.get_xyz(xyz_axis=-1).to_value(u.au / u.d), ) return earth_pv, earth_heliocentric
Returns the offset of the Sun center from the solar-system barycenter (SSB). Parameters ---------- time : `~astropy.time.Time` Time at which to calculate the offset include_velocity : `bool` If ``True``, attach the velocity as a differential. Defaults to ``False``. reverse : `bool` If ``True``, return the offset of the barycenter from the Sun. Defaults to ``False``. Returns ------- `~astropy.coordinates.CartesianRepresentation` The offset
def get_offset_sun_from_barycenter(time, include_velocity=False, reverse=False): """ Returns the offset of the Sun center from the solar-system barycenter (SSB). Parameters ---------- time : `~astropy.time.Time` Time at which to calculate the offset include_velocity : `bool` If ``True``, attach the velocity as a differential. Defaults to ``False``. reverse : `bool` If ``True``, return the offset of the barycenter from the Sun. Defaults to ``False``. Returns ------- `~astropy.coordinates.CartesianRepresentation` The offset """ if include_velocity: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric_posvel offset_pos, offset_vel = get_body_barycentric_posvel("sun", time) if reverse: offset_pos, offset_vel = -offset_pos, -offset_vel offset_vel = offset_vel.represent_as(CartesianDifferential) offset_pos = offset_pos.with_differentials(offset_vel) else: # Import here to avoid a circular import from astropy.coordinates.solar_system import get_body_barycentric offset_pos = get_body_barycentric("sun", time) if reverse: offset_pos = -offset_pos return offset_pos
Get the first line of a docstring. Skips possible empty first lines, and then combine following text until the first period or a fully empty line.
def _get_doc_header(cls): """Get the first line of a docstring. Skips possible empty first lines, and then combine following text until the first period or a fully empty line. """ out = [] # NOTE: cls.__doc__ is None for -OO flag if not cls.__doc__: return "" for line in cls.__doc__.splitlines(): if line: parts = line.split(".") out.append(parts[0].strip()) if len(parts) > 1: break elif out: break return " ".join(out) + "."
Generates a string that can be used in other docstrings to include a transformation graph, showing the available transforms and coordinate systems. Parameters ---------- transform_graph : `~astropy.coordinates.TransformGraph` Returns ------- docstring : str A string that can be added to the end of a docstring to show the transform graph.
def make_transform_graph_docs(transform_graph): """ Generates a string that can be used in other docstrings to include a transformation graph, showing the available transforms and coordinate systems. Parameters ---------- transform_graph : `~astropy.coordinates.TransformGraph` Returns ------- docstring : str A string that can be added to the end of a docstring to show the transform graph. """ from textwrap import dedent coosys = { (cls := transform_graph.lookup_name(item)).__name__: cls for item in transform_graph.get_names() } # currently, all of the priorities are set to 1, so we don't need to show # then in the transform graph. graphstr = transform_graph.to_dot_graph( addnodes=list(coosys.values()), priorities=False ) docstr = """ The diagram below shows all of the built in coordinate systems, their aliases (useful for converting other coordinates to them using attribute-style access) and the pre-defined transformations between them. The user is free to override any of these transformations by defining new transformations between these systems, but the pre-defined transformations should be sufficient for typical usage. The color of an edge in the graph (i.e., the transformations between two frames) is set by the type of transformation; the legend box defines the mapping from transform class name to color. .. Wrap the graph in a div with a custom class to allow theming. .. container:: frametransformgraph .. graphviz:: """ docstr = dedent(docstr) + " " + graphstr.replace("\n", "\n ") # colors are in dictionary mapping transform class to color from astropy.coordinates.transformations.graph import trans_to_color html_list_items = [] for cls, color in trans_to_color.items(): block = f""" <li style='list-style: none;'> <p style="font-size: 12px;line-height: 24px;font-weight: normal;color: #848484;padding: 0;margin: 0;"> <b>{cls.__name__}:</b> <span style="font-size: 24px; color: {color};"><b>➝</b></span> </p> </li> """ html_list_items.append(block) nl = "\n" graph_legend = f""" .. raw:: html <ul class="cooframelegend"> {nl.join(html_list_items)} </ul> """ docstr = docstr + dedent(graph_legend) # Add table with built-in frame classes. template = """ * - `~astropy.coordinates.{}` - {} """ table = """ Built-in Frame Classes ^^^^^^^^^^^^^^^^^^^^^^ .. list-table:: :widths: 20 80 """ + "".join( template.format(name, _get_doc_header(coosys[name])) for name in __all__ if name in coosys ) return docstr + dedent(table)
Get the fully qualified name of a class.
def _fqn_class(cls): """Get the fully qualified name of a class.""" return cls.__module__ + "." + cls.__qualname__
Returns a hash value that should be invariable if the `REPRESENTATION_CLASSES` and `DIFFERENTIAL_CLASSES` dictionaries have not changed.
def get_reprdiff_cls_hash(): """ Returns a hash value that should be invariable if the `REPRESENTATION_CLASSES` and `DIFFERENTIAL_CLASSES` dictionaries have not changed. """ return hash(tuple(REPRESENTATION_CLASSES.items())) + hash( tuple(DIFFERENTIAL_CLASSES.items()) )
For given operator, return functions that adjust lon, lat, distance.
def _spherical_op_funcs(op, *args): """For given operator, return functions that adjust lon, lat, distance.""" if op is operator.neg: return lambda x: x + 180 * u.deg, operator.neg, operator.pos try: scale_sign = np.sign(args[0]) except Exception: # This should always work, even if perhaps we get a negative distance. return operator.pos, operator.pos, lambda x: op(x, *args) scale = abs(args[0]) return ( lambda x: x + 180 * u.deg * np.signbit(scale_sign), lambda x: x * scale_sign, lambda x: op(x, scale), )
SkyCoord equality useful for testing.
def skycoord_equal(sc1, sc2): """SkyCoord equality useful for testing.""" if not sc1.is_equivalent_frame(sc2): return False if sc1.representation_type is not sc2.representation_type: return False if sc1.shape != sc2.shape: return False # Maybe raise ValueError corresponding to future numpy behavior eq = np.ones(shape=sc1.shape, dtype=bool) for comp in sc1.data.components: eq &= getattr(sc1.data, comp) == getattr(sc2.data, comp) return np.all(eq)
Tests creating and accessing Angle objects
def test_create_angles(): """ Tests creating and accessing Angle objects """ """ The "angle" is a fundamental object. The internal representation is stored in radians, but this is transparent to the user. Units *must* be specified rather than a default value be assumed. This is as much for self-documenting code as anything else. Angle objects simply represent a single angular coordinate. More specific angular coordinates (e.g. Longitude, Latitude) are subclasses of Angle.""" a1 = Angle(54.12412, unit=u.degree) a2 = Angle("54.12412", unit=u.degree) a3 = Angle("54:07:26.832", unit=u.degree) a4 = Angle("54.12412 deg") a5 = Angle("54.12412 degrees") a6 = Angle("54.12412°") # because we like Unicode a8 = Angle("54°07'26.832\"") a9 = Angle([54, 7, 26.832], unit=u.degree) assert_allclose(a9.value, [54, 7, 26.832]) assert a9.unit is u.degree a10 = Angle(3.60827466667, unit=u.hour) a11 = Angle("3:36:29.7888000120", unit=u.hour) Angle(0.944644098745, unit=u.radian) with pytest.raises(u.UnitsError): Angle(54.12412) # raises an exception because this is ambiguous with pytest.raises(u.UnitsError): Angle(54.12412, unit=u.m) with pytest.raises(ValueError): Angle(12.34, unit="not a unit") a14 = Angle("03h36m29.7888000120") # no trailing 's', but unambiguous a15 = Angle("5h4m3s") # single digits, no decimal assert a15.unit == u.hourangle a16 = Angle("1 d") a17 = Angle("1 degree") assert a16.degree == 1 assert a17.degree == 1 a18 = Angle("54 07.4472", unit=u.degree) a19 = Angle("54:07.4472", unit=u.degree) a20 = Angle("54d07.4472m", unit=u.degree) a21 = Angle("3h36m", unit=u.hour) a22 = Angle("3.6h", unit=u.hour) a23 = Angle("- 3h", unit=u.hour) a24 = Angle("+ 3h", unit=u.hour) a25 = Angle(3.0, unit=u.hour**1) # ensure the above angles that should match do assert a1 == a2 == a3 == a4 == a5 == a6 == a8 == a18 == a19 == a20 assert_allclose(a1.radian, a2.radian) assert_allclose(a2.degree, a3.degree) assert_allclose(a3.radian, a4.radian) assert_allclose(a4.radian, a5.radian) assert_allclose(a5.radian, a6.radian) assert_allclose(a10.degree, a11.degree) assert a11 == a14 assert a21 == a22 assert a23 == -a24 assert a24 == a25 # check for illegal ranges / values with pytest.raises(IllegalSecondError): Angle("12 32 99", unit=u.degree) with pytest.raises(IllegalMinuteError): Angle("12 99 23", unit=u.degree) with pytest.raises(IllegalSecondError): Angle("12 32 99", unit=u.hour) with pytest.raises(IllegalMinuteError): Angle("12 99 23", unit=u.hour) with pytest.raises(IllegalHourError): Angle("99 25 51.0", unit=u.hour) with pytest.raises(ValueError): Angle("12 25 51.0xxx", unit=u.hour) with pytest.raises(ValueError): Angle("12h34321m32.2s") assert a1 is not None
Tests operations on Angle objects
def test_angle_ops(): """ Tests operations on Angle objects """ # Angles can be added and subtracted. Multiplication and division by a # scalar is also permitted. A negative operator is also valid. All of # these operate in a single dimension. Attempting to multiply or divide two # Angle objects will return a quantity. An exception will be raised if it # is attempted to store output with a non-angular unit in an Angle [#2718]. a1 = Angle(3.60827466667, unit=u.hour) a2 = Angle("54:07:26.832", unit=u.degree) a1 + a2 # creates new Angle object a1 - a2 -a1 assert_allclose((a1 * 2).hour, 2 * 3.6082746666700003) assert abs((a1 / 3.123456).hour - 3.60827466667 / 3.123456) < 1e-10 # commutativity assert (2 * a1).hour == (a1 * 2).hour a3 = Angle(a1) # makes a *copy* of the object, but identical content as a1 assert_allclose(a1.radian, a3.radian) assert a1 is not a3 a4 = abs(-a1) assert a4.radian == a1.radian a5 = Angle(5.0, unit=u.hour) assert a5 > a1 assert a5 >= a1 assert a1 < a5 assert a1 <= a5 # check operations with non-angular result give Quantity. a6 = Angle(45.0, u.degree) a7 = a6 * a5 assert type(a7) is u.Quantity # but those with angular result yield Angle. # (a9 is regression test for #5327) a8 = a1 + 1.0 * u.deg assert type(a8) is Angle a9 = 1.0 * u.deg + a1 assert type(a9) is Angle with pytest.raises(TypeError): a6 *= a5 with pytest.raises(TypeError): a6 *= u.m with pytest.raises(TypeError): np.sin(a6, out=a6)
Test unit conversion of Angle objects
def test_angle_convert(): """ Test unit conversion of Angle objects """ angle = Angle("54.12412", unit=u.degree) assert_allclose(angle.hour, 3.60827466667) assert_allclose(angle.radian, 0.944644098745) assert_allclose(angle.degree, 54.12412) assert len(angle.hms) == 3 assert isinstance(angle.hms, tuple) assert angle.hms[0] == 3 assert angle.hms[1] == 36 assert_allclose(angle.hms[2], 29.78879999999947) # also check that the namedtuple attribute-style access works: assert angle.hms.h == 3 assert angle.hms.m == 36 assert_allclose(angle.hms.s, 29.78879999999947) assert len(angle.dms) == 3 assert isinstance(angle.dms, tuple) assert angle.dms[0] == 54 assert angle.dms[1] == 7 assert_allclose(angle.dms[2], 26.831999999992036) # also check that the namedtuple attribute-style access works: assert angle.dms.d == 54 assert angle.dms.m == 7 assert_allclose(angle.dms.s, 26.831999999992036) assert isinstance(angle.dms[0], float) assert isinstance(angle.hms[0], float) # now make sure dms and signed_dms work right for negative angles negangle = Angle("-54.12412", unit=u.degree) assert negangle.dms.d == -54 assert negangle.dms.m == -7 assert_allclose(negangle.dms.s, -26.831999999992036) assert negangle.signed_dms.sign == -1 assert negangle.signed_dms.d == 54 assert negangle.signed_dms.m == 7 assert_allclose(negangle.signed_dms.s, 26.831999999992036)
Tests string formatting for Angle objects
def test_angle_formatting(): """ Tests string formatting for Angle objects """ """ The string method of Angle has this signature: def string(self, unit=DEGREE, decimal=False, sep=" ", precision=5, pad=False): The "decimal" parameter defaults to False since if you need to print the Angle as a decimal, there's no need to use the "format" method (see above). """ angle = Angle("54.12412", unit=u.degree) # __str__ is the default `format` assert str(angle) == angle.to_string() res = "Angle as HMS: 3h36m29.7888s" assert f"Angle as HMS: {angle.to_string(unit=u.hour)}" == res res = "Angle as HMS: 3:36:29.7888" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':')}" == res res = "Angle as HMS: 3:36:29.79" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep=':', precision=2)}" == res # Note that you can provide one, two, or three separators passed as a # tuple or list res = "Angle as HMS: 3h36m29.7888s" assert ( "Angle as HMS:" f" {angle.to_string(unit=u.hour, sep=('h', 'm', 's'), precision=4)}" == res ) res = "Angle as HMS: 3-36|29.7888" assert ( f"Angle as HMS: {angle.to_string(unit=u.hour, sep=['-', '|'], precision=4)}" == res ) res = "Angle as HMS: 3-36-29.7888" assert f"Angle as HMS: {angle.to_string(unit=u.hour, sep='-', precision=4)}" == res res = "Angle as HMS: 03h36m29.7888s" assert f"Angle as HMS: {angle.to_string(unit=u.hour, precision=4, pad=True)}" == res # Same as above, in degrees angle = Angle("3 36 29.78880", unit=u.degree) res = "Angle as DMS: 3d36m29.7888s" assert f"Angle as DMS: {angle.to_string(unit=u.degree)}" == res res = "Angle as DMS: 3:36:29.7888" assert f"Angle as DMS: {angle.to_string(unit=u.degree, sep=':')}" == res res = "Angle as DMS: 3:36:29.79" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep=':', precision=2)}" == res ) # Note that you can provide one, two, or three separators passed as a # tuple or list res = "Angle as DMS: 3d36m29.7888s" assert ( f"Angle as DMS: {angle.to_string(unit=u.deg, sep=('d', 'm', 's'), precision=4)}" == res ) res = "Angle as DMS: 3-36|29.7888" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep=['-', '|'], precision=4)}" == res ) res = "Angle as DMS: 3-36-29.7888" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, sep='-', precision=4)}" == res ) res = "Angle as DMS: 03d36m29.7888s" assert ( f"Angle as DMS: {angle.to_string(unit=u.degree, precision=4, pad=True)}" == res ) res = "Angle as rad: 0.0629763 rad" assert f"Angle as rad: {angle.to_string(unit=u.radian)}" == res res = "Angle as rad decimal: 0.0629763" assert ( f"Angle as rad decimal: {angle.to_string(unit=u.radian, decimal=True)}" == res ) # check negative angles angle = Angle(-1.23456789, unit=u.degree) angle2 = Angle(-1.23456789, unit=u.hour) assert angle.to_string() == "-1d14m04.444404s" assert angle.to_string(pad=True) == "-01d14m04.444404s" assert angle.to_string(unit=u.hour) == "-0h04m56.2962936s" assert angle2.to_string(unit=u.hour, pad=True) == "-01h14m04.444404s" assert angle.to_string(unit=u.radian, decimal=True) == "-0.0215473" # We should recognize units that are equal but not identical assert angle.to_string(unit=u.hour**1) == "-0h04m56.2962936s"
Ensures that the string representation of an angle can be used to create a new valid Angle.
def test_angle_format_roundtripping(): """ Ensures that the string representation of an angle can be used to create a new valid Angle. """ a1 = Angle(0, unit=u.radian) a2 = Angle(10, unit=u.degree) a3 = Angle(0.543, unit=u.degree) a4 = Angle("1d2m3.4s") assert Angle(str(a1)).degree == a1.degree assert Angle(str(a2)).degree == a2.degree assert Angle(str(a3)).degree == a3.degree assert Angle(str(a4)).degree == a4.degree # also check Longitude/Latitude ra = Longitude("1h2m3.4s") dec = Latitude("1d2m3.4s") assert_allclose(Angle(str(ra)).degree, ra.degree) assert_allclose(Angle(str(dec)).degree, dec.degree)
Tests creation/operations of Longitude and Latitude objects
def test_radec(): """ Tests creation/operations of Longitude and Latitude objects """ """ Longitude and Latitude are objects that are subclassed from Angle. As with Angle, Longitude and Latitude can parse any unambiguous format (tuples, formatted strings, etc.). The intention is not to create an Angle subclass for every possible coordinate object (e.g. galactic l, galactic b). However, equatorial Longitude/Latitude are so prevalent in astronomy that it's worth creating ones for these units. They will be noted as "special" in the docs and use of the just the Angle class is to be used for other coordinate systems. """ with pytest.raises(u.UnitsError): Longitude("4:08:15.162342") # error - hours or degrees? with pytest.raises(u.UnitsError): Longitude("-4:08:15.162342") # the "smart" initializer allows >24 to automatically do degrees, but the # Angle-based one does not # TODO: adjust in 0.3 for whatever behavior is decided on # ra = Longitude("26:34:15.345634") # unambiguous b/c hours don't go past 24 # assert_allclose(ra.degree, 26.570929342) with pytest.raises(u.UnitsError): Longitude("26:34:15.345634") # ra = Longitude(68) with pytest.raises(u.UnitsError): Longitude(68) with pytest.raises(u.UnitsError): Longitude(12) with pytest.raises(ValueError): Longitude("garbage containing a d and no units") ra = Longitude("12h43m23s") assert_allclose(ra.hour, 12.7230555556) # Units can be specified ra = Longitude("4:08:15.162342", unit=u.hour) # TODO: this was the "smart" initializer behavior - adjust in 0.3 appropriately # Where Longitude values are commonly found in hours or degrees, declination is # nearly always specified in degrees, so this is the default. # dec = Latitude("-41:08:15.162342") with pytest.raises(u.UnitsError): Latitude("-41:08:15.162342") dec = Latitude("-41:08:15.162342", unit=u.degree)
Test that angles above 360 degrees can be output as strings, in repr, str, and to_string. (regression test for #1413)
def test_large_angle_representation(): """Test that angles above 360 degrees can be output as strings, in repr, str, and to_string. (regression test for #1413)""" a = Angle(350, u.deg) + Angle(350, u.deg) a.to_string() a.to_string(u.hourangle) repr(a) repr(a.to(u.hourangle)) str(a) str(a.to(u.hourangle))
Creating an angle from an (h,m,s) tuple should fail.
def test_create_tuple_fail(angle_class, unit): """Creating an angle from an (h,m,s) tuple should fail.""" with pytest.raises(TypeError, match="no longer supported"): angle_class((12, 14, 52), unit=unit)
Regression test for subtle bugs from situations where an Angle is created via numpy channels that don't do the standard __new__ but instead depend on array_finalize to set state. Longitude is used because the bug was in its _wrap_angle not getting initialized correctly
def test_wrap_at_without_new(): """ Regression test for subtle bugs from situations where an Angle is created via numpy channels that don't do the standard __new__ but instead depend on array_finalize to set state. Longitude is used because the bug was in its _wrap_angle not getting initialized correctly """ l1 = Longitude([1] * u.deg) l2 = Longitude([2] * u.deg) l = np.concatenate([l1, l2]) assert l._wrap_angle is not None
Check the __str__ method used in printing the Angle
def test__str__(): """ Check the __str__ method used in printing the Angle """ # scalar angle scangle = Angle("10.2345d") strscangle = scangle.__str__() assert strscangle == "10d14m04.2s" # non-scalar array angles arrangle = Angle(["10.2345d", "-20d"]) strarrangle = arrangle.__str__() assert strarrangle == "[10d14m04.2s -20d00m00s]" # summarizing for large arrays, ... should appear bigarrangle = Angle(np.ones(10000), u.deg) assert "..." in bigarrangle.__str__()
Check the _repr_latex_ method, used primarily by IPython notebooks
def test_repr_latex(): """ Check the _repr_latex_ method, used primarily by IPython notebooks """ # try with both scalar scangle = Angle(2.1, u.deg) rlscangle = scangle._repr_latex_() # and array angles arrangle = Angle([1, 2.1], u.deg) rlarrangle = arrangle._repr_latex_() assert rlscangle == r"$2^\circ06{}^\prime00{}^{\prime\prime}$" assert rlscangle.split("$")[1] in rlarrangle # make sure the ... appears for large arrays bigarrangle = Angle(np.ones(50000) / 50000.0, u.deg) assert "..." in bigarrangle._repr_latex_()
Regression test for #5350 Especially the example in https://github.com/astropy/astropy/issues/5350#issuecomment-248770151
def test_angle_with_cds_units_enabled(): """Regression test for #5350 Especially the example in https://github.com/astropy/astropy/issues/5350#issuecomment-248770151 """ # the problem is with the parser, so remove it temporarily from astropy.coordinates.angles.formats import _AngleParser from astropy.units import cds del _AngleParser._thread_local._parser with cds.enable(): Angle("5d") del _AngleParser._thread_local._parser Angle("5d")
Regression test for issue #7168
def test_angle_multithreading(): """ Regression test for issue #7168 """ angles = ["00:00:00"] * 10000 def parse_test(i=0): Angle(angles, unit="hour") for i in range(10): threading.Thread(target=parse_test, args=(i,)).start()
Regression test for issue #11473
def test_str_repr_angles_nan(cls, input, expstr, exprepr): """ Regression test for issue #11473 """ q = cls(input) assert str(q) == expstr # Deleting whitespaces since repr appears to be adding them for some values # making the test fail. assert repr(q).replace(" ", "") == f"<{cls.__name__}{exprepr}>".replace(" ", "")
Test that the wrapping of the Longitude value range in radians works in both float32 and float64.
def test_longitude_wrap(value, expected_value, dtype, expected_dtype, sign): """ Test that the wrapping of the Longitude value range in radians works in both float32 and float64. """ # This prevents upcasting to float64 as sign * value would do. if sign < 0: value = -value expected_value = -expected_value result = Longitude(value, u.rad, dtype=dtype) assert result.value == expected_value assert result.dtype == expected_dtype assert result.unit == u.rad
Test that the validation of the Latitude value range in radians works in both float32 and float64. As discussed in issue #13708, before, the float32 representation of pi/2 was rejected as invalid because the comparison always used the float64 representation.
def test_latitude_limits(value, expected_value, dtype, expected_dtype, sign): """ Test that the validation of the Latitude value range in radians works in both float32 and float64. As discussed in issue #13708, before, the float32 representation of pi/2 was rejected as invalid because the comparison always used the float64 representation. """ # this prevents upcasting to float64 as sign * value would do if sign < 0: value = -value expected_value = -expected_value result = Latitude(value, u.rad, dtype=dtype) assert result.value == expected_value assert result.dtype == expected_dtype assert result.unit == u.rad
Test that values slightly larger than pi/2 are rejected for different dtypes. Test cases for issue #13708
def test_latitude_out_of_limits(value, dtype): """ Test that values slightly larger than pi/2 are rejected for different dtypes. Test cases for issue #13708 """ with pytest.raises(ValueError, match=r"Latitude angle\(s\) must be within.*"): Latitude(value, u.rad, dtype=dtype)
Ensure that after pickling we can still do to_string on hourangle. Regression test for gh-13923.
def test_angle_pickle_to_string(): """ Ensure that after pickling we can still do to_string on hourangle. Regression test for gh-13923. """ angle = Angle(0.25 * u.hourangle) expected = angle.to_string() via_pickle = pickle.loads(pickle.dumps(angle)) via_pickle_string = via_pickle.to_string() # This used to fail. assert via_pickle_string == expected
Tests that the angular separation object also behaves correctly.
def test_angsep(): """ Tests that the angular separation object also behaves correctly. """ from astropy.coordinates import angular_separation # check it both works with floats in radians, Quantities, or Angles for conv in (np.deg2rad, lambda x: u.Quantity(x, "deg"), lambda x: Angle(x, "deg")): for (lon1, lat1, lon2, lat2), corrsep in zip(coords, correct_seps): angsep = angular_separation(conv(lon1), conv(lat1), conv(lon2), conv(lat2)) assert np.fabs(angsep - conv(corrsep)) < conv(correctness_margin)
Test angular separation functionality
def test_proj_separations(): """ Test angular separation functionality """ c1 = ICRS(ra=0 * u.deg, dec=0 * u.deg) c2 = ICRS(ra=0 * u.deg, dec=1 * u.deg) # these operations have ambiguous interpretations for points on a sphere with pytest.raises(TypeError): c1 + c2 with pytest.raises(TypeError): c1 - c2
Test arrays values with Angle objects.
def test_angle_arrays(): """ Test arrays values with Angle objects. """ # Tests incomplete a1 = Angle([0, 45, 90, 180, 270, 360, 720.0], unit=u.degree) npt.assert_almost_equal([0.0, 45.0, 90.0, 180.0, 270.0, 360.0, 720.0], a1.value) a2 = Angle(np.array([-90, -45, 0, 45, 90, 180, 270, 360]), unit=u.degree) npt.assert_almost_equal([-90, -45, 0, 45, 90, 180, 270, 360], a2.value) a3 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"]) npt.assert_almost_equal([12.0, 45.0, 5.0, 229.18311805], a3.value) assert a3.unit == u.degree a4 = Angle(["12 degrees", "3 hours", "5 deg", "4rad"], u.radian) npt.assert_almost_equal(a4.degree, a3.value) assert a4.unit == u.radian a5 = Angle([0, 45, 90, 180, 270, 360], unit=u.degree) a6 = a5.sum() npt.assert_almost_equal(a6.value, 945.0) assert a6.unit is u.degree with ExitStack() as stack: if NUMPY_LT_1_24: stack.enter_context(pytest.raises(TypeError)) stack.enter_context( pytest.warns( np.VisibleDeprecationWarning, match="Creating an ndarray from ragged nested sequences", ) ) else: stack.enter_context(pytest.raises(ValueError)) Angle([a1, a2, a3], unit=u.degree) a8 = Angle(["04:02:02", "03:02:01", "06:02:01"], unit=u.degree) npt.assert_almost_equal(a8.value, [4.03388889, 3.03361111, 6.03361111]) a9 = Angle(np.array(["04:02:02", "03:02:01", "06:02:01"]), unit=u.degree) npt.assert_almost_equal(a9.value, a8.value) with pytest.raises(u.UnitsError): Angle(["04:02:02", "03:02:01", "06:02:01"])
Test creating coordinates from arrays.
def test_array_coordinates_creation(): """ Test creating coordinates from arrays. """ c = ICRS(np.array([1, 2]) * u.deg, np.array([3, 4]) * u.deg) assert not c.ra.isscalar with pytest.raises(ValueError): ICRS(np.array([1, 2]) * u.deg, np.array([3, 4, 5]) * u.deg) with pytest.raises(ValueError): ICRS(np.array([1, 2, 4, 5]) * u.deg, np.array([[3, 4], [5, 6]]) * u.deg) # make sure cartesian initialization also works cart = CartesianRepresentation( x=[1.0, 2.0] * u.kpc, y=[3.0, 4.0] * u.kpc, z=[5.0, 6.0] * u.kpc ) c = ICRS(cart) # also ensure strings can be arrays c = SkyCoord(["1d0m0s", "2h02m00.3s"], ["3d", "4d"]) # but invalid strings cannot with pytest.raises(ValueError): SkyCoord(Angle(["10m0s", "2h02m00.3s"]), Angle(["3d", "4d"])) with pytest.raises(ValueError): SkyCoord(Angle(["1d0m0s", "2h02m00.3s"]), Angle(["3x", "4d"]))
Test creating coordinates from arrays and distances.
def test_array_coordinates_distances(): """ Test creating coordinates from arrays and distances. """ # correct way ICRS( ra=np.array([1, 2]) * u.deg, dec=np.array([3, 4]) * u.deg, distance=[0.1, 0.2] * u.kpc, ) with pytest.raises(ValueError): # scalar distance and mismatched array coordinates ICRS( ra=np.array([1, 2, 3]) * u.deg, dec=np.array([[3, 4], [5, 6]]) * u.deg, distance=2.0 * u.kpc, ) with pytest.raises(ValueError): # more distance values than coordinates ICRS( ra=np.array([1, 2]) * u.deg, dec=np.array([3, 4]) * u.deg, distance=[0.1, 0.2, 3.0] * u.kpc, )
Test transformation on coordinates with array content (first length-2 1D, then a 3D array)
def test_array_coordinates_transformations(arrshape, distance): """ Test transformation on coordinates with array content (first length-2 1D, then a 3D array) """ # M31 coordinates from test_transformations raarr = np.ones(arrshape) * 10.6847929 decarr = np.ones(arrshape) * 41.2690650 if distance is not None: distance = np.ones(arrshape) * distance print(raarr, decarr, distance) c = ICRS(ra=raarr * u.deg, dec=decarr * u.deg, distance=distance) g = c.transform_to(Galactic()) assert g.l.shape == arrshape npt.assert_array_almost_equal(g.l.degree, 121.17440967) npt.assert_array_almost_equal(g.b.degree, -21.57299631) if distance is not None: assert g.distance.unit == c.distance.unit # now make sure round-tripping works through FK5 c2 = c.transform_to(FK5()).transform_to(ICRS()) npt.assert_array_almost_equal(c.ra.radian, c2.ra.radian) npt.assert_array_almost_equal(c.dec.radian, c2.dec.radian) assert c2.ra.shape == arrshape if distance is not None: assert c2.distance.unit == c.distance.unit # also make sure it's possible to get to FK4, which uses a direct transform function. fk4 = c.transform_to(FK4()) npt.assert_array_almost_equal(fk4.ra.degree, 10.0004, decimal=4) npt.assert_array_almost_equal(fk4.dec.degree, 40.9953, decimal=4) assert fk4.ra.shape == arrshape if distance is not None: assert fk4.distance.unit == c.distance.unit # now check the reverse transforms run cfk4 = fk4.transform_to(ICRS()) assert cfk4.ra.shape == arrshape
Ensures that FK5 coordinates as arrays precess their equinoxes
def test_array_precession(): """ Ensures that FK5 coordinates as arrays precess their equinoxes """ j2000 = Time("J2000") j1975 = Time("J1975") fk5 = FK5([1, 1.1] * u.radian, [0.5, 0.6] * u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK5(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear npt.assert_array_less(0.05, np.abs(fk5.ra.degree - fk5_2.ra.degree)) npt.assert_array_less(0.05, np.abs(fk5.dec.degree - fk5_2.dec.degree))
Check replacements against erfa versions for consistency.
def test_atciqz_aticq(t, pos): """Check replacements against erfa versions for consistency.""" jd1, jd2 = get_jd12(t, "tdb") astrom, _ = erfa.apci13(jd1, jd2) ra = pos.lon.to_value(u.rad) dec = pos.lat.to_value(u.rad) assert_allclose(erfa.atciqz(ra, dec, astrom), atciqz(pos, astrom)) assert_allclose(erfa.aticq(ra, dec, astrom), aticq(pos, astrom))
This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED.
def test_m31_coord_transforms(fromsys, tosys, fromcoo, tocoo): """ This tests a variety of coordinate conversions for the Chandra point-source catalog location of M31 from NED. """ coo1 = fromsys(ra=fromcoo[0] * u.deg, dec=fromcoo[1] * u.deg, distance=m31_dist) coo2 = coo1.transform_to(tosys()) if tosys is FK4: coo2_prec = coo2.transform_to(FK4(equinox=Time("B1950"))) # convert_precision <1 arcsec assert (coo2_prec.spherical.lon - tocoo[0] * u.deg) < convert_precision assert (coo2_prec.spherical.lat - tocoo[1] * u.deg) < convert_precision else: assert (coo2.spherical.lon - tocoo[0] * u.deg) < convert_precision # <1 arcsec assert (coo2.spherical.lat - tocoo[1] * u.deg) < convert_precision assert coo1.distance.unit == u.kpc assert coo2.distance.unit == u.kpc assert m31_dist.unit == u.kpc assert (coo2.distance - m31_dist) < dist_precision # check round-tripping coo1_2 = coo2.transform_to(fromsys()) assert (coo1_2.spherical.lon - fromcoo[0] * u.deg) < roundtrip_precision assert (coo1_2.spherical.lat - fromcoo[1] * u.deg) < roundtrip_precision assert (coo1_2.distance - m31_dist) < dist_precision
Ensures that FK4 and FK5 coordinates precess their equinoxes
def test_precession(): """ Ensures that FK4 and FK5 coordinates precess their equinoxes """ j2000 = Time("J2000") b1950 = Time("B1950") j1975 = Time("J1975") b1975 = Time("B1975") fk4 = FK4(ra=1 * u.radian, dec=0.5 * u.radian) assert fk4.equinox.byear == b1950.byear fk4_2 = fk4.transform_to(FK4(equinox=b1975)) assert fk4_2.equinox.byear == b1975.byear fk5 = FK5(ra=1 * u.radian, dec=0.5 * u.radian) assert fk5.equinox.jyear == j2000.jyear fk5_2 = fk5.transform_to(FK4(equinox=j1975)) assert fk5_2.equinox.jyear == j1975.jyear
Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic.
def test_fk5_galactic(): """ Check that FK5 -> Galactic gives the same as FK5 -> FK4 -> Galactic. """ fk5 = FK5(ra=1 * u.deg, dec=2 * u.deg) direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.0e-10 direct = fk5.transform_to(Galactic()) indirect = fk5.transform_to(FK4NoETerms()).transform_to(Galactic()) assert direct.separation(indirect).degree < 1.0e-10
Check Galactic<->Supergalactic and Galactic<->ICRS conversion.
def test_supergalactic(): """ Check Galactic<->Supergalactic and Galactic<->ICRS conversion. """ # Check supergalactic North pole. npole = Galactic(l=47.37 * u.degree, b=+6.32 * u.degree) assert allclose(npole.transform_to(Supergalactic()).sgb.deg, +90, atol=1e-9) # Check the origin of supergalactic longitude. lon0 = Supergalactic(sgl=0 * u.degree, sgb=0 * u.degree) lon0_gal = lon0.transform_to(Galactic()) assert allclose(lon0_gal.l.deg, 137.37, atol=1e-9) assert allclose(lon0_gal.b.deg, 0, atol=1e-9) # Test Galactic<->ICRS with some positions that appear in Foley et al. 2008 # (https://ui.adsabs.harvard.edu/abs/2008A%26A...484..143F) # GRB 021219 supergalactic = Supergalactic(sgl=29.91 * u.degree, sgb=+73.72 * u.degree) icrs = SkyCoord("18h50m27s +31d57m17s") assert supergalactic.separation(icrs) < 0.005 * u.degree # GRB 030320 supergalactic = Supergalactic(sgl=-174.44 * u.degree, sgb=+46.17 * u.degree) icrs = SkyCoord("17h51m36s -25d18m52s") assert supergalactic.separation(icrs) < 0.005 * u.degree
Test CIRS<->ICRS transformations, including self transform
def test_cirs_icrs(): """ Test CIRS<->ICRS transformations, including self transform """ t = Time("J2010") MOONDIST = 385000 * u.km # approximate moon semi-major orbit axis of moon MOONDIST_CART = CartesianRepresentation( 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST, 3**-0.5 * MOONDIST ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg) cirs_geo_frame = CIRS(obstime=t) cirs_topo_frame = CIRS(obstime=t, location=loc) moon_geo = cirs_geo_frame.realize_frame(MOONDIST_CART) moon_topo = moon_geo.transform_to(cirs_topo_frame) # now check that the distance change is similar to earth radius assert ( 1000 * u.km < np.abs(moon_topo.distance - moon_geo.distance).to(u.au) < 7000 * u.km ) # now check that it round-trips moon2 = moon_topo.transform_to(moon_geo) assert_allclose(moon_geo.cartesian.xyz, moon2.cartesian.xyz) # now check ICRS transform gives a decent distance from Barycentre moon_icrs = moon_geo.transform_to(ICRS()) assert_allclose(moon_icrs.distance - 1 * u.au, 0.0 * u.R_sun, atol=3 * u.R_sun)
Tests functionality for Coordinate class distances and cartesian transformations.
def test_distances(): """ Tests functionality for Coordinate class distances and cartesian transformations. """ """ Distances can also be specified, and allow for a full 3D definition of a coordinate. """ # try all the different ways to initialize a Distance distance = Distance(12, u.parsec) Distance(40, unit=u.au) Distance(value=5, unit=u.kpc) # need to provide a unit with pytest.raises(u.UnitsError): Distance(12) with pytest.raises(ValueError, match="none of `value`, `z`, `distmod`,"): Distance(unit=u.km) # standard units are pre-defined npt.assert_allclose(distance.lyr, 39.138765325702551) npt.assert_allclose(distance.km, 370281309776063.0) # Coordinate objects can be assigned a distance object, giving them a full # 3D position c = Galactic( l=158.558650 * u.degree, b=-43.350066 * u.degree, distance=Distance(12, u.parsec), ) assert quantity_allclose(c.distance, 12 * u.pc) # or initialize distances via redshifts - this is actually tested in the # function below that checks for scipy. This is kept here as an example # c.distance = Distance(z=0.2) # uses current cosmology # with whatever your preferred cosmology may be # c.distance = Distance(z=0.2, cosmology=WMAP5) # Coordinate objects can be initialized with a distance using special # syntax c1 = Galactic(l=158.558650 * u.deg, b=-43.350066 * u.deg, distance=12 * u.kpc) # Coordinate objects can be instantiated with cartesian coordinates # Internally they will immediately be converted to two angles + a distance cart = CartesianRepresentation(x=2 * u.pc, y=4 * u.pc, z=8 * u.pc) c2 = Galactic(cart) sep12 = c1.separation_3d(c2) # returns a *3d* distance between the c1 and c2 coordinates # not that this does *not* assert isinstance(sep12, Distance) npt.assert_allclose(sep12.pc, 12005.784163916317, 10) """ All spherical coordinate systems with distances can be converted to cartesian coordinates. """ cartrep2 = c2.cartesian assert isinstance(cartrep2.x, u.Quantity) npt.assert_allclose(cartrep2.x.value, 2) npt.assert_allclose(cartrep2.y.value, 4) npt.assert_allclose(cartrep2.z.value, 8) # with no distance, the unit sphere is assumed when converting to cartesian c3 = Galactic(l=158.558650 * u.degree, b=-43.350066 * u.degree, distance=None) unitcart = c3.cartesian npt.assert_allclose( ((unitcart.x**2 + unitcart.y**2 + unitcart.z**2) ** 0.5).value, 1.0 ) # TODO: choose between these when CartesianRepresentation gets a definite # decision on whether or not it gets __add__ # # CartesianRepresentation objects can be added and subtracted, which are # vector/elementwise they can also be given as arguments to a coordinate # system # csum = ICRS(c1.cartesian + c2.cartesian) csumrep = CartesianRepresentation(c1.cartesian.xyz + c2.cartesian.xyz) csum = ICRS(csumrep) npt.assert_allclose(csumrep.x.value, -8.12016610185) npt.assert_allclose(csumrep.y.value, 3.19380597435) npt.assert_allclose(csumrep.z.value, -8.2294483707) npt.assert_allclose(csum.ra.degree, 158.529401774) npt.assert_allclose(csum.dec.degree, -43.3235825777) npt.assert_allclose(csum.distance.kpc, 11.9942200501)
The distance-related tests that require scipy due to the cosmology module needing scipy integration routines
def test_distances_scipy(): """ The distance-related tests that require scipy due to the cosmology module needing scipy integration routines """ from astropy.cosmology import WMAP5 # try different ways to initialize a Distance d4 = Distance(z=0.23) # uses default cosmology - as of writing, WMAP7 npt.assert_allclose(d4.z, 0.23, rtol=1e-8) d5 = Distance(z=0.23, cosmology=WMAP5) npt.assert_allclose(d5.compute_z(WMAP5), 0.23, rtol=1e-8) d6 = Distance(z=0.23, cosmology=WMAP5, unit=u.km) npt.assert_allclose(d6.value, 3.5417046898762366e22) with pytest.raises(ValueError, match="a `cosmology` was given but `z`"): Distance(parallax=1 * u.mas, cosmology=WMAP5) # Regression test for #12531 with pytest.raises(ValueError, match=MULTIPLE_INPUTS_ERROR_MSG): Distance(z=0.23, parallax=1 * u.mas) # vectors! regression test for #11949 d4 = Distance(z=[0.23, 0.45]) # as of writing, Planck18 npt.assert_allclose(d4.z, [0.23, 0.45], rtol=1e-8)
test that distance behaves like a proper quantity
def test_distance_is_quantity(): """ test that distance behaves like a proper quantity """ Distance(2 * u.kpc) d = Distance([2, 3.1], u.kpc) assert d.shape == (2,) a = d.view(np.ndarray) q = d.view(u.Quantity) a[0] = 1.2 q.value[1] = 5.4 assert d[0].value == 1.2 assert d[1].value == 5.4 q = u.Quantity(d, copy=True) q.value[1] = 0 assert q.value[1] == 0 assert d.value[1] != 0 # regression test against #2261 d = Distance([2 * u.kpc, 250.0 * u.pc]) assert d.unit is u.kpc assert np.all(d.value == np.array([2.0, 0.25]))
test that distances can be created from quantities and that cartesian representations come out right
def test_distance_in_coordinates(): """ test that distances can be created from quantities and that cartesian representations come out right """ ra = Longitude("4:08:15.162342", unit=u.hour) dec = Latitude("-41:08:15.162342", unit=u.degree) coo = ICRS(ra, dec, distance=2 * u.kpc) cart = coo.cartesian assert isinstance(cart.xyz, u.Quantity)
Test optional kwarg allow_negative
def test_negative_distance(): """Test optional kwarg allow_negative""" error_message = ( r"^distance must be >= 0\. Use the argument `allow_negative=True` to allow " r"negative values\.$" ) with pytest.raises(ValueError, match=error_message): Distance([-2, 3.1], u.kpc) with pytest.raises(ValueError, match=error_message): Distance([-2, -3.1], u.kpc) with pytest.raises(ValueError, match=error_message): Distance(-2, u.kpc) d = Distance(-2, u.kpc, allow_negative=True) assert d.value == -2
Ensure comparisons of distances work (#2206, #2250)
def test_distance_comparison(): """Ensure comparisons of distances work (#2206, #2250)""" a = Distance(15 * u.kpc) b = Distance(15 * u.kpc) assert a == b c = Distance(1.0 * u.Mpc) assert a < c
Any operation that leaves units other than those of length should turn a distance into a quantity (#2206, #2250)
def test_distance_to_quantity_when_not_units_of_length(): """Any operation that leaves units other than those of length should turn a distance into a quantity (#2206, #2250)""" d = Distance(15 * u.kpc) twice = 2.0 * d assert isinstance(twice, Distance) area = 4.0 * np.pi * d**2 assert area.unit.is_equivalent(u.m**2) assert not isinstance(area, Distance) assert type(area) is u.Quantity
Test angle-like behavior of Distance.parallax for object with a unit attribute. Adapted from #15693
def test_distance_parallax_angle_like(): """Test angle-like behavior of Distance.parallax for object with a unit attribute. Adapted from #15693 """ assert quantity_allclose( Distance(parallax=Column([1.0, 2.0, 4.0], unit=u.mas)), [1000, 500, 250] * u.pc, ) class FloatMas(float): unit = u.mas assert Distance(parallax=FloatMas(1.0)) == 1000 * u.pc
Test that we reproduce erfa/src/t_erfa_c.c t_gc2gd
def test_gc2gd(): """Test that we reproduce erfa/src/t_erfa_c.c t_gc2gd""" x, y, z = (2e6, 3e6, 5.244e6) status = 0 # help for copy & paste of vvd location = EarthLocation.from_geocentric(x, y, z, u.m) e, p, h = location.to_geodetic("WGS84") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic("GRS80") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e2", status) vvd(p, 0.97160184820607853, 1e-14, "eraGc2gd", "p2", status) vvd(h, 331.41731754844348, 1e-8, "eraGc2gd", "h2", status) e, p, h = location.to_geodetic("WGS72") e, p, h = e.to(u.radian), p.to(u.radian), h.to(u.m) vvd(e, 0.98279372324732907, 1e-14, "eraGc2gd", "e3", status) vvd(p, 0.97160181811015119, 1e-14, "eraGc2gd", "p3", status) vvd(h, 333.27707261303181, 1e-8, "eraGc2gd", "h3", status)
Test that we reproduce erfa/src/t_erfa_c.c t_gd2gc
def test_gd2gc(): """Test that we reproduce erfa/src/t_erfa_c.c t_gd2gc""" e = 3.1 * u.rad p = -0.5 * u.rad h = 2500.0 * u.m status = 0 # help for copy & paste of vvd location = EarthLocation.from_geodetic(e, p, h, ellipsoid="WGS84") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577049947, 1e-7, "eraGd2gc", "0/1", status) vvd(xyz[1], 233011.67223479203, 1e-7, "eraGd2gc", "1/1", status) vvd(xyz[2], -3040909.4706983363, 1e-7, "eraGd2gc", "2/1", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid="GRS80") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5599000.5577260984, 1e-7, "eraGd2gc", "0/2", status) vvd(xyz[1], 233011.6722356703, 1e-7, "eraGd2gc", "1/2", status) vvd(xyz[2], -3040909.4706095476, 1e-7, "eraGd2gc", "2/2", status) location = EarthLocation.from_geodetic(e, p, h, ellipsoid="WGS72") xyz = tuple(v.to(u.m) for v in location.to_geocentric()) vvd(xyz[0], -5598998.7626301490, 1e-7, "eraGd2gc", "0/3", status) vvd(xyz[1], 233011.5975297822, 1e-7, "eraGd2gc", "1/3", status) vvd(xyz[2], -3040908.6861467111, 1e-7, "eraGd2gc", "2/3", status)
Regression test against #4304.
def test_pickling(): """Regression test against #4304.""" el = EarthLocation(0.0 * u.m, 6000 * u.km, 6000 * u.km) s = pickle.dumps(el) el2 = pickle.loads(s) assert el == el2
Regression test for issue #4542
def test_repr_latex(): """ Regression test for issue #4542 """ somelocation = EarthLocation(lon="149:3:57.9", lat="-31:16:37.3") somelocation._repr_latex_() somelocation2 = EarthLocation(lon=[1.0, 2.0] * u.deg, lat=[-1.0, 9.0] * u.deg) somelocation2._repr_latex_()
Test that the interpolation also works for nd-arrays
def test_interpolation_nd(): """ Test that the interpolation also works for nd-arrays """ fact = EarthLocation( lon=-17.891105 * u.deg, lat=28.761584 * u.deg, height=2200 * u.m, ) interp_provider = ErfaAstromInterpolator(300 * u.s) provider = ErfaAstrom() for shape in [(), (1,), (10,), (3, 2), (2, 10, 5), (4, 5, 3, 2)]: # create obstimes of the desired shapes delta_t = np.linspace(0, 12, np.prod(shape, dtype=int)) * u.hour obstime = (Time("2020-01-01T18:00") + delta_t).reshape(shape) altaz = AltAz(location=fact, obstime=obstime) gcrs = GCRS(obstime=obstime) cirs = CIRS(obstime=obstime) for frame, tcode in zip([altaz, cirs, gcrs], ["apio", "apco", "apcs"]): without_interp = getattr(provider, tcode)(frame) assert without_interp.shape == shape with_interp = getattr(interp_provider, tcode)(frame) assert with_interp.shape == shape
We are testing that the mechanism of calling a function works. If the function returns a constant value we can compare the numbers with what we get if we specify a constant dt directly.
def test_dt_function(dt, expected_vel): """We are testing that the mechanism of calling a function works. If the function returns a constant value we can compare the numbers with what we get if we specify a constant dt directly. """ gcrs_coord = GCRS( ra=12 * u.deg, dec=47 * u.deg, distance=100 * u.au, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, obstime=Time("J2020"), ) with frame_transform_graph.impose_finite_difference_dt( lambda fromcoord, toframe: dt ): icrs_coord = gcrs_coord.transform_to(ICRS()) assert_quantity_allclose( icrs_coord.cartesian.xyz, [66.535756, 15.074734, 73.518509] * u.au ) assert_quantity_allclose( icrs_coord.cartesian.differentials["s"].d_xyz, expected_vel, rtol=2e-6 )
Tests the numerical stability of the default settings for the finite difference transformation calculation. This is *known* to fail for at >~1kpc, but this may be improved in future versions.
def test_numerical_limits(distance): """ Tests the numerical stability of the default settings for the finite difference transformation calculation. This is *known* to fail for at >~1kpc, but this may be improved in future versions. """ gcrs_coord = ICRS( ra=0 * u.deg, dec=10 * u.deg, distance=distance, pm_ra_cosdec=0 * u.marcsec / u.yr, pm_dec=0 * u.marcsec / u.yr, radial_velocity=0 * u.km / u.s, ).transform_to(GCRS(obstime=Time("J2017") + np.linspace(-0.5, 0.5, 100) * u.year)) # if its a lot bigger than this - ~the maximal velocity shift along # the direction above with a small allowance for noise - finite-difference # rounding errors have ruined the calculation assert np.ptp(gcrs_coord.radial_velocity) < 65 * u.km / u.s
Useful for plotting a frame with multiple times. *Not* used in the testing suite per se, but extremely useful for interactive plotting of results from tests in this module.
def diff_info_plot(frame, time): """ Useful for plotting a frame with multiple times. *Not* used in the testing suite per se, but extremely useful for interactive plotting of results from tests in this module. """ from matplotlib import pyplot as plt fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(20, 12)) ax1.plot_date( time.plot_date, frame.data.differentials["s"].d_xyz.to(u.km / u.s).T, fmt="-" ) ax1.legend(["x", "y", "z"]) ax2.plot_date( time.plot_date, np.sum(frame.data.differentials["s"].d_xyz.to(u.km / u.s) ** 2, axis=0) ** 0.5, fmt="-", ) ax2.set_title("total") sd = frame.data.differentials["s"].represent_as(SphericalDifferential, frame.data) ax3.plot_date(time.plot_date, sd.d_distance.to(u.km / u.s), fmt="-") ax3.set_title("radial") ax4.plot_date(time.plot_date, sd.d_lat.to(u.marcsec / u.yr), fmt="-", label="lat") ax4.plot_date(time.plot_date, sd.d_lon.to(u.marcsec / u.yr), fmt="-", label="lon") return fig
Regression test for a bug that caused ``to_string`` to crash for angles in radians when specifying the precision.
def test_to_string_radian_with_precision(): """ Regression test for a bug that caused ``to_string`` to crash for angles in radians when specifying the precision. """ # Check that specifying the precision works a = Angle(3.0, unit=u.rad) assert a.to_string(precision=3, sep="fromunit") == "3.000 rad"
Copy original 'REPRESENTATIONCLASSES' as attribute in function.
def setup_function(func): """Copy original 'REPRESENTATIONCLASSES' as attribute in function.""" func.REPRESENTATION_CLASSES_ORIG = deepcopy(REPRESENTATION_CLASSES)
Reset REPRESENTATION_CLASSES to original value.
def teardown_function(func): """Reset REPRESENTATION_CLASSES to original value.""" REPRESENTATION_CLASSES.clear() REPRESENTATION_CLASSES.update(func.REPRESENTATION_CLASSES_ORIG)
Unit tests of the Attribute descriptor.
def test_frame_attribute_descriptor(): """Unit tests of the Attribute descriptor.""" class TestAttributes: attr_none = Attribute() attr_2 = Attribute(default=2) attr_3_attr2 = Attribute(default=3, secondary_attribute="attr_2") attr_none_attr2 = Attribute(default=None, secondary_attribute="attr_2") attr_none_nonexist = Attribute(default=None, secondary_attribute="nonexist") t = TestAttributes() # Defaults assert t.attr_none is None assert t.attr_2 == 2 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 assert t.attr_none_nonexist is None # No default and non-existent secondary attr # Setting values via '_'-prefixed internal vars # (as would normally done in __init__) t._attr_none = 10 assert t.attr_none == 10 t._attr_2 = 20 assert t.attr_2 == 20 assert t.attr_3_attr2 == 3 assert t.attr_none_attr2 == t.attr_2 t._attr_none_attr2 = 40 assert t.attr_none_attr2 == 40 # Make sure setting values via public attribute fails with pytest.raises(AttributeError) as err: t.attr_none = 5 assert "Cannot set frame attribute" in str(err.value)
Unit test of the attribute descriptors in subclasses.
def test_frame_subclass_attribute_descriptor(): """Unit test of the attribute descriptors in subclasses.""" _EQUINOX_B1980 = Time("B1980", scale="tai") class MyFK4(FK4): # equinox inherited from FK4, obstime overridden, and newattr is new obstime = TimeAttribute(default=_EQUINOX_B1980) newattr = Attribute(default="newattr") mfk4 = MyFK4() assert mfk4.equinox.value == "B1950.000" assert mfk4.obstime.value == "B1980.000" assert mfk4.newattr == "newattr" with pytest.warns(AstropyDeprecationWarning): assert set(mfk4.get_frame_attr_names()) == {"equinox", "obstime", "newattr"} mfk4 = MyFK4(equinox="J1980.0", obstime="J1990.0", newattr="world") assert mfk4.equinox.value == "J1980.000" assert mfk4.obstime.value == "J1990.000" assert mfk4.newattr == "world"
Ensure that all attributes are accumulated in case of inheritance from multiple BaseCoordinateFrames. See https://github.com/astropy/astropy/pull/11099#issuecomment-735829157
def test_frame_multiple_inheritance_attribute_descriptor(): """ Ensure that all attributes are accumulated in case of inheritance from multiple BaseCoordinateFrames. See https://github.com/astropy/astropy/pull/11099#issuecomment-735829157 """ class Frame1(BaseCoordinateFrame): attr1 = Attribute() class Frame2(BaseCoordinateFrame): attr2 = Attribute() class Frame3(Frame1, Frame2): pass assert len(Frame3.frame_attributes) == 2 assert "attr1" in Frame3.frame_attributes assert "attr2" in Frame3.frame_attributes # In case the same attribute exists in both frames, the one from the # left-most class in the MRO should take precedence class Frame4(BaseCoordinateFrame): attr1 = Attribute() attr2 = Attribute() class Frame5(Frame1, Frame4): pass assert Frame5.frame_attributes["attr1"] is Frame1.frame_attributes["attr1"] assert Frame5.frame_attributes["attr2"] is Frame4.frame_attributes["attr2"]
This test just makes sure the transform architecture works, but does *not* actually test all the builtin transforms themselves are accurate.
def test_transform(): """ This test just makes sure the transform architecture works, but does *not* actually test all the builtin transforms themselves are accurate. """ i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ == r.UnitSphericalRepresentation assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg, distance=[5, 6] * u.kpc) f = i.transform_to(FK5()) i2 = f.transform_to(ICRS()) assert i2.data.__class__ != r.UnitSphericalRepresentation f = FK5(ra=1 * u.deg, dec=2 * u.deg, equinox=Time("J2001")) f4 = f.transform_to(FK4()) f4_2 = f.transform_to(FK4(equinox=f.equinox)) # make sure attributes are copied over correctly assert f4.equinox == FK4().equinox assert f4_2.equinox == f.equinox # make sure self-transforms also work i = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) i2 = i.transform_to(ICRS()) assert_allclose(i.ra, i2.ra) assert_allclose(i.dec, i2.dec) f = FK5(ra=1 * u.deg, dec=2 * u.deg, equinox=Time("J2001")) f2 = f.transform_to(FK5()) # default equinox, so should be *different* assert f2.equinox == FK5().equinox with pytest.raises(AssertionError): assert_allclose(f.ra, f2.ra) with pytest.raises(AssertionError): assert_allclose(f.dec, f2.dec) # finally, check Galactic round-tripping i1 = ICRS(ra=[1, 2] * u.deg, dec=[3, 4] * u.deg) i2 = i1.transform_to(Galactic()).transform_to(ICRS()) assert_allclose(i1.ra, i2.ra) assert_allclose(i1.dec, i2.dec)
Test different flavors of item setting for a Frame without a velocity.
def test_setitem_no_velocity(): """Test different flavors of item setting for a Frame without a velocity.""" obstime = "B1955" sc0 = FK4([1, 2] * u.deg, [3, 4] * u.deg, obstime=obstime) sc2 = FK4([10, 20] * u.deg, [30, 40] * u.deg, obstime=obstime) sc1 = sc0.copy() sc1_repr = repr(sc1) assert "representation" in sc1.cache sc1[1] = sc2[0] assert sc1.cache == {} assert repr(sc2) != sc1_repr assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert sc1.obstime == sc2.obstime assert sc1.name == "fk4" sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) # Works for array-valued obstime so long as they are considered equivalent sc1 = FK4(sc0.ra, sc0.dec, obstime=[obstime, obstime]) sc1[0] = sc2[0] # Multidimensional coordinates sc1 = FK4([[1, 2], [3, 4]] * u.deg, [[5, 6], [7, 8]] * u.deg) sc2 = FK4([[10, 20], [30, 40]] * u.deg, [[50, 60], [70, 80]] * u.deg) sc1[0] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [[10, 20], [3, 4]]) assert np.allclose(sc1.dec.to_value(u.deg), [[50, 60], [7, 8]])
Test different flavors of item setting for a Frame with a velocity.
def test_setitem_velocities(): """Test different flavors of item setting for a Frame with a velocity.""" sc0 = FK4( [1, 2] * u.deg, [3, 4] * u.deg, radial_velocity=[1, 2] * u.km / u.s, obstime="B1950", ) sc2 = FK4( [10, 20] * u.deg, [30, 40] * u.deg, radial_velocity=[10, 20] * u.km / u.s, obstime="B1950", ) sc1 = sc0.copy() sc1[1] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [1, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [3, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [1, 10]) assert sc1.obstime == sc2.obstime assert sc1.name == "fk4" sc1 = sc0.copy() sc1[:] = sc2[0] assert np.allclose(sc1.ra.to_value(u.deg), [10, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 10]) sc1 = sc0.copy() sc1[:] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [10, 20]) assert np.allclose(sc1.dec.to_value(u.deg), [30, 40]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [10, 20]) sc1 = sc0.copy() sc1[[1, 0]] = sc2[:] assert np.allclose(sc1.ra.to_value(u.deg), [20, 10]) assert np.allclose(sc1.dec.to_value(u.deg), [40, 30]) assert np.allclose(sc1.radial_velocity.to_value(u.km / u.s), [20, 10])
Test validation and conversion of inputs for equinox and obstime attributes.
def test_time_inputs(): """ Test validation and conversion of inputs for equinox and obstime attributes. """ c = FK4(1 * u.deg, 2 * u.deg, equinox="J2001.5", obstime="2000-01-01 12:00:00") assert c.equinox == Time("J2001.5") assert c.obstime == Time("2000-01-01 12:00:00") with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, equinox=1.5) assert "Invalid time input" in str(err.value) with pytest.raises(ValueError) as err: c = FK4(1 * u.deg, 2 * u.deg, obstime="hello") assert "Invalid time input" in str(err.value) # A vector time should work if the shapes match, and we automatically # broadcast the basic data. c = FK4([1, 2] * u.deg, [2, 3] * u.deg, obstime=["J2000", "J2001"]) assert c.shape == (2,) c = FK4(1 * u.deg, 2 * u.deg, obstime=["J2000", "J2001"]) assert c.shape == (2,) # If the shapes are not broadcastable, then we should raise an exception. with pytest.raises(ValueError, match="inconsistent shapes"): FK4([1, 2, 3] * u.deg, [4, 5, 6] * u.deg, obstime=["J2000", "J2001"])
Check that the `is_frame_attr_default` machinery works as expected
def test_is_frame_attr_default(): """ Check that the `is_frame_attr_default` machinery works as expected """ c1 = FK5(ra=1 * u.deg, dec=1 * u.deg) c2 = FK5( ra=1 * u.deg, dec=1 * u.deg, equinox=FK5.get_frame_attr_defaults()["equinox"] ) c3 = FK5(ra=1 * u.deg, dec=1 * u.deg, equinox=Time("J2001.5")) assert c1.equinox == c2.equinox assert c1.equinox != c3.equinox assert c1.is_frame_attr_default("equinox") assert not c2.is_frame_attr_default("equinox") assert not c3.is_frame_attr_default("equinox") c4 = c1.realize_frame(r.UnitSphericalRepresentation(3 * u.deg, 4 * u.deg)) c5 = c2.realize_frame(r.UnitSphericalRepresentation(3 * u.deg, 4 * u.deg)) assert c4.is_frame_attr_default("equinox") assert not c5.is_frame_attr_default("equinox")
Test the getter and setter properties for `representation`
def test_representation(): """ Test the getter and setter properties for `representation` """ # Create the frame object. icrs = ICRS(ra=1 * u.deg, dec=1 * u.deg) data = icrs.data # Create some representation objects. icrs_cart = icrs.cartesian icrs_spher = icrs.spherical icrs_cyl = icrs.cylindrical # Testing when `_representation` set to `CartesianRepresentation`. icrs.representation_type = r.CartesianRepresentation assert icrs.representation_type == r.CartesianRepresentation assert icrs_cart.x == icrs.x assert icrs_cart.y == icrs.y assert icrs_cart.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CartesianRepresentation must not have spherical attributes. for attr in ("ra", "dec", "distance"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) # Testing when `_representation` set to `CylindricalRepresentation`. icrs.representation_type = r.CylindricalRepresentation assert icrs.representation_type == r.CylindricalRepresentation assert icrs.data == data # Testing setter input using text argument for spherical. icrs.representation_type = "spherical" assert icrs.representation_type is r.SphericalRepresentation assert icrs_spher.lat == icrs.dec assert icrs_spher.lon == icrs.ra assert icrs_spher.distance == icrs.distance assert icrs.data == data # Testing that an ICRS object in SphericalRepresentation must not have cartesian attributes. for attr in ("x", "y", "z"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) # Testing setter input using text argument for cylindrical. icrs.representation_type = "cylindrical" assert icrs.representation_type is r.CylindricalRepresentation assert icrs_cyl.rho == icrs.rho assert icrs_cyl.phi == icrs.phi assert icrs_cyl.z == icrs.z assert icrs.data == data # Testing that an ICRS object in CylindricalRepresentation must not have spherical attributes. for attr in ("ra", "dec", "distance"): with pytest.raises(AttributeError) as err: getattr(icrs, attr) assert "object has no attribute" in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = "WRONG" assert "but must be a BaseRepresentation class" in str(err.value) with pytest.raises(ValueError) as err: icrs.representation_type = ICRS assert "but must be a BaseRepresentation class" in str(err.value)
Make sure current representation survives __getitem__ even if different from data representation.
def test_getitem_representation(): """ Make sure current representation survives __getitem__ even if different from data representation. """ c = ICRS([1, 1] * u.deg, [2, 2] * u.deg) c.representation_type = "cartesian" assert c[0].representation_type is r.CartesianRepresentation
Check that a data-less frame gives useful error messages about not having data when the attributes asked for are possible coordinate components
def test_component_error_useful(): """ Check that a data-less frame gives useful error messages about not having data when the attributes asked for are possible coordinate components """ i = ICRS() with pytest.raises(ValueError) as excinfo: i.ra assert "does not have associated data" in str(excinfo.value) with pytest.raises(AttributeError) as excinfo1: i.foobar with pytest.raises(AttributeError) as excinfo2: i.lon # lon is *not* the component name despite being the underlying representation's name assert "object has no attribute 'foobar'" in str(excinfo1.value) assert "object has no attribute 'lon'" in str(excinfo2.value)
This test checks that the component names are frame component names, not representation or differential names, when referenced in an exception raised when not passing in enough data. For example: ICRS(ra=10*u.deg) should state: TypeError: __init__() missing 1 required positional argument: 'dec'
def test_missing_component_error_names(): """ This test checks that the component names are frame component names, not representation or differential names, when referenced in an exception raised when not passing in enough data. For example: ICRS(ra=10*u.deg) should state: TypeError: __init__() missing 1 required positional argument: 'dec' """ with pytest.raises(TypeError) as e: ICRS(ra=150 * u.deg) assert "missing 1 required positional argument: 'dec'" in str(e.value) with pytest.raises(TypeError) as e: ICRS( ra=150 * u.deg, dec=-11 * u.deg, pm_ra=100 * u.mas / u.yr, pm_dec=10 * u.mas / u.yr, ) assert "pm_ra_cosdec" in str(e.value)
Note: this is a regression test for #11096
def test_nameless_frame_subclass(): """Note: this is a regression test for #11096""" class Test: pass # Subclass from a frame class and a non-frame class. # This subclassing is the test! class NewFrame(ICRS, Test): pass
Test that frame can be compared to a SkyCoord
def test_frame_coord_comparison(): """Test that frame can be compared to a SkyCoord""" frame = ICRS(0 * u.deg, 0 * u.deg) coord = SkyCoord(frame) other = SkyCoord(ICRS(0 * u.deg, 1 * u.deg)) assert frame == coord assert frame != other assert not (frame == other) error_msg = "objects must have equivalent frames" with pytest.raises(TypeError, match=error_msg): frame == SkyCoord(AltAz("0d", "1d")) # noqa: B015 coord = SkyCoord(ra=12 * u.hourangle, dec=5 * u.deg, frame=FK5(equinox="J1950")) frame = FK5(ra=12 * u.hourangle, dec=5 * u.deg, equinox="J2000") with pytest.raises(TypeError, match=error_msg): coord == frame # noqa: B015 frame = ICRS() coord = SkyCoord(0 * u.deg, 0 * u.deg, frame=frame) error_msg = "Can only compare SkyCoord to Frame with data" with pytest.raises(ValueError, match=error_msg): frame == coord
Note: Regression test for #5982
def test_altaz_broadcast(s1, s2): """Note: Regression test for #5982""" where = EarthLocation.from_geodetic(lat=45 * u.deg, lon=30 * u.deg, height=0 * u.m) time = Time(np.full(s1, 58000.0), format="mjd") angle = np.full(s2, 45.0) * u.deg result = AltAz(alt=angle, az=angle, obstime=time, location=where) assert result.shape == np.broadcast_shapes(s1, s2)
Note: Regression test for #12965
def test_transform_altaz_array_obstime(): """Note: Regression test for #12965""" obstime = Time("2010-01-01T00:00:00") location = EarthLocation(0 * u.deg, 0 * u.deg, 0 * u.m) frame1 = AltAz(location=location, obstime=obstime) coord1 = SkyCoord(alt=80 * u.deg, az=0 * u.deg, frame=frame1) obstimes = obstime + np.linspace(0, 15, 50) * u.min frame2 = AltAz(location=location, obstime=obstimes) coord2 = SkyCoord(alt=coord1.alt, az=coord1.az, frame=frame2) assert np.all(coord2.alt == 80 * u.deg) assert np.all(coord2.az == 0 * u.deg) assert coord2.shape == (50,) # test transformation to ICRS works assert len(coord2.icrs) == 50
Note: Regression test for #14383
def test_spherical_offsets_by_broadcast(): """Note: Regression test for #14383""" assert SkyCoord( ra=np.array([123, 134, 145]), dec=np.array([45, 56, 67]), unit=u.deg ).spherical_offsets_by(2 * u.deg, 2 * u.deg).shape == (3,)
There are already tests in test_transformations.py that check that an AffineTransform fails without full-space data, but this just checks that things work as expected at the frame level as well.
def test_frame_affinetransform(kwargs, expect_success): """There are already tests in test_transformations.py that check that an AffineTransform fails without full-space data, but this just checks that things work as expected at the frame level as well. """ with galactocentric_frame_defaults.set("latest"): icrs = ICRS(**kwargs) if expect_success: _ = icrs.transform_to(Galactocentric()) else: with pytest.raises(ConvertError): icrs.transform_to(Galactocentric())
Test passing in an explicit differential class to the initializer or changing the differential class via set_representation_cls
def test_differential_type_arg(): """ Test passing in an explicit differential class to the initializer or changing the differential class via set_representation_cls """ icrs = ICRS( **POSITION_ON_SKY, pm_ra=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, differential_type=r.UnitSphericalDifferential, ) assert icrs.pm_ra == 10 * u.mas / u.yr icrs = ICRS( **POSITION_ON_SKY, pm_ra=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, differential_type={"s": r.UnitSphericalDifferential}, ) assert icrs.pm_ra == 10 * u.mas / u.yr icrs = ICRS( ra=1 * u.deg, dec=60 * u.deg, pm_ra_cosdec=10 * u.mas / u.yr, pm_dec=-11 * u.mas / u.yr, ) icrs.set_representation_cls(s=r.UnitSphericalDifferential) assert quantity_allclose(icrs.pm_ra, 20 * u.mas / u.yr) # incompatible representation and differential with pytest.raises(TypeError): ICRS(**POSITION_ON_SKY, **CARTESIAN_VELOCITY) # specify both icrs = ICRS(**CARTESIAN_POSITION, **CARTESIAN_VELOCITY) assert icrs.x == 1 * u.pc assert icrs.y == 2 * u.pc assert icrs.z == 3 * u.pc assert icrs.v_x == 1 * u.km / u.s assert icrs.v_y == 2 * u.km / u.s assert icrs.v_z == 3 * u.km / u.s
Regression test: #7408 Make sure that negative parallaxes turned into distances are handled right
def test_negative_distance(icrs_coords): """Regression test: #7408 Make sure that negative parallaxes turned into distances are handled right """ c = ICRS(distance=(-10 * u.mas).to(u.pc, u.parallax()), **icrs_coords) assert quantity_allclose(c.ra, 37.4 * u.deg) assert quantity_allclose(c.dec, -55.8 * u.deg)
Check that the differential data given has compatible units with the time-derivative of representation data
def test_velocity_units(): """Check that the differential data given has compatible units with the time-derivative of representation data""" with pytest.raises( ValueError, match=( '^x has unit "pc" with physical type "length", but v_x has incompatible' ' unit "" with physical type "dimensionless" instead of the expected' r' "speed/velocity".$' ), ): ICRS(**CARTESIAN_POSITION, v_x=1, v_y=2, v_z=3, differential_type="cartesian")
Test that `get_sun` works and it behaves roughly as it should (in GCRS)
def test_sun(): """ Test that `get_sun` works and it behaves roughly as it should (in GCRS) """ northern_summer_solstice = Time("2010-6-21") northern_winter_solstice = Time("2010-12-21") equinox_1 = Time("2010-3-21") equinox_2 = Time("2010-9-21") gcrs1 = get_sun(equinox_1) assert np.abs(gcrs1.dec.deg) < 1 gcrs2 = get_sun( Time([northern_summer_solstice, equinox_2, northern_winter_solstice]) ) assert np.all(np.abs(gcrs2.dec - [23.5, 0, -23.5] * u.deg) < 1 * u.deg)
This function does the same thing the astropy layer is supposed to do, but all in erfa
def _erfa_check(ira, idec, astrom): """ This function does the same thing the astropy layer is supposed to do, but all in erfa """ cra, cdec = erfa.atciq(ira, idec, 0, 0, 0, 0, astrom) az, zen, ha, odec, ora = erfa.atioq(cra, cdec, astrom) alt = np.pi / 2 - zen cra2, cdec2 = erfa.atoiq("A", az, zen, astrom) ira2, idec2 = erfa.aticq(cra2, cdec2, astrom) dct = locals() del dct["astrom"] return dct
Test the full transform from ICRS <-> AltAz
def test_iau_fullstack( fullstack_icrs, fullstack_fiducial_altaz, fullstack_times, fullstack_locations, fullstack_obsconditions, ): """ Test the full transform from ICRS <-> AltAz """ # create the altaz frame altazframe = AltAz( obstime=fullstack_times, location=fullstack_locations, pressure=fullstack_obsconditions[0], temperature=fullstack_obsconditions[1], relative_humidity=fullstack_obsconditions[2], obswl=fullstack_obsconditions[3], ) aacoo = fullstack_icrs.transform_to(altazframe) # compare aacoo to the fiducial AltAz - should always be different assert np.all( np.abs(aacoo.alt - fullstack_fiducial_altaz.alt) > 50 * u.milliarcsecond ) assert np.all( np.abs(aacoo.az - fullstack_fiducial_altaz.az) > 50 * u.milliarcsecond ) # if the refraction correction is included, we *only* do the comparisons # where altitude >5 degrees. The SOFA guides imply that below 5 is where # where accuracy gets more problematic, and testing reveals that alt<~0 # gives garbage round-tripping, and <10 can give ~1 arcsec uncertainty if fullstack_obsconditions[0].value == 0: # but if there is no refraction correction, check everything msk = slice(None) tol = 5 * u.microarcsecond else: msk = aacoo.alt > 5 * u.deg # most of them aren't this bad, but some of those at low alt are offset # this much. For alt > 10, this is always better than 100 masec tol = 750 * u.milliarcsecond # now make sure the full stack round-tripping works icrs2 = aacoo.transform_to(ICRS()) adras = np.abs(fullstack_icrs.ra - icrs2.ra)[msk] addecs = np.abs(fullstack_icrs.dec - icrs2.dec)[msk] assert np.all( adras < tol ), f"largest RA change is {np.max(adras.arcsec * 1000)} mas, > {tol}" assert np.all( addecs < tol ), f"largest Dec change is {np.max(addecs.arcsec * 1000)} mas, > {tol}" # check that we're consistent with the ERFA alt/az result iers_tab = iers.earth_orientation_table.get() xp, yp = u.Quantity(iers_tab.pm_xy(fullstack_times)).to_value(u.radian) lon = fullstack_locations.geodetic[0].to_value(u.radian) lat = fullstack_locations.geodetic[1].to_value(u.radian) height = fullstack_locations.geodetic[2].to_value(u.m) jd1, jd2 = get_jd12(fullstack_times, "utc") pressure = fullstack_obsconditions[0].to_value(u.hPa) temperature = fullstack_obsconditions[1].to_value(u.deg_C) # Relative humidity can be a quantity or a number. relative_humidity = u.Quantity(fullstack_obsconditions[2], u.one).value obswl = fullstack_obsconditions[3].to_value(u.micron) astrom, eo = erfa.apco13( jd1, jd2, fullstack_times.delta_ut1_utc, lon, lat, height, xp, yp, pressure, temperature, relative_humidity, obswl, ) erfadct = _erfa_check(fullstack_icrs.ra.rad, fullstack_icrs.dec.rad, astrom) npt.assert_allclose(erfadct["alt"], aacoo.alt.radian, atol=1e-7) npt.assert_allclose(erfadct["az"], aacoo.az.radian, atol=1e-7)
Test the full transform from ICRS <-> AltAz
def test_fiducial_roudtrip(fullstack_icrs, fullstack_fiducial_altaz): """ Test the full transform from ICRS <-> AltAz """ aacoo = fullstack_icrs.transform_to(fullstack_fiducial_altaz) # make sure the round-tripping works icrs2 = aacoo.transform_to(ICRS()) npt.assert_allclose(fullstack_icrs.ra.deg, icrs2.ra.deg) npt.assert_allclose(fullstack_icrs.dec.deg, icrs2.dec.deg)
While this does test the full stack, it is mostly meant to check that a warning is raised when attempting to get to AltAz in the future (beyond IERS tables)
def test_future_altaz(): """ While this does test the full stack, it is mostly meant to check that a warning is raised when attempting to get to AltAz in the future (beyond IERS tables) """ # this is an ugly hack to get the warning to show up even if it has already # appeared from astropy.coordinates.builtin_frames import utils from astropy.utils.exceptions import AstropyWarning if hasattr(utils, "__warningregistry__"): utils.__warningregistry__.clear() location = EarthLocation(lat=0 * u.deg, lon=0 * u.deg) t = Time("J2161") # check that these message(s) appear among any other warnings. If tests are run with # --remote-data then the IERS table will be an instance of IERS_Auto which is # assured of being "fresh". In this case getting times outside the range of the # table does not raise an exception. Only if using IERS_B (which happens without # --remote-data, i.e. for all CI testing) do we expect another warning. if PYTEST_LT_8_0: ctx1 = ctx2 = nullcontext() else: ctx1 = pytest.warns(erfa.core.ErfaWarning) ctx2 = pytest.warns(AstropyWarning, match=".*times are outside of range.*") with ( ctx1, ctx2, pytest.warns( AstropyWarning, match="Tried to get polar motions for times after IERS data is valid.*", ) as found_warnings, ): SkyCoord(1 * u.deg, 2 * u.deg).transform_to(AltAz(location=location, obstime=t)) if isinstance(iers.earth_orientation_table.get(), iers.IERS_B): assert any( "(some) times are outside of range covered by IERS table." in str(w.message) for w in found_warnings )
Check ICRS<->AltAz for consistency with ICRS<->CIRS<->AltAz The latter is extensively tested in test_intermediate_transformations.py
def test_icrs_altaz_consistency(): """ Check ICRS<->AltAz for consistency with ICRS<->CIRS<->AltAz The latter is extensively tested in test_intermediate_transformations.py """ usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.km * 1e5 icoo = SkyCoord(ra=usph.lon, dec=usph.lat, distance=dist) observer = EarthLocation(28 * u.deg, 23 * u.deg, height=2000.0 * u.km) obstime = Time("J2010") aa_frame = AltAz(obstime=obstime, location=observer) # check we are going direct! trans = frame_transform_graph.get_transform(ICRS, AltAz).transforms assert len(trans) == 1 # check that ICRS-AltAz and ICRS->CIRS->AltAz are consistent aa1 = icoo.transform_to(aa_frame) aa2 = icoo.transform_to(CIRS()).transform_to(aa_frame) assert_allclose(aa1.separation_3d(aa2), 0 * u.mm, atol=1 * u.mm) # check roundtrip roundtrip = icoo.transform_to(aa_frame).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm) # check there and back via CIRS mish-mash roundtrip = icoo.transform_to(aa_frame).transform_to(CIRS()).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm)
Check ICRS<->HADec for consistency with ICRS<->CIRS<->HADec
def test_icrs_hadec_consistency(): """ Check ICRS<->HADec for consistency with ICRS<->CIRS<->HADec """ usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.km * 1e5 icoo = SkyCoord(ra=usph.lon, dec=usph.lat, distance=dist) observer = EarthLocation(28 * u.deg, 23 * u.deg, height=2000.0 * u.km) obstime = Time("J2010") hd_frame = HADec(obstime=obstime, location=observer) # check we are going direct! trans = frame_transform_graph.get_transform(ICRS, HADec).transforms assert len(trans) == 1 # check that ICRS-HADec and ICRS->CIRS->HADec are consistent aa1 = icoo.transform_to(hd_frame) aa2 = icoo.transform_to(CIRS()).transform_to(hd_frame) assert_allclose(aa1.separation_3d(aa2), 0 * u.mm, atol=1 * u.mm) # check roundtrip roundtrip = icoo.transform_to(hd_frame).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm) # check there and back via CIRS mish-mash roundtrip = icoo.transform_to(hd_frame).transform_to(CIRS()).transform_to(icoo) assert_allclose(roundtrip.separation_3d(icoo), 0 * u.mm, atol=1 * u.mm)
Check a few cases of ICRS<->CIRS for consistency. Also includes the CIRS<->CIRS transforms at different times, as those go through ICRS
def test_icrs_cirs(): """ Check a few cases of ICRS<->CIRS for consistency. Also includes the CIRS<->CIRS transforms at different times, as those go through ICRS """ usph = golden_spiral_grid(200) dist = np.linspace(0.0, 1, len(usph)) * u.pc inod = ICRS(usph) iwd = ICRS(ra=usph.lon, dec=usph.lat, distance=dist) cframe1 = CIRS() cirsnod = inod.transform_to(cframe1) # uses the default time # first do a round-tripping test inod2 = cirsnod.transform_to(ICRS()) assert_allclose(inod.ra, inod2.ra) assert_allclose(inod.dec, inod2.dec) # now check that a different time yields different answers cframe2 = CIRS(obstime=Time("J2005")) cirsnod2 = inod.transform_to(cframe2) assert not allclose(cirsnod.ra, cirsnod2.ra, rtol=1e-8) assert not allclose(cirsnod.dec, cirsnod2.dec, rtol=1e-8) # parallax effects should be included, so with and w/o distance should be different cirswd = iwd.transform_to(cframe1) assert not allclose(cirswd.ra, cirsnod.ra, rtol=1e-8) assert not allclose(cirswd.dec, cirsnod.dec, rtol=1e-8) # and the distance should transform at least somehow assert not allclose(cirswd.distance, iwd.distance, rtol=1e-8) # now check that the cirs self-transform works as expected cirsnod3 = cirsnod.transform_to(cframe1) # should be a no-op assert_allclose(cirsnod.ra, cirsnod3.ra) assert_allclose(cirsnod.dec, cirsnod3.dec) cirsnod4 = cirsnod.transform_to(cframe2) # should be different assert not allclose(cirsnod4.ra, cirsnod.ra, rtol=1e-8) assert not allclose(cirsnod4.dec, cirsnod.dec, rtol=1e-8) cirsnod5 = cirsnod4.transform_to(cframe1) # should be back to the same assert_allclose(cirsnod.ra, cirsnod5.ra) assert_allclose(cirsnod.dec, cirsnod5.dec)
Check ICRS<->GCRS for consistency
def test_icrs_gcrs(icoo): """ Check ICRS<->GCRS for consistency """ gcrscoo = icoo.transform_to(gcrs_frames[0]) # uses the default time # first do a round-tripping test icoo2 = gcrscoo.transform_to(ICRS()) assert_allclose(icoo.distance, icoo2.distance) assert_allclose(icoo.ra, icoo2.ra) assert_allclose(icoo.dec, icoo2.dec) assert isinstance(icoo2.data, icoo.data.__class__) # now check that a different time yields different answers gcrscoo2 = icoo.transform_to(gcrs_frames[1]) assert not allclose(gcrscoo.ra, gcrscoo2.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo.dec, gcrscoo2.dec, rtol=1e-8, atol=1e-10 * u.deg) # now check that the cirs self-transform works as expected gcrscoo3 = gcrscoo.transform_to(gcrs_frames[0]) # should be a no-op assert_allclose(gcrscoo.ra, gcrscoo3.ra) assert_allclose(gcrscoo.dec, gcrscoo3.dec) gcrscoo4 = gcrscoo.transform_to(gcrs_frames[1]) # should be different assert not allclose(gcrscoo4.ra, gcrscoo.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo4.dec, gcrscoo.dec, rtol=1e-8, atol=1e-10 * u.deg) gcrscoo5 = gcrscoo4.transform_to(gcrs_frames[0]) # should be back to the same assert_allclose(gcrscoo.ra, gcrscoo5.ra, rtol=1e-8, atol=1e-10 * u.deg) assert_allclose(gcrscoo.dec, gcrscoo5.dec, rtol=1e-8, atol=1e-10 * u.deg) # also make sure that a GCRS with a different geoloc/geovel gets a different answer # roughly a moon-like frame gframe3 = GCRS(obsgeoloc=[385000.0, 0, 0] * u.km, obsgeovel=[1, 0, 0] * u.km / u.s) gcrscoo6 = icoo.transform_to(gframe3) # should be different assert not allclose(gcrscoo.ra, gcrscoo6.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrscoo.dec, gcrscoo6.dec, rtol=1e-8, atol=1e-10 * u.deg) icooviag3 = gcrscoo6.transform_to(ICRS()) # and now back to the original assert_allclose(icoo.ra, icooviag3.ra) assert_allclose(icoo.dec, icooviag3.dec)
Check that with and without distance give different ICRS<->GCRS answers
def test_icrs_gcrs_dist_diff(gframe): """ Check that with and without distance give different ICRS<->GCRS answers """ gcrsnod = icrs_coords[0].transform_to(gframe) gcrswd = icrs_coords[1].transform_to(gframe) # parallax effects should be included, so with and w/o distance should be different assert not allclose(gcrswd.ra, gcrsnod.ra, rtol=1e-8, atol=1e-10 * u.deg) assert not allclose(gcrswd.dec, gcrsnod.dec, rtol=1e-8, atol=1e-10 * u.deg) # and the distance should transform at least somehow assert not allclose( gcrswd.distance, icrs_coords[1].distance, rtol=1e-8, atol=1e-10 * u.pc )
Check the basic CIRS<->AltAz transforms. More thorough checks implicitly happen in `test_iau_fullstack`
def test_cirs_to_altaz(): """ Check the basic CIRS<->AltAz transforms. More thorough checks implicitly happen in `test_iau_fullstack` """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.pc cirs = CIRS(usph, obstime="J2000") crepr = SphericalRepresentation(lon=usph.lon, lat=usph.lat, distance=dist) cirscart = CIRS( crepr, obstime=cirs.obstime, representation_type=CartesianRepresentation ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) altazframe = AltAz(location=loc, obstime=Time("J2005")) cirs2 = cirs.transform_to(altazframe).transform_to(cirs) cirs3 = cirscart.transform_to(altazframe).transform_to(cirs) # check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert_allclose(cirs.ra, cirs3.ra) assert_allclose(cirs.dec, cirs3.dec)
Check the basic CIRS<->HADec transforms.
def test_cirs_to_hadec(): """ Check the basic CIRS<->HADec transforms. """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(200) dist = np.linspace(0.5, 1, len(usph)) * u.pc cirs = CIRS(usph, obstime="J2000") crepr = SphericalRepresentation(lon=usph.lon, lat=usph.lat, distance=dist) cirscart = CIRS( crepr, obstime=cirs.obstime, representation_type=CartesianRepresentation ) loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) hadecframe = HADec(location=loc, obstime=Time("J2005")) cirs2 = cirs.transform_to(hadecframe).transform_to(cirs) cirs3 = cirscart.transform_to(hadecframe).transform_to(cirs) # check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert_allclose(cirs.ra, cirs3.ra) assert_allclose(cirs.dec, cirs3.dec)
Check basic GCRS<->ITRS transforms for round-tripping.
def test_gcrs_itrs(): """ Check basic GCRS<->ITRS transforms for round-tripping. """ usph = golden_spiral_grid(200) gcrs = GCRS(usph, obstime="J2000") gcrs6 = GCRS(usph, obstime="J2006") gcrs2 = gcrs.transform_to(ITRS()).transform_to(gcrs) gcrs6_2 = gcrs6.transform_to(ITRS()).transform_to(gcrs) assert_allclose(gcrs.ra, gcrs2.ra) assert_allclose(gcrs.dec, gcrs2.dec) # these should be different: assert not allclose(gcrs.ra, gcrs6_2.ra, rtol=1e-8) assert not allclose(gcrs.dec, gcrs6_2.dec, rtol=1e-8) # also try with the cartesian representation gcrsc = gcrs.realize_frame(gcrs.data) gcrsc.representation_type = CartesianRepresentation gcrsc2 = gcrsc.transform_to(ITRS()).transform_to(gcrsc) assert_allclose(gcrsc.spherical.lon, gcrsc2.ra) assert_allclose(gcrsc.spherical.lat, gcrsc2.dec)
Check basic CIRS<->ITRS geocentric transforms for round-tripping.
def test_cirs_itrs(): """ Check basic CIRS<->ITRS geocentric transforms for round-tripping. """ usph = golden_spiral_grid(200) cirs = CIRS(usph, obstime="J2000") cirs6 = CIRS(usph, obstime="J2006") cirs2 = cirs.transform_to(ITRS()).transform_to(cirs) cirs6_2 = cirs6.transform_to(ITRS()).transform_to(cirs) # different obstime # just check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert not allclose(cirs.ra, cirs6_2.ra) assert not allclose(cirs.dec, cirs6_2.dec)
Check basic CIRS<->ITRS topocentric transforms for round-tripping.
def test_cirs_itrs_topo(): """ Check basic CIRS<->ITRS topocentric transforms for round-tripping. """ loc = EarthLocation(lat=0 * u.deg, lon=0 * u.deg, height=0 * u.m) usph = golden_spiral_grid(200) cirs = CIRS(usph, obstime="J2000", location=loc) cirs6 = CIRS(usph, obstime="J2006", location=loc) cirs2 = cirs.transform_to(ITRS(location=loc)).transform_to(cirs) # different obstime cirs6_2 = cirs6.transform_to(ITRS(location=loc)).transform_to(cirs) # just check round-tripping assert_allclose(cirs.ra, cirs2.ra) assert_allclose(cirs.dec, cirs2.dec) assert not allclose(cirs.ra, cirs6_2.ra) assert not allclose(cirs.dec, cirs6_2.dec)
Check GCRS<->CIRS transforms for round-tripping. More complicated than the above two because it's multi-hop
def test_gcrs_cirs(): """ Check GCRS<->CIRS transforms for round-tripping. More complicated than the above two because it's multi-hop """ usph = golden_spiral_grid(200) gcrs = GCRS(usph, obstime="J2000") gcrs6 = GCRS(usph, obstime="J2006") gcrs2 = gcrs.transform_to(CIRS()).transform_to(gcrs) gcrs6_2 = gcrs6.transform_to(CIRS()).transform_to(gcrs) assert_allclose(gcrs.ra, gcrs2.ra) assert_allclose(gcrs.dec, gcrs2.dec) # these should be different: assert not allclose(gcrs.ra, gcrs6_2.ra, rtol=1e-8) assert not allclose(gcrs.dec, gcrs6_2.dec, rtol=1e-8) # now try explicit intermediate pathways and ensure they're all consistent gcrs3 = ( gcrs.transform_to(ITRS()) .transform_to(CIRS()) .transform_to(ITRS()) .transform_to(gcrs) ) assert_allclose(gcrs.ra, gcrs3.ra) assert_allclose(gcrs.dec, gcrs3.dec) gcrs4 = ( gcrs.transform_to(ICRS()) .transform_to(CIRS()) .transform_to(ICRS()) .transform_to(gcrs) ) assert_allclose(gcrs.ra, gcrs4.ra) assert_allclose(gcrs.dec, gcrs4.dec)
Check GCRS<->AltAz transforms for round-tripping. Has multiple paths
def test_gcrs_altaz(): """ Check GCRS<->AltAz transforms for round-tripping. Has multiple paths """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(128) gcrs = GCRS(usph, obstime="J2000")[None] # broadcast with times below # check array times sure N-d arrays work times = Time(np.linspace(2456293.25, 2456657.25, 51) * u.day, format="jd")[:, None] loc = EarthLocation(lon=10 * u.deg, lat=80.0 * u.deg) aaframe = AltAz(obstime=times, location=loc) aa1 = gcrs.transform_to(aaframe) aa2 = gcrs.transform_to(ICRS()).transform_to(CIRS()).transform_to(aaframe) aa3 = gcrs.transform_to(ITRS()).transform_to(CIRS()).transform_to(aaframe) # make sure they're all consistent assert_allclose(aa1.alt, aa2.alt) assert_allclose(aa1.az, aa2.az) assert_allclose(aa1.alt, aa3.alt) assert_allclose(aa1.az, aa3.az)
Check GCRS<->HADec transforms for round-tripping. Has multiple paths
def test_gcrs_hadec(): """ Check GCRS<->HADec transforms for round-tripping. Has multiple paths """ from astropy.coordinates import EarthLocation usph = golden_spiral_grid(128) gcrs = GCRS(usph, obstime="J2000") # broadcast with times below # check array times sure N-d arrays work times = Time(np.linspace(2456293.25, 2456657.25, 51) * u.day, format="jd")[:, None] loc = EarthLocation(lon=10 * u.deg, lat=80.0 * u.deg) hdframe = HADec(obstime=times, location=loc) hd1 = gcrs.transform_to(hdframe) hd2 = gcrs.transform_to(ICRS()).transform_to(CIRS()).transform_to(hdframe) hd3 = gcrs.transform_to(ITRS()).transform_to(CIRS()).transform_to(hdframe) # make sure they're all consistent assert_allclose(hd1.dec, hd2.dec) assert_allclose(hd1.ha, hd2.ha) assert_allclose(hd1.dec, hd3.dec) assert_allclose(hd1.ha, hd3.ha)
Sanity-check that the sun is at a reasonable distance from any altaz
def test_gcrs_altaz_sunish(testframe): """ Sanity-check that the sun is at a reasonable distance from any altaz """ sun = get_sun(testframe.obstime) assert sun.frame.name == "gcrs" # the .to(u.au) is not necessary, it just makes the asserts on failure more readable assert (EARTHECC - 1) * u.au < sun.distance.to(u.au) < (EARTHECC + 1) * u.au sunaa = sun.transform_to(testframe) assert (EARTHECC - 1) * u.au < sunaa.distance.to(u.au) < (EARTHECC + 1) * u.au