response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
Retrieve a matcher function by passing an arbitrary object (PRIVATE).
Passing a ``TreeElement`` such as a ``Clade`` or ``Tree`` instance returns
an identity matcher, passing a type such as the ``PhyloXML.Taxonomy`` class
returns a class matcher, and passing a dictionary returns an attribute
matcher.
The resulting 'match' function returns True when given an object matching
the specification (identity, type or attribute values), otherwise False.
This is useful for writing functions that search the tree, and probably
shouldn't be used directly by the end user. | def _object_matcher(obj):
"""Retrieve a matcher function by passing an arbitrary object (PRIVATE).
Passing a ``TreeElement`` such as a ``Clade`` or ``Tree`` instance returns
an identity matcher, passing a type such as the ``PhyloXML.Taxonomy`` class
returns a class matcher, and passing a dictionary returns an attribute
matcher.
The resulting 'match' function returns True when given an object matching
the specification (identity, type or attribute values), otherwise False.
This is useful for writing functions that search the tree, and probably
shouldn't be used directly by the end user.
"""
if isinstance(obj, TreeElement):
return _identity_matcher(obj)
if isinstance(obj, type):
return _class_matcher(obj)
if isinstance(obj, str):
return _string_matcher(obj)
if isinstance(obj, dict):
return _attribute_matcher(obj)
if callable(obj):
return _function_matcher(obj)
raise ValueError(f"{obj} (type {type(obj)}) is not a valid type for comparison.") |
Merge target specifications with keyword arguments (PRIVATE).
Dispatch the components to the various matcher functions, then merge into a
single boolean function. | def _combine_matchers(target, kwargs, require_spec):
"""Merge target specifications with keyword arguments (PRIVATE).
Dispatch the components to the various matcher functions, then merge into a
single boolean function.
"""
if not target:
if not kwargs:
if require_spec:
raise ValueError(
"you must specify a target object or keyword arguments."
)
return lambda x: True
return _attribute_matcher(kwargs)
match_obj = _object_matcher(target)
if not kwargs:
return match_obj
match_kwargs = _attribute_matcher(kwargs)
return lambda x: match_obj(x) and match_kwargs(x) |
Convert ``[targets]`` or ``*targets`` arguments to a single iterable (PRIVATE).
This helps other functions work like the built-in functions ``max`` and
``min``. | def _combine_args(first, *rest):
"""Convert ``[targets]`` or ``*targets`` arguments to a single iterable (PRIVATE).
This helps other functions work like the built-in functions ``max`` and
``min``.
"""
# Background: is_monophyletic takes a single list or iterable (like the
# same method in Bio.Nexus.Trees); root_with_outgroup and common_ancestor
# take separate arguments. This mismatch was in the initial release and I
# didn't notice the inconsistency until after Biopython 1.55. I can think
# of cases where either style is more convenient, so let's support both
# (for backward compatibility and consistency between methods).
if hasattr(first, "__iter__") and not (
isinstance(first, (TreeElement, dict, str, type))
):
# terminals is an iterable of targets
if rest:
raise ValueError(
"Arguments must be either a single list of "
"targets, or separately specified targets "
"(e.g. foo(t1, t2, t3)), but not both."
)
return first
# terminals is a single target -- wrap in a container
return itertools.chain([first], rest) |
Resolve URI for librdf. | def qUri(x):
"""Resolve URI for librdf."""
return resolve_uri(x, namespaces=RDF_NAMESPACES) |
Format label for librdf. | def format_label(x):
"""Format label for librdf."""
return x.replace("_", " ") |
Iterate over the trees in a CDAO file handle.
:returns: generator of Bio.Phylo.CDAO.Tree objects. | def parse(handle, **kwargs):
"""Iterate over the trees in a CDAO file handle.
:returns: generator of Bio.Phylo.CDAO.Tree objects.
"""
return Parser(handle).parse(**kwargs) |
Write a trees in CDAO format to the given file handle.
:returns: number of trees written. | def write(trees, handle, plain=False, **kwargs):
"""Write a trees in CDAO format to the given file handle.
:returns: number of trees written.
"""
return Writer(trees).write(handle, plain=plain, **kwargs) |
Search strict consensus tree from multiple trees.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree. | def strict_consensus(trees):
"""Search strict consensus tree from multiple trees.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
trees_iter = iter(trees)
first_tree = next(trees_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], trees_iter))
# Store bitstrs for strict clades
strict_bitstrs = [
bitstr for bitstr, t in bitstr_counts.items() if t[0] == tree_count
]
strict_bitstrs.sort(key=lambda bitstr: bitstr.count("1"), reverse=True)
# Create root
root = BaseTree.Clade()
if strict_bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# make a bitstr to clades dict and store root clade
bitstr_clades = {strict_bitstrs[0]: root}
# create inner clades
for bitstr in strict_bitstrs[1:]:
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
for bs, c in bitstr_clades.items():
# check if it should be the parent of current clade
if bs.contains(bitstr):
# remove old bitstring
del bitstr_clades[bs]
# update clade children
c.clades = [child for child in c.clades if child not in clade_terms]
# set current clade as child of c
c.clades.append(clade)
# update bitstring
bs = bs ^ bitstr
# update clade
bitstr_clades[bs] = c
break
# put new clade
bitstr_clades[bitstr] = clade
return BaseTree.Tree(root=root) |
Search majority rule consensus tree from multiple trees.
This is a extend majority rule method, which means the you can set any
cutoff between 0 ~ 1 instead of 0.5. The default value of cutoff is 0 to
create a relaxed binary consensus tree in any condition (as long as one of
the provided trees is a binary tree). The branch length of each consensus
clade in the result consensus tree is the average length of all counts for
that clade.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree. | def majority_consensus(trees, cutoff=0):
"""Search majority rule consensus tree from multiple trees.
This is a extend majority rule method, which means the you can set any
cutoff between 0 ~ 1 instead of 0.5. The default value of cutoff is 0 to
create a relaxed binary consensus tree in any condition (as long as one of
the provided trees is a binary tree). The branch length of each consensus
clade in the result consensus tree is the average length of all counts for
that clade.
:Parameters:
trees : iterable
iterable of trees to produce consensus tree.
"""
tree_iter = iter(trees)
first_tree = next(tree_iter)
terms = first_tree.get_terminals()
bitstr_counts, tree_count = _count_clades(itertools.chain([first_tree], tree_iter))
# Sort bitstrs by descending #occurrences, then #tips, then tip order
bitstrs = sorted(
bitstr_counts.keys(),
key=lambda bitstr: (bitstr_counts[bitstr][0], bitstr.count("1"), str(bitstr)),
reverse=True,
)
root = BaseTree.Clade()
if bitstrs[0].count("1") == len(terms):
root.clades.extend(terms)
else:
raise ValueError("Taxons in provided trees should be consistent")
# Make a bitstr-to-clades dict and store root clade
bitstr_clades = {bitstrs[0]: root}
# create inner clades
for bitstr in bitstrs[1:]:
# apply majority rule
count_in_trees, branch_length_sum = bitstr_counts[bitstr]
confidence = 100.0 * count_in_trees / tree_count
if confidence < cutoff * 100.0:
break
clade_terms = [terms[i] for i in bitstr.index_one()]
clade = BaseTree.Clade()
clade.clades.extend(clade_terms)
clade.confidence = confidence
clade.branch_length = branch_length_sum / count_in_trees
bsckeys = sorted(bitstr_clades, key=lambda bs: bs.count("1"), reverse=True)
# check if current clade is compatible with previous clades and
# record its possible parent and child clades.
compatible = True
parent_bitstr = None
child_bitstrs = [] # multiple independent children
for bs in bsckeys:
if not bs.iscompatible(bitstr):
compatible = False
break
# assign the closest ancestor as its parent
# as bsckeys is sorted, it should be the last one
if bs.contains(bitstr):
parent_bitstr = bs
# assign the closest descendant as its child
# the largest and independent clades
if (
bitstr.contains(bs)
and bs != bitstr
and all(c.independent(bs) for c in child_bitstrs)
):
child_bitstrs.append(bs)
if not compatible:
continue
if parent_bitstr:
# insert current clade; remove old bitstring
parent_clade = bitstr_clades.pop(parent_bitstr)
# update parent clade children
parent_clade.clades = [
c for c in parent_clade.clades if c not in clade_terms
]
# set current clade as child of parent_clade
parent_clade.clades.append(clade)
# update bitstring
# parent = parent ^ bitstr
# update clade
bitstr_clades[parent_bitstr] = parent_clade
if child_bitstrs:
remove_list = []
for c in child_bitstrs:
remove_list.extend(c.index_one())
child_clade = bitstr_clades[c]
parent_clade.clades.remove(child_clade)
clade.clades.append(child_clade)
remove_terms = [terms[i] for i in remove_list]
clade.clades = [c for c in clade.clades if c not in remove_terms]
# put new clade
bitstr_clades[bitstr] = clade
if (len(bitstr_clades) == len(terms) - 1) or (
len(bitstr_clades) == len(terms) - 2 and len(root.clades) == 3
):
break
return BaseTree.Tree(root=root) |
Search Adam Consensus tree from multiple trees.
:Parameters:
trees : list
list of trees to produce consensus tree. | def adam_consensus(trees):
"""Search Adam Consensus tree from multiple trees.
:Parameters:
trees : list
list of trees to produce consensus tree.
"""
clades = [tree.root for tree in trees]
return BaseTree.Tree(root=_part(clades), rooted=True) |
Recursive function for Adam Consensus algorithm (PRIVATE). | def _part(clades):
"""Recursive function for Adam Consensus algorithm (PRIVATE)."""
new_clade = None
terms = clades[0].get_terminals()
term_names = [term.name for term in terms]
if len(terms) == 1 or len(terms) == 2:
new_clade = clades[0]
else:
bitstrs = {_BitString("1" * len(terms))}
for clade in clades:
for child in clade.clades:
bitstr = _clade_to_bitstr(child, term_names)
to_remove = set()
to_add = set()
for bs in bitstrs:
if bs == bitstr:
continue
elif bs.contains(bitstr):
to_add.add(bitstr)
to_add.add(bs ^ bitstr)
to_remove.add(bs)
elif bitstr.contains(bs):
to_add.add(bs ^ bitstr)
elif not bs.independent(bitstr):
to_add.add(bs & bitstr)
to_add.add(bs & bitstr ^ bitstr)
to_add.add(bs & bitstr ^ bs)
to_remove.add(bs)
# bitstrs = bitstrs | to_add
bitstrs ^= to_remove
if to_add:
for ta in sorted(to_add, key=lambda bs: bs.count("1")):
independent = True
for bs in bitstrs:
if not ta.independent(bs):
independent = False
break
if independent:
bitstrs.add(ta)
new_clade = BaseTree.Clade()
for bitstr in sorted(bitstrs):
indices = bitstr.index_one()
if len(indices) == 1:
new_clade.clades.append(terms[indices[0]])
elif len(indices) == 2:
bifur_clade = BaseTree.Clade()
bifur_clade.clades.append(terms[indices[0]])
bifur_clade.clades.append(terms[indices[1]])
new_clade.clades.append(bifur_clade)
elif len(indices) > 2:
part_names = [term_names[i] for i in indices]
next_clades = []
for clade in clades:
next_clades.append(_sub_clade(clade, part_names))
# next_clades = [clade.common_ancestor([clade.find_any(name=name) for name in part_names]) for clade in clades]
new_clade.clades.append(_part(next_clades))
return new_clade |
Extract a compatible subclade that only contains the given terminal names (PRIVATE). | def _sub_clade(clade, term_names):
"""Extract a compatible subclade that only contains the given terminal names (PRIVATE)."""
term_clades = [clade.find_any(name) for name in term_names]
sub_clade = clade.common_ancestor(term_clades)
if len(term_names) != sub_clade.count_terminals():
temp_clade = BaseTree.Clade()
temp_clade.clades.extend(term_clades)
for c in sub_clade.find_clades(terminal=False, order="preorder"):
if c == sub_clade.root:
continue
children = set(c.find_clades(terminal=True)) & set(term_clades)
if children:
for tc in temp_clade.find_clades(terminal=False, order="preorder"):
tc_children = set(tc.clades)
tc_new_clades = tc_children - children
if children.issubset(tc_children) and tc_new_clades:
tc.clades = list(tc_new_clades)
child_clade = BaseTree.Clade()
child_clade.clades.extend(list(children))
tc.clades.append(child_clade)
sub_clade = temp_clade
return sub_clade |
Count distinct clades (different sets of terminal names) in the trees (PRIVATE).
Return a tuple first a dict of bitstring (representing clade) and a tuple of its count of
occurrences and sum of branch length for that clade, second the number of trees processed.
:Parameters:
trees : iterable
An iterable that returns the trees to count | def _count_clades(trees):
"""Count distinct clades (different sets of terminal names) in the trees (PRIVATE).
Return a tuple first a dict of bitstring (representing clade) and a tuple of its count of
occurrences and sum of branch length for that clade, second the number of trees processed.
:Parameters:
trees : iterable
An iterable that returns the trees to count
"""
bitstrs = {}
tree_count = 0
for tree in trees:
tree_count += 1
clade_bitstrs = _tree_to_bitstrs(tree)
for clade in tree.find_clades(terminal=False):
bitstr = clade_bitstrs[clade]
if bitstr in bitstrs:
count, sum_bl = bitstrs[bitstr]
count += 1
sum_bl += clade.branch_length or 0
bitstrs[bitstr] = (count, sum_bl)
else:
bitstrs[bitstr] = (1, clade.branch_length or 0)
return bitstrs, tree_count |
Calculate branch support for a target tree given bootstrap replicate trees.
:Parameters:
target_tree : Tree
tree to calculate branch support for.
trees : iterable
iterable of trees used to calculate branch support.
len_trees : int
optional count of replicates in trees. len_trees must be provided
when len(trees) is not a valid operation. | def get_support(target_tree, trees, len_trees=None):
"""Calculate branch support for a target tree given bootstrap replicate trees.
:Parameters:
target_tree : Tree
tree to calculate branch support for.
trees : iterable
iterable of trees used to calculate branch support.
len_trees : int
optional count of replicates in trees. len_trees must be provided
when len(trees) is not a valid operation.
"""
term_names = sorted(term.name for term in target_tree.find_clades(terminal=True))
bitstrs = {}
size = len_trees
if size is None:
try:
size = len(trees)
except TypeError:
raise TypeError(
"Trees does not support len(trees), "
"you must provide the number of replicates in trees "
"as the optional parameter len_trees."
) from None
for clade in target_tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
bitstrs[bitstr] = (clade, 0)
for tree in trees:
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
if bitstr in bitstrs:
c, t = bitstrs[bitstr]
c.confidence = (t + 1) * 100.0 / size
bitstrs[bitstr] = (c, t + 1)
return target_tree |
Generate bootstrap replicates from a multiple sequence alignment (OBSOLETE).
:Parameters:
msa : MultipleSeqAlignment
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times. | def bootstrap(msa, times):
"""Generate bootstrap replicates from a multiple sequence alignment (OBSOLETE).
:Parameters:
msa : MultipleSeqAlignment
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
"""
length = len(msa[0])
i = 0
while i < times:
i += 1
item = None
for j in range(length):
col = random.randint(0, length - 1)
if not item:
item = msa[:, col : col + 1]
else:
item += msa[:, col : col + 1]
yield item |
Generate bootstrap replicate trees from a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
tree_constructor : TreeConstructor
tree constructor to be used to build trees. | def bootstrap_trees(alignment, times, tree_constructor):
"""Generate bootstrap replicate trees from a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
multiple sequence alignment to generate replicates.
times : int
number of bootstrap times.
tree_constructor : TreeConstructor
tree constructor to be used to build trees.
"""
if isinstance(alignment, MultipleSeqAlignment):
length = len(alignment[0])
for i in range(times):
bootstrapped_alignment = None
for j in range(length):
col = random.randint(0, length - 1)
if bootstrapped_alignment is None:
bootstrapped_alignment = alignment[:, col : col + 1]
else:
bootstrapped_alignment += alignment[:, col : col + 1]
tree = tree_constructor.build_tree(bootstrapped_alignment)
yield tree
else:
n, m = alignment.shape
for i in range(times):
cols = [random.randint(0, m - 1) for j in range(m)]
tree = tree_constructor.build_tree(alignment[:, cols])
yield tree |
Consensus tree of a series of bootstrap trees for a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
Multiple sequence alignment to generate replicates.
times : int
Number of bootstrap times.
tree_constructor : TreeConstructor
Tree constructor to be used to build trees.
consensus : function
Consensus method in this module: ``strict_consensus``,
``majority_consensus``, ``adam_consensus``. | def bootstrap_consensus(alignment, times, tree_constructor, consensus):
"""Consensus tree of a series of bootstrap trees for a multiple sequence alignment.
:Parameters:
alignment : Alignment or MultipleSeqAlignment object
Multiple sequence alignment to generate replicates.
times : int
Number of bootstrap times.
tree_constructor : TreeConstructor
Tree constructor to be used to build trees.
consensus : function
Consensus method in this module: ``strict_consensus``,
``majority_consensus``, ``adam_consensus``.
"""
trees = bootstrap_trees(alignment, times, tree_constructor)
tree = consensus(trees)
return tree |
Create a BitString representing a clade, given ordered tree taxon names (PRIVATE). | def _clade_to_bitstr(clade, tree_term_names):
"""Create a BitString representing a clade, given ordered tree taxon names (PRIVATE)."""
clade_term_names = {term.name for term in clade.find_clades(terminal=True)}
return _BitString.from_bool((name in clade_term_names) for name in tree_term_names) |
Create a dict of a tree's clades to corresponding BitStrings (PRIVATE). | def _tree_to_bitstrs(tree):
"""Create a dict of a tree's clades to corresponding BitStrings (PRIVATE)."""
clades_bitstrs = {}
term_names = [term.name for term in tree.find_clades(terminal=True)]
for clade in tree.find_clades(terminal=False):
bitstr = _clade_to_bitstr(clade, term_names)
clades_bitstrs[clade] = bitstr
return clades_bitstrs |
Generate a branch length dict for a tree, keyed by BitStrings (PRIVATE).
Create a dict of all clades' BitStrings to the corresponding branch
lengths (rounded to 5 decimal places). | def _bitstring_topology(tree):
"""Generate a branch length dict for a tree, keyed by BitStrings (PRIVATE).
Create a dict of all clades' BitStrings to the corresponding branch
lengths (rounded to 5 decimal places).
"""
bitstrs = {}
for clade, bitstr in _tree_to_bitstrs(tree).items():
bitstrs[bitstr] = round(clade.branch_length or 0.0, 5)
return bitstrs |
Are two trees are equal in terms of topology and branch lengths (PRIVATE).
(Branch lengths checked to 5 decimal places.) | def _equal_topology(tree1, tree2):
"""Are two trees are equal in terms of topology and branch lengths (PRIVATE).
(Branch lengths checked to 5 decimal places.)
"""
term_names1 = {term.name for term in tree1.find_clades(terminal=True)}
term_names2 = {term.name for term in tree2.find_clades(terminal=True)}
return (term_names1 == term_names2) and (
_bitstring_topology(tree1) == _bitstring_topology(tree2)
) |
Iterate over the trees in a Newick file handle.
:returns: generator of Bio.Phylo.Newick.Tree objects. | def parse(handle, **kwargs):
"""Iterate over the trees in a Newick file handle.
:returns: generator of Bio.Phylo.Newick.Tree objects.
"""
return Parser(handle).parse(**kwargs) |
Write a trees in Newick format to the given file handle.
:returns: number of trees written. | def write(trees, handle, plain=False, **kwargs):
"""Write a trees in Newick format to the given file handle.
:returns: number of trees written.
"""
return Writer(trees).write(handle, plain=plain, **kwargs) |
Given a prefixed URI, return the full URI. | def qUri(s):
"""Given a prefixed URI, return the full URI."""
return resolve_uri(s, namespaces=NAMESPACES, xml_style=True) |
Optionally converts a CDAO-prefixed URI into an OBO-prefixed URI. | def cdao_to_obo(s):
"""Optionally converts a CDAO-prefixed URI into an OBO-prefixed URI."""
return f"obo:{cdao_elements[s[len('cdao:'):]]}" |
Check for matches in both CDAO and OBO namespaces. | def matches(s):
"""Check for matches in both CDAO and OBO namespaces."""
if s.startswith("cdao:"):
return (s, cdao_to_obo(s))
else:
return (s,) |
Iterate over the trees in a NeXML file handle.
:returns: generator of Bio.Phylo.NeXML.Tree objects. | def parse(handle, **kwargs):
"""Iterate over the trees in a NeXML file handle.
:returns: generator of Bio.Phylo.NeXML.Tree objects.
"""
return Parser(handle).parse(**kwargs) |
Write a trees in NeXML format to the given file handle.
:returns: number of trees written. | def write(trees, handle, plain=False, **kwargs):
"""Write a trees in NeXML format to the given file handle.
:returns: number of trees written.
"""
return Writer(trees).write(handle, plain=plain, **kwargs) |
Parse the trees in a Nexus file.
Uses the old Nexus.Trees parser to extract the trees, converts them back to
plain Newick trees, and feeds those strings through the new Newick parser.
This way we don't have to modify the Nexus module yet. (Perhaps we'll
eventually change Nexus to use the new NewickIO parser directly.) | def parse(handle):
"""Parse the trees in a Nexus file.
Uses the old Nexus.Trees parser to extract the trees, converts them back to
plain Newick trees, and feeds those strings through the new Newick parser.
This way we don't have to modify the Nexus module yet. (Perhaps we'll
eventually change Nexus to use the new NewickIO parser directly.)
"""
nex = Nexus.Nexus(handle)
# NB: Once Nexus.Trees is modified to use Tree.Newick objects, do this:
# return iter(nex.trees)
# Until then, convert the Nexus.Trees.Tree object hierarchy:
def node2clade(nxtree, node):
subclades = [node2clade(nxtree, nxtree.node(n)) for n in node.succ]
return Newick.Clade(
branch_length=node.data.branchlength,
name=node.data.taxon,
clades=subclades,
confidence=node.data.support,
comment=node.data.comment,
)
for nxtree in nex.trees:
newroot = node2clade(nxtree, nxtree.node(nxtree.root))
yield Newick.Tree(
root=newroot, rooted=nxtree.rooted, name=nxtree.name, weight=nxtree.weight
) |
Write a new Nexus file containing the given trees.
Uses a simple Nexus template and the NewickIO writer to serialize just the
trees and minimal supporting info needed for a valid Nexus file. | def write(obj, handle, **kwargs):
"""Write a new Nexus file containing the given trees.
Uses a simple Nexus template and the NewickIO writer to serialize just the
trees and minimal supporting info needed for a valid Nexus file.
"""
trees = list(obj)
writer = NewickIO.Writer(trees)
nexus_trees = [
TREE_TEMPLATE % {"index": idx + 1, "tree": nwk}
for idx, nwk in enumerate(
writer.to_strings(plain=False, plain_newick=True, **kwargs)
)
]
tax_labels = [str(x.name) for x in chain(*(t.get_terminals() for t in trees))]
text = NEX_TEMPLATE % {
"count": len(tax_labels),
"labels": " ".join(tax_labels),
"trees": "\n".join(nexus_trees),
}
handle.write(text)
return len(nexus_trees) |
Check a string using testfunc, and warn if there's no match (PRIVATE). | def _check_str(text, testfunc):
"""Check a string using testfunc, and warn if there's no match (PRIVATE)."""
if text is not None and not testfunc(text):
warnings.warn(
f"String {text} doesn't match the given regexp",
PhyloXMLWarning,
stacklevel=2,
) |
Parse a phyloXML file or stream and build a tree of Biopython objects.
The children of the root node are phylogenies and possibly other arbitrary
(non-phyloXML) objects.
:returns: a single ``Bio.Phylo.PhyloXML.Phyloxml`` object. | def read(file):
"""Parse a phyloXML file or stream and build a tree of Biopython objects.
The children of the root node are phylogenies and possibly other arbitrary
(non-phyloXML) objects.
:returns: a single ``Bio.Phylo.PhyloXML.Phyloxml`` object.
"""
return Parser(file).read() |
Iterate over the phylogenetic trees in a phyloXML file.
This ignores any additional data stored at the top level, but may be more
memory-efficient than the ``read`` function.
:returns: a generator of ``Bio.Phylo.PhyloXML.Phylogeny`` objects. | def parse(file):
"""Iterate over the phylogenetic trees in a phyloXML file.
This ignores any additional data stored at the top level, but may be more
memory-efficient than the ``read`` function.
:returns: a generator of ``Bio.Phylo.PhyloXML.Phylogeny`` objects.
"""
return Parser(file).parse() |
Write a phyloXML file.
:Parameters:
obj
an instance of ``Phyloxml``, ``Phylogeny`` or ``BaseTree.Tree``,
or an iterable of either of the latter two. The object will be
converted to a Phyloxml object before serialization.
file
either an open handle or a file name. | def write(obj, file, encoding=DEFAULT_ENCODING, indent=True):
"""Write a phyloXML file.
:Parameters:
obj
an instance of ``Phyloxml``, ``Phylogeny`` or ``BaseTree.Tree``,
or an iterable of either of the latter two. The object will be
converted to a Phyloxml object before serialization.
file
either an open handle or a file name.
"""
def fix_single(tree):
if isinstance(tree, PX.Phylogeny):
return tree
if isinstance(tree, PX.Clade):
return tree.to_phylogeny()
if isinstance(tree, PX.BaseTree.Tree):
return PX.Phylogeny.from_tree(tree)
if isinstance(tree, PX.BaseTree.Clade):
return PX.Phylogeny.from_tree(PX.BaseTree.Tree(root=tree))
else:
raise ValueError("iterable must contain Tree or Clade types")
if isinstance(obj, PX.Phyloxml):
pass
elif isinstance(obj, (PX.BaseTree.Tree, PX.BaseTree.Clade)):
obj = fix_single(obj).to_phyloxml()
elif hasattr(obj, "__iter__"):
obj = PX.Phyloxml({}, phylogenies=(fix_single(t) for t in obj))
else:
raise ValueError(
"First argument must be a Phyloxml, Phylogeny, "
"Tree, or iterable of Trees or Phylogenies."
)
return Writer(obj).write(file, encoding=encoding, indent=indent) |
Extract the local tag from a namespaced tag name (PRIVATE). | def _local(tag):
"""Extract the local tag from a namespaced tag name (PRIVATE)."""
if tag[0] == "{":
return tag[tag.index("}") + 1 :]
return tag |
Split a tag into namespace and local tag strings (PRIVATE). | def _split_namespace(tag):
"""Split a tag into namespace and local tag strings (PRIVATE)."""
try:
return tag[1:].split("}", 1)
except ValueError:
return ("", tag) |
Format an XML tag with the given namespace (PRIVATE). | def _ns(tag, namespace=NAMESPACES["phy"]):
"""Format an XML tag with the given namespace (PRIVATE)."""
return f"{{{namespace}}}{tag}" |
Find a child node by tag, and pass it through a constructor (PRIVATE).
Returns None if no matching child is found. | def _get_child_as(parent, tag, construct):
"""Find a child node by tag, and pass it through a constructor (PRIVATE).
Returns None if no matching child is found.
"""
child = parent.find(_ns(tag))
if child is not None:
return construct(child) |
Find a child node by tag; pass its text through a constructor (PRIVATE).
Returns None if no matching child is found. | def _get_child_text(parent, tag, construct=str):
"""Find a child node by tag; pass its text through a constructor (PRIVATE).
Returns None if no matching child is found.
"""
child = parent.find(_ns(tag))
if child is not None and child.text:
return construct(child.text) |
Find child nodes by tag; pass each through a constructor (PRIVATE).
Returns an empty list if no matching child is found. | def _get_children_as(parent, tag, construct):
"""Find child nodes by tag; pass each through a constructor (PRIVATE).
Returns an empty list if no matching child is found.
"""
return [construct(child) for child in parent.findall(_ns(tag))] |
Find child nodes by tag; pass each node's text through a constructor (PRIVATE).
Returns an empty list if no matching child is found. | def _get_children_text(parent, tag, construct=str):
"""Find child nodes by tag; pass each node's text through a constructor (PRIVATE).
Returns an empty list if no matching child is found.
"""
return [construct(child.text) for child in parent.findall(_ns(tag)) if child.text] |
Add line breaks and indentation to ElementTree in-place (PRIVATE).
Sources:
- http://effbot.org/zone/element-lib.htm#prettyprint
- http://infix.se/2007/02/06/gentlemen-indent-your-xml | def _indent(elem, level=0):
"""Add line breaks and indentation to ElementTree in-place (PRIVATE).
Sources:
- http://effbot.org/zone/element-lib.htm#prettyprint
- http://infix.se/2007/02/06/gentlemen-indent-your-xml
"""
i = "\n" + level * " "
if len(elem):
if not elem.text or not elem.text.strip():
elem.text = i + " "
for e in elem:
_indent(e, level + 1)
if not e.tail or not e.tail.strip():
e.tail = i + " "
if not e.tail or not e.tail.strip():
e.tail = i
else:
if level and (not elem.tail or not elem.tail.strip()):
elem.tail = i |
Convert string to boolean (PRIVATE). | def _str2bool(text):
"""Convert string to boolean (PRIVATE)."""
if text == "true" or text == "1":
return True
if text == "false" or text == "0":
return False
raise ValueError("String could not be converted to boolean: " + text) |
Return a new dictionary where string values are replaced with booleans (PRIVATE). | def _dict_str2bool(dct, keys):
"""Return a new dictionary where string values are replaced with booleans (PRIVATE)."""
out = dct.copy()
for key in keys:
if key in out:
out[key] = _str2bool(out[key])
return out |
Return text as an integer (PRIVATE). | def _int(text):
"""Return text as an integer (PRIVATE)."""
if text is not None:
try:
return int(text)
except Exception:
return None |
Return text as a float (PRIVATE). | def _float(text):
"""Return text as a float (PRIVATE)."""
if text is not None:
try:
return float(text)
except Exception:
return None |
Replace all spans of whitespace with a single space character (PRIVATE).
Also remove leading and trailing whitespace. See "Collapse Whitespace
Policy" in the phyloXML spec glossary:
http://phyloxml.org/documentation/version_100/phyloxml.xsd.html#Glossary | def _collapse_wspace(text):
"""Replace all spans of whitespace with a single space character (PRIVATE).
Also remove leading and trailing whitespace. See "Collapse Whitespace
Policy" in the phyloXML spec glossary:
http://phyloxml.org/documentation/version_100/phyloxml.xsd.html#Glossary
"""
if text is not None:
return " ".join(text.split()) |
Replace tab, LF and CR characters with spaces, but don't collapse (PRIVATE).
See "Replace Whitespace Policy" in the phyloXML spec glossary:
http://phyloxml.org/documentation/version_100/phyloxml.xsd.html#Glossary | def _replace_wspace(text):
"""Replace tab, LF and CR characters with spaces, but don't collapse (PRIVATE).
See "Replace Whitespace Policy" in the phyloXML spec glossary:
http://phyloxml.org/documentation/version_100/phyloxml.xsd.html#Glossary
"""
for char in ("\t", "\n", "\r"):
if char in text:
text = text.replace(char, " ")
return text |
Convert a Python primitive to a phyloXML-compatible string (PRIVATE). | def _serialize(value):
"""Convert a Python primitive to a phyloXML-compatible string (PRIVATE)."""
if isinstance(value, float):
return str(value).upper()
elif isinstance(value, bool):
return str(value).lower()
return str(value) |
Create a dictionary from an object's specified, non-None attributes (PRIVATE). | def _clean_attrib(obj, attrs):
"""Create a dictionary from an object's specified, non-None attributes (PRIVATE)."""
out = {}
for key in attrs:
val = getattr(obj, key)
if val is not None:
out[key] = _serialize(val)
return out |
Handle to serialize nodes with subnodes (PRIVATE). | def _handle_complex(tag, attribs, subnodes, has_text=False):
"""Handle to serialize nodes with subnodes (PRIVATE)."""
def wrapped(self, obj):
"""Wrap nodes and subnodes as elements."""
elem = ElementTree.Element(tag, _clean_attrib(obj, attribs))
for subn in subnodes:
if isinstance(subn, str):
# singular object: method and attribute names are the same
if getattr(obj, subn) is not None:
elem.append(getattr(self, subn)(getattr(obj, subn)))
else:
# list: singular method, pluralized attribute name
method, plural = subn
for item in getattr(obj, plural):
elem.append(getattr(self, method)(item))
if has_text:
elem.text = _serialize(obj.value)
return elem
wrapped.__doc__ = f"Serialize a {tag} and its subnodes, in order."
return wrapped |
Handle to serialize simple nodes (PRIVATE). | def _handle_simple(tag):
"""Handle to serialize simple nodes (PRIVATE)."""
def wrapped(self, obj):
"""Wrap node as element."""
elem = ElementTree.Element(tag)
elem.text = _serialize(obj)
return elem
wrapped.__doc__ = f"Serialize a simple {tag} node."
return wrapped |
Convert prefixed URIs to full URIs.
Optionally, converts CDAO named identifiers to OBO numeric identifiers. | def resolve_uri(s, namespaces=cdao_namespaces, cdao_to_obo=True, xml_style=False):
"""Convert prefixed URIs to full URIs.
Optionally, converts CDAO named identifiers to OBO numeric identifiers.
"""
if cdao_to_obo and s.startswith("cdao:"):
return resolve_uri(f"obo:{cdao_elements[s[5:]]}", namespaces, cdao_to_obo)
for prefix in namespaces:
if xml_style:
s = s.replace(prefix + ":", "{%s}" % namespaces[prefix])
else:
s = s.replace(prefix + ":", namespaces[prefix])
return s |
Parse a file iteratively, and yield each of the trees it contains.
If a file only contains one tree, this still returns an iterable object that
contains one element.
Examples
--------
>>> import Bio.Phylo
>>> trees = Bio.Phylo.parse('PhyloXML/apaf.xml', 'phyloxml')
>>> for tree in trees:
... print(tree.rooted)
True | def parse(file, format, **kwargs):
"""Parse a file iteratively, and yield each of the trees it contains.
If a file only contains one tree, this still returns an iterable object that
contains one element.
Examples
--------
>>> import Bio.Phylo
>>> trees = Bio.Phylo.parse('PhyloXML/apaf.xml', 'phyloxml')
>>> for tree in trees:
... print(tree.rooted)
True
"""
with File.as_handle(file) as fp:
yield from getattr(supported_formats[format], "parse")(fp, **kwargs) |
Parse a file in the given format and return a single tree.
Raises a ``ValueError`` if there are zero or multiple trees -- if this
occurs, use ``parse`` instead to get the complete sequence of trees. | def read(file, format, **kwargs):
"""Parse a file in the given format and return a single tree.
Raises a ``ValueError`` if there are zero or multiple trees -- if this
occurs, use ``parse`` instead to get the complete sequence of trees.
"""
try:
tree_gen = parse(file, format, **kwargs)
tree = next(tree_gen)
except StopIteration:
raise ValueError("There are no trees in this file.") from None
try:
next(tree_gen)
except StopIteration:
return tree
else:
raise ValueError("There are multiple trees in this file; use parse() instead.") |
Write a sequence of trees to file in the given format. | def write(trees, file, format, **kwargs):
"""Write a sequence of trees to file in the given format."""
if isinstance(trees, (BaseTree.Tree, BaseTree.Clade)):
# Passed a single tree instead of an iterable -- that's OK
trees = [trees]
with File.as_handle(file, "w+") as fp:
n = getattr(supported_formats[format], "write")(trees, fp, **kwargs)
return n |
Convert between two tree file formats. | def convert(in_file, in_format, out_file, out_format, parse_args=None, **kwargs):
"""Convert between two tree file formats."""
if parse_args is None:
parse_args = {}
trees = parse(in_file, in_format, **parse_args)
return write(trees, out_file, out_format, **kwargs) |
Convert a Tree object to a networkx graph.
The result is useful for graph-oriented analysis, and also interactive
plotting with pylab, matplotlib or pygraphviz, though the resulting diagram
is usually not ideal for displaying a phylogeny.
Requires NetworkX version 0.99 or later. | def to_networkx(tree):
"""Convert a Tree object to a networkx graph.
The result is useful for graph-oriented analysis, and also interactive
plotting with pylab, matplotlib or pygraphviz, though the resulting diagram
is usually not ideal for displaying a phylogeny.
Requires NetworkX version 0.99 or later.
"""
try:
import networkx
except ImportError:
raise MissingPythonDependencyError(
"Install NetworkX if you want to use to_networkx."
) from None
# NB (1/2010): the networkx API stabilized at v.1.0
# 1.0+: edges accept arbitrary data as kwargs, weights are floats
# 0.99: edges accept weight as a string, nothing else
# pre-0.99: edges accept no additional data
# Ubuntu Lucid LTS uses v0.99, let's support everything
if networkx.__version__ >= "1.0":
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2, weight=n2.branch_length or 1.0)
# Copy branch color value as hex, if available
if hasattr(n2, "color") and n2.color is not None:
graph[n1][n2]["color"] = n2.color.to_hex()
elif hasattr(n1, "color") and n1.color is not None:
# Cascading color attributes
graph[n1][n2]["color"] = n1.color.to_hex()
n2.color = n1.color
# Copy branch weight value (float) if available
if hasattr(n2, "width") and n2.width is not None:
graph[n1][n2]["width"] = n2.width
elif hasattr(n1, "width") and n1.width is not None:
# Cascading width attributes
graph[n1][n2]["width"] = n1.width
n2.width = n1.width
elif networkx.__version__ >= "0.99":
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2, (n2.branch_length or 1.0))
else:
def add_edge(graph, n1, n2):
graph.add_edge(n1, n2)
def build_subgraph(graph, top):
"""Walk down the Tree, building graphs, edges and nodes."""
for clade in top:
graph.add_node(clade.root)
add_edge(graph, top.root, clade.root)
build_subgraph(graph, clade)
if tree.rooted:
G = networkx.DiGraph()
else:
G = networkx.Graph()
G.add_node(tree.root)
build_subgraph(G, tree.root)
return G |
Convert a Tree object to an igraph Graph.
The result is useful for graph-oriented analysis and interactive plotting
with matplotlib, Cairo, and plotly.
Requires python-igraph version 0.10.0 or later.
:Parameters:
vertex_attributes : sequence of strings
A sequence of strings containing the Clade properties that are to
be stored as vertex attributes, e.g. "name".
edge_attributes : sequence of strings
A sequence of strings containing the Clade properties that are to
be stored as edge attributes, e.g. "color" and "width".
In both cases, if a property is not found it will be ignored. | def to_igraph(tree, vertex_attributes=None, edge_attributes=("color", "width")):
"""Convert a Tree object to an igraph Graph.
The result is useful for graph-oriented analysis and interactive plotting
with matplotlib, Cairo, and plotly.
Requires python-igraph version 0.10.0 or later.
:Parameters:
vertex_attributes : sequence of strings
A sequence of strings containing the Clade properties that are to
be stored as vertex attributes, e.g. "name".
edge_attributes : sequence of strings
A sequence of strings containing the Clade properties that are to
be stored as edge attributes, e.g. "color" and "width".
In both cases, if a property is not found it will be ignored.
"""
try:
import igraph as ig
except ImportError:
raise MissingPythonDependencyError(
"Install igraph if you want to use to_igraph."
) from None
if ig.__version__ < "0.10":
raise MissingPythonDependencyError(
"Update igraph to 0.10 or later if you want to use to_igraph."
)
# Count the leaves, thereby the total number of nodes in the tree
n_nodes = sum(1 for x in tree.find_clades())
# Empty tree
if n_nodes == 0:
return ig.Graph()
# NOTE: In igraph, adding all edges at once is much faster, so we prepare
# an edgelist and related attributes
def add_subtree(node, n_node, counter, edges, edge_attrs, vertex_attrs):
"""Add edges from this subtree, breath-first."""
# NOTE: Bio.Phylo stores both vertex and edge attributes in the
# same place as "clade" attributes. However, the root node can have
# a vertex attribute but no edge attribute, hence the code blocks are
# in different places
for attrname in vertex_attrs:
if hasattr(node, attrname):
# Sometimes, only some tree nodes (e.g. leaves) have
# a certain attribute, e.g. a name
if len(vertex_attrs[attrname]) == 0:
vertex_attrs[attrname] = [None] * n_nodes
vertex_attrs[attrname][n_node] = getattr(node, attrname)
delta_counter = 0
for i, child in enumerate(node):
n_child = counter + 1 + i
delta_counter += 1
edges.append((n_node, n_child))
# NOTE: The root cannot have an edge attribute, therefore to have
# an edge attribute you must be child of some other node.
for attrname in edge_attrs:
if hasattr(child, attrname):
# Sometimes, only some tree edges (i.e. branches) have
# a certain attribute, e.g. a name
edge_attrs[attrname].append(getattr(child, attrname))
old_counter = counter
counter = counter + delta_counter
for i, child in enumerate(node):
n_child = old_counter + 1 + i
counter = add_subtree(
child, n_child, counter, edges, edge_attrs, vertex_attrs
)
return counter
edges = []
if vertex_attributes is None:
vertex_attributes = ()
edge_attrs = {attrname: [] for attrname in edge_attributes}
vertex_attrs = {attrname: [] for attrname in vertex_attributes}
add_subtree(tree.root, 0, 0, edges, edge_attrs, vertex_attrs)
# Remove unused attributes
for attrname in vertex_attributes:
if len(vertex_attrs[attrname]) == 0:
del vertex_attrs[attrname]
for attrname in edge_attributes:
if len(edge_attrs[attrname]) == 0:
del edge_attrs[attrname]
graph = ig.Graph(
edges=edges,
vertex_attrs=vertex_attrs,
edge_attrs=edge_attrs,
directed=bool(tree.rooted),
)
return graph |
Draw an ascii-art phylogram of the given tree.
The printed result looks like::
_________ Orange
______________|
| |______________ Tangerine
______________|
| | _________________________ Grapefruit
_| |_________|
| |______________ Pummelo
|
|__________________________________ Apple
:Parameters:
file : file-like object
File handle opened for writing the output drawing. (Default:
standard output)
column_width : int
Total number of text columns used by the drawing. | def draw_ascii(tree, file=None, column_width=80):
"""Draw an ascii-art phylogram of the given tree.
The printed result looks like::
_________ Orange
______________|
| |______________ Tangerine
______________|
| | _________________________ Grapefruit
_| |_________|
| |______________ Pummelo
|
|__________________________________ Apple
:Parameters:
file : file-like object
File handle opened for writing the output drawing. (Default:
standard output)
column_width : int
Total number of text columns used by the drawing.
"""
if file is None:
file = sys.stdout
taxa = tree.get_terminals()
# Some constants for the drawing calculations
max_label_width = max(len(str(taxon)) for taxon in taxa)
drawing_width = column_width - max_label_width - 1
drawing_height = 2 * len(taxa) - 1
def get_col_positions(tree):
"""Create a mapping of each clade to its column position."""
depths = tree.depths()
# If there are no branch lengths, assume unit branch lengths
if max(depths.values()) == 0:
depths = tree.depths(unit_branch_lengths=True)
# Potential drawing overflow due to rounding -- 1 char per tree layer
fudge_margin = int(math.ceil(math.log(len(taxa), 2)))
cols_per_branch_unit = (drawing_width - fudge_margin) / max(depths.values())
return {
clade: int(blen * cols_per_branch_unit + 1.0)
for clade, blen in depths.items()
}
def get_row_positions(tree):
positions = {taxon: 2 * idx for idx, taxon in enumerate(taxa)}
def calc_row(clade):
for subclade in clade:
if subclade not in positions:
calc_row(subclade)
positions[clade] = (
positions[clade.clades[0]] + positions[clade.clades[-1]]
) // 2
calc_row(tree.root)
return positions
col_positions = get_col_positions(tree)
row_positions = get_row_positions(tree)
char_matrix = [[" " for x in range(drawing_width)] for y in range(drawing_height)]
def draw_clade(clade, startcol):
thiscol = col_positions[clade]
thisrow = row_positions[clade]
# Draw a horizontal line
for col in range(startcol, thiscol):
char_matrix[thisrow][col] = "_"
if clade.clades:
# Draw a vertical line
toprow = row_positions[clade.clades[0]]
botrow = row_positions[clade.clades[-1]]
for row in range(toprow + 1, botrow + 1):
char_matrix[row][thiscol] = "|"
# NB: Short terminal branches need something to stop rstrip()
if (col_positions[clade.clades[0]] - thiscol) < 2:
char_matrix[toprow][thiscol] = ","
# Draw descendents
for child in clade:
draw_clade(child, thiscol + 1)
draw_clade(tree.root, 0)
# Print the complete drawing
for idx, row in enumerate(char_matrix):
line = "".join(row).rstrip()
# Add labels for terminal taxa in the right margin
if idx % 2 == 0:
line += " " + str(taxa[idx // 2])
file.write(line + "\n")
file.write("\n") |
Plot the given tree using matplotlib (or pylab).
The graphic is a rooted tree, drawn with roughly the same algorithm as
draw_ascii.
Additional keyword arguments passed into this function are used as pyplot
options. The input format should be in the form of:
pyplot_option_name=(tuple), pyplot_option_name=(tuple, dict), or
pyplot_option_name=(dict).
Example using the pyplot options 'axhspan' and 'axvline'::
from Bio import Phylo, AlignIO
from Bio.Phylo.TreeConstruction import DistanceCalculator, DistanceTreeConstructor
constructor = DistanceTreeConstructor()
aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip')
calculator = DistanceCalculator('identity')
dm = calculator.get_distance(aln)
tree = constructor.upgma(dm)
Phylo.draw(tree, axhspan=((0.25, 7.75), {'facecolor':'0.5'}),
... axvline={'x':0, 'ymin':0, 'ymax':1})
Visual aspects of the plot can also be modified using pyplot's own functions
and objects (via pylab or matplotlib). In particular, the pyplot.rcParams
object can be used to scale the font size (rcParams["font.size"]) and line
width (rcParams["lines.linewidth"]).
:Parameters:
label_func : callable
A function to extract a label from a node. By default this is str(),
but you can use a different function to select another string
associated with each node. If this function returns None for a node,
no label will be shown for that node.
do_show : bool
Whether to show() the plot automatically.
show_confidence : bool
Whether to display confidence values, if present on the tree.
axes : matplotlib/pylab axes
If a valid matplotlib.axes.Axes instance, the phylogram is plotted
in that Axes. By default (None), a new figure is created.
branch_labels : dict or callable
A mapping of each clade to the label that will be shown along the
branch leading to it. By default this is the confidence value(s) of
the clade, taken from the ``confidence`` attribute, and can be
easily toggled off with this function's ``show_confidence`` option.
But if you would like to alter the formatting of confidence values,
or label the branches with something other than confidence, then use
this option.
label_colors : dict or callable
A function or a dictionary specifying the color of the tip label.
If the tip label can't be found in the dict or label_colors is
None, the label will be shown in black. | def draw(
tree,
label_func=str,
do_show=True,
show_confidence=True,
# For power users
axes=None,
branch_labels=None,
label_colors=None,
*args,
**kwargs,
):
"""Plot the given tree using matplotlib (or pylab).
The graphic is a rooted tree, drawn with roughly the same algorithm as
draw_ascii.
Additional keyword arguments passed into this function are used as pyplot
options. The input format should be in the form of:
pyplot_option_name=(tuple), pyplot_option_name=(tuple, dict), or
pyplot_option_name=(dict).
Example using the pyplot options 'axhspan' and 'axvline'::
from Bio import Phylo, AlignIO
from Bio.Phylo.TreeConstruction import DistanceCalculator, DistanceTreeConstructor
constructor = DistanceTreeConstructor()
aln = AlignIO.read(open('TreeConstruction/msa.phy'), 'phylip')
calculator = DistanceCalculator('identity')
dm = calculator.get_distance(aln)
tree = constructor.upgma(dm)
Phylo.draw(tree, axhspan=((0.25, 7.75), {'facecolor':'0.5'}),
... axvline={'x':0, 'ymin':0, 'ymax':1})
Visual aspects of the plot can also be modified using pyplot's own functions
and objects (via pylab or matplotlib). In particular, the pyplot.rcParams
object can be used to scale the font size (rcParams["font.size"]) and line
width (rcParams["lines.linewidth"]).
:Parameters:
label_func : callable
A function to extract a label from a node. By default this is str(),
but you can use a different function to select another string
associated with each node. If this function returns None for a node,
no label will be shown for that node.
do_show : bool
Whether to show() the plot automatically.
show_confidence : bool
Whether to display confidence values, if present on the tree.
axes : matplotlib/pylab axes
If a valid matplotlib.axes.Axes instance, the phylogram is plotted
in that Axes. By default (None), a new figure is created.
branch_labels : dict or callable
A mapping of each clade to the label that will be shown along the
branch leading to it. By default this is the confidence value(s) of
the clade, taken from the ``confidence`` attribute, and can be
easily toggled off with this function's ``show_confidence`` option.
But if you would like to alter the formatting of confidence values,
or label the branches with something other than confidence, then use
this option.
label_colors : dict or callable
A function or a dictionary specifying the color of the tip label.
If the tip label can't be found in the dict or label_colors is
None, the label will be shown in black.
"""
try:
import matplotlib.pyplot as plt
except ImportError:
try:
import pylab as plt
except ImportError:
raise MissingPythonDependencyError(
"Install matplotlib or pylab if you want to use draw."
) from None
import matplotlib.collections as mpcollections
# Arrays that store lines for the plot of clades
horizontal_linecollections = []
vertical_linecollections = []
# Options for displaying branch labels / confidence
def conf2str(conf):
if int(conf) == conf:
return str(int(conf))
return str(conf)
if not branch_labels:
if show_confidence:
def format_branch_label(clade):
try:
confidences = clade.confidences
# phyloXML supports multiple confidences
except AttributeError:
pass
else:
return "/".join(conf2str(cnf.value) for cnf in confidences)
if clade.confidence is not None:
return conf2str(clade.confidence)
return None
else:
def format_branch_label(clade):
return None
elif isinstance(branch_labels, dict):
def format_branch_label(clade):
return branch_labels.get(clade)
else:
if not callable(branch_labels):
raise TypeError(
"branch_labels must be either a dict or a callable (function)"
)
format_branch_label = branch_labels
# options for displaying label colors.
if label_colors:
if callable(label_colors):
def get_label_color(label):
return label_colors(label)
else:
# label_colors is presumed to be a dict
def get_label_color(label):
return label_colors.get(label, "black")
else:
def get_label_color(label):
# if label_colors is not specified, use black
return "black"
# Layout
def get_x_positions(tree):
"""Create a mapping of each clade to its horizontal position.
Dict of {clade: x-coord}
"""
depths = tree.depths()
# If there are no branch lengths, assume unit branch lengths
if not max(depths.values()):
depths = tree.depths(unit_branch_lengths=True)
return depths
def get_y_positions(tree):
"""Create a mapping of each clade to its vertical position.
Dict of {clade: y-coord}.
Coordinates are negative, and integers for tips.
"""
maxheight = tree.count_terminals()
# Rows are defined by the tips
heights = {
tip: maxheight - i for i, tip in enumerate(reversed(tree.get_terminals()))
}
# Internal nodes: place at midpoint of children
def calc_row(clade):
for subclade in clade:
if subclade not in heights:
calc_row(subclade)
# Closure over heights
heights[clade] = (
heights[clade.clades[0]] + heights[clade.clades[-1]]
) / 2.0
if tree.root.clades:
calc_row(tree.root)
return heights
x_posns = get_x_positions(tree)
y_posns = get_y_positions(tree)
# The function draw_clade closes over the axes object
if axes is None:
fig = plt.figure()
axes = fig.add_subplot(1, 1, 1)
elif not isinstance(axes, plt.matplotlib.axes.Axes):
raise ValueError(f"Invalid argument for axes: {axes}")
def draw_clade_lines(
use_linecollection=False,
orientation="horizontal",
y_here=0,
x_start=0,
x_here=0,
y_bot=0,
y_top=0,
color="black",
lw=".1",
):
"""Create a line with or without a line collection object.
Graphical formatting of the lines representing clades in the plot can be
customized by altering this function.
"""
if not use_linecollection and orientation == "horizontal":
axes.hlines(y_here, x_start, x_here, color=color, lw=lw)
elif use_linecollection and orientation == "horizontal":
horizontal_linecollections.append(
mpcollections.LineCollection(
[[(x_start, y_here), (x_here, y_here)]], color=color, lw=lw
)
)
elif not use_linecollection and orientation == "vertical":
axes.vlines(x_here, y_bot, y_top, color=color)
elif use_linecollection and orientation == "vertical":
vertical_linecollections.append(
mpcollections.LineCollection(
[[(x_here, y_bot), (x_here, y_top)]], color=color, lw=lw
)
)
def draw_clade(clade, x_start, color, lw):
"""Recursively draw a tree, down from the given clade."""
x_here = x_posns[clade]
y_here = y_posns[clade]
# phyloXML-only graphics annotations
if hasattr(clade, "color") and clade.color is not None:
color = clade.color.to_hex()
if hasattr(clade, "width") and clade.width is not None:
lw = clade.width * plt.rcParams["lines.linewidth"]
# Draw a horizontal line from start to here
draw_clade_lines(
use_linecollection=True,
orientation="horizontal",
y_here=y_here,
x_start=x_start,
x_here=x_here,
color=color,
lw=lw,
)
# Add node/taxon labels
label = label_func(clade)
if label not in (None, clade.__class__.__name__):
axes.text(
x_here,
y_here,
f" {label}",
verticalalignment="center",
color=get_label_color(label),
)
# Add label above the branch (optional)
conf_label = format_branch_label(clade)
if conf_label:
axes.text(
0.5 * (x_start + x_here),
y_here,
conf_label,
fontsize="small",
horizontalalignment="center",
)
if clade.clades:
# Draw a vertical line connecting all children
y_top = y_posns[clade.clades[0]]
y_bot = y_posns[clade.clades[-1]]
# Only apply widths to horizontal lines, like Archaeopteryx
draw_clade_lines(
use_linecollection=True,
orientation="vertical",
x_here=x_here,
y_bot=y_bot,
y_top=y_top,
color=color,
lw=lw,
)
# Draw descendents
for child in clade:
draw_clade(child, x_here, color, lw)
draw_clade(tree.root, 0, "k", plt.rcParams["lines.linewidth"])
# If line collections were used to create clade lines, here they are added
# to the pyplot plot.
for i in horizontal_linecollections:
axes.add_collection(i)
for i in vertical_linecollections:
axes.add_collection(i)
# Aesthetics
try:
name = tree.name
except AttributeError:
pass
else:
if name:
axes.set_title(name)
axes.set_xlabel("branch length")
axes.set_ylabel("taxa")
# Add margins around the tree to prevent overlapping the axes
xmax = max(x_posns.values())
axes.set_xlim(-0.05 * xmax, 1.25 * xmax)
# Also invert the y-axis (origin at the top)
# Add a small vertical margin, but avoid including 0 and N+1 on the y axis
axes.set_ylim(max(y_posns.values()) + 0.8, 0.2)
# Parse and process key word arguments as pyplot options
for key, value in kwargs.items():
try:
# Check that the pyplot option input is iterable, as required
list(value)
except TypeError:
raise ValueError(
'Keyword argument "%s=%s" is not in the format '
"pyplot_option_name=(tuple), pyplot_option_name=(tuple, dict),"
" or pyplot_option_name=(dict) " % (key, value)
) from None
if isinstance(value, dict):
getattr(plt, str(key))(**dict(value))
elif not (isinstance(value[0], tuple)):
getattr(plt, str(key))(*value)
elif isinstance(value[0], tuple):
getattr(plt, str(key))(*value[0], **dict(value[1]))
if do_show:
plt.show() |
Test whether the argument can be serialized as an integer (PRIVATE). | def _is_int(x):
"""Test whether the argument can be serialized as an integer (PRIVATE)."""
return isinstance(x, int) or str(x).isdigit() |
Test whether the argument can be serialized as a number (PRIVATE). | def _is_numeric(x):
"""Test whether the argument can be serialized as a number (PRIVATE)."""
try:
float(str(x))
return True
except ValueError:
return False |
Parse a BASEML results file. | def read(results_file):
"""Parse a BASEML results file."""
results = {}
if not os.path.exists(results_file):
raise FileNotFoundError("Results file does not exist.")
with open(results_file) as handle:
lines = handle.readlines()
if not lines:
raise ValueError(
"Empty results file. Did BASEML exit successfully? "
"Run 'Baseml.run()' with 'verbose=True'."
)
(results, num_params) = _parse_baseml.parse_basics(lines, results)
results = _parse_baseml.parse_parameters(lines, results, num_params)
if results.get("version") is None:
raise ValueError("Invalid results file")
return results |
Compute p-value, from distribution function and test statistics. | def cdf_chi2(df, stat):
"""Compute p-value, from distribution function and test statistics."""
if df < 1:
raise ValueError("df must be at least 1")
if stat < 0:
raise ValueError("The test statistic must be positive")
x = 0.5 * stat
alpha = df / 2.0
prob = 1 - _incomplete_gamma(x, alpha)
return prob |
Compute the log of the gamma function for a given alpha (PRIVATE).
Comments from Z. Yang:
Returns ln(gamma(alpha)) for alpha>0, accurate to 10 decimal places.
Stirling's formula is used for the central polynomial part of the procedure.
Pike MC & Hill ID (1966) Algorithm 291: Logarithm of the gamma function.
Communications of the Association for Computing Machinery, 9:684 | def _ln_gamma_function(alpha):
"""Compute the log of the gamma function for a given alpha (PRIVATE).
Comments from Z. Yang:
Returns ln(gamma(alpha)) for alpha>0, accurate to 10 decimal places.
Stirling's formula is used for the central polynomial part of the procedure.
Pike MC & Hill ID (1966) Algorithm 291: Logarithm of the gamma function.
Communications of the Association for Computing Machinery, 9:684
"""
if alpha <= 0:
raise ValueError
x = alpha
f = 0
if x < 7:
f = 1
z = x
while z < 7:
f *= z
z += 1
x = z
f = -log(f)
z = 1 / (x * x)
return (
f
+ (x - 0.5) * log(x)
- x
+ 0.918938533204673
+ (
((-0.000595238095238 * z + 0.000793650793651) * z - 0.002777777777778) * z
+ 0.083333333333333
)
/ x
) |
Compute an incomplete gamma ratio (PRIVATE).
Comments from Z. Yang::
Returns the incomplete gamma ratio I(x,alpha) where x is the upper
limit of the integration and alpha is the shape parameter.
returns (-1) if in error
ln_gamma_alpha = ln(Gamma(alpha)), is almost redundant.
(1) series expansion if alpha>x or x<=1
(2) continued fraction otherwise
RATNEST FORTRAN by
Bhattacharjee GP (1970) The incomplete gamma integral. Applied Statistics,
19: 285-287 (AS32) | def _incomplete_gamma(x, alpha):
"""Compute an incomplete gamma ratio (PRIVATE).
Comments from Z. Yang::
Returns the incomplete gamma ratio I(x,alpha) where x is the upper
limit of the integration and alpha is the shape parameter.
returns (-1) if in error
ln_gamma_alpha = ln(Gamma(alpha)), is almost redundant.
(1) series expansion if alpha>x or x<=1
(2) continued fraction otherwise
RATNEST FORTRAN by
Bhattacharjee GP (1970) The incomplete gamma integral. Applied Statistics,
19: 285-287 (AS32)
"""
p = alpha
g = _ln_gamma_function(alpha)
accurate = 1e-8
overflow = 1e30
gin = 0
rn = 0
a = 0
b = 0
an = 0
dif = 0
term = 0
if x == 0:
return 0
if x < 0 or p <= 0:
return -1
factor = exp(p * log(x) - x - g)
if x > 1 and x >= p:
a = 1 - p
b = a + x + 1
term = 0
pn = [1, x, x + 1, x * b, None, None]
gin = pn[2] / pn[3]
else:
gin = 1
term = 1
rn = p
while term > accurate:
rn += 1
term *= x / rn
gin += term
gin *= factor / p
return gin
while True:
a += 1
b += 2
term += 1
an = a * term
for i in range(2):
pn[i + 4] = b * pn[i + 2] - an * pn[i]
if pn[5] != 0:
rn = pn[4] / pn[5]
dif = abs(gin - rn)
if dif > accurate:
gin = rn
elif dif <= accurate * rn:
break
for i in range(4):
pn[i] = pn[i + 2]
if abs(pn[4]) < overflow:
continue
for i in range(4):
pn[i] /= overflow
gin = 1 - factor * gin
return gin |
Parse a CODEML results file. | def read(results_file):
"""Parse a CODEML results file."""
results = {}
if not os.path.exists(results_file):
raise FileNotFoundError("Results file does not exist.")
with open(results_file) as handle:
lines = handle.readlines()
if not lines:
raise ValueError(
"Empty results file. Did CODEML exit successfully? "
"Run 'Codeml.run()' with 'verbose=True'."
)
(results, multi_models, multi_genes) = _parse_codeml.parse_basics(lines, results)
results = _parse_codeml.parse_nssites(lines, results, multi_models, multi_genes)
results = _parse_codeml.parse_pairwise(lines, results)
results = _parse_codeml.parse_distances(lines, results)
if not results:
raise ValueError("Invalid results file")
return results |
Parse a yn00 results file. | def read(results_file):
"""Parse a yn00 results file."""
results = {}
if not os.path.exists(results_file):
raise FileNotFoundError("Results file does not exist.")
with open(results_file) as handle:
lines = handle.readlines()
if not lines:
raise ValueError(
"Empty results file. Did YN00 exit successfully? "
"Run 'Yn00.run()' with 'verbose=True'."
)
for line_num, line in enumerate(lines):
if "(A) Nei-Gojobori (1986) method" in line:
ng86_start = line_num + 1
elif "(B) Yang & Nielsen (2000) method" in line:
(results, sequences) = _parse_yn00.parse_ng86(
lines[ng86_start:line_num], results
)
yn00_start = line_num + 1
elif "(C) LWL85, LPB93 & LWLm methods" in line:
results = _parse_yn00.parse_yn00(
lines[yn00_start:line_num], results, sequences
)
results = _parse_yn00.parse_others(
lines[line_num + 1 :], results, sequences
)
if not results:
raise ValueError("Invalid results file.")
return results |
Parse the basics that should be present in most baseml results files. | def parse_basics(lines, results):
"""Parse the basics that should be present in most baseml results files."""
version_re = re.compile(r"BASEML \(in paml version (\d+\.\d+[a-z]*).*")
np_re = re.compile(r"lnL\(ntime:\s+\d+\s+np:\s+(\d+)\)")
num_params = -1
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find the version number
# Example match:
# "BASEML (in paml version 4.3, August 2009) alignment.phylip"
version_res = version_re.match(line)
if version_res is not None:
results["version"] = version_res.group(1)
# Find max lnL
# Example match:
# ln Lmax (unconstrained) = -316.049385
if "ln Lmax" in line and len(line_floats) == 1:
results["lnL max"] = line_floats[0]
# Find lnL values.
# Example match (lnL = -2021.348300):
# "lnL(ntime: 19 np: 22): -2021.348300 +0.000000"
elif "lnL(ntime:" in line and line_floats:
results["lnL"] = line_floats[0]
np_res = np_re.match(line)
if np_res is not None:
num_params = int(np_res.group(1))
# Find tree lengths.
# Example match: "tree length = 1.71931"
elif "tree length" in line and len(line_floats) == 1:
results["tree length"] = line_floats[0]
# Find the estimated tree, only taking the tree if it has
# branch lengths
elif re.match(r"\(+", line) is not None:
if ":" in line:
results["tree"] = line.strip()
return (results, num_params) |
Parse the various parameters from the file. | def parse_parameters(lines, results, num_params):
"""Parse the various parameters from the file."""
parameters = {}
parameters = parse_parameter_list(lines, parameters, num_params)
parameters = parse_kappas(lines, parameters)
parameters = parse_rates(lines, parameters)
parameters = parse_freqs(lines, parameters)
results["parameters"] = parameters
return results |
Parse the parameters list, which is just an unlabeled list of numeric values. | def parse_parameter_list(lines, parameters, num_params):
"""Parse the parameters list, which is just an unlabeled list of numeric values."""
for line_num in range(len(lines)):
line = lines[line_num]
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Get parameter list. This can be useful for specifying starting
# parameters in another run by copying the list of parameters
# to a file called in.baseml. Since the parameters must be in
# a fixed order and format, copying and pasting to the file is
# best. For this reason, they are grabbed here just as a long
# string and not as individual numbers.
if len(line_floats) == num_params:
parameters["parameter list"] = line.strip()
# Find SEs. The same format as parameters above is maintained
# since there is a correspondence between the SE format and
# the parameter format.
# Example match:
# "SEs for parameters:
# -1.00000 -1.00000 -1.00000 801727.63247 730462.67590 -1.00000
if "SEs for parameters:" in lines[line_num + 1]:
SEs_line = lines[line_num + 2]
parameters["SEs"] = SEs_line.strip()
break
return parameters |
Parse out the kappa parameters. | def parse_kappas(lines, parameters):
"""Parse out the kappa parameters."""
kappa_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find kappa parameter (F84, HKY85, T92 model)
# Example match:
# "Parameters (kappa) in the rate matrix (F84) (Yang 1994 J Mol Evol 39:105-111):
# 3.00749"
if "Parameters (kappa)" in line:
kappa_found = True
elif kappa_found and line_floats:
branch_res = re.match(r"\s(\d+\.\.\d+)", line)
if branch_res is None:
if len(line_floats) == 1:
parameters["kappa"] = line_floats[0]
else:
parameters["kappa"] = line_floats
kappa_found = False
else:
if parameters.get("branches") is None:
parameters["branches"] = {}
branch = branch_res.group(1)
if line_floats:
parameters["branches"][branch] = {
"t": line_floats[0],
"kappa": line_floats[1],
"TS": line_floats[2],
"TV": line_floats[3],
}
# Find kappa under REV
# Example match:
# kappa under REV: 999.00000 145.76453 0.00001 0.00001 0.00001
elif "kappa under" in line and line_floats:
if len(line_floats) == 1:
parameters["kappa"] = line_floats[0]
else:
parameters["kappa"] = line_floats
return parameters |
Parse the rate parameters. | def parse_rates(lines, parameters):
"""Parse the rate parameters."""
Q_mat_found = False
trans_probs_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find rate parameters
# Example match:
# "Rate parameters: 999.00000 145.59775 0.00001 0.00001 0.00001"
if "Rate parameters:" in line and line_floats:
parameters["rate parameters"] = line_floats
# Find rates
# Example match:
# "rate: 0.90121 0.96051 0.99831 1.03711 1.10287"
elif "rate: " in line and line_floats:
parameters["rates"] = line_floats
# Find Rate matrix Q & average kappa (REV model)
# Example match:
# Rate matrix Q, Average Ts/Tv = 3.0308
# -2.483179 1.865730 0.617449 0.000000
# 2.298662 -2.298662 0.000000 0.000000
# 0.335015 0.000000 -0.338059 0.003044
# 0.000000 0.000000 0.004241 -0.004241
elif "matrix Q" in line:
parameters["Q matrix"] = {"matrix": []}
if line_floats:
parameters["Q matrix"]["average Ts/Tv"] = line_floats[0]
Q_mat_found = True
elif Q_mat_found and line_floats:
parameters["Q matrix"]["matrix"].append(line_floats)
if len(parameters["Q matrix"]["matrix"]) == 4:
Q_mat_found = False
# Find alpha (gamma shape parameter for variable rates)
# Example match: "alpha (gamma, K=5) = 192.47918"
elif "alpha" in line and line_floats:
parameters["alpha"] = line_floats[0]
# Find rho for auto-discrete-gamma model
elif "rho" in line and line_floats:
parameters["rho"] = line_floats[0]
elif "transition probabilities" in line:
parameters["transition probs."] = []
trans_probs_found = True
elif trans_probs_found and line_floats:
parameters["transition probs."].append(line_floats)
if len(parameters["transition probs."]) == len(parameters["rates"]):
trans_probs_found = False
return parameters |
Parse the basepair frequencies. | def parse_freqs(lines, parameters):
"""Parse the basepair frequencies."""
root_re = re.compile(r"Note: node (\d+) is root.")
branch_freqs_found = False
base_freqs_found = False
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Find base frequencies from baseml 4.3
# Example match:
# "Base frequencies: 0.20090 0.16306 0.37027 0.26577"
if "Base frequencies" in line and line_floats:
base_frequencies = {}
base_frequencies["T"] = line_floats[0]
base_frequencies["C"] = line_floats[1]
base_frequencies["A"] = line_floats[2]
base_frequencies["G"] = line_floats[3]
parameters["base frequencies"] = base_frequencies
# Find base frequencies from baseml 4.1:
# Example match:
# "base frequency parameters
# " 0.20317 0.16768 0.36813 0.26102"
elif "base frequency parameters" in line:
base_freqs_found = True
# baseml 4.4 returns to having the base frequencies on the next line
# but the heading changed
elif "Base frequencies" in line and not line_floats:
base_freqs_found = True
elif base_freqs_found and line_floats:
base_frequencies = {}
base_frequencies["T"] = line_floats[0]
base_frequencies["C"] = line_floats[1]
base_frequencies["A"] = line_floats[2]
base_frequencies["G"] = line_floats[3]
parameters["base frequencies"] = base_frequencies
base_freqs_found = False
# Find frequencies
# Example match:
# "freq: 0.90121 0.96051 0.99831 1.03711 1.10287"
elif "freq: " in line and line_floats:
parameters["rate frequencies"] = line_floats
# Find branch-specific frequency parameters
# Example match (note: I think it's possible to have 4 more
# values per line, enclosed in brackets, so I'll account for
# this):
# (frequency parameters for branches) [frequencies at nodes] (see Yang & Roberts 1995 fig 1)
#
# Node #1 ( 0.25824 0.24176 0.25824 0.24176 )
# Node #2 ( 0.00000 0.50000 0.00000 0.50000 )
elif "(frequency parameters for branches)" in line:
parameters["nodes"] = {}
branch_freqs_found = True
elif branch_freqs_found:
if line_floats:
node_res = re.match(r"Node \#(\d+)", line)
node_num = int(node_res.group(1))
node = {"root": False}
node["frequency parameters"] = line_floats[:4]
if len(line_floats) > 4:
node["base frequencies"] = {
"T": line_floats[4],
"C": line_floats[5],
"A": line_floats[6],
"G": line_floats[7],
}
parameters["nodes"][node_num] = node
else:
root_res = root_re.match(line)
if root_res is not None:
root_node = int(root_res.group(1))
parameters["nodes"][root_node]["root"] = True
branch_freqs_found = False
return parameters |
Parse the basic information that should be present in most codeml output files. | def parse_basics(lines, results):
"""Parse the basic information that should be present in most codeml output files."""
# multi_models is used to designate there being results for more than one
# model in the file
multi_models = False
multi_genes = False
version_re = re.compile(r".+ \(in paml version (\d+\.\d+[a-z]*).*")
model_re = re.compile(r"Model:\s+(.+)")
num_genes_re = re.compile(r"\(([0-9]+) genes: separate data\)")
# In codeml 4.1, the codon substitution model is headed by:
# "Codon frequencies:"
# In codeml 4.3+ it is headed by:
# "Codon frequency model:"
codon_freq_re = re.compile(r"Codon frequenc[a-z\s]{3,7}:\s+(.+)")
siteclass_re = re.compile(r"Site-class models:\s*([^\s]*)")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Get the program version number
version_res = version_re.match(line)
if version_res is not None:
results["version"] = version_res.group(1)
continue
# Find the model description at the beginning of the file.
model_res = model_re.match(line)
if model_res is not None:
results["model"] = model_res.group(1)
# Find out if more than one genes are analyzed
num_genes_res = num_genes_re.search(line)
if num_genes_res is not None:
results["genes"] = []
num_genes = int(num_genes_res.group(1))
for n in range(num_genes):
results["genes"].append({})
multi_genes = True
continue
# Get the codon substitution model
codon_freq_res = codon_freq_re.match(line)
if codon_freq_res is not None:
results["codon model"] = codon_freq_res.group(1)
continue
# Find the site-class model name at the beginning of the file.
# This exists only if a NSsites class other than 0 is used.
# If there's no site class model listed, then there are multiple
# models in the results file
# Example match: "Site-class models: PositiveSelection"
siteclass_res = siteclass_re.match(line)
if siteclass_res is not None:
siteclass_model = siteclass_res.group(1)
if siteclass_model != "":
results["site-class model"] = siteclass_model
multi_models = False
else:
multi_models = True
# Get the maximum log-likelihood
if "ln Lmax" in line and line_floats:
results["lnL max"] = line_floats[0]
return (results, multi_models, multi_genes) |
Determine which NSsites models are present and parse them. | def parse_nssites(lines, results, multi_models, multi_genes):
"""Determine which NSsites models are present and parse them."""
ns_sites = {}
model_re = re.compile(r"Model (\d+):\s+(.+)")
gene_re = re.compile(r"Gene\s+([0-9]+)\s+.+")
siteclass_model = results.get("site-class model")
if not multi_models:
# If there's only one model in the results, find out
# which one it is and then parse it.
if siteclass_model is None:
siteclass_model = "one-ratio"
current_model = {
"one-ratio": 0,
"NearlyNeutral": 1,
"PositiveSelection": 2,
"discrete": 3,
"beta": 7,
"beta&w>1": 8,
"M2a_rel": 22,
}[siteclass_model]
if multi_genes:
genes = results["genes"]
current_gene = None
gene_start = None
model_results = None
for line_num, line in enumerate(lines):
gene_res = gene_re.match(line)
if gene_res:
if current_gene is not None:
assert model_results is not None
parse_model(lines[gene_start:line_num], model_results)
genes[current_gene - 1] = model_results
gene_start = line_num
current_gene = int(gene_res.group(1))
model_results = {"description": siteclass_model}
if len(genes[current_gene - 1]) == 0:
model_results = parse_model(lines[gene_start:], model_results)
genes[current_gene - 1] = model_results
else:
model_results = {"description": siteclass_model}
model_results = parse_model(lines, model_results)
ns_sites[current_model] = model_results
else:
# If there are multiple models in the results, scan through
# the file and send each model's text to be parsed individually.
current_model = None
model_start = None
for line_num, line in enumerate(lines):
# Find model names. If this is found on a line,
# all of the following lines until the next time this matches
# contain results for Model X.
# Example match: "Model 1: NearlyNeutral (2 categories)"
model_res = model_re.match(line)
if model_res:
if current_model is not None:
# We've already been tracking a model, so it's time
# to send those lines off for parsing before beginning
# a new one.
parse_model(lines[model_start:line_num], model_results)
ns_sites[current_model] = model_results
model_start = line_num
current_model = int(model_res.group(1))
model_results = {"description": model_res.group(2)}
if ns_sites.get(current_model) is None:
# When we reach the end of the file, we'll still have one more
# model to parse.
model_results = parse_model(lines[model_start:], model_results)
ns_sites[current_model] = model_results
# Only add the ns_sites dict to the results if we really have results.
# Model M0 is added by default in some cases, so if it exists, make sure
# it's not empty
if len(ns_sites) == 1:
m0 = ns_sites.get(0)
if not m0 or len(m0) > 1:
results["NSsites"] = ns_sites
elif len(ns_sites) > 1:
results["NSsites"] = ns_sites
return results |
Parse an individual NSsites model's results. | def parse_model(lines, results):
"""Parse an individual NSsites model's results."""
parameters = {}
SEs_flag = False
dS_tree_flag = False
dN_tree_flag = False
w_tree_flag = False
num_params = None
tree_re = re.compile(r"^\([\w #:',.()]*\);\s*$")
branch_re = re.compile(r"\s+(\d+\.\.\d+)[\s+\d+\.\d+]+")
model_params_re = re.compile(r"(?<!\S)([a-z]\d?)\s*=\s+(\d+\.\d+)")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
# Check if branch-specific results are in the line
branch_res = branch_re.match(line)
# Check if additional model parameters are in the line
model_params = model_params_re.findall(line)
# Find lnL values.
# Example match (lnL = -2021.348300):
# "lnL(ntime: 19 np: 22): -2021.348300 +0.000000"
if "lnL(ntime:" in line and line_floats:
results["lnL"] = line_floats[0]
np_res = re.match(r"lnL\(ntime:\s+\d+\s+np:\s+(\d+)\)", line)
if np_res is not None:
num_params = int(np_res.group(1))
# Get parameter list. This can be useful for specifying starting
# parameters in another run by copying the list of parameters
# to a file called in.codeml. Since the parameters must be in
# a fixed order and format, copying and pasting to the file is
# best. For this reason, they are grabbed here just as a long
# string and not as individual numbers.
elif len(line_floats) == num_params and not SEs_flag:
parameters["parameter list"] = line.strip()
# Find SEs. The same format as parameters above is maintained
# since there is a correspondence between the SE format and
# the parameter format.
# Example match:
# "SEs for parameters:
# -1.00000 -1.00000 -1.00000 801727.63247 730462.67590 -1.00000
elif "SEs for parameters:" in line:
SEs_flag = True
elif SEs_flag and len(line_floats) == num_params:
parameters["SEs"] = line.strip()
SEs_flag = False
# Find tree lengths.
# Example match: "tree length = 1.71931"
elif "tree length =" in line and line_floats:
results["tree length"] = line_floats[0]
# Find the estimated trees only taking the tree if it has
# lengths or rate estimates on the branches
elif tree_re.match(line) is not None:
if ":" in line or "#" in line:
if dS_tree_flag:
results["dS tree"] = line.strip()
dS_tree_flag = False
elif dN_tree_flag:
results["dN tree"] = line.strip()
dN_tree_flag = False
elif w_tree_flag:
results["omega tree"] = line.strip()
w_tree_flag = False
else:
results["tree"] = line.strip()
elif "dS tree:" in line:
dS_tree_flag = True
elif "dN tree:" in line:
dN_tree_flag = True
elif "w ratios as labels for TreeView:" in line:
w_tree_flag = True
# Find rates for multiple genes
# Example match: "rates for 2 genes: 1 2.75551"
elif "rates for" in line and line_floats:
line_floats.insert(0, 1.0)
parameters["rates"] = line_floats
# Find kappa values.
# Example match: "kappa (ts/tv) = 2.77541"
elif "kappa (ts/tv)" in line and line_floats:
parameters["kappa"] = line_floats[0]
# Find omega values.
# Example match: "omega (dN/dS) = 0.25122"
elif "omega (dN/dS)" in line and line_floats:
parameters["omega"] = line_floats[0]
elif "w (dN/dS)" in line and line_floats:
parameters["omega"] = line_floats
# Find omega and kappa values for multi-gene files
# Example match: "gene # 1: kappa = 1.72615 omega = 0.39333"
elif "gene # " in line:
gene_num = int(re.match(r"gene # (\d+)", line).group(1))
if parameters.get("genes") is None:
parameters["genes"] = {}
parameters["genes"][gene_num] = {
"kappa": line_floats[0],
"omega": line_floats[1],
}
# Find dN values.
# Example match: "tree length for dN: 0.2990"
elif "tree length for dN" in line and line_floats:
parameters["dN"] = line_floats[0]
# Find dS values
# Example match: "tree length for dS: 1.1901"
elif "tree length for dS" in line and line_floats:
parameters["dS"] = line_floats[0]
# Find site class distributions.
# Example match 1 (normal model, 2 site classes):
# "p: 0.77615 0.22385"
# Example match 2 (branch site A model, 4 site classes):
# "proportion 0.00000 0.00000 0.73921 0.26079"
elif line[0:2] == "p:" or line[0:10] == "proportion":
site_classes = parse_siteclass_proportions(line_floats)
parameters["site classes"] = site_classes
# Find the omega value corresponding to each site class
# Example match (2 site classes): "w: 0.10224 1.00000"
elif line[0:2] == "w:":
site_classes = parameters.get("site classes")
site_classes = parse_siteclass_omegas(line, site_classes)
parameters["site classes"] = site_classes
# Find the omega values corresponding to a branch type from
# the clade model C for each site class
# Example match:
# "branch type 0: 0.31022 1.00000 0.00000"
elif "branch type " in line:
branch_type = re.match(r"branch type (\d)", line)
if branch_type:
site_classes = parameters.get("site classes")
branch_type_no = int(branch_type.group(1))
site_classes = parse_clademodelc(
branch_type_no, line_floats, site_classes
)
parameters["site classes"] = site_classes
# Find the omega values of the foreground branch for each site
# class in the branch site A model
# Example match:
# "foreground w 0.07992 1.00000 134.54218 134.54218"
elif line[0:12] == "foreground w":
site_classes = parameters.get("site classes")
site_classes = parse_branch_site_a(True, line_floats, site_classes)
parameters["site classes"] = site_classes
# Find the omega values of the background for each site
# class in the branch site A model
# Example match:
# "background w 0.07992 1.00000 0.07992 1.00000"
elif line[0:12] == "background w":
site_classes = parameters.get("site classes")
site_classes = parse_branch_site_a(False, line_floats, site_classes)
parameters["site classes"] = site_classes
# Find dN & dS for each branch, which is organized in a table
# The possibility of NaNs forces me to not use the line_floats
# method.
# Example row (some spaces removed to make it smaller...).
# " 6..7 0.000 167.7 54.3 0.0000 0.0000 0.0000 0.0 0.0"
elif branch_res is not None and line_floats:
branch = branch_res.group(1)
if parameters.get("branches") is None:
parameters["branches"] = {}
params = line.strip().split()[1:]
parameters["branches"][branch] = {
"t": float(params[0].strip()),
"N": float(params[1].strip()),
"S": float(params[2].strip()),
"omega": float(params[3].strip()),
"dN": float(params[4].strip()),
"dS": float(params[5].strip()),
"N*dN": float(params[6].strip()),
"S*dS": float(params[7].strip()),
}
# Find model parameters, which can be spread across multiple
# lines.
# Example matches:
# " p0= 0.99043 p= 0.36657 q= 1.04445
# " (p1= 0.00957) w= 3.25530"
elif model_params:
float_model_params = []
for param in model_params:
float_model_params.append((param[0], float(param[1])))
parameters.update(dict(float_model_params))
if parameters:
results["parameters"] = parameters
return results |
Find proportion of alignment assigned to each class.
For models which have multiple site classes, find the proportion of the
alignment assigned to each class. | def parse_siteclass_proportions(line_floats):
"""Find proportion of alignment assigned to each class.
For models which have multiple site classes, find the proportion of the
alignment assigned to each class.
"""
site_classes = {}
if line_floats:
for n in range(len(line_floats)):
site_classes[n] = {"proportion": line_floats[n]}
return site_classes |
Find omega estimate for each class.
For models which have multiple site classes, find the omega estimated
for each class. | def parse_siteclass_omegas(line, site_classes):
"""Find omega estimate for each class.
For models which have multiple site classes, find the omega estimated
for each class.
"""
# The omega results are tabular with strictly 9 characters per column
# (1 to 3 digits before the decimal point and 5 after). This causes
# numbers to sometimes run into each other, so we must use a different
# regular expression to account for this. i.e.:
# w: 0.00012 1.00000109.87121
line_floats = re.findall(r"\d{1,3}\.\d{5}", line)
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
site_classes[n]["omega"] = line_floats[n]
return site_classes |
Parse results specific to the clade model C. | def parse_clademodelc(branch_type_no, line_floats, site_classes):
"""Parse results specific to the clade model C."""
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
if site_classes[n].get("branch types") is None:
site_classes[n]["branch types"] = {}
site_classes[n]["branch types"][branch_type_no] = line_floats[n]
return site_classes |
Parse results specific to the branch site A model. | def parse_branch_site_a(foreground, line_floats, site_classes):
"""Parse results specific to the branch site A model."""
if not site_classes or len(line_floats) == 0:
return
for n in range(len(line_floats)):
if site_classes[n].get("branch types") is None:
site_classes[n]["branch types"] = {}
if foreground:
site_classes[n]["branch types"]["foreground"] = line_floats[n]
else:
site_classes[n]["branch types"]["background"] = line_floats[n]
return site_classes |
Parse results from pairwise comparisons. | def parse_pairwise(lines, results):
"""Parse results from pairwise comparisons."""
# Find pairwise comparisons
# Example:
# 2 (Pan_troglo) ... 1 (Homo_sapie)
# lnL = -291.465693
# 0.01262 999.00000 0.00100
#
# t= 0.0126 S= 81.4 N= 140.6 dN/dS= 0.0010 dN= 0.0000 dS= 0.0115
pair_re = re.compile(r"\d+ \((.+)\) ... \d+ \((.+)\)")
pairwise = {}
seq1 = None
seq2 = None
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
pair_res = pair_re.match(line)
if pair_res:
seq1 = pair_res.group(1)
seq2 = pair_res.group(2)
if seq1 not in pairwise:
pairwise[seq1] = {}
if seq2 not in pairwise:
pairwise[seq2] = {}
if len(line_floats) == 1 and seq1 is not None and seq2 is not None:
pairwise[seq1][seq2] = {"lnL": line_floats[0]}
pairwise[seq2][seq1] = pairwise[seq1][seq2]
elif len(line_floats) == 6 and seq1 is not None and seq2 is not None:
pairwise[seq1][seq2].update(
{
"t": line_floats[0],
"S": line_floats[1],
"N": line_floats[2],
"omega": line_floats[3],
"dN": line_floats[4],
"dS": line_floats[5],
}
)
pairwise[seq2][seq1] = pairwise[seq1][seq2]
if pairwise:
results["pairwise"] = pairwise
return results |
Parse amino acid sequence distance results. | def parse_distances(lines, results):
"""Parse amino acid sequence distance results."""
distances = {}
sequences = []
raw_aa_distances_flag = False
ml_aa_distances_flag = False
matrix_row_re = re.compile(r"(.+)\s{5,15}")
for line in lines:
# Find all floating point numbers in this line
line_floats_res = line_floats_re.findall(line)
line_floats = [float(val) for val in line_floats_res]
if "AA distances" in line:
raw_aa_distances_flag = True
# In current versions, the raw distances always come
# first but I don't trust this to always be true
ml_aa_distances_flag = False
elif "ML distances of aa seqs." in line:
ml_aa_distances_flag = True
raw_aa_distances_flag = False
# Parse AA distances (raw or ML), in a lower diagonal matrix
matrix_row_res = matrix_row_re.match(line)
if matrix_row_res and (raw_aa_distances_flag or ml_aa_distances_flag):
seq_name = matrix_row_res.group(1).strip()
if seq_name not in sequences:
sequences.append(seq_name)
if raw_aa_distances_flag:
if distances.get("raw") is None:
distances["raw"] = {}
distances["raw"][seq_name] = {}
for i in range(len(line_floats)):
distances["raw"][seq_name][sequences[i]] = line_floats[i]
distances["raw"][sequences[i]][seq_name] = line_floats[i]
else:
if distances.get("ml") is None:
distances["ml"] = {}
distances["ml"][seq_name] = {}
for i in range(len(line_floats)):
distances["ml"][seq_name][sequences[i]] = line_floats[i]
distances["ml"][sequences[i]][seq_name] = line_floats[i]
if distances:
results["distances"] = distances
return results |
Parse the Nei & Gojobori (1986) section of the results.
Nei_Gojobori results are organized in a lower
triangular matrix, with the sequence names labeling
the rows and statistics in the format:
w (dN dS) per column
Example row (2 columns):
0.0000 (0.0000 0.0207) 0.0000 (0.0000 0.0421) | def parse_ng86(lines, results):
"""Parse the Nei & Gojobori (1986) section of the results.
Nei_Gojobori results are organized in a lower
triangular matrix, with the sequence names labeling
the rows and statistics in the format:
w (dN dS) per column
Example row (2 columns):
0.0000 (0.0000 0.0207) 0.0000 (0.0000 0.0421)
"""
sequences = []
for line in lines:
# The purpose of this complex regex is to parse the NG86 section for
# valid lines of data that are mixed in with citations and comments.
# The data lines begin with a taxon name, followed by zero or more
# fields containing numeric values, sometimes enclosed in parens.
# Taxon names are from 1-30 characters and are usually separated from
# the numeric portion of the line by space(s). Long taxon names to are
# truncated to 30 characters, and may run into the data fields without
# any separator., e.g. some_long_name-1.0000
# This regex is an attempt to cover more pathological cases while also
# parsing all existing versions of yn00 output with shorter names.
matrix_row_res = re.match(
r"^([^\s]+?)(\s+-?\d+\.\d+.*$|\s*$|-1.0000\s*\(.*$)", line
)
if matrix_row_res is not None:
# Find all floating point numbers in this line, accounting
# for the fact that the sequence IDs might have bits that
# look like floating point values.
line_floats_res = re.findall(r"-*\d+\.\d+", matrix_row_res.group(2))
line_floats = [float(val) for val in line_floats_res]
seq_name = matrix_row_res.group(1).strip()
sequences.append(seq_name)
results[seq_name] = {}
for i in range(0, len(line_floats), 3):
NG86 = {}
NG86["omega"] = line_floats[i]
NG86["dN"] = line_floats[i + 1]
NG86["dS"] = line_floats[i + 2]
results[seq_name][sequences[i // 3]] = {"NG86": NG86}
results[sequences[i // 3]][seq_name] = {"NG86": NG86}
return (results, sequences) |
Parse the Yang & Nielsen (2000) part of the results.
Yang & Nielsen results are organized in a table with
each row comprising one pairwise species comparison.
Rows are labeled by sequence number rather than by
sequence name. | def parse_yn00(lines, results, sequences):
"""Parse the Yang & Nielsen (2000) part of the results.
Yang & Nielsen results are organized in a table with
each row comprising one pairwise species comparison.
Rows are labeled by sequence number rather than by
sequence name.
"""
# Example (header row and first table row):
# seq. seq. S N t kappa omega dN +- SE dS +- SE
# 2 1 67.3 154.7 0.0136 3.6564 0.0000 -0.0000 +- 0.0000 0.0150
# +- 0.0151
for line in lines:
# Find all floating point numbers in this line
line_floats_res = re.findall(r"-*\d+\.\d+", line)
line_floats = [float(val) for val in line_floats_res]
row_res = re.match(r"\s+(\d+)\s+(\d+)", line)
if row_res is not None:
seq1 = int(row_res.group(1))
seq2 = int(row_res.group(2))
seq_name1 = sequences[seq1 - 1]
seq_name2 = sequences[seq2 - 1]
YN00 = {}
YN00["S"] = line_floats[0]
YN00["N"] = line_floats[1]
YN00["t"] = line_floats[2]
YN00["kappa"] = line_floats[3]
YN00["omega"] = line_floats[4]
YN00["dN"] = line_floats[5]
YN00["dN SE"] = line_floats[6]
YN00["dS"] = line_floats[7]
YN00["dS SE"] = line_floats[8]
results[seq_name1][seq_name2]["YN00"] = YN00
results[seq_name2][seq_name1]["YN00"] = YN00
seq_name1 = None
seq_name2 = None
return results |
Parse the results from the other methods.
The remaining methods are grouped together. Statistics
for all three are listed for each of the pairwise
species comparisons, with each method's results on its
own line.
The stats in this section must be handled differently
due to the possible presence of NaN values, which won't
get caught by my typical "line_floats" method used above. | def parse_others(lines, results, sequences):
"""Parse the results from the other methods.
The remaining methods are grouped together. Statistics
for all three are listed for each of the pairwise
species comparisons, with each method's results on its
own line.
The stats in this section must be handled differently
due to the possible presence of NaN values, which won't
get caught by my typical "line_floats" method used above.
"""
# Example:
# 2 (Pan_troglo) vs. 1 (Homo_sapie)
# L(i): 143.0 51.0 28.0 sum= 222.0
# Ns(i): 0.0000 1.0000 0.0000 sum= 1.0000
# Nv(i): 0.0000 0.0000 0.0000 sum= 0.0000
# A(i): 0.0000 0.0200 0.0000
# B(i): -0.0000 -0.0000 -0.0000
# LWL85: dS = 0.0227 dN = 0.0000 w = 0.0000 S = 45.0 N = 177.0
# LWL85m: dS = -nan dN = -nan w = -nan S = -nan N = -nan (rho = -nan)
# LPB93: dS = 0.0129 dN = 0.0000 w = 0.0000
seq_name1 = None
seq_name2 = None
for line in lines:
comp_res = re.match(r"\d+ \((.+)\) vs. \d+ \((.+)\)", line)
if comp_res is not None:
seq_name1 = comp_res.group(1)
seq_name2 = comp_res.group(2)
elif seq_name1 is not None and seq_name2 is not None:
if "dS =" in line:
stats = {}
line_stats = line.split(":")[1].strip()
# Find all of the xx = ###### values in a row
# ie dS = 0.0227
# For dN and dS, the values have 8 characters from the equals
# sign, while the rest have 7 characters. On Windows,
# NaNs take on weird values like -1.#IND, which might fill the
# entire fixed column width.
res_matches = re.findall(r"[dSNwrho]{1,3} =.{7,8}?", line_stats)
for stat_pair in res_matches:
stat = stat_pair.split("=")[0].strip()
value = stat_pair.split("=")[1].strip()
try:
stats[stat] = float(value)
except ValueError:
stats[stat] = None
if "LWL85:" in line:
results[seq_name1][seq_name2]["LWL85"] = stats
results[seq_name2][seq_name1]["LWL85"] = stats
elif "LWL85m" in line:
results[seq_name1][seq_name2]["LWL85m"] = stats
results[seq_name2][seq_name1]["LWL85m"] = stats
elif "LPB93" in line:
results[seq_name1][seq_name2]["LPB93"] = stats
results[seq_name2][seq_name1]["LPB93"] = stats
return results |
Get a float from a token, if it fails, returns the string (PRIVATE). | def _gp_float(tok):
"""Get a float from a token, if it fails, returns the string (PRIVATE)."""
try:
return float(tok)
except ValueError:
return str(tok) |
Get a int from a token, if it fails, returns the string (PRIVATE). | def _gp_int(tok):
"""Get a int from a token, if it fails, returns the string (PRIVATE)."""
try:
return int(tok)
except ValueError:
return str(tok) |
Parse a file containing a GenePop file.
fname is a file name that contains a GenePop record. | def read(fname):
"""Parse a file containing a GenePop file.
fname is a file name that contains a GenePop record.
"""
record = FileRecord(fname)
return record |
Get individual's data from line. | def get_indiv(line):
"""Get individual's data from line."""
indiv_name, marker_line = line.split(",")
markers = marker_line.replace("\t", " ").split(" ")
markers = [marker for marker in markers if marker != ""]
if len(markers[0]) in [2, 4]: # 2 digits per allele
marker_len = 2
else:
marker_len = 3
try:
allele_list = [
(int(marker[0:marker_len]), int(marker[marker_len:])) for marker in markers
]
except ValueError: # Haploid
allele_list = [(int(marker[0:marker_len]),) for marker in markers]
return indiv_name, allele_list, marker_len |
Parse a handle containing a GenePop file.
Arguments:
- handle is a file-like object that contains a GenePop record. | def read(handle):
"""Parse a handle containing a GenePop file.
Arguments:
- handle is a file-like object that contains a GenePop record.
"""
record = Record(handle)
record.comment_line = next(handle).rstrip()
# We can now have one loci per line or all loci in a single line
# separated by either space or comma+space...
# We will remove all commas on loci... that should not be a problem
sample_loci_line = next(handle).rstrip().replace(",", "")
all_loci = sample_loci_line.split(" ")
record.loci_list.extend(all_loci)
line = handle.readline()
while line != "":
line = line.rstrip()
if line.upper() == "POP":
record.stack.append("POP")
break
record.loci_list.append(line)
line = handle.readline()
next_line = handle.readline().rstrip()
indiv_name, allele_list, record.marker_len = get_indiv(next_line)
record.stack.append(next_line)
return record |
Extract the details of the individual information on the line. | def get_indiv(line):
"""Extract the details of the individual information on the line."""
def int_no_zero(val):
"""Return integer of val, or None if is zero."""
v = int(val)
if v == 0:
return None
return v
indiv_name, marker_line = line.split(",")
markers = marker_line.replace("\t", " ").split(" ")
markers = [marker for marker in markers if marker != ""]
if len(markers[0]) in [2, 4]: # 2 digits per allele
marker_len = 2
else:
marker_len = 3
try:
allele_list = [
(int_no_zero(marker[0:marker_len]), int_no_zero(marker[marker_len:]))
for marker in markers
]
except ValueError: # Haploid
allele_list = [(int_no_zero(marker[0:marker_len]),) for marker in markers]
return indiv_name, allele_list, marker_len |
Parse a handle containing a GenePop file.
handle is a file-like object that contains a GenePop record. | def read(handle):
"""Parse a handle containing a GenePop file.
handle is a file-like object that contains a GenePop record.
"""
record = Record()
record.comment_line = next(handle).rstrip()
# We can now have one loci per line or all loci in a single line
# separated by either space or comma+space...
# We will remove all commas on loci... that should not be a problem
sample_loci_line = next(handle).rstrip().replace(",", "")
all_loci = sample_loci_line.split(" ")
record.loci_list.extend(all_loci)
for line in handle:
line = line.rstrip()
if line.upper() == "POP":
break
record.loci_list.append(line)
else:
raise ValueError("No population data found, file probably not GenePop related")
record.populations.append([])
for line in handle:
line = line.rstrip()
if line.upper() == "POP":
record.populations.append([])
else:
indiv_name, allele_list, record.marker_len = get_indiv(line)
record.populations[-1].append((indiv_name, allele_list))
loci = record.loci_list
for pop in record.populations:
record.pop_list.append(pop[-1][0])
for indiv in pop:
for mk_i in range(len(loci)):
mk_orig = indiv[1][mk_i]
mk_real = []
for al in mk_orig:
if al == 0:
mk_real.append(None)
else:
mk_real.append(al)
indiv[1][mk_i] = tuple(mk_real)
return record |
Iterate over a CLA file as Cla records for each line.
Arguments:
- handle - file-like object. | def parse(handle):
"""Iterate over a CLA file as Cla records for each line.
Arguments:
- handle - file-like object.
"""
for line in handle:
if line.startswith("#"):
continue
yield Record(line) |
Iterate over a DES file as a Des record for each line.
Arguments:
- handle - file-like object | def parse(handle):
"""Iterate over a DES file as a Des record for each line.
Arguments:
- handle - file-like object
"""
for line in handle:
if line.startswith("#"):
continue
yield Record(line) |
Iterate over a DOM file as a Dom record for each line.
Arguments:
- handle -- file-like object. | def parse(handle):
"""Iterate over a DOM file as a Dom record for each line.
Arguments:
- handle -- file-like object.
"""
for line in handle:
if line.startswith("#"):
continue
yield Record(line) |
Iterate over a HIE file as Hie records for each line.
Arguments:
- handle - file-like object. | def parse(handle):
"""Iterate over a HIE file as Hie records for each line.
Arguments:
- handle - file-like object.
"""
for line in handle:
if line.startswith("#"):
continue
yield Record(line) |
Convert RAF one-letter amino acid codes into IUPAC standard codes.
Letters are uppercased, and "." ("Unknown") is converted to "X". | def normalize_letters(one_letter_code):
"""Convert RAF one-letter amino acid codes into IUPAC standard codes.
Letters are uppercased, and "." ("Unknown") is converted to "X".
"""
if one_letter_code == ".":
return "X"
else:
return one_letter_code.upper() |
Iterate over RAF file, giving a SeqMap object for each line.
Arguments:
- handle -- file-like object. | def parse(handle):
"""Iterate over RAF file, giving a SeqMap object for each line.
Arguments:
- handle -- file-like object.
"""
for line in handle:
yield SeqMap(line) |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.