response
stringlengths 1
33.1k
| instruction
stringlengths 22
582k
|
---|---|
It should be possible to get a TreeNode by its ID. | def test_get_tree_node_by_id() -> None:
"""It should be possible to get a TreeNode by its ID."""
tree = Tree[None]("Anakin")
child = tree.root.add("Leia")
grandchild = child.add("Ben")
assert tree.get_node_by_id(tree.root.id).id == tree.root.id
assert tree.get_node_by_id(child.id).id == child.id
assert tree.get_node_by_id(grandchild.id).id == grandchild.id
with pytest.raises(UnknownNodeID):
tree.get_node_by_id(cast(NodeID, grandchild.id + 1000)) |
Get the label of a node as a string | def label_of(node: TreeNode[None]):
"""Get the label of a node as a string"""
return str(node.label) |
A node's children property should act like an immutable list. | def test_tree_node_children() -> None:
"""A node's children property should act like an immutable list."""
CHILDREN = 23
tree = Tree[None]("Root")
for child in range(CHILDREN):
tree.root.add(str(child))
assert len(tree.root.children) == CHILDREN
for child in range(CHILDREN):
assert label_of(tree.root.children[child]) == str(child)
assert label_of(tree.root.children[0]) == "0"
assert label_of(tree.root.children[-1]) == str(CHILDREN - 1)
assert [label_of(node) for node in tree.root.children] == [
str(n) for n in range(CHILDREN)
]
assert [label_of(node) for node in tree.root.children[:2]] == [
str(n) for n in range(2)
]
with pytest.raises(TypeError):
tree.root.children[0] = tree.root.children[1]
with pytest.raises(TypeError):
del tree.root.children[0]
with pytest.raises(TypeError):
del tree.root.children[0:2] |
It should be possible to modify a TreeNode's label. | def test_tree_node_label() -> None:
"""It should be possible to modify a TreeNode's label."""
node = TreeNode(Tree[None]("Xenomorph Lifecycle"), None, 0, "Facehugger")
assert node.label == Text("Facehugger")
node.label = "Chestbuster"
assert node.label == Text("Chestbuster") |
It should be possible to modify a TreeNode's label when created via a Tree. | def test_tree_node_label_via_tree() -> None:
"""It should be possible to modify a TreeNode's label when created via a Tree."""
tree = Tree[None]("Xenomorph Lifecycle")
node = tree.root.add("Facehugger")
assert node.label == Text("Facehugger")
node.label = "Chestbuster"
assert node.label == Text("Chestbuster") |
It should be possible to access a TreeNode's parent. | def test_tree_node_parent() -> None:
"""It should be possible to access a TreeNode's parent."""
tree = Tree[None]("Anakin")
child = tree.root.add("Leia")
grandchild = child.add("Ben")
assert tree.root.parent is None
assert grandchild.parent == child
assert child.parent == tree.root |
Link IDs have a random ID and system path which is a problem for
reproducible tests. | def replace_link_ids(render: str) -> str:
"""Link IDs have a random ID and system path which is a problem for
reproducible tests.
"""
return re_link_ids.sub("id=0;foo\x1b", render) |
No active worker raises a specific exception. | def test_no_active_worker() -> None:
"""No active worker raises a specific exception."""
with pytest.raises(NoActiveWorker):
get_current_worker() |
Decorating a non-async method without saying explicitly that it's a thread is an error. | def test_decorate_non_async_no_thread_argument() -> None:
"""Decorating a non-async method without saying explicitly that it's a thread is an error."""
with pytest.raises(WorkerDeclarationError):
class _(App[None]):
@work
def foo(self) -> None:
pass |
Decorating a non-async method and saying it isn't a thread is an error. | def test_decorate_non_async_no_thread_is_false() -> None:
"""Decorating a non-async method and saying it isn't a thread is an error."""
with pytest.raises(WorkerDeclarationError):
class _(App[None]):
@work(thread=False)
def foo(self) -> None:
pass |
Print a table summarising the bindings.
The table contains columns for the key(s) that trigger the binding,
the method that it calls (and tries to link it to the widget itself),
and the description of the binding. | def print_bindings(widget: str, bindings: list[Binding]) -> None:
"""Print a table summarising the bindings.
The table contains columns for the key(s) that trigger the binding,
the method that it calls (and tries to link it to the widget itself),
and the description of the binding.
"""
if bindings:
print("BINDINGS")
print('"""')
print("| Key(s) | Description |")
print("| :- | :- |")
for binding in bindings:
print(f"| {binding.key} | {binding.description} |")
if bindings:
print('"""') |
Print a table to document these component classes.
The table contains two columns, one with the component class name and another
for the description of what the component class is for.
The second column is always empty. | def print_component_classes(classes: set[str]) -> None:
"""Print a table to document these component classes.
The table contains two columns, one with the component class name and another
for the description of what the component class is for.
The second column is always empty.
"""
if classes:
print("COMPONENT_CLASSES")
print('"""')
print("| Class | Description |")
print("| :- | :- |")
for cls in sorted(classes):
print(f"| `{cls}` | XXX |")
if classes:
print('"""') |
Main entrypoint.
Iterates over all widgets and prints docs tables. | def main() -> None:
"""Main entrypoint.
Iterates over all widgets and prints docs tables.
"""
widgets: list[str] = textual.widgets.__all__
for widget in widgets:
w = getattr(textual.widgets, widget)
bindings: list[Binding] = w.__dict__.get("BINDINGS", [])
component_classes: set[str] = getattr(w, "COMPONENT_CLASSES", set())
if bindings or component_classes:
print(widget)
print()
print_bindings(widget, bindings)
print_component_classes(component_classes)
print() |
Finds root from the point 'a' onwards by Newton-Raphson method | def NewtonRaphson(func, a):
''' Finds root from the point 'a' onwards by Newton-Raphson method '''
while True:
c = Decimal(a) - ( Decimal(eval(func)) / Decimal(eval(str(diff(func)))) )
a = c
# This number dictates the accuracy of the answer
if abs(eval(func)) < 10**-15:
return c |
>>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.')
'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi' | def encryptMessage(key, message):
'''
>>> encryptMessage(4545, 'The affine cipher is a type of monoalphabetic substitution cipher.')
'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi'
'''
keyA, keyB = getKeyParts(key)
checkKeys(keyA, keyB, 'encrypt')
cipherText = ''
for symbol in message:
if symbol in SYMBOLS:
symIndex = SYMBOLS.find(symbol)
cipherText += SYMBOLS[(symIndex * keyA + keyB) % len(SYMBOLS)]
else:
cipherText += symbol
return cipherText |
>>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi')
'The affine cipher is a type of monoalphabetic substitution cipher.' | def decryptMessage(key, message):
'''
>>> decryptMessage(4545, 'VL}p MM{I}p~{HL}Gp{vp pFsH}pxMpyxIx JHL O}F{~pvuOvF{FuF{xIp~{HL}Gi')
'The affine cipher is a type of monoalphabetic substitution cipher.'
'''
keyA, keyB = getKeyParts(key)
checkKeys(keyA, keyB, 'decrypt')
plainText = ''
modInverseOfkeyA = cryptoMath.findModInverse(keyA, len(SYMBOLS))
for symbol in message:
if symbol in SYMBOLS:
symIndex = SYMBOLS.find(symbol)
plainText += SYMBOLS[(symIndex - keyB) * modInverseOfkeyA % len(SYMBOLS)]
else:
plainText += symbol
return plainText |
>>> decrypt('TMDETUX PMDVU')
Decryption using Key #0: TMDETUX PMDVU
Decryption using Key #1: SLCDSTW OLCUT
Decryption using Key #2: RKBCRSV NKBTS
Decryption using Key #3: QJABQRU MJASR
Decryption using Key #4: PIZAPQT LIZRQ
Decryption using Key #5: OHYZOPS KHYQP
Decryption using Key #6: NGXYNOR JGXPO
Decryption using Key #7: MFWXMNQ IFWON
Decryption using Key #8: LEVWLMP HEVNM
Decryption using Key #9: KDUVKLO GDUML
Decryption using Key #10: JCTUJKN FCTLK
Decryption using Key #11: IBSTIJM EBSKJ
Decryption using Key #12: HARSHIL DARJI
Decryption using Key #13: GZQRGHK CZQIH
Decryption using Key #14: FYPQFGJ BYPHG
Decryption using Key #15: EXOPEFI AXOGF
Decryption using Key #16: DWNODEH ZWNFE
Decryption using Key #17: CVMNCDG YVMED
Decryption using Key #18: BULMBCF XULDC
Decryption using Key #19: ATKLABE WTKCB
Decryption using Key #20: ZSJKZAD VSJBA
Decryption using Key #21: YRIJYZC URIAZ
Decryption using Key #22: XQHIXYB TQHZY
Decryption using Key #23: WPGHWXA SPGYX
Decryption using Key #24: VOFGVWZ ROFXW
Decryption using Key #25: UNEFUVY QNEWV | def decrypt(message):
"""
>>> decrypt('TMDETUX PMDVU')
Decryption using Key #0: TMDETUX PMDVU
Decryption using Key #1: SLCDSTW OLCUT
Decryption using Key #2: RKBCRSV NKBTS
Decryption using Key #3: QJABQRU MJASR
Decryption using Key #4: PIZAPQT LIZRQ
Decryption using Key #5: OHYZOPS KHYQP
Decryption using Key #6: NGXYNOR JGXPO
Decryption using Key #7: MFWXMNQ IFWON
Decryption using Key #8: LEVWLMP HEVNM
Decryption using Key #9: KDUVKLO GDUML
Decryption using Key #10: JCTUJKN FCTLK
Decryption using Key #11: IBSTIJM EBSKJ
Decryption using Key #12: HARSHIL DARJI
Decryption using Key #13: GZQRGHK CZQIH
Decryption using Key #14: FYPQFGJ BYPHG
Decryption using Key #15: EXOPEFI AXOGF
Decryption using Key #16: DWNODEH ZWNFE
Decryption using Key #17: CVMNCDG YVMED
Decryption using Key #18: BULMBCF XULDC
Decryption using Key #19: ATKLABE WTKCB
Decryption using Key #20: ZSJKZAD VSJBA
Decryption using Key #21: YRIJYZC URIAZ
Decryption using Key #22: XQHIXYB TQHZY
Decryption using Key #23: WPGHWXA SPGYX
Decryption using Key #24: VOFGVWZ ROFXW
Decryption using Key #25: UNEFUVY QNEWV
"""
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
for key in range(len(LETTERS)):
translated = ""
for symbol in message:
if symbol in LETTERS:
num = LETTERS.find(symbol)
num = num - key
if num < 0:
num = num + len(LETTERS)
translated = translated + LETTERS[num]
else:
translated = translated + symbol
print("Decryption using Key #%s: %s" % (key, translated)) |
Prepare the plaintext by up-casing it
and separating repeated letters with X's | def prepare_input(dirty):
"""
Prepare the plaintext by up-casing it
and separating repeated letters with X's
"""
dirty = ''.join([c.upper() for c in dirty if c in string.ascii_letters])
clean = ""
if len(dirty) < 2:
return dirty
for i in range(len(dirty)-1):
clean += dirty[i]
if dirty[i] == dirty[i+1]:
clean += 'X'
clean += dirty[-1]
if len(clean) & 1:
clean += 'X'
return clean |
>>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji')
'Ilcrism Olcvs' | def encryptMessage(key, message):
"""
>>> encryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Harshil Darji')
'Ilcrism Olcvs'
"""
return translateMessage(key, message, 'encrypt') |
>>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs')
'Harshil Darji' | def decryptMessage(key, message):
"""
>>> decryptMessage('LFWOAYUISVKMNXPBDCRJTQEGHZ', 'Ilcrism Olcvs')
'Harshil Darji'
"""
return translateMessage(key, message, 'decrypt') |
>>> encryptMessage(6, 'Harshil Darji')
'Hlia rDsahrij' | def encryptMessage(key, message):
"""
>>> encryptMessage(6, 'Harshil Darji')
'Hlia rDsahrij'
"""
cipherText = [''] * key
for col in range(key):
pointer = col
while pointer < len(message):
cipherText[col] += message[pointer]
pointer += key
return ''.join(cipherText) |
>>> decryptMessage(6, 'Hlia rDsahrij')
'Harshil Darji' | def decryptMessage(key, message):
"""
>>> decryptMessage(6, 'Hlia rDsahrij')
'Harshil Darji'
"""
numCols = math.ceil(len(message) / key)
numRows = key
numShadedBoxes = (numCols * numRows) - len(message)
plainText = [""] * numCols
col = 0; row = 0;
for symbol in message:
plainText[col] += symbol
col += 1
if (col == numCols) or (col == numCols - 1) and (row >= numRows - numShadedBoxes):
col = 0
row += 1
return "".join(plainText) |
>>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.')
'Akij ra Odrjqqs Gaisq muod Mphumrs.' | def encryptMessage(key, message):
'''
>>> encryptMessage('HDarji', 'This is Harshil Darji from Dharmaj.')
'Akij ra Odrjqqs Gaisq muod Mphumrs.'
'''
return translateMessage(key, message, 'encrypt') |
>>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
'This is Harshil Darji from Dharmaj.' | def decryptMessage(key, message):
'''
>>> decryptMessage('HDarji', 'Akij ra Odrjqqs Gaisq muod Mphumrs.')
'This is Harshil Darji from Dharmaj.'
'''
return translateMessage(key, message, 'decrypt') |
A B
/ \ / \
B C Bl A
/ \ --> / / \
Bl Br UB Br C
/
UB
UB = unbalanced node | def leftrotation(node):
r'''
A B
/ \ / \
B C Bl A
/ \ --> / / \
Bl Br UB Br C
/
UB
UB = unbalanced node
'''
print("left rotation node:",node.getdata())
ret = node.getleft()
node.setleft(ret.getright())
ret.setright(node)
h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1
node.setheight(h1)
h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1
ret.setheight(h2)
return ret |
a mirror symmetry rotation of the leftrotation | def rightrotation(node):
'''
a mirror symmetry rotation of the leftrotation
'''
print("right rotation node:",node.getdata())
ret = node.getright()
node.setright(ret.getleft())
ret.setleft(node)
h1 = my_max(getheight(node.getright()),getheight(node.getleft())) + 1
node.setheight(h1)
h2 = my_max(getheight(ret.getright()),getheight(ret.getleft())) + 1
ret.setheight(h2)
return ret |
A A Br
/ \ / \ / \
B C RR Br C LR B A
/ \ --> / \ --> / / \
Bl Br B UB Bl UB C
\ /
UB Bl
RR = rightrotation LR = leftrotation | def rlrotation(node):
r'''
A A Br
/ \ / \ / \
B C RR Br C LR B A
/ \ --> / \ --> / / \
Bl Br B UB Bl UB C
\ /
UB Bl
RR = rightrotation LR = leftrotation
'''
node.setleft(rightrotation(node.getleft()))
return leftrotation(node) |
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13 | def testBinarySearchTree():
r'''
Example
8
/ \
3 10
/ \ \
1 6 14
/ \ /
4 7 13
'''
r'''
Example After Deletion
7
/ \
1 4
'''
t = BinarySearchTree()
t.insert(8)
t.insert(3)
t.insert(6)
t.insert(1)
t.insert(10)
t.insert(14)
t.insert(13)
t.insert(4)
t.insert(7)
#Prints all the elements of the list in order traversal
print(t.__str__())
if(t.getNode(6) is not None):
print("The label 6 exists")
else:
print("The label 6 doesn't exist")
if(t.getNode(-1) is not None):
print("The label -1 exists")
else:
print("The label -1 doesn't exist")
if(not t.empty()):
print(("Max Value: ", t.getMax().getLabel()))
print(("Min Value: ", t.getMin().getLabel()))
t.delete(13)
t.delete(10)
t.delete(8)
t.delete(3)
t.delete(6)
t.delete(14)
#Gets all the elements of the tree In pre order
#And it prints them
list = t.traversalTree(InPreOrder, t.root)
for x in list:
print(x) |
it's not the best solution | def check_prime(number):
"""
it's not the best solution
"""
special_non_primes = [0,1,2]
if number in special_non_primes[:2]:
return 2
elif number == special_non_primes[-1]:
return 3
return all([number % i for i in range(2, number)]) |
Use a stack to check if a string of parentheses is balanced. | def balanced_parentheses(parentheses):
""" Use a stack to check if a string of parentheses is balanced."""
stack = Stack(len(parentheses))
for parenthesis in parentheses:
if parenthesis == '(':
stack.push(parenthesis)
elif parenthesis == ')':
if stack.is_empty():
return False
stack.pop()
return stack.is_empty() |
Return integer value representing an operator's precedence, or
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations | def precedence(char):
""" Return integer value representing an operator's precedence, or
order of operation.
https://en.wikipedia.org/wiki/Order_of_operations
"""
dictionary = {'+': 1, '-': 1,
'*': 2, '/': 2,
'^': 3}
return dictionary.get(char, -1) |
Convert infix notation to postfix notation using the Shunting-yard
algorithm.
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation | def infix_to_postfix(expression):
""" Convert infix notation to postfix notation using the Shunting-yard
algorithm.
https://en.wikipedia.org/wiki/Shunting-yard_algorithm
https://en.wikipedia.org/wiki/Infix_notation
https://en.wikipedia.org/wiki/Reverse_Polish_notation
"""
stack = Stack(len(expression))
postfix = []
for char in expression:
if is_operand(char):
postfix.append(char)
elif char not in {'(', ')'}:
while (not stack.is_empty()
and precedence(char) <= precedence(stack.peek())):
postfix.append(stack.pop())
stack.push(char)
elif char == '(':
stack.push(char)
elif char == ')':
while not stack.is_empty() and stack.peek() != '(':
postfix.append(stack.pop())
# Pop '(' from stack. If there is no '(', there is a mismatched
# parentheses.
if stack.peek() != '(':
raise ValueError('Mismatched parentheses')
stack.pop()
while not stack.is_empty():
postfix.append(stack.pop())
return ' '.join(postfix) |
Prints all the words in a Trie
:param node: root node of Trie
:param word: Word variable should be empty at start
:return: None | def print_words(node: TrieNode, word: str): # noqa: E999 This syntax is Python 3 only
"""
Prints all the words in a Trie
:param node: root node of Trie
:param word: Word variable should be empty at start
:return: None
"""
if node.is_leaf:
print(word, end=' ')
for key, value in node.nodes.items():
print_words(value, word + key) |
:param gray_img: gray image
:param mask: mask size
:return: image with median filter | def median_filter(gray_img, mask=3):
"""
:param gray_img: gray image
:param mask: mask size
:return: image with median filter
"""
# set image borders
bd = int(mask / 2)
# copy image size
median_img = zeros_like(gray)
for i in range(bd, gray_img.shape[0] - bd):
for j in range(bd, gray_img.shape[1] - bd):
# get mask according with mask
kernel = ravel(gray_img[i - bd:i + bd + 1, j - bd:j + bd + 1])
# calculate mask median
median = sort(kernel)[int8(divide((multiply(mask, mask)), 2) + 1)]
median_img[i, j] = median
return median_img |
This code involves the concept of memory functions. Here we solve the subproblems which are needed
unlike the below example
F is a 2D array with -1s filled up | def MF_knapsack(i,wt,val,j):
'''
This code involves the concept of memory functions. Here we solve the subproblems which are needed
unlike the below example
F is a 2D array with -1s filled up
'''
global F # a global dp table for knapsack
if F[i][j] < 0:
if j < wt[i - 1]:
val = MF_knapsack(i - 1,wt,val,j)
else:
val = max(MF_knapsack(i - 1,wt,val,j),MF_knapsack(i - 1,wt,val,j - wt[i - 1]) + val[i - 1])
F[i][j] = val
return F[i][j] |
K-Means Clustering using TensorFlow.
'vectors' should be a n*k 2-D NumPy array, where n is the number
of vectors of dimensionality k.
'noofclusters' should be an integer. | def TFKMeansCluster(vectors, noofclusters):
"""
K-Means Clustering using TensorFlow.
'vectors' should be a n*k 2-D NumPy array, where n is the number
of vectors of dimensionality k.
'noofclusters' should be an integer.
"""
noofclusters = int(noofclusters)
assert noofclusters < len(vectors)
#Find out the dimensionality
dim = len(vectors[0])
#Will help select random centroids from among the available vectors
vector_indices = list(range(len(vectors)))
shuffle(vector_indices)
#GRAPH OF COMPUTATION
#We initialize a new graph and set it as the default during each run
#of this algorithm. This ensures that as this function is called
#multiple times, the default graph doesn't keep getting crowded with
#unused ops and Variables from previous function calls.
graph = tf.Graph()
with graph.as_default():
#SESSION OF COMPUTATION
sess = tf.Session()
##CONSTRUCTING THE ELEMENTS OF COMPUTATION
##First lets ensure we have a Variable vector for each centroid,
##initialized to one of the vectors from the available data points
centroids = [tf.Variable((vectors[vector_indices[i]]))
for i in range(noofclusters)]
##These nodes will assign the centroid Variables the appropriate
##values
centroid_value = tf.placeholder("float64", [dim])
cent_assigns = []
for centroid in centroids:
cent_assigns.append(tf.assign(centroid, centroid_value))
##Variables for cluster assignments of individual vectors(initialized
##to 0 at first)
assignments = [tf.Variable(0) for i in range(len(vectors))]
##These nodes will assign an assignment Variable the appropriate
##value
assignment_value = tf.placeholder("int32")
cluster_assigns = []
for assignment in assignments:
cluster_assigns.append(tf.assign(assignment,
assignment_value))
##Now lets construct the node that will compute the mean
#The placeholder for the input
mean_input = tf.placeholder("float", [None, dim])
#The Node/op takes the input and computes a mean along the 0th
#dimension, i.e. the list of input vectors
mean_op = tf.reduce_mean(mean_input, 0)
##Node for computing Euclidean distances
#Placeholders for input
v1 = tf.placeholder("float", [dim])
v2 = tf.placeholder("float", [dim])
euclid_dist = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(
v1, v2), 2)))
##This node will figure out which cluster to assign a vector to,
##based on Euclidean distances of the vector from the centroids.
#Placeholder for input
centroid_distances = tf.placeholder("float", [noofclusters])
cluster_assignment = tf.argmin(centroid_distances, 0)
##INITIALIZING STATE VARIABLES
##This will help initialization of all Variables defined with respect
##to the graph. The Variable-initializer should be defined after
##all the Variables have been constructed, so that each of them
##will be included in the initialization.
init_op = tf.initialize_all_variables()
#Initialize all variables
sess.run(init_op)
##CLUSTERING ITERATIONS
#Now perform the Expectation-Maximization steps of K-Means clustering
#iterations. To keep things simple, we will only do a set number of
#iterations, instead of using a Stopping Criterion.
noofiterations = 100
for iteration_n in range(noofiterations):
##EXPECTATION STEP
##Based on the centroid locations till last iteration, compute
##the _expected_ centroid assignments.
#Iterate over each vector
for vector_n in range(len(vectors)):
vect = vectors[vector_n]
#Compute Euclidean distance between this vector and each
#centroid. Remember that this list cannot be named
#'centroid_distances', since that is the input to the
#cluster assignment node.
distances = [sess.run(euclid_dist, feed_dict={
v1: vect, v2: sess.run(centroid)})
for centroid in centroids]
#Now use the cluster assignment node, with the distances
#as the input
assignment = sess.run(cluster_assignment, feed_dict = {
centroid_distances: distances})
#Now assign the value to the appropriate state variable
sess.run(cluster_assigns[vector_n], feed_dict={
assignment_value: assignment})
##MAXIMIZATION STEP
#Based on the expected state computed from the Expectation Step,
#compute the locations of the centroids so as to maximize the
#overall objective of minimizing within-cluster Sum-of-Squares
for cluster_n in range(noofclusters):
#Collect all the vectors assigned to this cluster
assigned_vects = [vectors[i] for i in range(len(vectors))
if sess.run(assignments[i]) == cluster_n]
#Compute new centroid location
new_location = sess.run(mean_op, feed_dict={
mean_input: array(assigned_vects)})
#Assign value to appropriate variable
sess.run(cent_assigns[cluster_n], feed_dict={
centroid_value: new_location})
#Return centroids and assignments
centroids = sess.run(centroids)
assignments = sess.run(assignments)
return centroids, assignments |
The DFS function simply calls itself recursively for every unvisited child of its argument. We can emulate that
behaviour precisely using a stack of iterators. Instead of recursively calling with a node, we'll push an iterator
to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop
it off the stack. | def dfs(graph, start):
"""The DFS function simply calls itself recursively for every unvisited child of its argument. We can emulate that
behaviour precisely using a stack of iterators. Instead of recursively calling with a node, we'll push an iterator
to the node's children onto the iterator stack. When the iterator at the top of the stack terminates, we'll pop
it off the stack."""
explored, stack = set(), [start]
explored.add(start)
while stack:
v = stack.pop() # the only difference from BFS is to pop last element here instead of first one
for w in graph[v]:
if w not in explored:
explored.add(w)
stack.append(w)
return explored |
DFS traversal | def dfs(start):
"""DFS traversal"""
# pylint: disable=redefined-outer-name
ret = 1
visited[start] = True
for v in tree.get(start):
if v not in visited:
ret += dfs(v)
if ret % 2 == 0:
cuts.append(start)
return ret |
2 1
3 1
4 3
5 2
6 1
7 2
8 6
9 8
10 8
On removing edges (1,3) and (1,6), we can get the desired result 2. | def even_tree():
"""
2 1
3 1
4 3
5 2
6 1
7 2
8 6
9 8
10 8
On removing edges (1,3) and (1,6), we can get the desired result 2.
"""
dfs(1) |
Tarjan's algo for finding strongly connected components in a directed graph
Uses two main attributes of each node to track reachability, the index of that node within a component(index),
and the lowest index reachable from that node(lowlink).
We then perform a dfs of the each component making sure to update these parameters for each node and saving the
nodes we visit on the way.
If ever we find that the lowest reachable node from a current node is equal to the index of the current node then it
must be the root of a strongly connected component and so we save it and it's equireachable vertices as a strongly
connected component.
Complexity: strong_connect() is called at most once for each node and has a complexity of O(|E|) as it is DFS.
Therefore this has complexity O(|V| + |E|) for a graph G = (V, E) | def tarjan(g):
"""
Tarjan's algo for finding strongly connected components in a directed graph
Uses two main attributes of each node to track reachability, the index of that node within a component(index),
and the lowest index reachable from that node(lowlink).
We then perform a dfs of the each component making sure to update these parameters for each node and saving the
nodes we visit on the way.
If ever we find that the lowest reachable node from a current node is equal to the index of the current node then it
must be the root of a strongly connected component and so we save it and it's equireachable vertices as a strongly
connected component.
Complexity: strong_connect() is called at most once for each node and has a complexity of O(|E|) as it is DFS.
Therefore this has complexity O(|V| + |E|) for a graph G = (V, E)
"""
n = len(g)
stack = deque()
on_stack = [False for _ in range(n)]
index_of = [-1 for _ in range(n)]
lowlink_of = index_of[:]
def strong_connect(v, index, components):
index_of[v] = index # the number when this node is seen
lowlink_of[v] = index # lowest rank node reachable from here
index += 1
stack.append(v)
on_stack[v] = True
for w in g[v]:
if index_of[w] == -1:
index = strong_connect(w, index, components)
lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
elif on_stack[w]:
lowlink_of[v] = lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v]
if lowlink_of[v] == index_of[v]:
component = []
w = stack.pop()
on_stack[w] = False
component.append(w)
while w != v:
w = stack.pop()
on_stack[w] = False
component.append(w)
components.append(component)
return index
components = []
for v in range(n):
if index_of[v] == -1:
strong_connect(v, 0, components)
return components |
[summary]
Regroups the given binary string.
Arguments:
bitString32 {[string]} -- [32 bit binary]
Raises:
ValueError -- [if the given string not are 32 bit binary string]
Returns:
[string] -- [32 bit binary string] | def rearrange(bitString32):
"""[summary]
Regroups the given binary string.
Arguments:
bitString32 {[string]} -- [32 bit binary]
Raises:
ValueError -- [if the given string not are 32 bit binary string]
Returns:
[string] -- [32 bit binary string]
"""
if len(bitString32) != 32:
raise ValueError("Need length 32")
newString = ""
for i in [3,2,1,0]:
newString += bitString32[8*i:8*i+8]
return newString |
[summary]
Converts the given integer into 8-digit hex number.
Arguments:
i {[int]} -- [integer] | def reformatHex(i):
"""[summary]
Converts the given integer into 8-digit hex number.
Arguments:
i {[int]} -- [integer]
"""
hexrep = format(i,'08x')
thing = ""
for i in [3,2,1,0]:
thing += hexrep[2*i:2*i+2]
return thing |
[summary]
Fills up the binary string to a 512 bit binary string
Arguments:
bitString {[string]} -- [binary string]
Returns:
[string] -- [binary string] | def pad(bitString):
"""[summary]
Fills up the binary string to a 512 bit binary string
Arguments:
bitString {[string]} -- [binary string]
Returns:
[string] -- [binary string]
"""
startLength = len(bitString)
bitString += '1'
while len(bitString) % 512 != 448:
bitString += '0'
lastPart = format(startLength,'064b')
bitString += rearrange(lastPart[32:]) + rearrange(lastPart[:32])
return bitString |
[summary]
Iterator:
Returns by each call a list of length 16 with the 32 bit
integer blocks.
Arguments:
bitString {[string]} -- [binary string >= 512] | def getBlock(bitString):
"""[summary]
Iterator:
Returns by each call a list of length 16 with the 32 bit
integer blocks.
Arguments:
bitString {[string]} -- [binary string >= 512]
"""
currPos = 0
while currPos < len(bitString):
currPart = bitString[currPos:currPos+512]
mySplits = []
for i in range(16):
mySplits.append(int(rearrange(currPart[32*i:32*i+32]),2))
yield mySplits
currPos += 512 |
[summary]
Returns a 32-bit hash code of the string 'testString'
Arguments:
testString {[string]} -- [message] | def md5me(testString):
"""[summary]
Returns a 32-bit hash code of the string 'testString'
Arguments:
testString {[string]} -- [message]
"""
bs =''
for i in testString:
bs += format(ord(i),'08b')
bs = pad(bs)
tvals = [int(2**32 * abs(math.sin(i+1))) for i in range(64)]
a0 = 0x67452301
b0 = 0xefcdab89
c0 = 0x98badcfe
d0 = 0x10325476
s = [7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, \
5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, \
4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, \
6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21 ]
for m in getBlock(bs):
A = a0
B = b0
C = c0
D = d0
for i in range(64):
if i <= 15:
#f = (B & C) | (not32(B) & D)
f = D ^ (B & (C ^ D))
g = i
elif i<= 31:
#f = (D & B) | (not32(D) & C)
f = C ^ (D & (B ^ C))
g = (5*i+1) % 16
elif i <= 47:
f = B ^ C ^ D
g = (3*i+5) % 16
else:
f = C ^ (B | not32(D))
g = (7*i) % 16
dtemp = D
D = C
C = B
B = sum32(B,leftrot32((A + f + tvals[i] + m[g]) % 2**32, s[i]))
A = dtemp
a0 = sum32(a0, A)
b0 = sum32(b0, B)
c0 = sum32(c0, C)
d0 = sum32(d0, D)
digest = reformatHex(a0) + reformatHex(b0) + reformatHex(c0) + reformatHex(d0)
return digest |
Provides option 'string' or 'file' to take input and prints the calculated SHA1 hash.
unittest.main() has been commented because we probably dont want to run
the test each time. | def main():
"""
Provides option 'string' or 'file' to take input and prints the calculated SHA1 hash.
unittest.main() has been commented because we probably dont want to run
the test each time.
"""
# unittest.main()
parser = argparse.ArgumentParser(description='Process some strings or files')
parser.add_argument('--string', dest='input_string',
default='Hello World!! Welcome to Cryptography',
help='Hash the string')
parser.add_argument('--file', dest='input_file', help='Hash contents of a file')
args = parser.parse_args()
input_string = args.input_string
#In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file, 'rb') as f:
hash_input = f.read()
else:
hash_input = bytes(input_string, 'utf-8')
print(SHA1Hash(hash_input).final_hash()) |
returns a zero-vector of size 'dimension' | def zeroVector(dimension):
"""
returns a zero-vector of size 'dimension'
"""
#precondition
assert(isinstance(dimension,int))
return Vector([0]*dimension) |
returns a unit basis vector with a One
at index 'pos' (indexing at 0) | def unitBasisVector(dimension,pos):
"""
returns a unit basis vector with a One
at index 'pos' (indexing at 0)
"""
#precondition
assert(isinstance(dimension,int) and (isinstance(pos,int)))
ans = [0]*dimension
ans[pos] = 1
return Vector(ans) |
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation | def axpy(scalar,x,y):
"""
input: a 'scalar' and two vectors 'x' and 'y'
output: a vector
computes the axpy operation
"""
# precondition
assert(isinstance(x,Vector) and (isinstance(y,Vector)) \
and (isinstance(scalar,int) or isinstance(scalar,float)))
return (x*scalar + y) |
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'. | def randomVector(N,a,b):
"""
input: size (N) of the vector.
random range (a,b)
output: returns a random vector of size N, with
random integer components between 'a' and 'b'.
"""
random.seed(None)
ans = [random.randint(a,b) for i in range(N)]
return Vector(ans) |
returns a square zero-matrix of dimension NxN | def squareZeroMatrix(N):
"""
returns a square zero-matrix of dimension NxN
"""
ans = [[0]*N for i in range(N)]
return Matrix(ans,N,N) |
returns a random matrix WxH with integer components
between 'a' and 'b' | def randomMatrix(W,H,a,b):
"""
returns a random matrix WxH with integer components
between 'a' and 'b'
"""
random.seed(None)
matrix = [[random.randint(a,b) for j in range(W)] for i in range(H)]
return Matrix(matrix,W,H) |
In this demonstration we're generating a sample data set from the sin function in numpy.
We then train a decision tree on the data set and use the decision tree to predict the
label of 10 different test values. Then the mean squared error over this test is displayed. | def main():
"""
In this demonstration we're generating a sample data set from the sin function in numpy.
We then train a decision tree on the data set and use the decision tree to predict the
label of 10 different test values. Then the mean squared error over this test is displayed.
"""
X = np.arange(-1., 1., 0.005)
y = np.sin(X)
tree = Decision_Tree(depth = 10, min_leaf_size = 10)
tree.train(X,y)
test_cases = (np.random.rand(10) * 2) - 1
predictions = np.array([tree.predict(x) for x in test_cases])
avg_error = np.mean((predictions - test_cases) ** 2)
print("Test values: " + str(test_cases))
print("Predictions: " + str(predictions))
print("Average error: " + str(avg_error)) |
:param data_set: train data or test data
:param example_no: example number whose error has to be checked
:return: error in example pointed by example number. | def _error(example_no, data_set='train'):
"""
:param data_set: train data or test data
:param example_no: example number whose error has to be checked
:return: error in example pointed by example number.
"""
return calculate_hypothesis_value(example_no, data_set) - output(example_no, data_set) |
Calculates hypothesis function value for a given input
:param data_input_tuple: Input tuple of a particular example
:return: Value of hypothesis function at that point.
Note that there is an 'biased input' whose value is fixed as 1.
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
So, we have to take care of it separately. Line 36 takes care of it. | def _hypothesis_value(data_input_tuple):
"""
Calculates hypothesis function value for a given input
:param data_input_tuple: Input tuple of a particular example
:return: Value of hypothesis function at that point.
Note that there is an 'biased input' whose value is fixed as 1.
It is not explicitly mentioned in input data.. But, ML hypothesis functions use it.
So, we have to take care of it separately. Line 36 takes care of it.
"""
hyp_val = 0
for i in range(len(parameter_vector) - 1):
hyp_val += data_input_tuple[i]*parameter_vector[i+1]
hyp_val += parameter_vector[0]
return hyp_val |
:param data_set: test data or train data
:param example_no: example whose output is to be fetched
:return: output for that example | def output(example_no, data_set):
"""
:param data_set: test data or train data
:param example_no: example whose output is to be fetched
:return: output for that example
"""
if data_set == 'train':
return train_data[example_no][1]
elif data_set == 'test':
return test_data[example_no][1] |
Calculates hypothesis value for a given example
:param data_set: test data or train_data
:param example_no: example whose hypothesis value is to be calculated
:return: hypothesis value for that example | def calculate_hypothesis_value(example_no, data_set):
"""
Calculates hypothesis value for a given example
:param data_set: test data or train_data
:param example_no: example whose hypothesis value is to be calculated
:return: hypothesis value for that example
"""
if data_set == "train":
return _hypothesis_value(train_data[example_no][0])
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0]) |
Calculates the sum of cost function derivative
:param index: index wrt derivative is being calculated
:param end: value where summation ends, default is m, number of examples
:return: Returns the summation of cost derivative
Note: If index is -1, this means we are calculating summation wrt to biased parameter. | def summation_of_cost_derivative(index, end=m):
"""
Calculates the sum of cost function derivative
:param index: index wrt derivative is being calculated
:param end: value where summation ends, default is m, number of examples
:return: Returns the summation of cost derivative
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
"""
summation_value = 0
for i in range(end):
if index == -1:
summation_value += _error(i)
else:
summation_value += _error(i)*train_data[i][0][index]
return summation_value |
:param index: index of the parameter vector wrt to derivative is to be calculated
:return: derivative wrt to that index
Note: If index is -1, this means we are calculating summation wrt to biased parameter. | def get_cost_derivative(index):
"""
:param index: index of the parameter vector wrt to derivative is to be calculated
:return: derivative wrt to that index
Note: If index is -1, this means we are calculating summation wrt to biased parameter.
"""
cost_derivative_value = summation_of_cost_derivative(index, m)/m
return cost_derivative_value |
Randomly choose k data points as initial centroids | def get_initial_centroids(data, k, seed=None):
'''Randomly choose k data points as initial centroids'''
if seed is not None: # useful for obtaining consistent results
np.random.seed(seed)
n = data.shape[0] # number of data points
# Pick K indices from range [0, N).
rand_indices = np.random.randint(0, n, k)
# Keep centroids as dense format, as many entries will be nonzero due to averaging.
# As long as at least one document in a cluster contains a word,
# it will carry a nonzero weight in the TF-IDF vector of the centroid.
centroids = data[rand_indices,:]
return centroids |
This function runs k-means on given data and initial set of centroids.
maxiter: maximum number of iterations to run.(default=500)
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
if None, do not store the history.
verbose: if True, print how many data points changed their cluster labels in each iteration | def kmeans(data, k, initial_centroids, maxiter=500, record_heterogeneity=None, verbose=False):
'''This function runs k-means on given data and initial set of centroids.
maxiter: maximum number of iterations to run.(default=500)
record_heterogeneity: (optional) a list, to store the history of heterogeneity as function of iterations
if None, do not store the history.
verbose: if True, print how many data points changed their cluster labels in each iteration'''
centroids = initial_centroids[:]
prev_cluster_assignment = None
for itr in range(maxiter):
if verbose:
print(itr, end='')
# 1. Make cluster assignments using nearest centroids
cluster_assignment = assign_clusters(data,centroids)
# 2. Compute a new centroid for each of the k clusters, averaging all data points assigned to that cluster.
centroids = revise_centroids(data,k, cluster_assignment)
# Check for convergence: if none of the assignments changed, stop
if prev_cluster_assignment is not None and \
(prev_cluster_assignment==cluster_assignment).all():
break
# Print number of new assignments
if prev_cluster_assignment is not None:
num_changed = np.sum(prev_cluster_assignment!=cluster_assignment)
if verbose:
print(' {0:5d} elements changed their cluster assignment.'.format(num_changed))
# Record heterogeneity convergence metric
if record_heterogeneity is not None:
# YOUR CODE HERE
score = compute_heterogeneity(data,k,centroids,cluster_assignment)
record_heterogeneity.append(score)
prev_cluster_assignment = cluster_assignment[:]
return centroids, cluster_assignment |
Collect dataset of CSGO
The dataset contains ADR vs Rating of a Player
:return : dataset obtained from the link, as matrix | def collect_dataset():
""" Collect dataset of CSGO
The dataset contains ADR vs Rating of a Player
:return : dataset obtained from the link, as matrix
"""
response = requests.get('https://raw.githubusercontent.com/yashLadha/' +
'The_Math_of_Intelligence/master/Week1/ADRvs' +
'Rating.csv')
lines = response.text.splitlines()
data = []
for item in lines:
item = item.split(',')
data.append(item)
data.pop(0) # This is for removing the labels from the list
dataset = np.matrix(data)
return dataset |
Run steep gradient descent and updates the Feature vector accordingly_
:param data_x : contains the dataset
:param data_y : contains the output associated with each data-entry
:param len_data : length of the data_
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature) | def run_steep_gradient_descent(data_x, data_y,
len_data, alpha, theta):
""" Run steep gradient descent and updates the Feature vector accordingly_
:param data_x : contains the dataset
:param data_y : contains the output associated with each data-entry
:param len_data : length of the data_
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
"""
n = len_data
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_grad = np.dot(prod, data_x)
theta = theta - (alpha / n) * sum_grad
return theta |
Return sum of square error for error calculation
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's | def sum_of_square_error(data_x, data_y, len_data, theta):
""" Return sum of square error for error calculation
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_elem = np.sum(np.square(prod))
error = sum_elem / (2 * len_data)
return error |
Implement Linear regression over the dataset
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:return : feature for line of best fit (Feature vector) | def run_linear_regression(data_x, data_y):
""" Implement Linear regression over the dataset
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:return : feature for line of best fit (Feature vector)
"""
iterations = 100000
alpha = 0.0001550
no_features = data_x.shape[1]
len_data = data_x.shape[0] - 1
theta = np.zeros((1, no_features))
for i in range(0, iterations):
theta = run_steep_gradient_descent(data_x, data_y,
len_data, alpha, theta)
error = sum_of_square_error(data_x, data_y, len_data, theta)
print('At Iteration %d - Error is %.5f ' % (i + 1, error))
return theta |
Driver function | def main():
""" Driver function """
data = collect_dataset()
len_data = data.shape[0]
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
data_y = data[:, -1].astype(float)
theta = run_linear_regression(data_x, data_y)
len_result = theta.shape[1]
print('Resultant Feature vector : ')
for i in range(0, len_result):
print('%.5f' % (theta[0, i])) |
Function to fins absolute value of numbers.
>>absVal(-5)
5
>>absVal(0)
0 | def absVal(num):
"""
Function to fins absolute value of numbers.
>>absVal(-5)
5
>>absVal(0)
0
"""
if num < 0:
return -num
else:
return num |
#>>>absMax([0,5,1,11])
11
>>absMax([3,-10,-2])
-10 | def absMax(x):
"""
#>>>absMax([0,5,1,11])
11
>>absMax([3,-10,-2])
-10
"""
j =x[0]
for i in x:
if abs(i) > abs(j):
j = i
return j |
# >>>absMin([0,5,1,11])
0
# >>absMin([3,-10,-2])
-2 | def absMin(x):
"""
# >>>absMin([0,5,1,11])
0
# >>absMin([3,-10,-2])
-2
"""
j = x[0]
for i in x:
if absVal(i) < absVal(j):
j = i
return j |
Calculates derivative at point a for function f using finite difference
method | def calc_derivative(f, a, h=0.001):
'''
Calculates derivative at point a for function f using finite difference
method
'''
return (f(a+h)-f(a-h))/(2*h) |
>>> isEnglish('Hello World')
True
>>> isEnglish('llold HorWd')
False | def isEnglish(message, wordPercentage = 20, letterPercentage = 85):
"""
>>> isEnglish('Hello World')
True
>>> isEnglish('llold HorWd')
False
"""
wordsMatch = getEnglishCount(message) * 100 >= wordPercentage
numLetters = len(removeNonLetters(message))
messageLettersPercentage = (float(numLetters) / len(message)) * 100
lettersMatch = messageLettersPercentage >= letterPercentage
return wordsMatch and lettersMatch |
>>> englishFreqMatchScore('Hello World')
1 | def englishFreqMatchScore(message):
'''
>>> englishFreqMatchScore('Hello World')
1
'''
freqOrder = getFrequencyOrder(message)
matchScore = 0
for commonLetter in ETAOIN[:6]:
if commonLetter in freqOrder[:6]:
matchScore += 1
for uncommonLetter in ETAOIN[-6:]:
if uncommonLetter in freqOrder[-6:]:
matchScore += 1
return matchScore |
input: positive integer 'number'
returns true if 'number' is prime otherwise false. | def isPrime(number):
"""
input: positive integer 'number'
returns true if 'number' is prime otherwise false.
"""
import math # for function sqrt
# precondition
assert isinstance(number,int) and (number >= 0) , \
"'number' must been an int and positive"
status = True
# 0 and 1 are none primes.
if number <= 1:
status = False
for divisor in range(2,int(round(math.sqrt(number)))+1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
status = False
break
# precondition
assert isinstance(status,bool), "'status' must been from type bool"
return status |
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N.
This function implements the algorithm called
sieve of erathostenes. | def sieveEr(N):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N.
This function implements the algorithm called
sieve of erathostenes.
"""
# precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
# beginList: conatins all natural numbers from 2 upt to N
beginList = [x for x in range(2,N+1)]
ans = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(beginList)):
for j in range(i+1,len(beginList)):
if (beginList[i] != 0) and \
(beginList[j] % beginList[i] == 0):
beginList[j] = 0
# filters actual prime numbers.
ans = [x for x in beginList if x != 0]
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans |
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)' | def getPrimeNumbers(N):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)'
"""
# precondition
assert isinstance(N,int) and (N > 2), "'N' must been an int and > 2"
ans = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2,N+1):
if isPrime(number):
ans.append(number)
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans |
input: positive integer 'number'
returns a list of the prime number factors of 'number' | def primeFactorization(number):
"""
input: positive integer 'number'
returns a list of the prime number factors of 'number'
"""
import math # for function sqrt
# precondition
assert isinstance(number,int) and number >= 0, \
"'number' must been an int and >= 0"
ans = [] # this list will be returns of the function.
# potential prime number factors.
factor = 2
quotient = number
if number == 0 or number == 1:
ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number'
elif not isPrime(number):
while (quotient != 1):
if isPrime(factor) and (quotient % factor == 0):
ans.append(factor)
quotient /= factor
else:
factor += 1
else:
ans.append(number)
# precondition
assert isinstance(ans,list), "'ans' must been from type list"
return ans |
input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number' | def greatestPrimeFactor(number):
"""
input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number'
"""
# precondition
assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
primeFactors = primeFactorization(number)
ans = max(primeFactors)
# precondition
assert isinstance(ans,int), "'ans' must been from type int"
return ans |
input: integer 'number' >= 0
returns the smallest prime number factor of 'number' | def smallestPrimeFactor(number):
"""
input: integer 'number' >= 0
returns the smallest prime number factor of 'number'
"""
# precondition
assert isinstance(number,int) and (number >= 0), \
"'number' bust been an int and >= 0"
ans = 0
# prime factorization of 'number'
primeFactors = primeFactorization(number)
ans = min(primeFactors)
# precondition
assert isinstance(ans,int), "'ans' must been from type int"
return ans |
input: integer 'number'
returns true if 'number' is even, otherwise false. | def isEven(number):
"""
input: integer 'number'
returns true if 'number' is even, otherwise false.
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare bust been from type bool"
return number % 2 == 0 |
input: integer 'number'
returns true if 'number' is odd, otherwise false. | def isOdd(number):
"""
input: integer 'number'
returns true if 'number' is odd, otherwise false.
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare bust been from type bool"
return number % 2 != 0 |
Goldbach's assumption
input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number' | def goldbach(number):
"""
Goldbach's assumption
input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number'
"""
# precondition
assert isinstance(number,int) and (number > 2) and isEven(number), \
"'number' must been an int, even and > 2"
ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
primeNumbers = getPrimeNumbers(number)
lenPN = len(primeNumbers)
# run variable for while-loops.
i = 0
j = 1
# exit variable. for break up the loops
loop = True
while (i < lenPN and loop):
j = i+1
while (j < lenPN and loop):
if primeNumbers[i] + primeNumbers[j] == number:
loop = False
ans.append(primeNumbers[i])
ans.append(primeNumbers[j])
j += 1
i += 1
# precondition
assert isinstance(ans,list) and (len(ans) == 2) and \
(ans[0] + ans[1] == number) and isPrime(ans[0]) and isPrime(ans[1]), \
"'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans |
Greatest common divisor
input: two positive integer 'number1' and 'number2'
returns the greatest common divisor of 'number1' and 'number2' | def gcd(number1,number2):
"""
Greatest common divisor
input: two positive integer 'number1' and 'number2'
returns the greatest common divisor of 'number1' and 'number2'
"""
# precondition
assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 0) and (number2 >= 0), \
"'number1' and 'number2' must been positive integer."
rest = 0
while number2 != 0:
rest = number1 % number2
number1 = number2
number2 = rest
# precondition
assert isinstance(number1,int) and (number1 >= 0), \
"'number' must been from type int and positive"
return number1 |
Least common multiple
input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2' | def kgV(number1, number2):
"""
Least common multiple
input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2'
"""
# precondition
assert isinstance(number1,int) and isinstance(number2,int) \
and (number1 >= 1) and (number2 >= 1), \
"'number1' and 'number2' must been positive integer."
ans = 1 # actual answer that will be return.
# for kgV (x,1)
if number1 > 1 and number2 > 1:
# builds the prime factorization of 'number1' and 'number2'
primeFac1 = primeFactorization(number1)
primeFac2 = primeFactorization(number2)
elif number1 == 1 or number2 == 1:
primeFac1 = []
primeFac2 = []
ans = max(number1,number2)
count1 = 0
count2 = 0
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in primeFac1:
if n not in done:
if n in primeFac2:
count1 = primeFac1.count(n)
count2 = primeFac2.count(n)
for i in range(max(count1,count2)):
ans *= n
else:
count1 = primeFac1.count(n)
for i in range(count1):
ans *= n
done.append(n)
# iterates through primeFac2
for n in primeFac2:
if n not in done:
count2 = primeFac2.count(n)
for i in range(count2):
ans *= n
done.append(n)
# precondition
assert isinstance(ans,int) and (ans >= 0), \
"'ans' must been from type int and positive"
return ans |
Gets the n-th prime number.
input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0 | def getPrime(n):
"""
Gets the n-th prime number.
input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0
"""
# precondition
assert isinstance(n,int) and (n >= 0), "'number' must been a positive int"
index = 0
ans = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not isPrime(ans):
ans += 1
# precondition
assert isinstance(ans,int) and isPrime(ans), \
"'ans' must been a prime number and from type int"
return ans |
input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusiv)
and 'pNumber2' (exclusiv) | def getPrimesBetween(pNumber1, pNumber2):
"""
input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusiv)
and 'pNumber2' (exclusiv)
"""
# precondition
assert isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2), \
"The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
number = pNumber1 + 1 # jump to the next number
ans = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not isPrime(number):
number += 1
while number < pNumber2:
ans.append(number)
number += 1
# fetch the next prime number.
while not isPrime(number):
number += 1
# precondition
assert isinstance(ans,list) and ans[0] != pNumber1 \
and ans[len(ans)-1] != pNumber2, \
"'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans |
input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n') | def getDivisors(n):
"""
input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n')
"""
# precondition
assert isinstance(n,int) and (n >= 1), "'n' must been int and >= 1"
from math import sqrt
ans = [] # will be returned.
for divisor in range(1,n+1):
if n % divisor == 0:
ans.append(divisor)
#precondition
assert ans[0] == 1 and ans[len(ans)-1] == n, \
"Error in function getDivisiors(...)"
return ans |
input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false. | def isPerfectNumber(number):
"""
input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false.
"""
# precondition
assert isinstance(number,int) and (number > 1), \
"'number' must been an int and >= 1"
divisors = getDivisors(number)
# precondition
assert isinstance(divisors,list) and(divisors[0] == 1) and \
(divisors[len(divisors)-1] == number), \
"Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number |
input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator. | def simplifyFraction(numerator, denominator):
"""
input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator.
"""
# precondition
assert isinstance(numerator, int) and isinstance(denominator,int) \
and (denominator != 0), \
"The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
gcdOfFraction = gcd(abs(numerator), abs(denominator))
# precondition
assert isinstance(gcdOfFraction, int) and (numerator % gcdOfFraction == 0) \
and (denominator % gcdOfFraction == 0), \
"Error in function gcd(...,...)"
return (numerator // gcdOfFraction, denominator // gcdOfFraction) |
input: positive integer 'n'
returns the factorial of 'n' (n!) | def factorial(n):
"""
input: positive integer 'n'
returns the factorial of 'n' (n!)
"""
# precondition
assert isinstance(n,int) and (n >= 0), "'n' must been a int and >= 0"
ans = 1 # this will be return.
for factor in range(1,n+1):
ans *= factor
return ans |
input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0 | def fib(n):
"""
input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0
"""
# precondition
assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0"
tmp = 0
fib1 = 1
ans = 1 # this will be return
for i in range(n-1):
tmp = ans
ans += fib1
fib1 = tmp
return ans |
>>> moveTower(3, 'A', 'B', 'C')
moving disk from A to B
moving disk from A to C
moving disk from B to C
moving disk from A to B
moving disk from C to A
moving disk from C to B
moving disk from A to B | def moveTower(height, fromPole, toPole, withPole):
'''
>>> moveTower(3, 'A', 'B', 'C')
moving disk from A to B
moving disk from A to C
moving disk from B to C
moving disk from A to B
moving disk from C to A
moving disk from C to B
moving disk from A to B
'''
if height >= 1:
moveTower(height-1, fromPole, withPole, toPole)
moveDisk(fromPole, toPole)
moveTower(height-1, withPole, toPole, fromPole) |
:type nums: List[int]
:type target: int
:rtype: List[int] | def twoSum(nums, target):
"""
:type nums: List[int]
:type target: int
:rtype: List[int]
"""
chk_map = {}
for index, val in enumerate(nums):
compl = target - val
if compl in chk_map:
indices = [chk_map[compl], index]
print(indices)
return [indices]
else:
chk_map[val] = index
return False |
This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas)
@Args:
--
canvas : canvas of population to run the rules on.
@returns:
--
None | def run(canvas):
''' This function runs the rules of game through all points, and changes their status accordingly.(in the same canvas)
@Args:
--
canvas : canvas of population to run the rules on.
@returns:
--
None
'''
canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(canvas.shape[0]))
for r, row in enumerate(canvas):
for c, pt in enumerate(row):
# print(r-1,r+2,c-1,c+2)
next_gen_canvas[r][c] = __judge_point(pt,canvas[r-1:r+2,c-1:c+2])
canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return canvas.tolist() |
Returns a list of all the even terms in the Fibonacci sequence that are less than n. | def fib(n):
"""
Returns a list of all the even terms in the Fibonacci sequence that are less than n.
"""
ls = []
a, b = 0, 1
while b < n:
if b % 2 == 0:
ls.append(b)
a, b = b, a+b
return ls |
Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows:
if the previous term is even, the next term is one half the previous term.
If the previous term is odd, the next term is 3 times the previous term plus 1.
The conjecture states the sequence will always reach 1 regaardess of starting n. | def collatz_sequence(n):
"""Collatz conjecture: start with any positive integer n.Next termis obtained from the previous term as follows:
if the previous term is even, the next term is one half the previous term.
If the previous term is odd, the next term is 3 times the previous term plus 1.
The conjecture states the sequence will always reach 1 regaardess of starting n."""
sequence = [n]
while n != 1:
if n % 2 == 0:# even
n //= 2
else:
n = 3*n +1
sequence.append(n)
return sequence |
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
If they are then placed in numerical order, with any repeats removed,
we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab
for 2 <= a <= 100 and 2 <= b <= 100? | def main():
"""
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
22=4, 23=8, 24=16, 25=32
32=9, 33=27, 34=81, 35=243
42=16, 43=64, 44=256, 45=1024
52=25, 53=125, 54=625, 55=3125
If they are then placed in numerical order, with any repeats removed,
we get the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab
for 2 <= a <= 100 and 2 <= b <= 100?
"""
collectPowers = set()
currentPow = 0
N = 101 # maximum limit
for a in range(2, N):
for b in range(2, N):
currentPow = a**b # calculates the current power
collectPowers.add(currentPow) # adds the result to the set
print("Number of terms ", len(collectPowers)) |
Pure implementation of binary search algorithm in Python
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6) | def binary_search(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search([0, 5, 7, 10, 15], 0)
0
>>> binary_search([0, 5, 7, 10, 15], 15)
4
>>> binary_search([0, 5, 7, 10, 15], 5)
1
>>> binary_search([0, 5, 7, 10, 15], 6)
"""
left = 0
right = len(sorted_collection) - 1
while left <= right:
midpoint = (left + right) // 2
current_item = sorted_collection[midpoint]
if current_item == item:
return midpoint
else:
if item < current_item:
right = midpoint - 1
else:
left = midpoint + 1
return None |
Pure implementation of binary search algorithm in Python using stdlib
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6) | def binary_search_std_lib(sorted_collection, item):
"""Pure implementation of binary search algorithm in Python using stdlib
Be careful collection must be sorted, otherwise result will be
unpredictable
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
"""
index = bisect.bisect_left(sorted_collection, item)
if index != len(sorted_collection) and sorted_collection[index] == item:
return index
return None |
Pure implementation of binary search algorithm in Python by recursion
Be careful collection must be sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6) | def binary_search_by_recursion(sorted_collection, item, left, right):
"""Pure implementation of binary search algorithm in Python by recursion
Be careful collection must be sorted, otherwise result will be
unpredictable
First recursion should be started with left=0 and right=(len(sorted_collection)-1)
:param sorted_collection: some sorted collection with comparable items
:param item: item value to search
:return: index of found item or None if item is not found
Examples:
>>> binary_search_std_lib([0, 5, 7, 10, 15], 0)
0
>>> binary_search_std_lib([0, 5, 7, 10, 15], 15)
4
>>> binary_search_std_lib([0, 5, 7, 10, 15], 5)
1
>>> binary_search_std_lib([0, 5, 7, 10, 15], 6)
"""
if (right < left):
return None
midpoint = left + (right - left) // 2
if sorted_collection[midpoint] == item:
return midpoint
elif sorted_collection[midpoint] > item:
return binary_search_by_recursion(sorted_collection, item, left, midpoint-1)
else:
return binary_search_by_recursion(sorted_collection, item, midpoint+1, right) |
Check if collection is sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is sorted
:raise: :py:class:`ValueError` if collection is not sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be sorted | def __assert_sorted(collection):
"""Check if collection is sorted, if not - raises :py:class:`ValueError`
:param collection: collection
:return: True if collection is sorted
:raise: :py:class:`ValueError` if collection is not sorted
Examples:
>>> __assert_sorted([0, 1, 2, 4])
True
>>> __assert_sorted([10, -1, 5])
Traceback (most recent call last):
...
ValueError: Collection must be sorted
"""
if collection != sorted(collection):
raise ValueError('Collection must be sorted')
return True |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.