response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Compute pairwise intersection areas between masks. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding M masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N*M] representing pairwise intersection area. Raises: ValueError: If masks1 and masks2 are not of type np.uint8.
def intersection(masks1, masks2): """Compute pairwise intersection areas between masks. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding M masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N*M] representing pairwise intersection area. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError("masks1 and masks2 should be of type np.uint8") n = masks1.shape[0] m = masks2.shape[0] answer = np.zeros([n, m], dtype=np.float32) for i in np.arange(n): for j in np.arange(m): answer[i, j] = np.sum( np.minimum(masks1[i], masks2[j]), dtype=np.float32 ) return answer
Computes pairwise intersection-over-union between mask collections. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise iou scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8.
def iou(masks1, masks2): """Computes pairwise intersection-over-union between mask collections. Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise iou scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError("masks1 and masks2 should be of type np.uint8") intersect = intersection(masks1, masks2) area1 = area(masks1) area2 = area(masks2) union = ( np.expand_dims(area1, axis=1) + np.expand_dims(area2, axis=0) - intersect ) return intersect / np.maximum(union, EPSILON)
Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two masks, mask1 and mask2 is defined as their intersection area over mask2's area. Note that ioa is not symmetric, that is, IOA(mask1, mask2) != IOA(mask2, mask1). Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8.
def ioa(masks1, masks2): """Computes pairwise intersection-over-area between box collections. Intersection-over-area (ioa) between two masks, mask1 and mask2 is defined as their intersection area over mask2's area. Note that ioa is not symmetric, that is, IOA(mask1, mask2) != IOA(mask2, mask1). Args: masks1: a numpy array with shape [N, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. masks2: a numpy array with shape [M, height, width] holding N masks. Masks values are of type np.uint8 and values are in {0,1}. Returns: a numpy array with shape [N, M] representing pairwise ioa scores. Raises: ValueError: If masks1 and masks2 are not of type np.uint8. """ if masks1.dtype != np.uint8 or masks2.dtype != np.uint8: raise ValueError("masks1 and masks2 should be of type np.uint8") intersect = intersection(masks1, masks2) areas = np.expand_dims(area(masks2), axis=0) return intersect / (areas + EPSILON)
Calculate and plot confusion matrix to a SummaryWriter. Args: writer (SummaryWriter): the SummaryWriter to write the matrix to. cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. global_step (Optional[int]): current step. subset_ids (list of ints): a list of label indices to keep. class_names (list of strs, optional): a list of all class names. tag (str or list of strs): name(s) of the confusion matrix image. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8].
def add_confusion_matrix( writer, cmtx, num_classes, global_step=None, subset_ids=None, class_names=None, tag="Confusion Matrix", figsize=None, ): """ Calculate and plot confusion matrix to a SummaryWriter. Args: writer (SummaryWriter): the SummaryWriter to write the matrix to. cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. global_step (Optional[int]): current step. subset_ids (list of ints): a list of label indices to keep. class_names (list of strs, optional): a list of all class names. tag (str or list of strs): name(s) of the confusion matrix image. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. """ if subset_ids is None or len(subset_ids) != 0: # If class names are not provided, use class indices as class names. if class_names is None: class_names = [str(i) for i in range(num_classes)] # If subset is not provided, take every classes. if subset_ids is None: subset_ids = list(range(num_classes)) sub_cmtx = cmtx[subset_ids, :][:, subset_ids] sub_names = [class_names[j] for j in subset_ids] sub_cmtx = vis_utils.plot_confusion_matrix( sub_cmtx, num_classes=len(subset_ids), class_names=sub_names, figsize=figsize, ) # Add the confusion matrix image to writer. writer.add_figure(tag=tag, figure=sub_cmtx, global_step=global_step)
Given all predictions and all true labels, plot histograms of top-k most frequently predicted classes for each true class. Args: writer (SummaryWriter object): a tensorboard SummaryWriter object. cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. k (int): top k to plot histograms. global_step (Optional[int]): current step. subset_ids (list of ints, optional): class indices to plot histogram. mapping (list of strings): names of all classes. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8].
def plot_hist( writer, cmtx, num_classes, k=10, global_step=None, subset_ids=None, class_names=None, figsize=None, ): """ Given all predictions and all true labels, plot histograms of top-k most frequently predicted classes for each true class. Args: writer (SummaryWriter object): a tensorboard SummaryWriter object. cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. k (int): top k to plot histograms. global_step (Optional[int]): current step. subset_ids (list of ints, optional): class indices to plot histogram. mapping (list of strings): names of all classes. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. """ if subset_ids is None or len(subset_ids) != 0: if subset_ids is None: subset_ids = set(range(num_classes)) else: subset_ids = set(subset_ids) # If class names are not provided, use their indices as names. if class_names is None: class_names = list(range(num_classes)) for i in subset_ids: pred = cmtx[i] hist = vis_utils.plot_topk_histogram( class_names[i], torch.Tensor(pred), k, class_names, figsize=figsize, ) writer.add_figure( tag="Top {} predictions by classes/{}".format( k, class_names[i] ), figure=hist, global_step=global_step, )
Visualize and add tensors of n-dimentionals to a Tensorboard SummaryWriter. Tensors will be visualized as a 2D grid image. Args: writer (SummaryWriter): Tensorboard SummaryWriter. array (tensor): tensor to visualize. name (str): name of the tensor. nrow (Optional[int]): number of 2D filters in each row in the grid image. normalize (bool): whether to normalize when we have multiple 2D filters. Default to False. global_step (Optional[int]): current step. heat_map (bool): whether to add heat map to 2D each 2D filters in array.
def add_ndim_array( writer, array, name, nrow=None, normalize=False, global_step=None, heat_map=True, ): """ Visualize and add tensors of n-dimentionals to a Tensorboard SummaryWriter. Tensors will be visualized as a 2D grid image. Args: writer (SummaryWriter): Tensorboard SummaryWriter. array (tensor): tensor to visualize. name (str): name of the tensor. nrow (Optional[int]): number of 2D filters in each row in the grid image. normalize (bool): whether to normalize when we have multiple 2D filters. Default to False. global_step (Optional[int]): current step. heat_map (bool): whether to add heat map to 2D each 2D filters in array. """ if array is not None and array.ndim != 0: if array.ndim == 1: reshaped_array = array.unsqueeze(0) if nrow is None: nrow = int(math.sqrt(reshaped_array.size()[1])) reshaped_array = reshaped_array.view(-1, nrow) if heat_map: reshaped_array = add_heatmap(reshaped_array) writer.add_image( name, reshaped_array, global_step=global_step, dataformats="CHW", ) else: writer.add_image( name, reshaped_array, global_step=global_step, dataformats="HW", ) elif array.ndim == 2: reshaped_array = array if heat_map: heatmap = add_heatmap(reshaped_array) writer.add_image( name, heatmap, global_step=global_step, dataformats="CHW" ) else: writer.add_image( name, reshaped_array, global_step=global_step, dataformats="HW", ) else: last2_dims = array.size()[-2:] reshaped_array = array.view(-1, *last2_dims) if heat_map: reshaped_array = [ add_heatmap(array_2d).unsqueeze(0) for array_2d in reshaped_array ] reshaped_array = torch.cat(reshaped_array, dim=0) else: reshaped_array = reshaped_array.unsqueeze(1) if nrow is None: nrow = int(math.sqrt(reshaped_array.size()[0])) img_grid = make_grid( reshaped_array, nrow, padding=1, normalize=normalize ) writer.add_image(name, img_grid, global_step=global_step)
Add heatmap to 2D tensor. Args: tensor (tensor): a 2D tensor. Tensor value must be in [0..1] range. Returns: heatmap (tensor): a 3D tensor. Result of applying heatmap to the 2D tensor.
def add_heatmap(tensor): """ Add heatmap to 2D tensor. Args: tensor (tensor): a 2D tensor. Tensor value must be in [0..1] range. Returns: heatmap (tensor): a 3D tensor. Result of applying heatmap to the 2D tensor. """ assert tensor.ndim == 2, "Only support 2D tensors." # Move tensor to cpu if necessary. if tensor.device != torch.device("cpu"): arr = tensor.cpu() else: arr = tensor arr = arr.numpy() # Get the color map by name. cm = plt.get_cmap("viridis") heatmap = cm(arr) heatmap = heatmap[:, :, :3] # Convert (H, W, C) to (C, H, W) heatmap = torch.Tensor(heatmap).permute(2, 0, 1) return heatmap
Calculate confusion matrix on the provided preds and labels. Args: preds (tensor or lists of tensors): predictions. Each tensor is in in the shape of (n_batch, num_classes). Tensor(s) must be on CPU. labels (tensor or lists of tensors): corresponding labels. Each tensor is in the shape of either (n_batch,) or (n_batch, num_classes). num_classes (int): number of classes. Tensor(s) must be on CPU. normalize (Optional[str]) : {‘true’, ‘pred’, ‘all’}, default="true" Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized. Returns: cmtx (ndarray): confusion matrix of size (num_classes x num_classes)
def get_confusion_matrix(preds, labels, num_classes, normalize="true"): """ Calculate confusion matrix on the provided preds and labels. Args: preds (tensor or lists of tensors): predictions. Each tensor is in in the shape of (n_batch, num_classes). Tensor(s) must be on CPU. labels (tensor or lists of tensors): corresponding labels. Each tensor is in the shape of either (n_batch,) or (n_batch, num_classes). num_classes (int): number of classes. Tensor(s) must be on CPU. normalize (Optional[str]) : {‘true’, ‘pred’, ‘all’}, default="true" Normalizes confusion matrix over the true (rows), predicted (columns) conditions or all the population. If None, confusion matrix will not be normalized. Returns: cmtx (ndarray): confusion matrix of size (num_classes x num_classes) """ if isinstance(preds, list): preds = torch.cat(preds, dim=0) if isinstance(labels, list): labels = torch.cat(labels, dim=0) # If labels are one-hot encoded, get their indices. if labels.ndim == preds.ndim: labels = torch.argmax(labels, dim=-1) # Get the predicted class indices for examples. preds = torch.flatten(torch.argmax(preds, dim=-1)) labels = torch.flatten(labels) cmtx = confusion_matrix( labels, preds, labels=list(range(num_classes)), normalize=normalize ) return cmtx
A function to create a colored and labeled confusion matrix matplotlib figure given true labels and preds. Args: cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. class_names (Optional[list of strs]): a list of class names. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. Returns: img (figure): matplotlib figure.
def plot_confusion_matrix(cmtx, num_classes, class_names=None, figsize=None): """ A function to create a colored and labeled confusion matrix matplotlib figure given true labels and preds. Args: cmtx (ndarray): confusion matrix. num_classes (int): total number of classes. class_names (Optional[list of strs]): a list of class names. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. Returns: img (figure): matplotlib figure. """ if class_names is None or type(class_names) != list: class_names = [str(i) for i in range(num_classes)] figure = plt.figure(figsize=figsize) plt.imshow(cmtx, interpolation="nearest", cmap=plt.cm.Blues) plt.title("Confusion matrix") plt.colorbar() tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names, rotation=45) plt.yticks(tick_marks, class_names) # Use white text if squares are dark; otherwise black. threshold = cmtx.max() / 2.0 for i, j in itertools.product(range(cmtx.shape[0]), range(cmtx.shape[1])): color = "white" if cmtx[i, j] > threshold else "black" plt.text( j, i, format(cmtx[i, j], ".2f") if cmtx[i, j] != 0 else ".", horizontalalignment="center", color=color, ) plt.tight_layout() plt.ylabel("True label") plt.xlabel("Predicted label") return figure
Plot histogram of top-k value from the given array. Args: tag (str): histogram title. array (tensor): a tensor to draw top k value from. k (int): number of top values to draw from array. Defaut to 10. class_names (list of strings, optional): a list of names for values in array. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. Returns: fig (matplotlib figure): a matplotlib figure of the histogram.
def plot_topk_histogram(tag, array, k=10, class_names=None, figsize=None): """ Plot histogram of top-k value from the given array. Args: tag (str): histogram title. array (tensor): a tensor to draw top k value from. k (int): number of top values to draw from array. Defaut to 10. class_names (list of strings, optional): a list of names for values in array. figsize (Optional[float, float]): the figure size of the confusion matrix. If None, default to [6.4, 4.8]. Returns: fig (matplotlib figure): a matplotlib figure of the histogram. """ val, ind = torch.topk(array, k) fig = plt.Figure(figsize=figsize, facecolor="w", edgecolor="k") ax = fig.add_subplot(1, 1, 1) if class_names is None: class_names = [str(i) for i in ind] else: class_names = [class_names[i] for i in ind] tick_marks = np.arange(k) width = 0.75 ax.bar( tick_marks, val, width, color="orange", tick_label=class_names, edgecolor="w", linewidth=1, ) ax.set_xlabel("Candidates") ax.set_xticks(tick_marks) ax.set_xticklabels(class_names, rotation=-45, ha="center") ax.xaxis.set_label_position("bottom") ax.xaxis.tick_bottom() y_tick = np.linspace(0, 1, num=10) ax.set_ylabel("Frequency") ax.set_yticks(y_tick) y_labels = [format(i, ".1f") for i in y_tick] ax.set_yticklabels(y_labels, ha="center") for i, v in enumerate(val.numpy()): ax.text( i - 0.1, v + 0.03, format(v, ".2f"), color="orange", fontweight="bold", ) ax.set_title(tag) fig.set_tight_layout(True) return fig
Parse numpy-like fancy indexing from a string. Args: string (str): string represent the indices to take a subset of from array. Indices for each dimension are separated by `,`; indices for different dimensions are separated by `;`. e.g.: For a numpy array `arr` of shape (3,3,3), the string "1,2;1,2" means taking the sub-array `arr[[1,2], [1,2]] Returns: final_indexing (tuple): the parsed indexing.
def get_indexing(string): """ Parse numpy-like fancy indexing from a string. Args: string (str): string represent the indices to take a subset of from array. Indices for each dimension are separated by `,`; indices for different dimensions are separated by `;`. e.g.: For a numpy array `arr` of shape (3,3,3), the string "1,2;1,2" means taking the sub-array `arr[[1,2], [1,2]] Returns: final_indexing (tuple): the parsed indexing. """ index_ls = string.strip().split(";") final_indexing = [] for index in index_ls: index_single_dim = index.split(",") index_single_dim = [int(i) for i in index_single_dim] final_indexing.append(index_single_dim) return tuple(final_indexing)
Extract layer names and numpy-like fancy indexing from a string. Args: layer_ls (list of strs): list of strings containing data about layer names and their indexing. For each string, layer name and indexing is separated by whitespaces. e.g.: [layer1 1,2;2, layer2, layer3 150;3,4] layer_name_prefix (Optional[str]): prefix to be added to each layer name. Returns: layer_name (list of strings): a list of layer names. indexing_dict (Python dict): a dictionary of the pair {one_layer_name: indexing_for_that_layer}
def process_layer_index_data(layer_ls, layer_name_prefix=""): """ Extract layer names and numpy-like fancy indexing from a string. Args: layer_ls (list of strs): list of strings containing data about layer names and their indexing. For each string, layer name and indexing is separated by whitespaces. e.g.: [layer1 1,2;2, layer2, layer3 150;3,4] layer_name_prefix (Optional[str]): prefix to be added to each layer name. Returns: layer_name (list of strings): a list of layer names. indexing_dict (Python dict): a dictionary of the pair {one_layer_name: indexing_for_that_layer} """ layer_name, indexing_dict = [], {} for layer in layer_ls: ls = layer.split() name = layer_name_prefix + ls[0] layer_name.append(name) if len(ls) == 2: indexing_dict[name] = get_indexing(ls[1]) else: indexing_dict[name] = () return layer_name, indexing_dict
Normalize and prepare inputs as a list of tensors. Each tensor correspond to a unique pathway. Args: frames (list of array): list of input images (correspond to one clip) in range [0, 255]. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py
def process_cv2_inputs(frames, cfg): """ Normalize and prepare inputs as a list of tensors. Each tensor correspond to a unique pathway. Args: frames (list of array): list of input images (correspond to one clip) in range [0, 255]. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ inputs = torch.from_numpy(np.array(frames)).float() / 255 inputs = tensor_normalize(inputs, cfg.DATA.MEAN, cfg.DATA.STD) # T H W C -> C T H W. inputs = inputs.permute(3, 0, 1, 2) # Sample frames for num_frames specified. index = torch.linspace(0, inputs.shape[1] - 1, cfg.DATA.NUM_FRAMES).long() inputs = torch.index_select(inputs, 1, index) inputs = pack_pathway_output(cfg, inputs) inputs = [inp.unsqueeze(0) for inp in inputs] return inputs
Return the targeted layer (nn.Module Object) given a hierarchical layer name, separated by /. Args: model (model): model to get layers from. layer_name (str): name of the layer. Returns: prev_module (nn.Module): the layer from the model with `layer_name` name.
def get_layer(model, layer_name): """ Return the targeted layer (nn.Module Object) given a hierarchical layer name, separated by /. Args: model (model): model to get layers from. layer_name (str): name of the layer. Returns: prev_module (nn.Module): the layer from the model with `layer_name` name. """ layer_ls = layer_name.split("/") prev_module = model for layer in layer_ls: prev_module = prev_module._modules[layer] return prev_module
Main function to spawn the train and test process.
def main(): """ Main function to spawn the train and test process. """ args = parse_args() if args.num_shards > 1: args.output_dir = str(args.job_dir) cfg = load_config(args) train, test = get_func(cfg) # Perform training. if cfg.TRAIN.ENABLE: launch_job(cfg=cfg, init_method=args.init_method, func=train) # Perform multi-clip testing. if cfg.TEST.ENABLE: launch_job(cfg=cfg, init_method=args.init_method, func=test) # Perform model visualization. if cfg.TENSORBOARD.ENABLE and ( cfg.TENSORBOARD.MODEL_VIS.ENABLE or cfg.TENSORBOARD.WRONG_PRED_VIS.ENABLE ): launch_job(cfg=cfg, init_method=args.init_method, func=visualize)
For classification: Perform mutli-view testing that uniformly samples N clips from a video along its temporal axis. For each clip, it takes 3 crops to cover the spatial dimension, followed by averaging the softmax scores across all Nx3 views to form a video-level prediction. All video predictions are compared to ground-truth labels and the final testing performance is logged. For detection: Perform fully-convolutional testing on the full frames without crop. Args: test_loader (loader): video testing loader. model (model): the pretrained video model to test. test_meter (TestMeter): testing meters to log and ensemble the testing results. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter object, optional): TensorboardWriter object to writer Tensorboard log.
def perform_test(test_loader, model, test_meter, cfg, writer=None): """ For classification: Perform mutli-view testing that uniformly samples N clips from a video along its temporal axis. For each clip, it takes 3 crops to cover the spatial dimension, followed by averaging the softmax scores across all Nx3 views to form a video-level prediction. All video predictions are compared to ground-truth labels and the final testing performance is logged. For detection: Perform fully-convolutional testing on the full frames without crop. Args: test_loader (loader): video testing loader. model (model): the pretrained video model to test. test_meter (TestMeter): testing meters to log and ensemble the testing results. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter object, optional): TensorboardWriter object to writer Tensorboard log. """ # Enable eval mode. model.eval() test_meter.iter_tic() for cur_iter, (inputs, labels, video_idx, meta) in enumerate(test_loader): if cfg.NUM_GPUS: # Transfer the data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) # Transfer the data to the current GPU device. labels = labels.cuda() video_idx = video_idx.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) test_meter.data_toc() if cfg.DETECTION.ENABLE: # Compute the predictions. preds = model(inputs, meta["boxes"]) ori_boxes = meta["ori_boxes"] metadata = meta["metadata"] preds = preds.detach().cpu() if cfg.NUM_GPUS else preds.detach() ori_boxes = ( ori_boxes.detach().cpu() if cfg.NUM_GPUS else ori_boxes.detach() ) metadata = ( metadata.detach().cpu() if cfg.NUM_GPUS else metadata.detach() ) if cfg.NUM_GPUS > 1: preds = torch.cat(du.all_gather_unaligned(preds), dim=0) ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes), dim=0) metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0) test_meter.iter_toc() # Update and log stats. test_meter.update_stats(preds, ori_boxes, metadata) test_meter.log_iter_stats(None, cur_iter) else: # Perform the forward pass. preds = model(inputs) # Gather all the predictions across all the devices to perform ensemble. if cfg.NUM_GPUS > 1: preds, labels, video_idx = du.all_gather( [preds, labels, video_idx] ) if cfg.NUM_GPUS: preds = preds.cpu() labels = labels.cpu() video_idx = video_idx.cpu() test_meter.iter_toc() # Update and log stats. test_meter.update_stats( preds.detach(), labels.detach(), video_idx.detach() ) test_meter.log_iter_stats(cur_iter) test_meter.iter_tic() # Log epoch stats and print the final testing results. if not cfg.DETECTION.ENABLE: all_preds = test_meter.video_preds.clone().detach() all_labels = test_meter.video_labels if cfg.NUM_GPUS: all_preds = all_preds.cpu() all_labels = all_labels.cpu() if writer is not None: writer.plot_eval(preds=all_preds, labels=all_labels) if cfg.TEST.SAVE_RESULTS_PATH != "": save_path = os.path.join(cfg.OUTPUT_DIR, cfg.TEST.SAVE_RESULTS_PATH) with PathManager.open(save_path, "wb") as f: pickle.dump([all_labels, all_labels], f) logger.info( "Successfully saved prediction results to {}".format(save_path) ) test_meter.finalize_metrics() return test_meter
Perform multi-view testing on the pretrained video model. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py
def test(cfg): """ Perform multi-view testing on the pretrained video model. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Print config. logger.info("Test with config:") logger.info(cfg) # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=False) cu.load_test_checkpoint(cfg, model) # Create video testing loaders. test_loader = loader.construct_loader(cfg, "test") logger.info("Testing model for {} iterations".format(len(test_loader))) assert ( len(test_loader.dataset) % (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS) == 0 ) # Create meters for multi-view testing. test_meter = TestMeter( len(test_loader.dataset) // (cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS), cfg.TEST.NUM_ENSEMBLE_VIEWS * cfg.TEST.NUM_SPATIAL_CROPS, cfg.MODEL.NUM_CLASSES, len(test_loader), cfg.DATA.MULTI_LABEL, cfg.DATA.ENSEMBLE_METHOD, ) # Set up writer for logging to Tensorboard format. if cfg.TENSORBOARD.ENABLE and du.is_master_proc( cfg.NUM_GPUS * cfg.NUM_SHARDS ): writer = tb.TensorboardWriter(cfg) else: writer = None # # Perform multi-view test on the entire dataset. test_meter = perform_test(test_loader, model, test_meter, cfg, writer) if writer is not None: writer.close()
Perform the video training for one epoch. Args: train_loader (loader): video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log.
def train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer=None ): """ Perform the video training for one epoch. Args: train_loader (loader): video training loader. model (model): the video model to train. optimizer (optim): the optimizer to perform optimization on the model's parameters. train_meter (TrainMeter): training meters to log the training performance. cur_epoch (int): current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Enable train mode. model.train() train_meter.iter_tic() data_size = len(train_loader) cur_global_batch_size = cfg.NUM_SHARDS * cfg.TRAIN.BATCH_SIZE num_iters = cfg.GLOBAL_BATCH_SIZE // cur_global_batch_size for cur_iter, (inputs, labels, _, meta) in enumerate(train_loader): # Transfer the data to the current GPU device. if cfg.NUM_GPUS: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) # Update the learning rate. lr = optim.get_epoch_lr(cur_epoch + float(cur_iter) / data_size, cfg) optim.set_lr(optimizer, lr) train_meter.data_toc() # Explicitly declare reduction to mean. if not cfg.MIXUP.ENABLED: loss_fun = losses.get_loss_func(cfg.MODEL.LOSS_FUNC)(reduction="mean") else: mixup_fn = Mixup( mixup_alpha=cfg.MIXUP.ALPHA, cutmix_alpha=cfg.MIXUP.CUTMIX_ALPHA, cutmix_minmax=cfg.MIXUP.CUTMIX_MINMAX, prob=cfg.MIXUP.PROB, switch_prob=cfg.MIXUP.SWITCH_PROB, mode=cfg.MIXUP.MODE, label_smoothing=0.1, num_classes=cfg.MODEL.NUM_CLASSES) hard_labels = labels inputs, labels = mixup_fn(inputs, labels) loss_fun = SoftTargetCrossEntropy() if cfg.DETECTION.ENABLE: preds = model(inputs, meta["boxes"]) else: preds = model(inputs) # Compute the loss. loss = loss_fun(preds, labels) if cfg.MIXUP.ENABLED: labels = hard_labels # check Nan Loss. misc.check_nan_losses(loss) if cur_global_batch_size >= cfg.GLOBAL_BATCH_SIZE: # Perform the backward pass. optimizer.zero_grad() loss.backward() # Update the parameters. optimizer.step() else: if cur_iter == 0: optimizer.zero_grad() loss.backward() if (cur_iter + 1) % num_iters == 0: for p in model.parameters(): p.grad /= num_iters optimizer.step() optimizer.zero_grad() if cfg.DETECTION.ENABLE: if cfg.NUM_GPUS > 1: loss = du.all_reduce([loss])[0] loss = loss.item() # Update and log stats. train_meter.update_stats(None, None, None, loss, lr) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Train/loss": loss, "Train/lr": lr}, global_step=data_size * cur_epoch + cur_iter, ) else: top1_err, top5_err = None, None if cfg.DATA.MULTI_LABEL: # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: [loss] = du.all_reduce([loss]) loss = loss.item() else: # Compute the errors. num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] # Gather all the predictions across all the devices. if cfg.NUM_GPUS > 1: loss, top1_err, top5_err = du.all_reduce( [loss, top1_err, top5_err] ) # Copy the stats from GPU to CPU (sync point). loss, top1_err, top5_err = ( loss.item(), top1_err.item(), top5_err.item(), ) # Update and log stats. train_meter.update_stats( top1_err, top5_err, loss, lr, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), # If running on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU. ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( { "Train/loss": loss, "Train/lr": lr, "Train/Top1_err": top1_err, "Train/Top5_err": top5_err, }, global_step=data_size * cur_epoch + cur_iter, ) train_meter.iter_toc() # measure allreduce for this meter train_meter.log_iter_stats(cur_epoch, cur_iter) train_meter.iter_tic() # Log epoch stats. train_meter.log_epoch_stats(cur_epoch) train_meter.reset()
Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log.
def eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer=None): """ Evaluate the model on the val set. Args: val_loader (loader): data loader to provide validation data. model (model): model to evaluate the performance. val_meter (ValMeter): meter instance to record and calculate the metrics. cur_epoch (int): number of the current epoch of training. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ # Evaluation mode enabled. The running stats would not be updated. model.eval() val_meter.iter_tic() for cur_iter, (inputs, labels, _, meta) in enumerate(val_loader): if cfg.NUM_GPUS: # Transferthe data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) val_meter.data_toc() if cfg.DETECTION.ENABLE: # Compute the predictions. preds = model(inputs, meta["boxes"]) ori_boxes = meta["ori_boxes"] metadata = meta["metadata"] if cfg.NUM_GPUS: preds = preds.cpu() ori_boxes = ori_boxes.cpu() metadata = metadata.cpu() if cfg.NUM_GPUS > 1: preds = torch.cat(du.all_gather_unaligned(preds), dim=0) ori_boxes = torch.cat(du.all_gather_unaligned(ori_boxes), dim=0) metadata = torch.cat(du.all_gather_unaligned(metadata), dim=0) val_meter.iter_toc() # Update and log stats. val_meter.update_stats(preds, ori_boxes, metadata) else: preds = model(inputs) if cfg.DATA.MULTI_LABEL: if cfg.NUM_GPUS > 1: preds, labels = du.all_gather([preds, labels]) else: # Compute the errors. num_topks_correct = metrics.topks_correct(preds, labels, (1, 5)) # Combine the errors across the GPUs. top1_err, top5_err = [ (1.0 - x / preds.size(0)) * 100.0 for x in num_topks_correct ] if cfg.NUM_GPUS > 1: top1_err, top5_err = du.all_reduce([top1_err, top5_err]) # Copy the errors from GPU to CPU (sync point). top1_err, top5_err = top1_err.item(), top5_err.item() val_meter.iter_toc() # Update and log stats. val_meter.update_stats( top1_err, top5_err, inputs[0].size(0) * max( cfg.NUM_GPUS, 1 ), # If running on CPU (cfg.NUM_GPUS == 1), use 1 to represent 1 CPU. ) # write to tensorboard format if available. if writer is not None: writer.add_scalars( {"Val/Top1_err": top1_err, "Val/Top5_err": top5_err}, global_step=len(val_loader) * cur_epoch + cur_iter, ) val_meter.update_predictions(preds, labels) val_meter.log_iter_stats(cur_epoch, cur_iter) val_meter.iter_tic() # Log epoch stats. val_meter.log_epoch_stats(cur_epoch) # write to tensorboard format if available. if writer is not None: if cfg.DETECTION.ENABLE: writer.add_scalars( {"Val/mAP": val_meter.full_map}, global_step=cur_epoch ) else: all_preds = [pred.clone().detach() for pred in val_meter.all_preds] all_labels = [ label.clone().detach() for label in val_meter.all_labels ] if cfg.NUM_GPUS: all_preds = [pred.cpu() for pred in all_preds] all_labels = [label.cpu() for label in all_labels] writer.plot_eval( preds=all_preds, labels=all_labels, global_step=cur_epoch ) val_meter.reset()
Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not.
def calculate_and_update_precise_bn(loader, model, num_iters=200, use_gpu=True): """ Update the stats in bn layers by calculate the precise stats. Args: loader (loader): data loader to provide training data. model (model): model to update the bn stats. num_iters (int): number of iterations to compute and update the bn stats. use_gpu (bool): whether to use GPU or not. """ def _gen_loader(): for inputs, *_ in loader: if use_gpu: if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) yield inputs # Update the bn stats. update_bn_stats(model, _gen_loader(), num_iters)
Build training model and its associated tools, including optimizer, dataloaders and meters. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: model (nn.Module): training model. optimizer (Optimizer): optimizer. train_loader (DataLoader): training data loader. val_loader (DataLoader): validatoin data loader. precise_bn_loader (DataLoader): training data loader for computing precise BN. train_meter (TrainMeter): tool for measuring training stats. val_meter (ValMeter): tool for measuring validation stats.
def build_trainer(cfg): """ Build training model and its associated tools, including optimizer, dataloaders and meters. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py Returns: model (nn.Module): training model. optimizer (Optimizer): optimizer. train_loader (DataLoader): training data loader. val_loader (DataLoader): validatoin data loader. precise_bn_loader (DataLoader): training data loader for computing precise BN. train_meter (TrainMeter): tool for measuring training stats. val_meter (ValMeter): tool for measuring validation stats. """ # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = loader.construct_loader( cfg, "train", is_precise_bn=True ) # Create meters. train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) return ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, )
Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py
def train(cfg): """ Train a video model for many epochs on train set and evaluate it on val set. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Init multigrid. multigrid = None if cfg.MULTIGRID.LONG_CYCLE or cfg.MULTIGRID.SHORT_CYCLE: multigrid = MultigridSchedule() cfg = multigrid.init_multigrid(cfg) if cfg.MULTIGRID.LONG_CYCLE: cfg, _ = multigrid.update_long_cycle(cfg, cur_epoch=0) # Print config. logger.info("Train with config:") logger.info(pprint.pformat(cfg)) # Build the video model and print model statistics. model = build_model(cfg) if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=True) # Construct the optimizer. optimizer = optim.construct_optimizer(model, cfg) # Load a checkpoint to resume training if applicable. if not cfg.TRAIN.FINETUNE: start_epoch = cu.load_train_checkpoint(cfg, model, optimizer) else: start_epoch = 0 cu.load_checkpoint(cfg.TRAIN.CHECKPOINT_FILE_PATH, model) # Create the video train and val loaders. train_loader = loader.construct_loader(cfg, "train") val_loader = loader.construct_loader(cfg, "val") precise_bn_loader = ( loader.construct_loader(cfg, "train", is_precise_bn=True) if cfg.BN.USE_PRECISE_STATS else None ) train_meter = TrainMeter(len(train_loader), cfg) val_meter = ValMeter(len(val_loader), cfg) # set up writer for logging to Tensorboard format. if cfg.TENSORBOARD.ENABLE and du.is_master_proc( cfg.NUM_GPUS * cfg.NUM_SHARDS ): writer = tb.TensorboardWriter(cfg) else: writer = None # Perform the training loop. logger.info("Start epoch: {}".format(start_epoch + 1)) for cur_epoch in range(start_epoch, cfg.SOLVER.MAX_EPOCH): if cfg.MULTIGRID.LONG_CYCLE: cfg, changed = multigrid.update_long_cycle(cfg, cur_epoch) if changed: ( model, optimizer, train_loader, val_loader, precise_bn_loader, train_meter, val_meter, ) = build_trainer(cfg) # Load checkpoint. if cu.has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR) assert "{:05d}.pyth".format(cur_epoch) in last_checkpoint else: last_checkpoint = cfg.TRAIN.CHECKPOINT_FILE_PATH logger.info("Load from {}".format(last_checkpoint)) cu.load_checkpoint( last_checkpoint, model, cfg.NUM_GPUS > 1, optimizer ) # Shuffle the dataset. loader.shuffle_dataset(train_loader, cur_epoch) # Train for one epoch. train_epoch( train_loader, model, optimizer, train_meter, cur_epoch, cfg, writer ) is_checkp_epoch = cu.is_checkpoint_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule, ) is_eval_epoch = misc.is_eval_epoch( cfg, cur_epoch, None if multigrid is None else multigrid.schedule ) # Compute precise BN stats. if ( (is_checkp_epoch or is_eval_epoch) and cfg.BN.USE_PRECISE_STATS and len(get_bn_modules(model)) > 0 ): calculate_and_update_precise_bn( precise_bn_loader, model, min(cfg.BN.NUM_BATCHES_PRECISE, len(precise_bn_loader)), cfg.NUM_GPUS > 0, ) _ = misc.aggregate_sub_bn_stats(model) # Save a checkpoint. if is_checkp_epoch: cu.save_checkpoint(cfg.OUTPUT_DIR, model, optimizer, cur_epoch, cfg) # Evaluate the model on validation set. if is_eval_epoch: eval_epoch(val_loader, model, val_meter, cur_epoch, cfg, writer) if writer is not None: writer.close()
Run model visualization (weights, activations and model inputs) and visualize them on Tensorboard. Args: vis_loader (loader): video visualization loader. model (model): the video model to visualize. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log.
def run_visualization(vis_loader, model, cfg, writer=None): """ Run model visualization (weights, activations and model inputs) and visualize them on Tensorboard. Args: vis_loader (loader): video visualization loader. model (model): the video model to visualize. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py writer (TensorboardWriter, optional): TensorboardWriter object to writer Tensorboard log. """ n_devices = cfg.NUM_GPUS * cfg.NUM_SHARDS prefix = "module/" if n_devices > 1 else "" # Get a list of selected layer names and indexing. layer_ls, indexing_dict = process_layer_index_data( cfg.TENSORBOARD.MODEL_VIS.LAYER_LIST, layer_name_prefix=prefix ) logger.info("Start Model Visualization.") # Register hooks for activations. model_vis = GetWeightAndActivation(model, layer_ls) if writer is not None and cfg.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS: layer_weights = model_vis.get_weights() writer.plot_weights_and_activations( layer_weights, tag="Layer Weights/", heat_map=False ) video_vis = VideoVisualizer( cfg.MODEL.NUM_CLASSES, cfg.TENSORBOARD.CLASS_NAMES_PATH, cfg.TENSORBOARD.MODEL_VIS.TOPK_PREDS, cfg.TENSORBOARD.MODEL_VIS.COLORMAP, ) if n_devices > 1: grad_cam_layer_ls = [ "module/" + layer for layer in cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST ] else: grad_cam_layer_ls = cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST if cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE: gradcam = GradCAM( model, target_layers=grad_cam_layer_ls, data_mean=cfg.DATA.MEAN, data_std=cfg.DATA.STD, colormap=cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP, ) logger.info("Finish drawing weights.") global_idx = -1 for inputs, labels, _, meta in tqdm.tqdm(vis_loader): if cfg.NUM_GPUS: # Transfer the data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) labels = labels.cuda() for key, val in meta.items(): if isinstance(val, (list,)): for i in range(len(val)): val[i] = val[i].cuda(non_blocking=True) else: meta[key] = val.cuda(non_blocking=True) if cfg.DETECTION.ENABLE: activations, preds = model_vis.get_activations( inputs, meta["boxes"] ) else: activations, preds = model_vis.get_activations(inputs) if cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE: if cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL: inputs, preds = gradcam(inputs, labels=labels) else: inputs, preds = gradcam(inputs) if cfg.NUM_GPUS: inputs = du.all_gather_unaligned(inputs) activations = du.all_gather_unaligned(activations) preds = du.all_gather_unaligned(preds) if isinstance(inputs[0], list): for i in range(len(inputs)): for j in range(len(inputs[0])): inputs[i][j] = inputs[i][j].cpu() else: inputs = [inp.cpu() for inp in inputs] preds = [pred.cpu() for pred in preds] else: inputs, activations, preds = [inputs], [activations], [preds] boxes = [None] * max(n_devices, 1) if cfg.DETECTION.ENABLE and cfg.NUM_GPUS: boxes = du.all_gather_unaligned(meta["boxes"]) boxes = [box.cpu() for box in boxes] if writer is not None: total_vids = 0 for i in range(max(n_devices, 1)): cur_input = inputs[i] cur_activations = activations[i] cur_batch_size = cur_input[0].shape[0] cur_preds = preds[i] cur_boxes = boxes[i] for cur_batch_idx in range(cur_batch_size): global_idx += 1 total_vids += 1 if ( cfg.TENSORBOARD.MODEL_VIS.INPUT_VIDEO or cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE ): for path_idx, input_pathway in enumerate(cur_input): if cfg.TEST.DATASET == "ava" and cfg.AVA.BGR: video = input_pathway[ cur_batch_idx, [2, 1, 0], ... ] else: video = input_pathway[cur_batch_idx] if not cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE: # Permute to (T, H, W, C) from (C, T, H, W). video = video.permute(1, 2, 3, 0) video = data_utils.revert_tensor_normalize( video, cfg.DATA.MEAN, cfg.DATA.STD ) else: # Permute from (T, C, H, W) to (T, H, W, C) video = video.permute(0, 2, 3, 1) bboxes = ( None if cur_boxes is None else cur_boxes[:, 1:] ) cur_prediction = ( cur_preds if cfg.DETECTION.ENABLE else cur_preds[cur_batch_idx] ) video = video_vis.draw_clip( video, cur_prediction, bboxes=bboxes ) video = ( torch.from_numpy(np.array(video)) .permute(0, 3, 1, 2) .unsqueeze(0) ) writer.add_video( video, tag="Input {}/Pathway {}".format( global_idx, path_idx + 1 ), ) if cfg.TENSORBOARD.MODEL_VIS.ACTIVATIONS: writer.plot_weights_and_activations( cur_activations, tag="Input {}/Activations: ".format(global_idx), batch_idx=cur_batch_idx, indexing_dict=indexing_dict, )
Visualize video inputs with wrong predictions on Tensorboard. Args: vis_loader (loader): video visualization loader. model (model): the video model to visualize. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py
def perform_wrong_prediction_vis(vis_loader, model, cfg): """ Visualize video inputs with wrong predictions on Tensorboard. Args: vis_loader (loader): video visualization loader. model (model): the video model to visualize. cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ wrong_prediction_visualizer = WrongPredictionVis(cfg=cfg) for batch_idx, (inputs, labels, _, _) in tqdm.tqdm(enumerate(vis_loader)): if cfg.NUM_GPUS: # Transfer the data to the current GPU device. if isinstance(inputs, (list,)): for i in range(len(inputs)): inputs[i] = inputs[i].cuda(non_blocking=True) else: inputs = inputs.cuda(non_blocking=True) labels = labels.cuda() # Some model modify the original input. inputs_clone = [inp.clone() for inp in inputs] preds = model(inputs) if cfg.NUM_GPUS > 1: preds, labels = du.all_gather([preds, labels]) if isinstance(inputs_clone, (list,)): inputs_clone = du.all_gather(inputs_clone) else: inputs_clone = du.all_gather([inputs_clone])[0] if cfg.NUM_GPUS: # Transfer the data to the current CPU device. labels = labels.cpu() preds = preds.cpu() if isinstance(inputs_clone, (list,)): for i in range(len(inputs_clone)): inputs_clone[i] = inputs_clone[i].cpu() else: inputs_clone = inputs_clone.cpu() # If using CPU (NUM_GPUS = 0), 1 represent 1 CPU. n_devices = max(cfg.NUM_GPUS, 1) for device_idx in range(1, n_devices + 1): wrong_prediction_visualizer.visualize_vid( video_input=inputs_clone, labels=labels, preds=preds.detach().clone(), batch_idx=device_idx * batch_idx, ) logger.info( "Class indices with wrong predictions: {}".format( sorted(wrong_prediction_visualizer.wrong_class_prediction) ) ) wrong_prediction_visualizer.clean()
Perform layer weights and activations visualization on the model. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py
def visualize(cfg): """ Perform layer weights and activations visualization on the model. Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ if cfg.TENSORBOARD.ENABLE and ( cfg.TENSORBOARD.MODEL_VIS.ENABLE or cfg.TENSORBOARD.WRONG_PRED_VIS.ENABLE ): # Set up environment. du.init_distributed_training(cfg) # Set random seed from configs. np.random.seed(cfg.RNG_SEED) torch.manual_seed(cfg.RNG_SEED) # Setup logging format. logging.setup_logging(cfg.OUTPUT_DIR) # Print config. logger.info("Model Visualization with config:") logger.info(cfg) # Build the video model and print model statistics. model = build_model(cfg) model.eval() if du.is_master_proc() and cfg.LOG_MODEL_INFO: misc.log_model_info(model, cfg, use_train_input=False) cu.load_test_checkpoint(cfg, model) # Create video testing loaders. vis_loader = loader.construct_loader(cfg, "test") if cfg.DETECTION.ENABLE: assert cfg.NUM_GPUS == cfg.TEST.BATCH_SIZE or cfg.NUM_GPUS == 0 # Set up writer for logging to Tensorboard format. if du.is_master_proc(cfg.NUM_GPUS * cfg.NUM_SHARDS): writer = tb.TensorboardWriter(cfg) else: writer = None if cfg.TENSORBOARD.PREDICTIONS_PATH != "": assert not cfg.DETECTION.ENABLE, "Detection is not supported." logger.info( "Visualizing class-level performance from saved results..." ) if writer is not None: with PathManager.open( cfg.TENSORBOARD.PREDICTIONS_PATH, "rb" ) as f: preds, labels = pickle.load(f, encoding="latin1") writer.plot_eval(preds, labels) if cfg.TENSORBOARD.MODEL_VIS.ENABLE: if cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE: assert ( not cfg.DETECTION.ENABLE ), "Detection task is currently not supported for Grad-CAM visualization." if cfg.MODEL.ARCH in cfg.MODEL.SINGLE_PATHWAY_ARCH: assert ( len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) == 1 ), "The number of chosen CNN layers must be equal to the number of pathway(s), given {} layer(s).".format( len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) ) elif cfg.MODEL.ARCH in cfg.MODEL.MULTI_PATHWAY_ARCH: assert ( len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) == 2 ), "The number of chosen CNN layers must be equal to the number of pathway(s), given {} layer(s).".format( len(cfg.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST) ) else: raise NotImplementedError( "Model arch {} is not in {}".format( cfg.MODEL.ARCH, cfg.MODEL.SINGLE_PATHWAY_ARCH + cfg.MODEL.MULTI_PATHWAY_ARCH, ) ) logger.info( "Visualize model analysis for {} iterations".format( len(vis_loader) ) ) # Run visualization on the model run_visualization(vis_loader, model, cfg, writer) if cfg.TENSORBOARD.WRONG_PRED_VIS.ENABLE: logger.info( "Visualize Wrong Predictions for {} iterations".format( len(vis_loader) ) ) perform_wrong_prediction_vis(vis_loader, model, cfg) if writer is not None: writer.close()
Get the command-line arguments
def get_args(): """Get the command-line arguments""" parser = argparse.ArgumentParser(description='Say hello') parser.add_argument('-n', '--name', default='World', help='Name to greet') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() print('Hello, ' + args.name + '!')
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
Runs using python3
def test_runnable(): """Runs using python3""" out = getoutput(f'python3 {prg}') assert out.strip() == 'Hello, World!'
Says 'Hello, World!' by default
def test_executable(): """Says 'Hello, World!' by default""" out = getoutput(prg) assert out.strip() == 'Hello, World!'
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert out.lower().startswith('usage')
test for input
def test_input(): """test for input""" for val in ['Universe', 'Multiverse']: for option in ['-n', '--name']: rv, out = getstatusoutput(f'{prg} {option} {val}') assert rv == 0 assert out.strip() == f'Hello, {val}!'
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description="Crow's Nest -- choose the correct article", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('word', metavar='word', help='A word') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() word = args.word article = 'an' if word[0].lower() in 'aeiou' else 'a' print(f'Ahoy, Captain, {article} {word} off the larboard bow!')
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert out.lower().startswith('usage')
brigantine -> a brigantine
def test_consonant(): """brigantine -> a brigantine""" for word in consonant_words: out = getoutput(f'{prg} {word}') assert out.strip() == template.format('a', word)
brigantine -> a Brigatine
def test_consonant_upper(): """brigantine -> a Brigatine""" for word in consonant_words: out = getoutput(f'{prg} {word.title()}') assert out.strip() == template.format('a', word.title())
octopus -> an octopus
def test_vowel(): """octopus -> an octopus""" for word in vowel_words: out = getoutput(f'{prg} {word}') assert out.strip() == template.format('an', word)
octopus -> an Octopus
def test_vowel_upper(): """octopus -> an Octopus""" for word in vowel_words: out = getoutput(f'{prg} {word.upper()}') assert out.strip() == template.format('an', word.upper())
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Picnic game', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('item', metavar='str', nargs='+', help='Item(s) to bring') parser.add_argument('-s', '--sorted', action='store_true', help='Sort the items') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() items = args.item num = len(items) if args.sorted: items.sort() bringing = '' if num == 1: bringing = items[0] elif num == 2: bringing = ' and '.join(items) else: items[-1] = 'and ' + items[-1] bringing = ', '.join(items) print('You are bringing {}.'.format(bringing))
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['', '-h', '--help']: out = getoutput(f'{prg} {flag}') assert out.lower().startswith('usage')
one item
def test_one(): """one item""" out = getoutput(f'{prg} chips') assert out.strip() == 'You are bringing chips.'
two items
def test_two(): """two items""" out = getoutput(f'{prg} soda "french fries"') assert out.strip() == 'You are bringing soda and french fries.'
more than two items
def test_more_than_two(): """more than two items""" arg = '"potato chips" coleslaw cupcakes "French silk pie"' out = getoutput(f'{prg} {arg}') expected = ('You are bringing potato chips, coleslaw, ' 'cupcakes, and French silk pie.') assert out.strip() == expected
two items sorted output
def test_two_sorted(): """two items sorted output""" out = getoutput(f'{prg} -s soda candy') assert out.strip() == 'You are bringing candy and soda.'
more than two items sorted output
def test_more_than_two_sorted(): """more than two items sorted output""" arg = 'bananas apples dates cherries' out = getoutput(f'{prg} {arg} --sorted') expected = ('You are bringing apples, bananas, cherries, and dates.') assert out.strip() == expected
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} for char in args.text: print(jumper.get(char, char), end='') print()
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} # Method 2: for loop to build new string new_text = '' for char in args.text: new_text += jumper.get(char, char) print(new_text)
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} # Method 3: for loop to build new list new_text = [] for char in args.text: new_text.append(jumper.get(char, char)) print(''.join(new_text))
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} # Method 4: list comprehension print(''.join([jumper.get(char, char) for char in args.text]))
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Jump the Five', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='str', help='Input text') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() jumper = {'1': '9', '2': '8', '3': '7', '4': '6', '5': '0', '6': '4', '7': '3', '8': '2', '9': '1', '0': '5'} # Method 5: str.translate print(args.text.translate(str.maketrans(jumper)))
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert out.lower().startswith('usage')
test
def test_01(): """test""" rv, out = getstatusoutput(f'{prg} 123-456-7890') assert rv == 0 assert out == '987-604-3215'
test
def test_02(): """test""" rv, out = getstatusoutput(f'{prg} "That number to call is 098-765-4321."') assert rv == 0 assert out.rstrip() == 'That number to call is 512-340-6789.'
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Howler (upper-cases input)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='text', type=str, help='Input string or file') parser.add_argument('-o', '--outfile', help='Output filename', metavar='str', type=str, default='') args = parser.parse_args() if os.path.isfile(args.text): args.text = open(args.text).read().rstrip() return args
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() out_fh = open(args.outfile, 'wt') if args.outfile else sys.stdout out_fh.write(args.text.upper() + '\n') out_fh.close()
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Howler (upper-cases input)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('text', metavar='text', type=str, help='Input string or file') parser.add_argument('-o', '--outfile', help='Output filename', metavar='str', type=str, default='') args = parser.parse_args() if os.path.isfile(args.text): args.text = open(args.text) else: args.text = io.StringIO(args.text + '\n') return args
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() out_fh = open(args.outfile, 'wt') if args.outfile else sys.stdout for line in args.text: out_fh.write(line.upper()) out_fh.close()
generate a random string
def random_string(): """generate a random string""" k = random.randint(5, 10) return ''.join(random.choices(string.ascii_letters + string.digits, k=k))
Either -o or --outfile
def out_flag(): """Either -o or --outfile""" return '-o' if random.randint(0, 1) else '--outfile'
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert re.match("usage", out, re.IGNORECASE)
Test STDIN/STDOUT
def test_text_stdout(): """Test STDIN/STDOUT""" out = getoutput(f'{prg} "foo bar baz"') assert out.strip() == 'FOO BAR BAZ'
Test STDIN/outfile
def test_text_outfile(): """Test STDIN/outfile""" out_file = random_string() if os.path.isfile(out_file): os.remove(out_file) try: out = getoutput(f'{prg} {out_flag()} {out_file} "foo bar baz"') assert out.strip() == '' assert os.path.isfile(out_file) text = open(out_file).read().rstrip() assert text == 'FOO BAR BAZ' finally: if os.path.isfile(out_file): os.remove(out_file)
Test file in/out
def test_file(): """Test file in/out""" for expected_file in os.listdir('test-outs'): try: out_file = random_string() if os.path.isfile(out_file): os.remove(out_file) basename = os.path.basename(expected_file) in_file = os.path.join('../inputs', basename) out = getoutput(f'{prg} {out_flag()} {out_file} {in_file}') assert out.strip() == '' produced = open(out_file).read().rstrip() expected = open(os.path.join('test-outs', expected_file)).read().strip() assert expected == produced finally: if os.path.isfile(out_file): os.remove(out_file)
Get command-line arguments
def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description='Emulate wc (word count)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('file', metavar='FILE', nargs='*', default=[sys.stdin], type=argparse.FileType('rt'), help='Input file(s)') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() total_lines, total_bytes, total_words = 0, 0, 0 for fh in args.file: num_lines, num_words, num_bytes = 0, 0, 0 for line in fh: num_lines += 1 num_bytes += len(line) num_words += len(line.split()) total_lines += num_lines total_bytes += num_bytes total_words += num_words print(f'{num_lines:8}{num_words:8}{num_bytes:8} {fh.name}') if len(args.file) > 1: print(f'{total_lines:8}{total_words:8}{total_bytes:8} total')
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert re.match("usage", out, re.IGNORECASE)
generate a random string
def random_string(): """generate a random string""" k = random.randint(5, 10) return ''.join(random.choices(string.ascii_letters + string.digits, k=k))
bad_file
def test_bad_file(): """bad_file""" bad = random_string() rv, out = getstatusoutput(f'{prg} {bad}') assert rv != 0 assert re.search(f"No such file or directory: '{bad}'", out)
Test on empty
def test_empty(): """Test on empty""" rv, out = getstatusoutput(f'{prg} {empty}') assert rv == 0 assert out.rstrip() == ' 0 0 0 ./inputs/empty.txt'
Test on one
def test_one(): """Test on one""" rv, out = getstatusoutput(f'{prg} {one_line}') assert rv == 0 assert out.rstrip() == ' 1 1 2 ./inputs/one.txt'
Test on two
def test_two(): """Test on two""" rv, out = getstatusoutput(f'{prg} {two_lines}') assert rv == 0 assert out.rstrip() == ' 2 2 4 ./inputs/two.txt'
Test on fox
def test_fox(): """Test on fox""" rv, out = getstatusoutput(f'{prg} {fox}') assert rv == 0 assert out.rstrip() == ' 1 9 45 ../inputs/fox.txt'
Test on more than one file
def test_more(): """Test on more than one file""" rv, out = getstatusoutput(f'{prg} {fox} {sonnet}') expected = (' 1 9 45 ../inputs/fox.txt\n' ' 17 118 661 ../inputs/sonnet-29.txt\n' ' 18 127 706 total') assert rv == 0 assert out.rstrip() == expected
Test on stdin
def test_stdin(): """Test on stdin""" rv, out = getstatusoutput(f'{prg} < {fox}') assert rv == 0 assert out.rstrip() == ' 1 9 45 <stdin>'
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Interactive Gashlycrumb', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-f', '--file', help='Input file', metavar='str', type=argparse.FileType('r'), default='gashlycrumb.txt') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() lookup = {line[0]: line.rstrip() for line in args.file} while True: letter = input('Please provide a letter [! to quit]: ') if letter == '!': print('Bye') break print(lookup.get(letter.upper(), f'I do not know "{letter}".'))
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Gashlycrumb', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('letter', help='Letter(s)', metavar='letter', nargs='+', type=str) parser.add_argument('-f', '--file', help='Input file', metavar='FILE', type=argparse.FileType('r'), default='gashlycrumb.txt') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() lookup = {} for line in args.file: lookup[line[0].upper()] = line.rstrip() for letter in args.letter: if letter.upper() in lookup: print(lookup[letter.upper()]) else: print(f'I do not know "{letter}".')
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Gashlycrumb', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('letter', help='Letter(s)', metavar='letter', nargs='+', type=str) parser.add_argument('-f', '--file', help='Input file', metavar='FILE', type=argparse.FileType('r'), default='gashlycrumb.txt') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() lookup = {line[0].upper(): line.rstrip() for line in args.file} for letter in args.letter: if letter.upper() in lookup: print(lookup[letter.upper()]) else: print(f'I do not know "{letter}".')
get command-line arguments
def get_args(): """get command-line arguments""" parser = argparse.ArgumentParser( description='Gashlycrumb', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('letter', help='Letter(s)', metavar='letter', nargs='+', type=str) parser.add_argument('-f', '--file', help='Input file', metavar='FILE', type=argparse.FileType('r'), default='gashlycrumb.txt') return parser.parse_args()
Make a jazz noise here
def main(): """Make a jazz noise here""" args = get_args() lookup = {line[0].upper(): line.rstrip() for line in args.file} for letter in args.letter: print(lookup.get(letter.upper(), f'I do not know "{letter}".'))
Either -f or --file
def file_flag(): """Either -f or --file""" return '-f' if random.randint(0, 1) else '--file'
exists
def test_exists(): """exists""" assert os.path.isfile(prg)
usage
def test_usage(): """usage""" for flag in ['-h', '--help']: rv, out = getstatusoutput(f'{prg} {flag}') assert rv == 0 assert re.match("usage", out, re.IGNORECASE)
Test for bad --file
def test_bad_file(): """Test for bad --file""" bad = random_string() letter = random.choice(string.ascii_lowercase) rv, out = getstatusoutput(f'{prg} {letter} -f {bad}') assert rv != 0 expected = f"No such file or directory: '{bad}'" assert re.search(expected, out)
Test for 'a'
def test_a(): """Test for 'a'""" rv, out = getstatusoutput(f'{prg} a') assert rv == 0 expected = 'A is for Amy who fell down the stairs.' assert out.strip() == expected
Test for 'b c'
def test_b_c(): """Test for 'b c'""" rv, out = getstatusoutput(f'{prg} b c') assert rv == 0 expected = ('B is for Basil assaulted by bears.\n' 'C is for Clara who wasted away.') assert out.strip() == expected