response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
resizing mode: - default: random resized crop with scale factor(0.7, 1.0) and size 224; - cen.crop: take the center crop of 224; - res.|cen.crop: resize the image to 256 and take the center crop of size 224; - res: resize the image to 224; - res2x: resize the image to 448; - res.|crop: resize the image to 256 and take a random crop of size 224; - res.sma|crop: resize the image keeping its aspect ratio such that the smaller side is 256, then take a random crop of size 224; – inc.crop: “inception crop” from (Szegedy et al., 2015); – cif.crop: resize the image to 224, zero-pad it by 28 on each side, then take a random crop of size 224.
def get_train_transform(resizing='default', random_horizontal_flip=True, random_color_jitter=True, random_gray_scale=True): """ resizing mode: - default: random resized crop with scale factor(0.7, 1.0) and size 224; - cen.crop: take the center crop of 224; - res.|cen.crop: resize the image to 256 and take the center crop of size 224; - res: resize the image to 224; - res2x: resize the image to 448; - res.|crop: resize the image to 256 and take a random crop of size 224; - res.sma|crop: resize the image keeping its aspect ratio such that the smaller side is 256, then take a random crop of size 224; – inc.crop: “inception crop” from (Szegedy et al., 2015); – cif.crop: resize the image to 224, zero-pad it by 28 on each side, then take a random crop of size 224. """ if resizing == 'default': transform = T.RandomResizedCrop(224, scale=(0.7, 1.0)) elif resizing == 'cen.crop': transform = T.CenterCrop(224) elif resizing == 'res.|cen.crop': transform = T.Compose([ ResizeImage(256), T.CenterCrop(224) ]) elif resizing == 'res': transform = ResizeImage(224) elif resizing == 'res2x': transform = ResizeImage(448) elif resizing == 'res.|crop': transform = T.Compose([ T.Resize((256, 256)), T.RandomCrop(224) ]) elif resizing == "res.sma|crop": transform = T.Compose([ T.Resize(256), T.RandomCrop(224) ]) elif resizing == 'inc.crop': transform = T.RandomResizedCrop(224) elif resizing == 'cif.crop': transform = T.Compose([ T.Resize((224, 224)), T.Pad(28), T.RandomCrop(224), ]) else: raise NotImplementedError(resizing) transforms = [transform] if random_horizontal_flip: transforms.append(T.RandomHorizontalFlip()) if random_color_jitter: transforms.append(T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3)) if random_gray_scale: transforms.append(T.RandomGrayscale()) transforms.extend([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) return T.Compose(transforms)
resizing mode: - default: resize the image to 224; - res2x: resize the image to 448; - res.|cen.crop: resize the image to 256 and take the center crop of size 224;
def get_val_transform(resizing='default'): """ resizing mode: - default: resize the image to 224; - res2x: resize the image to 448; - res.|cen.crop: resize the image to 256 and take the center crop of size 224; """ if resizing == 'default': transform = ResizeImage(224) elif resizing == 'res2x': transform = ResizeImage(448) elif resizing == 'res.|cen.crop': transform = T.Compose([ ResizeImage(256), T.CenterCrop(224), ]) else: raise NotImplementedError(resizing) return T.Compose([ transform, T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
Fetch data from `data_loader`, and then use `feature_extractor` to collect features. This function is specific for domain generalization because each element in data_loader is a tuple (images, labels, domain_labels). Args: data_loader (torch.utils.data.DataLoader): Data loader. feature_extractor (torch.nn.Module): A feature extractor. device (torch.device) max_num_features (int): The max number of features to return Returns: Features in shape (min(len(data_loader), max_num_features * mini-batch size), :math:`|\mathcal{F}|`).
def collect_feature(data_loader, feature_extractor: nn.Module, device: torch.device, max_num_features=None) -> torch.Tensor: """ Fetch data from `data_loader`, and then use `feature_extractor` to collect features. This function is specific for domain generalization because each element in data_loader is a tuple (images, labels, domain_labels). Args: data_loader (torch.utils.data.DataLoader): Data loader. feature_extractor (torch.nn.Module): A feature extractor. device (torch.device) max_num_features (int): The max number of features to return Returns: Features in shape (min(len(data_loader), max_num_features * mini-batch size), :math:`|\mathcal{F}|`). """ feature_extractor.eval() all_features = [] with torch.no_grad(): for i, (images, target, domain_labels) in enumerate(tqdm.tqdm(data_loader)): if max_num_features is not None and i >= max_num_features: break images = images.to(device) feature = feature_extractor(images).cpu() all_features.append(feature) return torch.cat(all_features, dim=0)
resizing mode: - default: resize the image to (height, width), zero-pad it by 10 on each size, the take a random crop of (height, width) - res: resize the image to(height, width)
def get_train_transform(height, width, resizing='default', random_horizontal_flip=True, random_color_jitter=False, random_gray_scale=False): """ resizing mode: - default: resize the image to (height, width), zero-pad it by 10 on each size, the take a random crop of (height, width) - res: resize the image to(height, width) """ if resizing == 'default': transform = T.Compose([ T.Resize((height, width), interpolation=3), T.Pad(10), T.RandomCrop((height, width)) ]) elif resizing == 'res': transform = T.Resize((height, width), interpolation=3) else: raise NotImplementedError(resizing) transforms = [transform] if random_horizontal_flip: transforms.append(T.RandomHorizontalFlip()) if random_color_jitter: transforms.append(T.ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3)) if random_gray_scale: transforms.append(T.RandomGrayscale()) transforms.extend([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) return T.Compose(transforms)
Visualize features from different domains using t-SNE. As we can have very large number of samples in each domain, only `n_data_points_per_domain` number of samples are randomly selected in each domain.
def visualize_tsne(source_loader, target_loader, model, filename, device, n_data_points_per_domain=3000): """Visualize features from different domains using t-SNE. As we can have very large number of samples in each domain, only `n_data_points_per_domain` number of samples are randomly selected in each domain. """ source_feature_dict = extract_reid_feature(source_loader, model, device, normalize=True) source_feature = torch.stack(list(source_feature_dict.values())).cpu() source_feature = source_feature[torch.randperm(len(source_feature))] source_feature = source_feature[:n_data_points_per_domain] target_feature_dict = extract_reid_feature(target_loader, model, device, normalize=True) target_feature = torch.stack(list(target_feature_dict.values())).cpu() target_feature = target_feature[torch.randperm(len(target_feature))] target_feature = target_feature[:n_data_points_per_domain] tsne.visualize(source_feature, target_feature, filename, source_color='cornflowerblue', target_color='darkorange') print('T-SNE process is done, figure is saved to {}'.format(filename))
A forward forcasting on full dataset :params score_loader: the dataloader for scoring transferability :params model: the model for scoring transferability :params layer: before which layer features are extracted, for registering hooks returns features: extracted features of model prediction: probability outputs of model targets: ground-truth labels of dataset
def forwarding_dataset(score_loader, model, layer, device): """ A forward forcasting on full dataset :params score_loader: the dataloader for scoring transferability :params model: the model for scoring transferability :params layer: before which layer features are extracted, for registering hooks returns features: extracted features of model prediction: probability outputs of model targets: ground-truth labels of dataset """ features = [] outputs = [] targets = [] def hook_fn_forward(module, input, output): features.append(input[0].detach().cpu()) outputs.append(output.detach().cpu()) forward_hook = layer.register_forward_hook(hook_fn_forward) model.eval() with torch.no_grad(): for _, (data, target) in enumerate(score_loader): targets.append(target) data = data.to(device) _ = model(data) forward_hook.remove() features = torch.cat([x for x in features]).numpy() outputs = torch.cat([x for x in outputs]) predictions = F.softmax(outputs, dim=-1).numpy() targets = torch.cat([x for x in targets]).numpy() return features, predictions, targets
When sample_rate < 100, e.g. sample_rate = 50, use 50% data to train the model. Otherwise, if num_samples_per_classes is not None, e.g. 5, then sample 5 images for each class, and use them to train the model; otherwise, keep all the data.
def get_dataset(dataset_name, root, transform, sample_rate=100, num_samples_per_classes=None, split='train'): """ When sample_rate < 100, e.g. sample_rate = 50, use 50% data to train the model. Otherwise, if num_samples_per_classes is not None, e.g. 5, then sample 5 images for each class, and use them to train the model; otherwise, keep all the data. """ dataset = datasets.__dict__[dataset_name] if sample_rate < 100: score_dataset = dataset(root=root, split=split, sample_rate=sample_rate, download=True, transform=transform) num_classes = len(score_dataset.classes) else: score_dataset = dataset(root=root, split=split, download=True, transform=transform) num_classes = len(score_dataset.classes) if num_samples_per_classes is not None: samples = list(range(len(score_dataset))) random.shuffle(samples) samples_len = min(num_samples_per_classes * num_classes, len(score_dataset)) print("Origin dataset:", len(score_dataset), "Sampled dataset:", samples_len, "Ratio:", float(samples_len) / len(score_dataset)) dataset = Subset(score_dataset, samples[:samples_len]) return score_dataset, num_classes
resizing mode: - default: resize the image to 256 and take the center crop of size 224; – res.: resize the image to 224 – res.|crop: resize the image such that the smaller side is of size 256 and then take a central crop of size 224.
def get_transform(resizing='res.'): """ resizing mode: - default: resize the image to 256 and take the center crop of size 224; – res.: resize the image to 224 – res.|crop: resize the image such that the smaller side is of size 256 and then take a central crop of size 224. """ if resizing == 'default': transform = T.Compose([ T.Resize(256), T.CenterCrop(224), ]) elif resizing == 'res.': transform = T.Resize((224, 224)) elif resizing == 'res.299': transform = T.Resize((299, 299)) elif resizing == 'res.|crop': transform = T.Compose([ T.Resize((256, 256)), T.CenterCrop(224), ]) else: raise NotImplementedError(resizing) return T.Compose([ transform, T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
Compute outputs of the teacher network. Here, we use weak data augmentation and do not introduce an additional dropout layer according to the Noisy Student paper `Self-Training With Noisy Student Improves ImageNet Classification <https://openaccess.thecvf.com/content_CVPR_2020/papers/Xie_Self-Training_With_Noisy_Student_Improves _ImageNet_Classification_CVPR_2020_paper.pdf>`_.
def calc_teacher_output(classifier_teacher: ImageClassifier, weak_augmented_unlabeled_dataset): """Compute outputs of the teacher network. Here, we use weak data augmentation and do not introduce an additional dropout layer according to the Noisy Student paper `Self-Training With Noisy Student Improves ImageNet Classification <https://openaccess.thecvf.com/content_CVPR_2020/papers/Xie_Self-Training_With_Noisy_Student_Improves _ImageNet_Classification_CVPR_2020_paper.pdf>`_. """ data_loader = DataLoader(weak_augmented_unlabeled_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.workers, drop_last=False) batch_time = AverageMeter('Time', ':6.3f') progress = ProgressMeter( len(data_loader), [batch_time], prefix='Computing teacher output: ') teacher_output = [] with torch.no_grad(): end = time.time() for i, (images, _) in enumerate(data_loader): images = images.to(device) output = classifier_teacher(images) teacher_output.append(output) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: progress.display(i) teacher_output = torch.cat(teacher_output, dim=0) return teacher_output
Construct labeled and unlabeled subsets, where the labeled subset is class balanced. Note that the resulting subsets are **deterministic** with the same random seed.
def x_u_split(num_samples_per_class, num_classes, labels, seed): """ Construct labeled and unlabeled subsets, where the labeled subset is class balanced. Note that the resulting subsets are **deterministic** with the same random seed. """ labels = np.array(labels) assert num_samples_per_class * num_classes <= len(labels) random_state = np.random.RandomState(seed) # labeled subset labeled_idxes = [] for i in range(num_classes): ith_class_idxes = np.where(labels == i)[0] ith_class_idxes = random_state.choice(ith_class_idxes, num_samples_per_class, False) labeled_idxes.extend(ith_class_idxes) # unlabeled subset unlabeled_idxes = [i for i in range(len(labels)) if i not in labeled_idxes] return labeled_idxes, unlabeled_idxes
Converts a dataset which returns (img, label) pairs into one that returns (index, img, label) triplets.
def convert_dataset(dataset): """ Converts a dataset which returns (img, label) pairs into one that returns (index, img, label) triplets. """ class DatasetWrapper: def __init__(self): self.dataset = dataset def __getitem__(self, index): return index, self.dataset[index] def __len__(self): return len(self.dataset) return DatasetWrapper()
Cosine learning rate scheduler from `FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (NIPS 2020) <https://arxiv.org/abs/2001.07685>`_. Args: optimizer (Optimizer): Wrapped optimizer. T_max (int): Maximum number of iterations. num_cycles (float): A scalar that controls the shape of cosine function. Default: 7/16. num_warmup_steps (int): Number of iterations to warm up. Default: 0. last_epoch (int): The index of last epoch. Default: -1.
def get_cosine_scheduler_with_warmup(optimizer, T_max, num_cycles=7. / 16., num_warmup_steps=0, last_epoch=-1): """ Cosine learning rate scheduler from `FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence (NIPS 2020) <https://arxiv.org/abs/2001.07685>`_. Args: optimizer (Optimizer): Wrapped optimizer. T_max (int): Maximum number of iterations. num_cycles (float): A scalar that controls the shape of cosine function. Default: 7/16. num_warmup_steps (int): Number of iterations to warm up. Default: 0. last_epoch (int): The index of last epoch. Default: -1. """ def _lr_lambda(current_step): if current_step < num_warmup_steps: _lr = float(current_step) / float(max(1, num_warmup_steps)) else: num_cos_steps = float(current_step - num_warmup_steps) num_cos_steps = num_cos_steps / float(max(1, T_max - num_warmup_steps)) _lr = max(0.0, math.cos(math.pi * num_cycles * num_cos_steps)) return _lr return LambdaLR(optimizer, _lr_lambda, last_epoch)
When sample_rate < 100, e.g. sample_rate = 50, use 50% data to train the model. Otherwise, if num_samples_per_classes is not None, e.g. 5, then sample 5 images for each class, and use them to train the model; otherwise, keep all the data.
def get_dataset(dataset_name, root, train_transform, val_transform, sample_rate=100, num_samples_per_classes=None): """ When sample_rate < 100, e.g. sample_rate = 50, use 50% data to train the model. Otherwise, if num_samples_per_classes is not None, e.g. 5, then sample 5 images for each class, and use them to train the model; otherwise, keep all the data. """ dataset = datasets.__dict__[dataset_name] if sample_rate < 100: train_dataset = dataset(root=root, split='train', sample_rate=sample_rate, download=True, transform=train_transform) test_dataset = dataset(root=root, split='test', sample_rate=100, download=True, transform=val_transform) num_classes = train_dataset.num_classes else: train_dataset = dataset(root=root, split='train', download=True, transform=train_transform) test_dataset = dataset(root=root, split='test', download=True, transform=val_transform) num_classes = train_dataset.num_classes if num_samples_per_classes is not None: samples = list(range(len(train_dataset))) random.shuffle(samples) samples_len = min(num_samples_per_classes * num_classes, len(train_dataset)) print("Origin dataset:", len(train_dataset), "Sampled dataset:", samples_len, "Ratio:", float(samples_len) / len(train_dataset)) train_dataset = Subset(train_dataset, samples[:samples_len]) return train_dataset, test_dataset, num_classes
resizing mode: - default: take a random resized crop of size 224 with scale in [0.2, 1.]; - res: resize the image to 224; - res.|crop: resize the image to 256 and take a random crop of size 224; - res.sma|crop: resize the image keeping its aspect ratio such that the smaller side is 256, then take a random crop of size 224; – inc.crop: “inception crop” from (Szegedy et al., 2015); – cif.crop: resize the image to 224, zero-pad it by 28 on each side, then take a random crop of size 224.
def get_train_transform(resizing='default', random_horizontal_flip=True, random_color_jitter=False): """ resizing mode: - default: take a random resized crop of size 224 with scale in [0.2, 1.]; - res: resize the image to 224; - res.|crop: resize the image to 256 and take a random crop of size 224; - res.sma|crop: resize the image keeping its aspect ratio such that the smaller side is 256, then take a random crop of size 224; – inc.crop: “inception crop” from (Szegedy et al., 2015); – cif.crop: resize the image to 224, zero-pad it by 28 on each side, then take a random crop of size 224. """ if resizing == 'default': transform = T.RandomResizedCrop(224, scale=(0.2, 1.)) elif resizing == 'res.': transform = T.Resize((224, 224)) elif resizing == 'res.|crop': transform = T.Compose([ T.Resize((256, 256)), T.RandomCrop(224) ]) elif resizing == "res.sma|crop": transform = T.Compose([ T.Resize(256), T.RandomCrop(224) ]) elif resizing == 'inc.crop': transform = T.RandomResizedCrop(224) elif resizing == 'cif.crop': transform = T.Compose([ T.Resize((224, 224)), T.Pad(28), T.RandomCrop(224), ]) else: raise NotImplementedError(resizing) transforms = [transform] if random_horizontal_flip: transforms.append(T.RandomHorizontalFlip()) if random_color_jitter: transforms.append(T.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)) transforms.extend([ T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) return T.Compose(transforms)
resizing mode: - default: resize the image to 256 and take the center crop of size 224; – res.: resize the image to 224 – res.|crop: resize the image such that the smaller side is of size 256 and then take a central crop of size 224.
def get_val_transform(resizing='default'): """ resizing mode: - default: resize the image to 256 and take the center crop of size 224; – res.: resize the image to 224 – res.|crop: resize the image such that the smaller side is of size 256 and then take a central crop of size 224. """ if resizing == 'default': transform = T.Compose([ T.Resize(256), T.CenterCrop(224), ]) elif resizing == 'res.': transform = T.Resize((224, 224)) elif resizing == 'res.|crop': transform = T.Compose([ T.Resize((256, 256)), T.CenterCrop(224), ]) else: raise NotImplementedError(resizing) return T.Compose([ transform, T.ToTensor(), T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ])
Args: optimizer_name: - SGD - Adam params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate weight_decay: weight decay momentum: momentum factor for SGD
def get_optimizer(optimizer_name, params, lr, wd, momentum): ''' Args: optimizer_name: - SGD - Adam params: iterable of parameters to optimize or dicts defining parameter groups lr: learning rate weight_decay: weight decay momentum: momentum factor for SGD ''' if optimizer_name == 'SGD': optimizer = SGD(params=params, lr=lr, momentum=momentum, weight_decay=wd, nesterov=True) elif optimizer_name == 'Adam': optimizer = Adam(params=params, lr=lr, weight_decay=wd) else: raise NotImplementedError(optimizer_name) return optimizer
Args: image (tensor): 3 x H x W filename: filename of the saving image
def visualize(image, filename): """ Args: image (tensor): 3 x H x W filename: filename of the saving image """ image = image.detach().cpu() image = Denormalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])(image) image = image.numpy().transpose((1, 2, 0)) * 255 Image.fromarray(np.uint8(image)).save(filename)
convert probabilistic prediction maps to weighted self-information maps
def prob_2_entropy(prob): """ convert probabilistic prediction maps to weighted self-information maps """ n, c, h, w = prob.size() return -torch.mul(prob, torch.log2(prob + 1e-30)) / np.log2(c)
Update the `index_matrix` which convert `kernel_matrix` to loss. If `index_matrix` is a tensor with shape (2 x batch_size, 2 x batch_size), then return `index_matrix`. Else return a new tensor with shape (2 x batch_size, 2 x batch_size).
def _update_index_matrix(batch_size: int, index_matrix: Optional[torch.Tensor] = None, linear: Optional[bool] = True) -> torch.Tensor: r""" Update the `index_matrix` which convert `kernel_matrix` to loss. If `index_matrix` is a tensor with shape (2 x batch_size, 2 x batch_size), then return `index_matrix`. Else return a new tensor with shape (2 x batch_size, 2 x batch_size). """ if index_matrix is None or index_matrix.size(0) != batch_size * 2: index_matrix = torch.zeros(2 * batch_size, 2 * batch_size) if linear: for i in range(batch_size): s1, s2 = i, (i + 1) % batch_size t1, t2 = s1 + batch_size, s2 + batch_size index_matrix[s1, s2] = 1. / float(batch_size) index_matrix[t1, t2] = 1. / float(batch_size) index_matrix[s1, t2] = -1. / float(batch_size) index_matrix[s2, t1] = -1. / float(batch_size) else: for i in range(batch_size): for j in range(batch_size): if i != j: index_matrix[i][j] = 1. / float(batch_size * (batch_size - 1)) index_matrix[i + batch_size][j + batch_size] = 1. / float(batch_size * (batch_size - 1)) for i in range(batch_size): for j in range(batch_size): index_matrix[i][j + batch_size] = -1. / float(batch_size * batch_size) index_matrix[i + batch_size][j] = -1. / float(batch_size * batch_size) return index_matrix
The `Classifier Discrepancy` in `Maximum Classifier Discrepancy for Unsupervised Domain Adaptation (CVPR 2018) <https://arxiv.org/abs/1712.02560>`_. The classfier discrepancy between predictions :math:`p_1` and :math:`p_2` can be described as: .. math:: d(p_1, p_2) = \dfrac{1}{K} \sum_{k=1}^K | p_{1k} - p_{2k} |, where K is number of classes. Args: predictions1 (torch.Tensor): Classifier predictions :math:`p_1`. Expected to contain raw, normalized scores for each class predictions2 (torch.Tensor): Classifier predictions :math:`p_2`
def classifier_discrepancy(predictions1: torch.Tensor, predictions2: torch.Tensor) -> torch.Tensor: r"""The `Classifier Discrepancy` in `Maximum Classifier Discrepancy for Unsupervised Domain Adaptation (CVPR 2018) <https://arxiv.org/abs/1712.02560>`_. The classfier discrepancy between predictions :math:`p_1` and :math:`p_2` can be described as: .. math:: d(p_1, p_2) = \dfrac{1}{K} \sum_{k=1}^K | p_{1k} - p_{2k} |, where K is number of classes. Args: predictions1 (torch.Tensor): Classifier predictions :math:`p_1`. Expected to contain raw, normalized scores for each class predictions2 (torch.Tensor): Classifier predictions :math:`p_2` """ return torch.mean(torch.abs(predictions1 - predictions2))
Entropy of N predictions :math:`(p_1, p_2, ..., p_N)`. The definition is: .. math:: d(p_1, p_2, ..., p_N) = -\dfrac{1}{K} \sum_{k=1}^K \log \left( \dfrac{1}{N} \sum_{i=1}^N p_{ik} \right) where K is number of classes. .. note:: This entropy function is specifically used in MCD and different from the usual :meth:`~tllib.modules.entropy.entropy` function. Args: predictions (torch.Tensor): Classifier predictions. Expected to contain raw, normalized scores for each class
def entropy(predictions: torch.Tensor) -> torch.Tensor: r"""Entropy of N predictions :math:`(p_1, p_2, ..., p_N)`. The definition is: .. math:: d(p_1, p_2, ..., p_N) = -\dfrac{1}{K} \sum_{k=1}^K \log \left( \dfrac{1}{N} \sum_{i=1}^N p_{ik} \right) where K is number of classes. .. note:: This entropy function is specifically used in MCD and different from the usual :meth:`~tllib.modules.entropy.entropy` function. Args: predictions (torch.Tensor): Classifier predictions. Expected to contain raw, normalized scores for each class """ return -torch.mean(torch.log(torch.mean(predictions, 0) + 1e-6))
First shift, then calculate log, which can be described as: .. math:: y = \max(\log(x+\text{offset}), 0) Used to avoid the gradient explosion problem in log(x) function when x=0. Args: x (torch.Tensor): input tensor offset (float, optional): offset size. Default: 1e-6 .. note:: Input tensor falls in [0., 1.] and the output tensor falls in [-log(offset), 0]
def shift_log(x: torch.Tensor, offset: Optional[float] = 1e-6) -> torch.Tensor: r""" First shift, then calculate log, which can be described as: .. math:: y = \max(\log(x+\text{offset}), 0) Used to avoid the gradient explosion problem in log(x) function when x=0. Args: x (torch.Tensor): input tensor offset (float, optional): offset size. Default: 1e-6 .. note:: Input tensor falls in [0., 1.] and the output tensor falls in [-log(offset), 0] """ return torch.log(torch.clamp(x + offset, max=1.))
Load precomputed object feedbacks into the dataset. Args: dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. proposals_list (list[Proposal]): list of Proposal. Returns: list[dict]: the same format as dataset_dicts, but added feedback field.
def load_feedbacks_into_dataset(dataset_dicts, proposals_list: List[Proposal]): """ Load precomputed object feedbacks into the dataset. Args: dataset_dicts (list[dict]): annotations in Detectron2 Dataset format. proposals_list (list[Proposal]): list of Proposal. Returns: list[dict]: the same format as dataset_dicts, but added feedback field. """ feedbacks = {} for record in dataset_dicts: image_id = str(record["image_id"]) feedbacks[image_id] = { 'pred_boxes': [], 'pred_classes': [], } for proposals in proposals_list: image_id = str(proposals.image_id) feedbacks[image_id]['pred_boxes'] += proposals.pred_boxes.tolist() feedbacks[image_id]['pred_classes'] += proposals.pred_classes.tolist() # Assuming default bbox_mode of precomputed feedbacks are 'XYXY_ABS' bbox_mode = BoxMode.XYXY_ABS dataset_dicts_with_feedbacks = [] for record in dataset_dicts: # Get the index of the feedback image_id = str(record["image_id"]) record["feedback_proposal_boxes"] = feedbacks[image_id]["pred_boxes"] record["feedback_gt_classes"] = feedbacks[image_id]["pred_classes"] record["feedback_gt_boxes"] = feedbacks[image_id]["pred_boxes"] record["feedback_bbox_mode"] = bbox_mode if sum(map(lambda x: x >= 0, feedbacks[image_id]["pred_classes"])) > 0: # remove images without feedbacks dataset_dicts_with_feedbacks.append(record) return dataset_dicts_with_feedbacks
Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation. Args: names (str or list[str]): a dataset name or a list of dataset names filter_empty (bool): whether to filter out images without instance annotations min_keypoints (int): filter out images with fewer keypoints than `min_keypoints`. Set to 0 to do nothing. proposals_list (optional, list[Proposal]): list of Proposal. Returns: list[dict]: a list of dicts following the standard dataset dict format.
def get_detection_dataset_dicts(names, filter_empty=True, min_keypoints=0, proposals_list=None): """ Load and prepare dataset dicts for instance detection/segmentation and semantic segmentation. Args: names (str or list[str]): a dataset name or a list of dataset names filter_empty (bool): whether to filter out images without instance annotations min_keypoints (int): filter out images with fewer keypoints than `min_keypoints`. Set to 0 to do nothing. proposals_list (optional, list[Proposal]): list of Proposal. Returns: list[dict]: a list of dicts following the standard dataset dict format. """ if isinstance(names, str): names = [names] assert len(names), names dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in names] for dataset_name, dicts in zip(names, dataset_dicts): assert len(dicts), "Dataset '{}' is empty!".format(dataset_name) dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts)) if proposals_list is not None: # load precomputed feedbacks for each proposals dataset_dicts = load_feedbacks_into_dataset(dataset_dicts, proposals_list) has_instances = "annotations" in dataset_dicts[0] if filter_empty and has_instances: dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts) if min_keypoints > 0 and has_instances: dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints) if has_instances: try: class_names = MetadataCatalog.get(names[0]).thing_classes check_metadata_consistency("thing_classes", names) print_instances_class_histogram(dataset_dicts, class_names) except AttributeError: # class names are not available for this dataset pass assert len(dataset_dicts), "No valid data found in {}.".format(",".join(names)) return dataset_dicts
Apply transformations to the feedbacks in dataset_dict, if any. Args: dataset_dict (dict): a dict read from the dataset, possibly contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode" image_shape (tuple): height, width transforms (TransformList): min_box_size (int): proposals with either side smaller than this threshold are removed The input dict is modified in-place, with abovementioned keys removed. A new key "proposals" will be added. Its value is an `Instances` object which contains the transformed proposals in its field "proposal_boxes" and "objectness_logits".
def transform_feedbacks(dataset_dict, image_shape, transforms, *, min_box_size=0): """ Apply transformations to the feedbacks in dataset_dict, if any. Args: dataset_dict (dict): a dict read from the dataset, possibly contains fields "proposal_boxes", "proposal_objectness_logits", "proposal_bbox_mode" image_shape (tuple): height, width transforms (TransformList): min_box_size (int): proposals with either side smaller than this threshold are removed The input dict is modified in-place, with abovementioned keys removed. A new key "proposals" will be added. Its value is an `Instances` object which contains the transformed proposals in its field "proposal_boxes" and "objectness_logits". """ if "feedback_proposal_boxes" in dataset_dict: # Transform proposal boxes proposal_boxes = transforms.apply_box( BoxMode.convert( dataset_dict.pop("feedback_proposal_boxes"), dataset_dict.get("feedback_bbox_mode"), BoxMode.XYXY_ABS, ) ) proposal_boxes = Boxes(proposal_boxes) gt_boxes = transforms.apply_box( BoxMode.convert( dataset_dict.pop("feedback_gt_boxes"), dataset_dict.get("feedback_bbox_mode"), BoxMode.XYXY_ABS, ) ) gt_boxes = Boxes(gt_boxes) gt_classes = torch.as_tensor( dataset_dict.pop("feedback_gt_classes") ) proposal_boxes.clip(image_shape) gt_boxes.clip(image_shape) keep = proposal_boxes.nonempty(threshold=min_box_size) & (gt_classes >= 0) # keep = boxes.nonempty(threshold=min_box_size) proposal_boxes = proposal_boxes[keep] gt_boxes = gt_boxes[keep] gt_classes = gt_classes[keep] feedbacks = Instances(image_shape) feedbacks.proposal_boxes = proposal_boxes feedbacks.gt_boxes = gt_boxes feedbacks.gt_classes = gt_classes dataset_dict["feedbacks"] = feedbacks
Flatten a list of proposals Args: proposal_list (list): a list of proposals grouped by images max_number (int): maximum number of kept proposals for each image
def flatten(proposal_list, max_number=10000): """ Flatten a list of proposals Args: proposal_list (list): a list of proposals grouped by images max_number (int): maximum number of kept proposals for each image """ flattened_list = [] for proposals in proposal_list: for i in range(min(len(proposals), max_number)): flattened_list.append(proposals[i:i+1]) return flattened_list
Same as `tllib.modules.loss.LabelSmoothSoftmaxCEV1`, but returns 0 (instead of nan) for empty inputs.
def label_smoothing_cross_entropy(input, target, *, reduction="mean", **kwargs): """ Same as `tllib.modules.loss.LabelSmoothSoftmaxCEV1`, but returns 0 (instead of nan) for empty inputs. """ if target.numel() == 0 and reduction == "mean": return input.sum() * 0.0 # connect the gradient return LabelSmoothSoftmaxCEV1(reduction=reduction, **kwargs)(input, target)
Call `fast_rcnn_sample_background_single_image` for all images. Args: boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * 4) if doing class-specific regression, or (Ri, 4) if doing class-agnostic regression, where Ri is the number of predicted objects for image i. This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. scores (list[Tensor]): A list of Tensors of predicted class scores for each image. Element i has shape (Ri, K + 1), where Ri is the number of predicted objects for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. score_thresh (float): Only return detections with a confidence score exceeding this threshold. nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. topk_per_image (int): The number of top scoring detections to return. Set < 0 to return all detections. Returns: instances: (list[Instances]): A list of N instances, one for each image in the batch, that stores the background proposals. kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates the corresponding boxes/scores index in [0, Ri) from the input, for image i.
def fast_rcnn_sample_background( boxes: List[torch.Tensor], scores: List[torch.Tensor], image_shapes: List[Tuple[int, int]], score_thresh: float, nms_thresh: float, topk_per_image: int, ): """ Call `fast_rcnn_sample_background_single_image` for all images. Args: boxes (list[Tensor]): A list of Tensors of predicted class-specific or class-agnostic boxes for each image. Element i has shape (Ri, K * 4) if doing class-specific regression, or (Ri, 4) if doing class-agnostic regression, where Ri is the number of predicted objects for image i. This is compatible with the output of :meth:`FastRCNNOutputLayers.predict_boxes`. scores (list[Tensor]): A list of Tensors of predicted class scores for each image. Element i has shape (Ri, K + 1), where Ri is the number of predicted objects for image i. Compatible with the output of :meth:`FastRCNNOutputLayers.predict_probs`. image_shapes (list[tuple]): A list of (width, height) tuples for each image in the batch. score_thresh (float): Only return detections with a confidence score exceeding this threshold. nms_thresh (float): The threshold to use for box non-maximum suppression. Value in [0, 1]. topk_per_image (int): The number of top scoring detections to return. Set < 0 to return all detections. Returns: instances: (list[Instances]): A list of N instances, one for each image in the batch, that stores the background proposals. kept_indices: (list[Tensor]): A list of 1D tensor of length of N, each element indicates the corresponding boxes/scores index in [0, Ri) from the input, for image i. """ result_per_image = [ fast_rcnn_sample_background_single_image( boxes_per_image, scores_per_image, image_shape, score_thresh, nms_thresh, topk_per_image ) for scores_per_image, boxes_per_image, image_shape in zip(scores, boxes, image_shapes) ] return [x[0] for x in result_per_image], [x[1] for x in result_per_image]
Single-image background samples. . Args: Same as `fast_rcnn_sample_background`, but with boxes, scores, and image shapes per image. Returns: Same as `fast_rcnn_sample_background`, but for only one image.
def fast_rcnn_sample_background_single_image( boxes, scores, image_shape: Tuple[int, int], score_thresh: float, nms_thresh: float, topk_per_image: int, ): """ Single-image background samples. . Args: Same as `fast_rcnn_sample_background`, but with boxes, scores, and image shapes per image. Returns: Same as `fast_rcnn_sample_background`, but for only one image. """ valid_mask = torch.isfinite(boxes).all(dim=1) & torch.isfinite(scores).all(dim=1) if not valid_mask.all(): boxes = boxes[valid_mask] scores = scores[valid_mask] num_classes = scores.shape[1] # Only keep background proposals scores = scores[:, -1:] # Convert to Boxes to use the `clip` function ... boxes = Boxes(boxes.reshape(-1, 4)) boxes.clip(image_shape) boxes = boxes.tensor.view(-1, 1, 4) # R x C x 4 # 1. Filter results based on detection scores. It can make NMS more efficient # by filtering out low-confidence detections. filter_mask = scores > score_thresh # R # R' x 2. First column contains indices of the R predictions; # Second column contains indices of classes. filter_inds = filter_mask.nonzero() boxes = boxes[filter_mask] scores = scores[filter_mask] # 2. Apply NMS only for background class keep = batched_nms(boxes, scores, filter_inds[:, 1], nms_thresh) if 0 <= topk_per_image < len(keep): idx = list(range(len(keep))) idx = random.sample(idx, k=topk_per_image) idx = sorted(idx) keep = keep[idx] boxes, scores, filter_inds = boxes[keep], scores[keep], filter_inds[keep] result = Instances(image_shape) result.pred_boxes = Boxes(boxes) result.scores = scores result.pred_classes = filter_inds[:, 1] + num_classes - 1 return result, filter_inds[:, 0]
Entropy of prediction. The definition is: .. math:: entropy(p) = - \sum_{c=1}^C p_c \log p_c where C is number of classes. Args: predictions (tensor): Classifier predictions. Expected to contain raw, normalized scores for each class reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output. Default: ``'mean'`` Shape: - predictions: :math:`(minibatch, C)` where C means the number of classes. - Output: :math:`(minibatch, )` by default. If :attr:`reduction` is ``'mean'``, then scalar.
def entropy(predictions: torch.Tensor, reduction='none') -> torch.Tensor: r"""Entropy of prediction. The definition is: .. math:: entropy(p) = - \sum_{c=1}^C p_c \log p_c where C is number of classes. Args: predictions (tensor): Classifier predictions. Expected to contain raw, normalized scores for each class reduction (str, optional): Specifies the reduction to apply to the output: ``'none'`` | ``'mean'``. ``'none'``: no reduction will be applied, ``'mean'``: the sum of the output will be divided by the number of elements in the output. Default: ``'mean'`` Shape: - predictions: :math:`(minibatch, C)` where C means the number of classes. - Output: :math:`(minibatch, )` by default. If :attr:`reduction` is ``'mean'``, then scalar. """ epsilon = 1e-5 H = -predictions * torch.log(predictions + epsilon) H = H.sum(dim=1) if reduction == 'mean': return H.mean() else: return H
Constructs a ResNet-18-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet18_ibn_a(pretrained=False): """Constructs a ResNet-18-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=BasicBlock, layers=[2, 2, 2, 2], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet18_ibn_a']), strict=False) return model
Constructs a ResNet-34-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet34_ibn_a(pretrained=False): """Constructs a ResNet-34-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=BasicBlock, layers=[3, 4, 6, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet34_ibn_a']), strict=False) return model
Constructs a ResNet-50-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet50_ibn_a(pretrained=False): """Constructs a ResNet-50-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=Bottleneck, layers=[3, 4, 6, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet50_ibn_a']), strict=False) return model
Constructs a ResNet-101-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet101_ibn_a(pretrained=False): """Constructs a ResNet-101-IBN-a model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=Bottleneck, layers=[3, 4, 23, 3], ibn_cfg=('a', 'a', 'a', None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet101_ibn_a']), strict=False) return model
Constructs a ResNet-18-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet18_ibn_b(pretrained=False): """Constructs a ResNet-18-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=BasicBlock, layers=[2, 2, 2, 2], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet18_ibn_b']), strict=False) return model
Constructs a ResNet-34-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet34_ibn_b(pretrained=False): """Constructs a ResNet-34-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=BasicBlock, layers=[3, 4, 6, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet34_ibn_b']), strict=False) return model
Constructs a ResNet-50-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet50_ibn_b(pretrained=False): """Constructs a ResNet-50-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=Bottleneck, layers=[3, 4, 6, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet50_ibn_b']), strict=False) return model
Constructs a ResNet-101-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet
def resnet101_ibn_b(pretrained=False): """Constructs a ResNet-101-IBN-b model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = IBNNet(block=Bottleneck, layers=[3, 4, 23, 3], ibn_cfg=('b', 'b', None, None)) if pretrained: model.load_state_dict(torch.hub.load_state_dict_from_url(model_urls['resnet101_ibn_b']), strict=False) return model
Traverses the input module and its child recursively and replaces all instance of BatchNorm to StochNorm. Args: module (torch.nn.Module): The input module needs to be convert to StochNorm model. p (float): The hyper-parameter for StochNorm layer. Returns: The module converted to StochNorm version.
def convert_model(module, p): """ Traverses the input module and its child recursively and replaces all instance of BatchNorm to StochNorm. Args: module (torch.nn.Module): The input module needs to be convert to StochNorm model. p (float): The hyper-parameter for StochNorm layer. Returns: The module converted to StochNorm version. """ mod = module for pth_module, stoch_module in zip([torch.nn.modules.batchnorm.BatchNorm1d, torch.nn.modules.batchnorm.BatchNorm2d, torch.nn.modules.batchnorm.BatchNorm3d], [StochNorm1d, StochNorm2d, StochNorm3d]): if isinstance(module, pth_module): mod = stoch_module(module.num_features, module.eps, module.momentum, module.affine, p) mod.running_mean = module.running_mean mod.running_var = module.running_var if module.affine: mod.weight.data = module.weight.data.clone().detach() mod.bias.data = module.bias.data.clone().detach() for name, child in module.named_children(): mod.add_module(name, convert_model(child, p)) return mod
Construct `ResNet` with MixStyle modules. Given any resnet architecture **resnet_class** that contains conv1, bn1, relu, maxpool, layer1-4, this function define a new class that inherits from **resnet_class** and inserts MixStyle module during forward pass. Although MixStyle Module can be inserted anywhere, original paper finds it better to place MixStyle after layer1-3. Our implementation follows this idea, but you are free to modify this function to try other possibilities. Args: arch (str): resnet architecture (resnet50 for example) block (class): class of resnet block layers (list): depth list of each block pretrained (bool): if True, load imagenet pre-trained model parameters progress (bool): whether or not to display a progress bar to stderr mix_layers (list): layers to insert MixStyle module after mix_p (float): probability to activate MixStyle during forward pass mix_alpha (float): parameter alpha for beta distribution resnet_class (class): base resnet class to inherit from
def _resnet_with_mix_style(arch, block, layers, pretrained, progress, mix_layers=None, mix_p=0.5, mix_alpha=0.1, resnet_class=ResNet, **kwargs): """Construct `ResNet` with MixStyle modules. Given any resnet architecture **resnet_class** that contains conv1, bn1, relu, maxpool, layer1-4, this function define a new class that inherits from **resnet_class** and inserts MixStyle module during forward pass. Although MixStyle Module can be inserted anywhere, original paper finds it better to place MixStyle after layer1-3. Our implementation follows this idea, but you are free to modify this function to try other possibilities. Args: arch (str): resnet architecture (resnet50 for example) block (class): class of resnet block layers (list): depth list of each block pretrained (bool): if True, load imagenet pre-trained model parameters progress (bool): whether or not to display a progress bar to stderr mix_layers (list): layers to insert MixStyle module after mix_p (float): probability to activate MixStyle during forward pass mix_alpha (float): parameter alpha for beta distribution resnet_class (class): base resnet class to inherit from """ if mix_layers is None: mix_layers = [] available_resnet_class = [ResNet, ReidResNet] assert resnet_class in available_resnet_class class ResNetWithMixStyleModule(resnet_class): def __init__(self, mix_layers, mix_p=0.5, mix_alpha=0.1, *args, **kwargs): super(ResNetWithMixStyleModule, self).__init__(*args, **kwargs) self.mixStyleModule = MixStyle(p=mix_p, alpha=mix_alpha) for layer in mix_layers: assert layer in ['layer1', 'layer2', 'layer3'] self.apply_layers = mix_layers def forward(self, x): x = self.conv1(x) x = self.bn1(x) # turn on relu activation here **except for** reid tasks if resnet_class != ReidResNet: x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) if 'layer1' in self.apply_layers: x = self.mixStyleModule(x) x = self.layer2(x) if 'layer2' in self.apply_layers: x = self.mixStyleModule(x) x = self.layer3(x) if 'layer3' in self.apply_layers: x = self.mixStyleModule(x) x = self.layer4(x) return x model = ResNetWithMixStyleModule(mix_layers=mix_layers, mix_p=mix_p, mix_alpha=mix_alpha, block=block, layers=layers, **kwargs) if pretrained: model_dict = model.state_dict() pretrained_dict = load_state_dict_from_url(model_urls[arch], progress=progress) # remove keys from pretrained dict that doesn't appear in model dict pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} model.load_state_dict(pretrained_dict, strict=False) return model
Constructs a ResNet-18 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
def resnet18(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-18 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet_with_mix_style('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs)
Constructs a ResNet-34 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
def resnet34(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-34 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet_with_mix_style('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
Constructs a ResNet-50 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
def resnet50(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-50 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet_with_mix_style('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
Constructs a ResNet-101 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr
def resnet101(pretrained=False, progress=True, **kwargs): """Constructs a ResNet-101 model with MixStyle. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr """ return _resnet_with_mix_style('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, **kwargs)
H-score in `An Information-theoretic Approach to Transferability in Task Transfer Learning (ICIP 2019) <http://yangli-feasibility.com/home/media/icip-19.pdf>`_. The H-Score :math:`\mathcal{H}` can be described as: .. math:: \mathcal{H}=\operatorname{tr}\left(\operatorname{cov}(f)^{-1} \operatorname{cov}\left(\mathbb{E}[f \mid y]\right)\right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar.
def h_score(features: np.ndarray, labels: np.ndarray): r""" H-score in `An Information-theoretic Approach to Transferability in Task Transfer Learning (ICIP 2019) <http://yangli-feasibility.com/home/media/icip-19.pdf>`_. The H-Score :math:`\mathcal{H}` can be described as: .. math:: \mathcal{H}=\operatorname{tr}\left(\operatorname{cov}(f)^{-1} \operatorname{cov}\left(\mathbb{E}[f \mid y]\right)\right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar. """ f = features y = labels covf = np.cov(f, rowvar=False) C = int(y.max() + 1) g = np.zeros_like(f) for i in range(C): Ef_i = np.mean(f[y == i, :], axis=0) g[y == i] = Ef_i covg = np.cov(g, rowvar=False) score = np.trace(np.dot(np.linalg.pinv(covf, rcond=1e-15), covg)) return score
Regularized H-score in `Newer is not always better: Rethinking transferability metrics, their peculiarities, stability and performance (NeurIPS 2021) <https://openreview.net/pdf?id=iz_Wwmfquno>`_. The regularized H-Score :math:`\mathcal{H}_{\alpha}` can be described as: .. math:: \mathcal{H}_{\alpha}=\operatorname{tr}\left(\operatorname{cov}_{\alpha}(f)^{-1}\left(1-\alpha \right)\operatorname{cov}\left(\mathbb{E}[f \mid y]\right)\right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector and :math:`\operatorname{cov}_{\alpha}` the Ledoit-Wolf covariance estimator with shrinkage parameter :math:`\alpha` Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar.
def regularized_h_score(features: np.ndarray, labels: np.ndarray): r""" Regularized H-score in `Newer is not always better: Rethinking transferability metrics, their peculiarities, stability and performance (NeurIPS 2021) <https://openreview.net/pdf?id=iz_Wwmfquno>`_. The regularized H-Score :math:`\mathcal{H}_{\alpha}` can be described as: .. math:: \mathcal{H}_{\alpha}=\operatorname{tr}\left(\operatorname{cov}_{\alpha}(f)^{-1}\left(1-\alpha \right)\operatorname{cov}\left(\mathbb{E}[f \mid y]\right)\right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector and :math:`\operatorname{cov}_{\alpha}` the Ledoit-Wolf covariance estimator with shrinkage parameter :math:`\alpha` Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar. """ f = features.astype('float64') f = f - np.mean(f, axis=0, keepdims=True) # Center the features for correct Ledoit-Wolf Estimation y = labels C = int(y.max() + 1) g = np.zeros_like(f) cov = LedoitWolf(assume_centered=False).fit(f) alpha = cov.shrinkage_ covf_alpha = cov.covariance_ for i in range(C): Ef_i = np.mean(f[y == i, :], axis=0) g[y == i] = Ef_i covg = np.cov(g, rowvar=False) score = np.trace(np.dot(np.linalg.pinv(covf_alpha, rcond=1e-15), (1 - alpha) * covg)) return score
Log Expected Empirical Prediction in `LEEP: A New Measure to Evaluate Transferability of Learned Representations (ICML 2020) <http://proceedings.mlr.press/v119/nguyen20b/nguyen20b.pdf>`_. The LEEP :math:`\mathcal{T}` can be described as: .. math:: \mathcal{T}=\mathbb{E}\log \left(\sum_{z \in \mathcal{C}_s} \hat{P}\left(y \mid z\right) \theta\left(y \right)_{z}\right) where :math:`\theta\left(y\right)_{z}` is the predictions of pre-trained model on source category, :math:`\hat{P}\left(y \mid z\right)` is the empirical conditional distribution estimated by prediction and ground-truth label. Args: predictions (np.ndarray): predictions of pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - predictions: (N, :math:`C_s`), with number of samples N and source class number :math:`C_s`. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar
def log_expected_empirical_prediction(predictions: np.ndarray, labels: np.ndarray): r""" Log Expected Empirical Prediction in `LEEP: A New Measure to Evaluate Transferability of Learned Representations (ICML 2020) <http://proceedings.mlr.press/v119/nguyen20b/nguyen20b.pdf>`_. The LEEP :math:`\mathcal{T}` can be described as: .. math:: \mathcal{T}=\mathbb{E}\log \left(\sum_{z \in \mathcal{C}_s} \hat{P}\left(y \mid z\right) \theta\left(y \right)_{z}\right) where :math:`\theta\left(y\right)_{z}` is the predictions of pre-trained model on source category, :math:`\hat{P}\left(y \mid z\right)` is the empirical conditional distribution estimated by prediction and ground-truth label. Args: predictions (np.ndarray): predictions of pre-trained model. labels (np.ndarray): groud-truth labels. Shape: - predictions: (N, :math:`C_s`), with number of samples N and source class number :math:`C_s`. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar """ N, C_s = predictions.shape labels = labels.reshape(-1) C_t = int(np.max(labels) + 1) normalized_prob = predictions / float(N) joint = np.zeros((C_t, C_s), dtype=float) # placeholder for joint distribution over (y, z) for i in range(C_t): this_class = normalized_prob[labels == i] row = np.sum(this_class, axis=0) joint[i] = row p_target_given_source = (joint / joint.sum(axis=0, keepdims=True)).T # P(y | z) empirical_prediction = predictions @ p_target_given_source empirical_prob = np.array([predict[label] for predict, label in zip(empirical_prediction, labels)]) score = np.mean(np.log(empirical_prob)) return score
Log Maximum Evidence in `LogME: Practical Assessment of Pre-trained Models for Transfer Learning (ICML 2021) <https://arxiv.org/pdf/2102.11005.pdf>`_. Args: features (np.ndarray): feature matrix from pre-trained model. targets (np.ndarray): targets labels/values. regression (bool, optional): whether to apply in regression setting. (Default: False) return_weights (bool, optional): whether to return bayesian weight. (Default: False) Shape: - features: (N, F) with element in [0, :math:`C_t`) and feature dimension F, where :math:`C_t` denotes the number of target class - targets: (N, ) or (N, C), with C regression-labels. - weights: (F, :math:`C_t`). - score: scalar.
def log_maximum_evidence(features: np.ndarray, targets: np.ndarray, regression=False, return_weights=False): r""" Log Maximum Evidence in `LogME: Practical Assessment of Pre-trained Models for Transfer Learning (ICML 2021) <https://arxiv.org/pdf/2102.11005.pdf>`_. Args: features (np.ndarray): feature matrix from pre-trained model. targets (np.ndarray): targets labels/values. regression (bool, optional): whether to apply in regression setting. (Default: False) return_weights (bool, optional): whether to return bayesian weight. (Default: False) Shape: - features: (N, F) with element in [0, :math:`C_t`) and feature dimension F, where :math:`C_t` denotes the number of target class - targets: (N, ) or (N, C), with C regression-labels. - weights: (F, :math:`C_t`). - score: scalar. """ f = features.astype(np.float64) y = targets if regression: y = targets.astype(np.float64) fh = f f = f.transpose() D, N = f.shape v, s, vh = np.linalg.svd(f @ fh, full_matrices=True) evidences = [] weights = [] if regression: C = y.shape[1] for i in range(C): y_ = y[:, i] evidence, weight = each_evidence(y_, f, fh, v, s, vh, N, D) evidences.append(evidence) weights.append(weight) else: C = int(y.max() + 1) for i in range(C): y_ = (y == i).astype(np.float64) evidence, weight = each_evidence(y_, f, fh, v, s, vh, N, D) evidences.append(evidence) weights.append(weight) score = np.mean(evidences) weights = np.vstack(weights) if return_weights: return score, weights else: return score
compute the maximum evidence for each class
def each_evidence(y_, f, fh, v, s, vh, N, D): """ compute the maximum evidence for each class """ alpha = 1.0 beta = 1.0 lam = alpha / beta tmp = (vh @ (f @ y_)) for _ in range(11): # should converge after at most 10 steps # typically converge after two or three steps gamma = (s / (s + lam)).sum() m = v @ (tmp * beta / (alpha + beta * s)) alpha_de = (m * m).sum() alpha = gamma / alpha_de beta_de = ((y_ - fh @ m) ** 2).sum() beta = (N - gamma) / beta_de new_lam = alpha / beta if np.abs(new_lam - lam) / lam < 0.01: break lam = new_lam evidence = D / 2.0 * np.log(alpha) \ + N / 2.0 * np.log(beta) \ - 0.5 * np.sum(np.log(alpha + beta * s)) \ - beta / 2.0 * beta_de \ - alpha / 2.0 * alpha_de \ - N / 2.0 * np.log(2 * np.pi) return evidence / N, m
Negative Conditional Entropy in `Transferability and Hardness of Supervised Classification Tasks (ICCV 2019) <https://arxiv.org/pdf/1908.08142v1.pdf>`_. The NCE :math:`\mathcal{H}` can be described as: .. math:: \mathcal{H}=-\sum_{y \in \mathcal{C}_t} \sum_{z \in \mathcal{C}_s} \hat{P}(y, z) \log \frac{\hat{P}(y, z)}{\hat{P}(z)} where :math:`\hat{P}(z)` is the empirical distribution and :math:`\hat{P}\left(y \mid z\right)` is the empirical conditional distribution estimated by source and target label. Args: source_labels (np.ndarray): predicted source labels. target_labels (np.ndarray): groud-truth target labels. Shape: - source_labels: (N, ) elements in [0, :math:`C_s`), with source class number :math:`C_s`. - target_labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`.
def negative_conditional_entropy(source_labels: np.ndarray, target_labels: np.ndarray): r""" Negative Conditional Entropy in `Transferability and Hardness of Supervised Classification Tasks (ICCV 2019) <https://arxiv.org/pdf/1908.08142v1.pdf>`_. The NCE :math:`\mathcal{H}` can be described as: .. math:: \mathcal{H}=-\sum_{y \in \mathcal{C}_t} \sum_{z \in \mathcal{C}_s} \hat{P}(y, z) \log \frac{\hat{P}(y, z)}{\hat{P}(z)} where :math:`\hat{P}(z)` is the empirical distribution and :math:`\hat{P}\left(y \mid z\right)` is the empirical conditional distribution estimated by source and target label. Args: source_labels (np.ndarray): predicted source labels. target_labels (np.ndarray): groud-truth target labels. Shape: - source_labels: (N, ) elements in [0, :math:`C_s`), with source class number :math:`C_s`. - target_labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. """ C_t = int(np.max(target_labels) + 1) C_s = int(np.max(source_labels) + 1) N = len(source_labels) joint = np.zeros((C_t, C_s), dtype=float) # placeholder for the joint distribution, shape [C_t, C_s] for s, t in zip(source_labels, target_labels): s = int(s) t = int(t) joint[t, s] += 1.0 / N p_z = joint.sum(axis=0, keepdims=True) p_target_given_source = (joint / p_z).T # P(y | z), shape [C_s, C_t] mask = p_z.reshape(-1) != 0 # valid Z, shape [C_s] p_target_given_source = p_target_given_source[mask] + 1e-20 # remove NaN where p(z) = 0, add 1e-20 to avoid log (0) entropy_y_given_z = np.sum(- p_target_given_source * np.log(p_target_given_source), axis=1, keepdims=True) conditional_entropy = np.sum(entropy_y_given_z * p_z.reshape((-1, 1))[mask]) return -conditional_entropy
TransRate in `Frustratingly easy transferability estimation (ICML 2022) <https://proceedings.mlr.press/v162/huang22d/huang22d.pdf>`_. The TransRate :math:`TrR` can be described as: .. math:: TrR= R\left(f, \espilon \right) - R\left(f, \espilon \mid y \right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector, :math:`R` is the coding rate with distortion rate :math:`\epsilon` Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. eps (float, optional): distortion rare (Default: 1e-4) Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar.
def transrate(features: np.ndarray, labels: np.ndarray, eps=1e-4): r""" TransRate in `Frustratingly easy transferability estimation (ICML 2022) <https://proceedings.mlr.press/v162/huang22d/huang22d.pdf>`_. The TransRate :math:`TrR` can be described as: .. math:: TrR= R\left(f, \espilon \right) - R\left(f, \espilon \mid y \right) where :math:`f` is the features extracted by the model to be ranked, :math:`y` is the groud-truth label vector, :math:`R` is the coding rate with distortion rate :math:`\epsilon` Args: features (np.ndarray):features extracted by pre-trained model. labels (np.ndarray): groud-truth labels. eps (float, optional): distortion rare (Default: 1e-4) Shape: - features: (N, F), with number of samples N and feature dimension F. - labels: (N, ) elements in [0, :math:`C_t`), with target class number :math:`C_t`. - score: scalar. """ f = features y = labels f = f - np.mean(f, axis=0, keepdims=True) Rf = coding_rate(f, eps) Rfy = 0.0 C = int(y.max() + 1) for i in range(C): Rfy += coding_rate(f[(y == i).flatten()], eps) return Rf - Rfy / C
Fetch data from `data_loader`, and then use `classifier` to collect classification results Args: data_loader (torch.utils.data.DataLoader): Data loader. classifier (torch.nn.Module): A classifier. device (torch.device) Returns: Classification results in shape (len(data_loader), :math:`|\mathcal{C}|`).
def collect_classification_results(data_loader: DataLoader, classifier: nn.Module, device: torch.device) -> torch.Tensor: """ Fetch data from `data_loader`, and then use `classifier` to collect classification results Args: data_loader (torch.utils.data.DataLoader): Data loader. classifier (torch.nn.Module): A classifier. device (torch.device) Returns: Classification results in shape (len(data_loader), :math:`|\mathcal{C}|`). """ training = classifier.training classifier.eval() all_outputs = [] with torch.no_grad(): for i, (images, target) in enumerate(data_loader): images = images.to(device) output = classifier(images) all_outputs.append(output) classifier.train(training) return torch.cat(all_outputs, dim=0)
First shift, then calculate log for numerical stability.
def shift_log(x, offset=1e-6): """ First shift, then calculate log for numerical stability. """ return torch.log(torch.clamp(x + offset, max=1.))
Set requires_grad=False for all the parameters to avoid unnecessary computations
def set_requires_grad(net, requires_grad=False): """ Set requires_grad=False for all the parameters to avoid unnecessary computations """ for param in net.parameters(): param.requires_grad = requires_grad
Replace batch normalization statistics of the teacher model with that ot the student model
def update_bn(model, ema_model): """ Replace batch normalization statistics of the teacher model with that ot the student model """ for m2, m1 in zip(ema_model.named_modules(), model.named_modules()): if ('bn' in m2[0]) and ('bn' in m1[0]): bn2, bn1 = m2[1].state_dict(), m1[1].state_dict() bn2['running_mean'].data.copy_(bn1['running_mean'].data) bn2['running_var'].data.copy_(bn1['running_var'].data) bn2['num_batches_tracked'].data.copy_(bn1['num_batches_tracked'].data)
Exponential warm up function from `Temporal Ensembling for Semi-Supervised Learning (ICLR 2017) <https://arxiv.org/abs/1610.02242>`_.
def sigmoid_warm_up(current_epoch, warm_up_epochs: int): """Exponential warm up function from `Temporal Ensembling for Semi-Supervised Learning (ICLR 2017) <https://arxiv.org/abs/1610.02242>`_. """ assert warm_up_epochs >= 0 if warm_up_epochs == 0: return 1.0 else: current_epoch = np.clip(current_epoch, 0.0, warm_up_epochs) process = 1.0 - current_epoch / warm_up_epochs return float(np.exp(-5.0 * process * process))
Args: amp_src (numpy.ndarray): amplitude component of the Fourier transform of source image amp_trg (numpy.ndarray): amplitude component of the Fourier transform of target image beta (int, optional): the size of the center region to be replace. Default: 1 Returns: amplitude component of the Fourier transform of source image whose low-frequency component is replaced by that of the target image.
def low_freq_mutate(amp_src: np.ndarray, amp_trg: np.ndarray, beta: Optional[int] = 1): """ Args: amp_src (numpy.ndarray): amplitude component of the Fourier transform of source image amp_trg (numpy.ndarray): amplitude component of the Fourier transform of target image beta (int, optional): the size of the center region to be replace. Default: 1 Returns: amplitude component of the Fourier transform of source image whose low-frequency component is replaced by that of the target image. """ # Shift the zero-frequency component to the center of the spectrum. a_src = np.fft.fftshift(amp_src, axes=(-2, -1)) a_trg = np.fft.fftshift(amp_trg, axes=(-2, -1)) # The low-frequency component includes # the area where the horizontal and vertical distance from the center does not exceed beta _, h, w = a_src.shape c_h = np.floor(h / 2.0).astype(int) c_w = np.floor(w / 2.0).astype(int) h1 = c_h - beta h2 = c_h + beta + 1 w1 = c_w - beta w2 = c_w + beta + 1 # The low-frequency component of source amplitude is replaced by the target amplitude a_src[:, h1:h2, w1:w2] = a_trg[:, h1:h2, w1:w2] a_src = np.fft.ifftshift(a_src, axes=(-2, -1)) return a_src
PatchGAN classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. Args: ndf (int): the number of filters in the first conv layer input_nc (int): the number of channels in input images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' n_layers (int): the number of conv layers in the discriminator. Default: 3 init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def patch(ndf, input_nc=3, norm='batch', n_layers=3, init_type='normal', init_gain=0.02): """ PatchGAN classifier described in the original pix2pix paper. It can classify whether 70×70 overlapping patches are real or fake. Such a patch-level discriminator architecture has fewer parameters than a full-image discriminator and can work on arbitrarily-sized images in a fully convolutional fashion. Args: ndf (int): the number of filters in the first conv layer input_nc (int): the number of channels in input images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' n_layers (int): the number of conv layers in the discriminator. Default: 3 init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = NLayerDiscriminator(input_nc, ndf, n_layers=n_layers, norm_layer=norm_layer) init_weights(net, init_type, init_gain=init_gain) return net
1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. Args: ndf (int): the number of filters in the first conv layer input_nc (int): the number of channels in input images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def pixel(ndf, input_nc=3, norm='batch', init_type='normal', init_gain=0.02): """ 1x1 PixelGAN discriminator can classify whether a pixel is real or not. It encourages greater color diversity but has no effect on spatial statistics. Args: ndf (int): the number of filters in the first conv layer input_nc (int): the number of channels in input images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = PixelDiscriminator(input_nc, ndf, norm_layer=norm_layer) init_weights(net, init_type, init_gain=init_gain) return net
Resnet-based generator with 9 Resnet blocks. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def resnet_9(ngf, input_nc=3, output_nc=3, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02): """ Resnet-based generator with 9 Resnet blocks. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=9) init_weights(net, init_type, init_gain) return net
Resnet-based generator with 6 Resnet blocks. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def resnet_6(ngf, input_nc=3, output_nc=3, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02): """ Resnet-based generator with 6 Resnet blocks. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = ResnetGenerator(input_nc, output_nc, ngf, norm_layer=norm_layer, use_dropout=use_dropout, n_blocks=6) init_weights(net, init_type, init_gain) return net
`U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 256x256 input images. The size of the input image should be a multiple of 256. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def unet_256(ngf, input_nc=3, output_nc=3, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02): """ `U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 256x256 input images. The size of the input image should be a multiple of 256. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = UnetGenerator(input_nc, output_nc, 8, ngf, norm_layer=norm_layer, use_dropout=use_dropout) init_weights(net, init_type, init_gain) return net
`U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 128x128 input images. The size of the input image should be a multiple of 128. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def unet_128(ngf, input_nc=3, output_nc=3, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02): """ `U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 128x128 input images. The size of the input image should be a multiple of 128. Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = UnetGenerator(input_nc, output_nc, 7, ngf, norm_layer=norm_layer, use_dropout=use_dropout) init_weights(net, init_type, init_gain) return net
`U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 32x32 input images Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02
def unet_32(ngf, input_nc=3, output_nc=3, norm='batch', use_dropout=False, init_type='normal', init_gain=0.02): """ `U-Net <https://arxiv.org/abs/1505.04597>`_ generator for 32x32 input images Args: ngf (int): the number of filters in the last conv layer input_nc (int): the number of channels in input images. Default: 3 output_nc (int): the number of channels in output images. Default: 3 norm (str): the type of normalization layers used in the network. Default: 'batch' use_dropout (bool): whether use dropout. Default: False init_type (str): the name of the initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal``. Default: 'normal' init_gain (float): scaling factor for normal, xavier and orthogonal. Default: 0.02 """ norm_layer = get_norm_layer(norm_type=norm) net = UnetGenerator(input_nc, output_nc, 5, ngf, norm_layer=norm_layer, use_dropout=use_dropout) init_weights(net, init_type, init_gain) return net
Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics.
def get_norm_layer(norm_type='instance'): """Return a normalization layer Parameters: norm_type (str) -- the name of the normalization layer: batch | instance | none For BatchNorm, we use learnable affine parameters and track running statistics (mean/stddev). For InstanceNorm, we do not use learnable affine parameters. We do not track running statistics. """ if norm_type == 'batch': norm_layer = functools.partial(nn.BatchNorm2d, affine=True, track_running_stats=True) elif norm_type == 'instance': norm_layer = functools.partial(nn.InstanceNorm2d, affine=False, track_running_stats=False) elif norm_type == 'none': def norm_layer(x): return Identity() else: raise NotImplementedError('normalization layer [%s] is not found' % norm_type) return norm_layer
Initialize network weights. Args: net (torch.nn.Module): network to be initialized init_type (str): the name of an initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal`` init_gain (float): scaling factor for normal, xavier and orthogonal. 'normal' is used in the original CycleGAN paper. But xavier and kaiming might work better for some applications.
def init_weights(net, init_type='normal', init_gain=0.02): """Initialize network weights. Args: net (torch.nn.Module): network to be initialized init_type (str): the name of an initialization method. Choices includes: ``normal`` | ``xavier`` | ``kaiming`` | ``orthogonal`` init_gain (float): scaling factor for normal, xavier and orthogonal. 'normal' is used in the original CycleGAN paper. But xavier and kaiming might work better for some applications. """ def init_func(m): # define the initialization function classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, init_gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=init_gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=init_gain) else: raise NotImplementedError('initialization method [%s] is not implemented' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: # BatchNorm Layer's weight is not a matrix; only normal distribution applies. init.normal_(m.weight.data, 1.0, init_gain) init.constant_(m.bias.data, 0.0) print('initialize network with %s' % init_type) net.apply(init_func)
Set requies_grad=Fasle for all the networks to avoid unnecessary computations
def set_requires_grad(net, requires_grad=False): """ Set requies_grad=Fasle for all the networks to avoid unnecessary computations """ for param in net.parameters(): param.requires_grad = requires_grad
Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device. Args: tensor (nested list/tuple/dictionary of :obj:`torch.Tensor`): The data to send to a given device. device (:obj:`torch.device`): The device to send the data to Returns: The same data structure as :obj:`tensor` with all tensors sent to the proper device.
def send_to_device(tensor, device): """ Recursively sends the elements in a nested list/tuple/dictionary of tensors to a given device. Args: tensor (nested list/tuple/dictionary of :obj:`torch.Tensor`): The data to send to a given device. device (:obj:`torch.device`): The device to send the data to Returns: The same data structure as :obj:`tensor` with all tensors sent to the proper device. """ if isinstance(tensor, (list, tuple)): return type(tensor)(send_to_device(t, device) for t in tensor) elif isinstance(tensor, dict): return type(tensor)({k: send_to_device(v, device) for k, v in tensor.items()}) elif not hasattr(tensor, "to"): return tensor return tensor.to(device)
concatenate multiple batches into one batch. ``tensors`` can be :class:`torch.Tensor`, List or Dict, but they must be the same data format.
def concatenate(tensors): """concatenate multiple batches into one batch. ``tensors`` can be :class:`torch.Tensor`, List or Dict, but they must be the same data format. """ if isinstance(tensors[0], torch.Tensor): return torch.cat(tensors, dim=0) elif isinstance(tensors[0], List): ret = [] for i in range(len(tensors[0])): ret.append(concatenate([t[i] for t in tensors])) return ret elif isinstance(tensors[0], Dict): ret = dict() for k in tensors[0].keys(): ret[k] = concatenate([t[k] for t in tensors]) return ret
Calculate the :math:`\mathcal{A}`-distance, which is a measure for distribution discrepancy. The definition is :math:`dist_\mathcal{A} = 2 (1-2\epsilon)`, where :math:`\epsilon` is the test error of a classifier trained to discriminate the source from the target. Args: source_feature (tensor): features from source domain in shape :math:`(minibatch, F)` target_feature (tensor): features from target domain in shape :math:`(minibatch, F)` device (torch.device) progress (bool): if True, displays a the progress of training A-Net training_epochs (int): the number of epochs when training the classifier Returns: :math:`\mathcal{A}`-distance
def calculate(source_feature: torch.Tensor, target_feature: torch.Tensor, device, progress=True, training_epochs=10): """ Calculate the :math:`\mathcal{A}`-distance, which is a measure for distribution discrepancy. The definition is :math:`dist_\mathcal{A} = 2 (1-2\epsilon)`, where :math:`\epsilon` is the test error of a classifier trained to discriminate the source from the target. Args: source_feature (tensor): features from source domain in shape :math:`(minibatch, F)` target_feature (tensor): features from target domain in shape :math:`(minibatch, F)` device (torch.device) progress (bool): if True, displays a the progress of training A-Net training_epochs (int): the number of epochs when training the classifier Returns: :math:`\mathcal{A}`-distance """ source_label = torch.ones((source_feature.shape[0], 1)) target_label = torch.zeros((target_feature.shape[0], 1)) feature = torch.cat([source_feature, target_feature], dim=0) label = torch.cat([source_label, target_label], dim=0) dataset = TensorDataset(feature, label) length = len(dataset) train_size = int(0.8 * length) val_size = length - train_size train_set, val_set = torch.utils.data.random_split(dataset, [train_size, val_size]) train_loader = DataLoader(train_set, batch_size=2, shuffle=True) val_loader = DataLoader(val_set, batch_size=8, shuffle=False) anet = ANet(feature.shape[1]).to(device) optimizer = SGD(anet.parameters(), lr=0.01) a_distance = 2.0 for epoch in range(training_epochs): anet.train() for (x, label) in train_loader: x = x.to(device) label = label.to(device) anet.zero_grad() y = anet(x) loss = F.binary_cross_entropy(y, label) loss.backward() optimizer.step() anet.eval() meter = AverageMeter("accuracy", ":4.2f") with torch.no_grad(): for (x, label) in val_loader: x = x.to(device) label = label.to(device) y = anet(x) acc = binary_accuracy(y, label) meter.update(acc, x.shape[0]) error = 1 - meter.avg / 100 a_distance = 2 * (1 - 2 * error) if progress: print("epoch {} accuracy: {} A-dist: {}".format(epoch, meter.avg, a_distance)) return a_distance
Visualize features from different domains using t-SNE. Args: source_feature (tensor): features from source domain in shape :math:`(minibatch, F)` target_feature (tensor): features from target domain in shape :math:`(minibatch, F)` filename (str): the file name to save t-SNE source_color (str): the color of the source features. Default: 'r' target_color (str): the color of the target features. Default: 'b'
def visualize(source_feature: torch.Tensor, target_feature: torch.Tensor, filename: str, source_color='r', target_color='b'): """ Visualize features from different domains using t-SNE. Args: source_feature (tensor): features from source domain in shape :math:`(minibatch, F)` target_feature (tensor): features from target domain in shape :math:`(minibatch, F)` filename (str): the file name to save t-SNE source_color (str): the color of the source features. Default: 'r' target_color (str): the color of the target features. Default: 'b' """ source_feature = source_feature.numpy() target_feature = target_feature.numpy() features = np.concatenate([source_feature, target_feature], axis=0) # map features to 2-d using TSNE X_tsne = TSNE(n_components=2, random_state=33).fit_transform(features) # domain labels, 1 represents source while 0 represents target domains = np.concatenate((np.ones(len(source_feature)), np.zeros(len(target_feature)))) # visualize using matplotlib fig, ax = plt.subplots(figsize=(10, 10)) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=domains, cmap=col.ListedColormap([target_color, source_color]), s=20) plt.xticks([]) plt.yticks([]) plt.savefig(filename)
Fetch data from `data_loader`, and then use `feature_extractor` to collect features Args: data_loader (torch.utils.data.DataLoader): Data loader. feature_extractor (torch.nn.Module): A feature extractor. device (torch.device) max_num_features (int): The max number of features to return Returns: Features in shape (min(len(data_loader), max_num_features * mini-batch size), :math:`|\mathcal{F}|`).
def collect_feature(data_loader: DataLoader, feature_extractor: nn.Module, device: torch.device, max_num_features=None) -> torch.Tensor: """ Fetch data from `data_loader`, and then use `feature_extractor` to collect features Args: data_loader (torch.utils.data.DataLoader): Data loader. feature_extractor (torch.nn.Module): A feature extractor. device (torch.device) max_num_features (int): The max number of features to return Returns: Features in shape (min(len(data_loader), max_num_features * mini-batch size), :math:`|\mathcal{F}|`). """ feature_extractor.eval() all_features = [] with torch.no_grad(): for i, data in enumerate(tqdm.tqdm(data_loader)): if max_num_features is not None and i >= max_num_features: break inputs = data[0].to(device) feature = feature_extractor(inputs).cpu() all_features.append(feature) return torch.cat(all_features, dim=0)
get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
def get_max_preds(batch_heatmaps): ''' get predictions from score maps heatmaps: numpy.ndarray([batch_size, num_joints, height, width]) ''' assert isinstance(batch_heatmaps, np.ndarray), \ 'batch_heatmaps should be numpy.ndarray' assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim' batch_size = batch_heatmaps.shape[0] num_joints = batch_heatmaps.shape[1] width = batch_heatmaps.shape[3] heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1)) idx = np.argmax(heatmaps_reshaped, 2) maxvals = np.amax(heatmaps_reshaped, 2) maxvals = maxvals.reshape((batch_size, num_joints, 1)) idx = idx.reshape((batch_size, num_joints, 1)) preds = np.tile(idx, (1, 1, 2)).astype(np.float32) preds[:, :, 0] = (preds[:, :, 0]) % width preds[:, :, 1] = np.floor((preds[:, :, 1]) / width) pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2)) pred_mask = pred_mask.astype(np.float32) preds *= pred_mask return preds, maxvals
Return percentage below threshold while ignoring values with a -1
def dist_acc(dists, thr=0.5): ''' Return percentage below threshold while ignoring values with a -1 ''' dist_cal = np.not_equal(dists, -1) num_dist_cal = dist_cal.sum() if num_dist_cal > 0: return np.less(dists[dist_cal], thr).sum() * 1.0 / num_dist_cal else: return -1
Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies
def accuracy(output, target, hm_type='gaussian', thr=0.5): ''' Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies ''' idx = list(range(output.shape[1])) norm = 1.0 if hm_type == 'gaussian': pred, _ = get_max_preds(output) target, _ = get_max_preds(target) h = output.shape[2] w = output.shape[3] norm = np.ones((pred.shape[0], 2)) * np.array([h, w]) / 10 dists = calc_dists(pred, target, norm) acc = np.zeros(len(idx)) avg_acc = 0 cnt = 0 for i in range(len(idx)): acc[i] = dist_acc(dists[idx[i]], thr) if acc[i] >= 0: avg_acc = avg_acc + acc[i] cnt += 1 avg_acc = avg_acc / cnt if cnt != 0 else 0 return acc, avg_acc, cnt, pred
Randomly choose one instance for each person id, these instances will not be selected again
def unique_sample(ids_dict, num): """Randomly choose one instance for each person id, these instances will not be selected again""" mask = np.zeros(num, dtype=np.bool) for _, indices in ids_dict.items(): i = np.random.choice(indices) mask[i] = True return mask
Compute Cumulative Matching Characteristics (CMC)
def cmc(dist_mat, query_ids, gallery_ids, query_cams, gallery_cams, topk=100, separate_camera_set=False, single_gallery_shot=False, first_match_break=False): """Compute Cumulative Matching Characteristics (CMC)""" dist_mat = dist_mat.cpu().numpy() m, n = dist_mat.shape query_ids = np.asarray(query_ids) gallery_ids = np.asarray(gallery_ids) query_cams = np.asarray(query_cams) gallery_cams = np.asarray(gallery_cams) # Sort and find correct matches indices = np.argsort(dist_mat, axis=1) matches = (gallery_ids[indices] == query_ids[:, np.newaxis]) # Compute CMC for each query ret = np.zeros(topk) num_valid_queries = 0 for i in range(m): # Filter out the same id and same camera valid = ((gallery_ids[indices[i]] != query_ids[i]) | (gallery_cams[indices[i]] != query_cams[i])) if separate_camera_set: # Filter out samples from same camera valid &= (gallery_cams[indices[i]] != query_cams[i]) if not np.any(matches[i, valid]): continue if single_gallery_shot: repeat = 10 gids = gallery_ids[indices[i][valid]] inds = np.where(valid)[0] ids_dict = defaultdict(list) for j, x in zip(inds, gids): ids_dict[x].append(j) else: repeat = 1 for _ in range(repeat): if single_gallery_shot: # Randomly choose one instance for each id sampled = (valid & unique_sample(ids_dict, len(valid))) index = np.nonzero(matches[i, sampled])[0] else: index = np.nonzero(matches[i, valid])[0] delta = 1. / (len(index) * repeat) for j, k in enumerate(index): if k - j >= topk: break if first_match_break: ret[k - j] += 1 break ret[k - j] += delta num_valid_queries += 1 if num_valid_queries == 0: raise RuntimeError("No valid query") return ret.cumsum() / num_valid_queries
Compute mean average precision (mAP)
def mean_ap(dist_mat, query_ids, gallery_ids, query_cams, gallery_cams): """Compute mean average precision (mAP)""" dist_mat = dist_mat.cpu().numpy() m, n = dist_mat.shape query_ids = np.asarray(query_ids) gallery_ids = np.asarray(gallery_ids) query_cams = np.asarray(query_cams) gallery_cams = np.asarray(gallery_cams) # Sort and find correct matches indices = np.argsort(dist_mat, axis=1) matches = (gallery_ids[indices] == query_ids[:, np.newaxis]) # Compute AP for each query aps = [] for i in range(m): # Filter out the same id and same camera valid = ((gallery_ids[indices[i]] != query_ids[i]) | (gallery_cams[indices[i]] != query_cams[i])) y_true = matches[i, valid] y_score = -dist_mat[i][indices[i]][valid] if not np.any(y_true): continue aps.append(average_precision_score(y_true, y_score)) if len(aps) == 0: raise RuntimeError("No valid query") return np.mean(aps)
Perform re-ranking with distance matrix between query and gallery images `q_g_dist`, distance matrix between query and query images `q_q_dist` and distance matrix between gallery and gallery images `g_g_dist`.
def re_ranking(q_g_dist, q_q_dist, g_g_dist, k1=20, k2=6, lambda_value=0.3): """Perform re-ranking with distance matrix between query and gallery images `q_g_dist`, distance matrix between query and query images `q_q_dist` and distance matrix between gallery and gallery images `g_g_dist`. """ q_g_dist = q_g_dist.cpu().numpy() q_q_dist = q_q_dist.cpu().numpy() g_g_dist = g_g_dist.cpu().numpy() original_dist = np.concatenate( [np.concatenate([q_q_dist, q_g_dist], axis=1), np.concatenate([q_g_dist.T, g_g_dist], axis=1)], axis=0) original_dist = np.power(original_dist, 2).astype(np.float32) original_dist = np.transpose(1. * original_dist / np.max(original_dist, axis=0)) V = np.zeros_like(original_dist).astype(np.float32) initial_rank = np.argsort(original_dist).astype(np.int32) query_num = q_g_dist.shape[0] gallery_num = q_g_dist.shape[0] + q_g_dist.shape[1] all_num = gallery_num for i in range(all_num): # k-reciprocal neighbors forward_k_neigh_index = initial_rank[i, :k1 + 1] backward_k_neigh_index = initial_rank[forward_k_neigh_index, :k1 + 1] fi = np.where(backward_k_neigh_index == i)[0] k_reciprocal_index = forward_k_neigh_index[fi] k_reciprocal_expansion_index = k_reciprocal_index for j in range(len(k_reciprocal_index)): candidate = k_reciprocal_index[j] candidate_forward_k_neigh_index = initial_rank[candidate, :int(np.around(k1 / 2.)) + 1] candidate_backward_k_neigh_index = initial_rank[candidate_forward_k_neigh_index, :int(np.around(k1 / 2.)) + 1] fi_candidate = np.where(candidate_backward_k_neigh_index == candidate)[0] candidate_k_reciprocal_index = candidate_forward_k_neigh_index[fi_candidate] if len(np.intersect1d(candidate_k_reciprocal_index, k_reciprocal_index)) > 2. / 3 * len( candidate_k_reciprocal_index): k_reciprocal_expansion_index = np.append(k_reciprocal_expansion_index, candidate_k_reciprocal_index) k_reciprocal_expansion_index = np.unique(k_reciprocal_expansion_index) weight = np.exp(-original_dist[i, k_reciprocal_expansion_index]) V[i, k_reciprocal_expansion_index] = 1. * weight / np.sum(weight) original_dist = original_dist[:query_num, ] if k2 != 1: V_qe = np.zeros_like(V, dtype=np.float32) for i in range(all_num): V_qe[i, :] = np.mean(V[initial_rank[i, :k2], :], axis=0) V = V_qe del V_qe del initial_rank invIndex = [] for i in range(gallery_num): invIndex.append(np.where(V[:, i] != 0)[0]) jaccard_dist = np.zeros_like(original_dist, dtype=np.float32) for i in range(query_num): temp_min = np.zeros(shape=[1, gallery_num], dtype=np.float32) indNonZero = np.where(V[i, :] != 0)[0] indImages = [invIndex[ind] for ind in indNonZero] for j in range(len(indNonZero)): temp_min[0, indImages[j]] = temp_min[0, indImages[j]] + np.minimum(V[i, indNonZero[j]], V[indImages[j], indNonZero[j]]) jaccard_dist[i] = 1 - temp_min / (2. - temp_min) final_dist = jaccard_dist * (1 - lambda_value) + original_dist * lambda_value del original_dist del V del jaccard_dist final_dist = final_dist[:query_num, query_num:] return final_dist
Extract feature for person ReID. If `normalize` is True, `cosine` distance will be employed as distance metric, otherwise `euclidean` distance.
def extract_reid_feature(data_loader, model, device, normalize, print_freq=200): """Extract feature for person ReID. If `normalize` is True, `cosine` distance will be employed as distance metric, otherwise `euclidean` distance. """ batch_time = AverageMeter('Time', ':6.3f') progress = ProgressMeter( len(data_loader), [batch_time], prefix='Collect feature: ') # switch to eval mode model.eval() feature_dict = dict() with torch.no_grad(): end = time.time() for i, (images_batch, filenames_batch, _, _) in enumerate(data_loader): images_batch = images_batch.to(device) features_batch = model(images_batch) if normalize: features_batch = F.normalize(features_batch) for filename, feature in zip(filenames_batch, features_batch): feature_dict[filename] = feature # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % print_freq == 0: progress.display(i) return feature_dict
Compute pairwise distance between two sets of features
def pairwise_distance(feature_dict, query, gallery): """Compute pairwise distance between two sets of features""" # concat features and convert to pytorch tensor # we compute pairwise distance metric on cpu because it may require a large amount of GPU memory, if you are using # gpu with a larger capacity, it's faster to calculate on gpu x = torch.cat([feature_dict[f].unsqueeze(0) for f, _, _ in query], dim=0).cpu() y = torch.cat([feature_dict[f].unsqueeze(0) for f, _, _ in gallery], dim=0).cpu() m, n = x.size(0), y.size(0) # flatten x = x.view(m, -1) y = y.view(n, -1) # compute dist_mat dist_mat = torch.pow(x, 2).sum(dim=1, keepdim=True).expand(m, n) + \ torch.pow(y, 2).sum(dim=1, keepdim=True).expand(n, m).t() - \ 2 * torch.matmul(x, y.t()) return dist_mat
Compute CMC score, mAP and return
def evaluate_all(dist_mat, query, gallery, cmc_topk=(1, 5, 10), cmc_flag=False): """Compute CMC score, mAP and return""" query_ids = [pid for _, pid, _ in query] gallery_ids = [pid for _, pid, _ in gallery] query_cams = [cid for _, _, cid in query] gallery_cams = [cid for _, _, cid in gallery] # Compute mean AP mAP = mean_ap(dist_mat, query_ids, gallery_ids, query_cams, gallery_cams) print('Mean AP: {:4.1%}'.format(mAP)) if not cmc_flag: return mAP cmc_configs = { 'config': dict(separate_camera_set=False, single_gallery_shot=False, first_match_break=True) } cmc_scores = {name: cmc(dist_mat, query_ids, gallery_ids, query_cams, gallery_cams, **params) for name, params in cmc_configs.items()} print('CMC Scores:') for k in cmc_topk: print(' top-{:<4}{:12.1%}'.format(k, cmc_scores['config'][k - 1])) return cmc_scores['config'][0], mAP
Visualize ranker results. We first compute pair-wise distance between query images and gallery images. Then for every query image, `topk` gallery images with least distance between given query image are selected. We plot the query image and selected gallery images together. A green border denotes a match, and a red one denotes a mis-match.
def visualize_ranked_results(data_loader, model, query, gallery, device, visualize_dir, criterion='cosine', rerank=False, width=128, height=256, topk=10): """Visualize ranker results. We first compute pair-wise distance between query images and gallery images. Then for every query image, `topk` gallery images with least distance between given query image are selected. We plot the query image and selected gallery images together. A green border denotes a match, and a red one denotes a mis-match. """ assert criterion in ['cosine', 'euclidean'] normalize = (criterion == 'cosine') # compute pairwise distance matrix feature_dict = extract_reid_feature(data_loader, model, device, normalize) dist_mat = pairwise_distance(feature_dict, query, gallery) if rerank: dist_mat_query = pairwise_distance(feature_dict, query, query) dist_mat_gallery = pairwise_distance(feature_dict, gallery, gallery) dist_mat = re_ranking(dist_mat, dist_mat_query, dist_mat_gallery) # make dir if not exists os.makedirs(visualize_dir, exist_ok=True) dist_mat = dist_mat.numpy() num_q, num_g = dist_mat.shape print('query images: {}'.format(num_q)) print('gallery images: {}'.format(num_g)) assert num_q == len(query) assert num_g == len(gallery) # start visualizing import cv2 sorted_idxes = np.argsort(dist_mat, axis=1) for q_idx in range(num_q): q_img_path, q_pid, q_cid = query[q_idx] q_img = cv2.imread(q_img_path) q_img = cv2.resize(q_img, (width, height)) # use black border to denote query image q_img = cv2.copyMakeBorder( q_img, BW, BW, BW, BW, cv2.BORDER_CONSTANT, value=(0, 0, 0) ) q_img = cv2.resize(q_img, (width, height)) num_cols = topk + 1 grid_img = 255 * np.ones( (height, num_cols * width + topk * GRID_SPACING + QUERY_EXTRA_SPACING, 3), dtype=np.uint8 ) grid_img[:, :width, :] = q_img # collect top-k gallery images with smallest distance rank_idx = 1 for g_idx in sorted_idxes[q_idx, :]: g_img_path, g_pid, g_cid = gallery[g_idx] invalid = (q_pid == g_pid) & (q_cid == g_cid) if not invalid: matched = (g_pid == q_pid) border_color = GREEN if matched else RED g_img = cv2.imread(g_img_path) g_img = cv2.resize(g_img, (width, height)) g_img = cv2.copyMakeBorder( g_img, BW, BW, BW, BW, cv2.BORDER_CONSTANT, value=border_color ) g_img = cv2.resize(g_img, (width, height)) start = rank_idx * width + rank_idx * GRID_SPACING + QUERY_EXTRA_SPACING end = (rank_idx + 1) * width + rank_idx * GRID_SPACING + QUERY_EXTRA_SPACING grid_img[:, start:end, :] = g_img rank_idx += 1 if rank_idx > topk: break save_path = osp.basename(osp.splitext(q_img_path)[0]) cv2.imwrite(osp.join(visualize_dir, save_path + '.jpg'), grid_img) if (q_idx + 1) % 100 == 0: print('Visualize {}/{}'.format(q_idx + 1, num_q)) print('Visualization process is done, ranked results are saved to {}'.format(visualize_dir))
Computes the accuracy for binary classification
def binary_accuracy(output: torch.Tensor, target: torch.Tensor) -> float: """Computes the accuracy for binary classification""" with torch.no_grad(): batch_size = target.size(0) pred = (output >= 0.5).float().t().view(-1) correct = pred.eq(target.view(-1)).float().sum() correct.mul_(100. / batch_size) return correct
Computes the accuracy over the k top predictions for the specified values of k Args: output (tensor): Classification outputs, :math:`(N, C)` where `C = number of classes` target (tensor): :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1` topk (sequence[int]): A list of top-N number. Returns: Top-N accuracies (N :math:`\in` topK).
def accuracy(output, target, topk=(1,)): r""" Computes the accuracy over the k top predictions for the specified values of k Args: output (tensor): Classification outputs, :math:`(N, C)` where `C = number of classes` target (tensor): :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1` topk (sequence[int]): A list of top-N number. Returns: Top-N accuracies (N :math:`\in` topK). """ with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target[None]) res = [] for k in topk: correct_k = correct[:k].flatten().sum(dtype=torch.float32) res.append(correct_k * (100.0 / batch_size)) return res
Download file from internet url link. Args: root (str) The directory to put downloaded files. file_name: (str) The name of the unzipped file. archive_name: (str) The name of archive(zipped file) downloaded. url_link: (str) The url link to download data. .. note:: If `file_name` already exists under path `root`, then it is not downloaded again. Else `archive_name` will be downloaded from `url_link` and extracted to `file_name`.
def download(root: str, file_name: str, archive_name: str, url_link: str): """ Download file from internet url link. Args: root (str) The directory to put downloaded files. file_name: (str) The name of the unzipped file. archive_name: (str) The name of archive(zipped file) downloaded. url_link: (str) The url link to download data. .. note:: If `file_name` already exists under path `root`, then it is not downloaded again. Else `archive_name` will be downloaded from `url_link` and extracted to `file_name`. """ if not os.path.exists(os.path.join(root, file_name)): print("Downloading {}".format(file_name)) # if os.path.exists(os.path.join(root, archive_name)): # os.remove(os.path.join(root, archive_name)) try: download_and_extract_archive(url_link, download_root=root, filename=archive_name, remove_finished=False) except Exception: print("Fail to download {} from url link {}".format(archive_name, url_link)) print('Please check you internet connection.' "Simply trying again may be fine.") exit(0)
Check whether `file_name` exists under directory `root`.
def check_exits(root: str, file_name: str): """Check whether `file_name` exists under directory `root`. """ if not os.path.exists(os.path.join(root, file_name)): print("Dataset directory {} not found under {}".format(file_name, root)) exit(-1)
Read data from file and convert each line into an element in the list
def read_list_from_file(file_name: str) -> List[str]: """Read data from file and convert each line into an element in the list""" result = [] with open(file_name, "r") as f: for line in f.readlines(): result.append(line.strip()) return result
Project 3D coordinates into image space.
def projectPoints(xyz, K): """ Project 3D coordinates into image space. """ xyz = np.array(xyz) K = np.array(K) uv = np.matmul(K, xyz.T).T return uv[:, :2] / uv[:, -1:]
Hardcoded size of the datasets.
def db_size(set_name): """ Hardcoded size of the datasets. """ if set_name == 'training': return 32560 # number of unique samples (they exists in multiple 'versions') elif set_name == 'evaluation': return 3960 else: assert 0, 'Invalid choice.'
Generate heatamap for joints. Args: joints: (K, 2) joints_vis: (K, 1) heatmap_size: W, H sigma: image_size: Returns:
def generate_target(joints, joints_vis, heatmap_size, sigma, image_size): """Generate heatamap for joints. Args: joints: (K, 2) joints_vis: (K, 1) heatmap_size: W, H sigma: image_size: Returns: """ num_joints = joints.shape[0] target_weight = np.ones((num_joints, 1), dtype=np.float32) target_weight[:, 0] = joints_vis[:, 0] target = np.zeros((num_joints, heatmap_size[1], heatmap_size[0]), dtype=np.float32) tmp_size = sigma * 3 image_size = np.array(image_size) heatmap_size = np.array(heatmap_size) for joint_id in range(num_joints): feat_stride = image_size / heatmap_size mu_x = int(joints[joint_id][0] / feat_stride[0] + 0.5) mu_y = int(joints[joint_id][1] / feat_stride[1] + 0.5) # Check that any part of the gaussian is in-bounds ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)] br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)] if mu_x >= heatmap_size[0] or mu_y >= heatmap_size[1] \ or mu_x < 0 or mu_y < 0: # If not, just return the image as is target_weight[joint_id] = 0 continue # Generate gaussian size = 2 * tmp_size + 1 x = np.arange(0, size, 1, np.float32) y = x[:, np.newaxis] x0 = y0 = size // 2 # The gaussian is not normalized, we want the center value to equal 1 g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2)) # Usable gaussian range g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0] g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1] # Image range img_x = max(0, ul[0]), min(br[0], heatmap_size[0]) img_y = max(0, ul[1]), min(br[1], heatmap_size[1]) v = target_weight[joint_id] if v > 0.5: target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \ g[g_y[0]:g_y[1], g_x[0]:g_x[1]] return target, target_weight
Convert 2D keypoints to 3D keypoints
def keypoint2d_to_3d(keypoint2d: np.ndarray, intrinsic_matrix: np.ndarray, Zc: np.ndarray): """Convert 2D keypoints to 3D keypoints""" uv1 = np.concatenate([np.copy(keypoint2d), np.ones((keypoint2d.shape[0], 1))], axis=1).T * Zc # 3 x NUM_KEYPOINTS xyz = np.matmul(np.linalg.inv(intrinsic_matrix), uv1).T # NUM_KEYPOINTS x 3 return xyz
Convert 3D keypoints to 2D keypoints
def keypoint3d_to_2d(keypoint3d: np.ndarray, intrinsic_matrix: np.ndarray): """Convert 3D keypoints to 2D keypoints""" keypoint2d = np.matmul(intrinsic_matrix, keypoint3d.T).T # NUM_KEYPOINTS x 3 keypoint2d = keypoint2d[:, :2] / keypoint2d[:, 2:3] # NUM_KEYPOINTS x 2 return keypoint2d
Change `box` to a square box. The side with of the square box will be `scale` * max(w, h) where w and h is the width and height of the origin box
def scale_box(box, image_width, image_height, scale): """ Change `box` to a square box. The side with of the square box will be `scale` * max(w, h) where w and h is the width and height of the origin box """ left, upper, right, lower = box center_x, center_y = (left + right) / 2, (upper + lower) / 2 w, h = right - left, lower - upper side_with = min(round(scale * max(w, h)), min(image_width, image_height)) left = round(center_x - side_with / 2) right = left + side_with - 1 upper = round(center_y - side_with / 2) lower = upper + side_with - 1 if left < 0: left = 0 right = side_with - 1 if right >= image_width: right = image_width - 1 left = image_width - side_with if upper < 0: upper = 0 lower = side_with -1 if lower >= image_height: lower = image_height - 1 upper = image_height - side_with return left, upper, right, lower
Get the bounding box for keypoints
def get_bounding_box(keypoint2d: np.array): """Get the bounding box for keypoints""" left = np.min(keypoint2d[:, 0]) right = np.max(keypoint2d[:, 0]) upper = np.min(keypoint2d[:, 1]) lower = np.max(keypoint2d[:, 1]) return left, upper, right, lower
Load Pascal VOC detection annotations to Detectron2 format. Args: dirname: Contain "Annotations", "ImageSets", "JPEGImages" split (str): one of "train", "test", "val", "trainval" class_names: list or tuple of class names
def load_voc_instances(dirname: str, split: str, class_names, ext='.jpg', bbox_zero_based=False): """ Load Pascal VOC detection annotations to Detectron2 format. Args: dirname: Contain "Annotations", "ImageSets", "JPEGImages" split (str): one of "train", "test", "val", "trainval" class_names: list or tuple of class names """ with PathManager.open(os.path.join(dirname, "ImageSets", "Main", split + ".txt")) as f: fileids = np.loadtxt(f, dtype=np.str) # Needs to read many small annotation files. Makes sense at local annotation_dirname = PathManager.get_local_path(os.path.join(dirname, "Annotations/")) dicts = [] skip_classes = set() for fileid in fileids: anno_file = os.path.join(annotation_dirname, fileid + ".xml") jpeg_file = os.path.join(dirname, "JPEGImages", fileid + ext) with PathManager.open(anno_file) as f: tree = ET.parse(f) r = { "file_name": jpeg_file, "image_id": fileid, "height": int(tree.findall("./size/height")[0].text), "width": int(tree.findall("./size/width")[0].text), } instances = [] for obj in tree.findall("object"): cls = obj.find("name").text if cls not in class_names: skip_classes.add(cls) continue # We include "difficult" samples in training. # Based on limited experiments, they don't hurt accuracy. # difficult = int(obj.find("difficult").text) # if difficult == 1: # continue bbox = obj.find("bndbox") bbox = [float(bbox.find(x).text) for x in ["xmin", "ymin", "xmax", "ymax"]] # Original annotations are integers in the range [1, W or H] # Assuming they mean 1-based pixel indices (inclusive), # a box with annotation (xmin=1, xmax=W) covers the whole image. # In coordinate space this is represented by (xmin=0, xmax=W) if bbox_zero_based is False: bbox[0] -= 1.0 bbox[1] -= 1.0 instances.append( {"category_id": class_names.index(cls), "bbox": bbox, "bbox_mode": BoxMode.XYXY_ABS} ) r["annotations"] = instances dicts.append(r) print("Skip classes:", list(skip_classes)) return dicts
Convert a dataset into its open-set version. In other words, those samples which doesn't belong to `private_classes` will be marked as "unknown". Be aware that `open_set` will change the label number of each category. Args: dataset_class (class): Dataset class. Only subclass of ``ImageList`` can be open-set. public_classes (sequence[str]): A sequence of which categories need to be kept in the open-set dataset. Each element of `public_classes` must belong to the `classes` list of `dataset_class`. private_classes (sequence[str], optional): A sequence of which categories need to be marked as "unknown" in the open-set dataset. Each element of `private_classes` must belong to the `classes` list of `dataset_class`. Default: (). Examples:: >>> public_classes = ['back_pack', 'bike', 'calculator', 'headphones', 'keyboard'] >>> private_classes = ['laptop_computer', 'monitor', 'mouse', 'mug', 'projector'] >>> # create a open-set dataset class which has classes >>> # 'back_pack', 'bike', 'calculator', 'headphones', 'keyboard' and 'unknown'. >>> OpenSetOffice31 = open_set(Office31, public_classes, private_classes) >>> # create an instance of the open-set dataset >>> dataset = OpenSetDataset(root="data/office31", task="A")
def open_set(dataset_class: ClassVar, public_classes: Sequence[str], private_classes: Optional[Sequence[str]] = ()) -> ClassVar: """ Convert a dataset into its open-set version. In other words, those samples which doesn't belong to `private_classes` will be marked as "unknown". Be aware that `open_set` will change the label number of each category. Args: dataset_class (class): Dataset class. Only subclass of ``ImageList`` can be open-set. public_classes (sequence[str]): A sequence of which categories need to be kept in the open-set dataset.\ Each element of `public_classes` must belong to the `classes` list of `dataset_class`. private_classes (sequence[str], optional): A sequence of which categories need to be marked as "unknown" \ in the open-set dataset. Each element of `private_classes` must belong to the `classes` list of \ `dataset_class`. Default: (). Examples:: >>> public_classes = ['back_pack', 'bike', 'calculator', 'headphones', 'keyboard'] >>> private_classes = ['laptop_computer', 'monitor', 'mouse', 'mug', 'projector'] >>> # create a open-set dataset class which has classes >>> # 'back_pack', 'bike', 'calculator', 'headphones', 'keyboard' and 'unknown'. >>> OpenSetOffice31 = open_set(Office31, public_classes, private_classes) >>> # create an instance of the open-set dataset >>> dataset = OpenSetDataset(root="data/office31", task="A") """ if not (issubclass(dataset_class, ImageList)): raise Exception("Only subclass of ImageList can be openset") class OpenSetDataset(dataset_class): def __init__(self, **kwargs): super(OpenSetDataset, self).__init__(**kwargs) samples = [] all_classes = list(deepcopy(public_classes)) + ["unknown"] for (path, label) in self.samples: class_name = self.classes[label] if class_name in public_classes: samples.append((path, all_classes.index(class_name))) elif class_name in private_classes: samples.append((path, all_classes.index("unknown"))) self.samples = samples self.classes = all_classes self.class_to_idx = {cls: idx for idx, cls in enumerate(self.classes)} return OpenSetDataset
Default open-set used in some paper. Args: dataset_class (class): Dataset class. Currently, dataset_class must be one of :class:`~tllib.vision.datasets.office31.Office31`, :class:`~tllib.vision.datasets.officehome.OfficeHome`, :class:`~tllib.vision.datasets.visda2017.VisDA2017`, source (bool): Whether the dataset is used for source domain or not.
def default_open_set(dataset_class: ClassVar, source: bool) -> ClassVar: """ Default open-set used in some paper. Args: dataset_class (class): Dataset class. Currently, dataset_class must be one of :class:`~tllib.vision.datasets.office31.Office31`, :class:`~tllib.vision.datasets.officehome.OfficeHome`, :class:`~tllib.vision.datasets.visda2017.VisDA2017`, source (bool): Whether the dataset is used for source domain or not. """ if dataset_class == Office31: public_classes = Office31.CLASSES[:20] if source: private_classes = () else: private_classes = Office31.CLASSES[20:] elif dataset_class == OfficeHome: public_classes = sorted(OfficeHome.CLASSES)[:25] if source: private_classes = () else: private_classes = sorted(OfficeHome.CLASSES)[25:] elif dataset_class == VisDA2017: public_classes = ('bicycle', 'bus', 'car', 'motorcycle', 'train', 'truck') if source: private_classes = () else: private_classes = ('aeroplane', 'horse', 'knife', 'person', 'plant', 'skateboard') else: raise NotImplementedError("Unknown openset domain adaptation dataset: {}".format(dataset_class.__name__)) return open_set(dataset_class, public_classes, private_classes)
Convert a dataset into its partial version. In other words, those samples which doesn't belong to `partial_classes` will be discarded. Yet `partial` will not change the label space of `dataset_class`. Args: dataset_class (class): Dataset class. Only subclass of ``ImageList`` can be partial. partial_classes (sequence[str]): A sequence of which categories need to be kept in the partial dataset. Each element of `partial_classes` must belong to the `classes` list of `dataset_class`. Examples:: >>> partial_classes = ['back_pack', 'bike', 'calculator', 'headphones', 'keyboard'] >>> # create a partial dataset class >>> PartialOffice31 = partial(Office31, partial_classes) >>> # create an instance of the partial dataset >>> dataset = PartialDataset(root="data/office31", task="A")
def partial(dataset_class: ClassVar, partial_classes: Sequence[str]) -> ClassVar: """ Convert a dataset into its partial version. In other words, those samples which doesn't belong to `partial_classes` will be discarded. Yet `partial` will not change the label space of `dataset_class`. Args: dataset_class (class): Dataset class. Only subclass of ``ImageList`` can be partial. partial_classes (sequence[str]): A sequence of which categories need to be kept in the partial dataset.\ Each element of `partial_classes` must belong to the `classes` list of `dataset_class`. Examples:: >>> partial_classes = ['back_pack', 'bike', 'calculator', 'headphones', 'keyboard'] >>> # create a partial dataset class >>> PartialOffice31 = partial(Office31, partial_classes) >>> # create an instance of the partial dataset >>> dataset = PartialDataset(root="data/office31", task="A") """ if not (issubclass(dataset_class, ImageList)): raise Exception("Only subclass of ImageList can be partial") class PartialDataset(dataset_class): def __init__(self, **kwargs): super(PartialDataset, self).__init__(**kwargs) assert all([c in self.classes for c in partial_classes]) samples = [] for (path, label) in self.samples: class_name = self.classes[label] if class_name in partial_classes: samples.append((path, label)) self.samples = samples self.partial_classes = partial_classes self.partial_classes_idx = [self.class_to_idx[c] for c in partial_classes] return PartialDataset
Default partial used in some paper. Args: dataset_class (class): Dataset class. Currently, dataset_class must be one of :class:`~tllib.vision.datasets.office31.Office31`, :class:`~tllib.vision.datasets.officehome.OfficeHome`, :class:`~tllib.vision.datasets.visda2017.VisDA2017`, :class:`~tllib.vision.datasets.partial.imagenet_caltech.ImageNetCaltech` and :class:`~tllib.vision.datasets.partial.caltech_imagenet.CaltechImageNet`.
def default_partial(dataset_class: ClassVar) -> ClassVar: """ Default partial used in some paper. Args: dataset_class (class): Dataset class. Currently, dataset_class must be one of :class:`~tllib.vision.datasets.office31.Office31`, :class:`~tllib.vision.datasets.officehome.OfficeHome`, :class:`~tllib.vision.datasets.visda2017.VisDA2017`, :class:`~tllib.vision.datasets.partial.imagenet_caltech.ImageNetCaltech` and :class:`~tllib.vision.datasets.partial.caltech_imagenet.CaltechImageNet`. """ if dataset_class == Office31: kept_classes = OfficeCaltech.CLASSES elif dataset_class == OfficeHome: kept_classes = sorted(OfficeHome.CLASSES)[:25] elif dataset_class == VisDA2017: kept_classes = sorted(VisDA2017.CLASSES)[:6] elif dataset_class in [ImageNetCaltech, CaltechImageNet]: kept_classes = dataset_class.CLASSES else: raise NotImplementedError("Unknown partial domain adaptation dataset: {}".format(dataset_class.__name__)) return partial(dataset_class, kept_classes)