response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Rename a DLL to allow for updates.
def _rename_dll_for_update(absolute_filepath): """Rename a DLL to allow for updates.""" backup_filepath = absolute_filepath + '.bak.' + str(int(time.time())) os.rename(absolute_filepath, backup_filepath)
Return the platform deployment filename.
def _platform_deployment_filename(): """Return the platform deployment filename.""" platform_mappings = { 'Linux': 'linux', 'Windows': 'windows', 'Darwin': 'macos' } base_filename = platform_mappings[platform.system()] if sys.version_info.major == 3: base_filename += '-3' return base_filename + '.zip'
Helper to return deployment file url.
def _deployment_file_url(filename): """Helper to return deployment file url.""" deployment_bucket = local_config.ProjectConfig().get('deployment.bucket') if not deployment_bucket: return None if environment.get_value('USE_TEST_DEPLOYMENT'): return f'gs://{deployment_bucket}/test-deployment/{filename}' return f'gs://{deployment_bucket}/{filename}'
Return the source URL.
def get_source_url(): """Return the source URL.""" return _deployment_file_url(_platform_deployment_filename())
Return the source manifest URL.
def get_source_manifest_url(): """Return the source manifest URL.""" return _deployment_file_url(MANIFEST_FILENAME)
Remove files from the directory that isn't in the given file list.
def clear_old_files(directory, extracted_file_set): """Remove files from the directory that isn't in the given file list.""" for root_directory, _, filenames in shell.walk(directory): for filename in filenames: file_path = os.path.join(root_directory, filename) if file_path not in extracted_file_set: shell.remove_file(file_path) shell.remove_empty_directories(directory)
Recursively remove all .pyc files from the given directory
def clear_pyc_files(directory): """Recursively remove all .pyc files from the given directory""" for root_directory, _, filenames in shell.walk(directory): for filename in filenames: if not filename.endswith('.pyc'): continue file_path = os.path.join(root_directory, filename) shell.remove_file(file_path)
Get the local revision and report as a metric.
def track_revision(): """Get the local revision and report as a metric.""" revision = get_local_source_revision() or '' monitoring_metrics.BOT_COUNT.set(1, {'revision': revision})
Return the local source revision.
def get_local_source_revision(): """Return the local source revision.""" return utils.current_source_version()
Get remote revision. We refactor this method out, so that we can mock it.
def get_remote_source_revision(source_manifest_url): """Get remote revision. We refactor this method out, so that we can mock it.""" return storage.read_data(source_manifest_url).decode('utf-8').strip()
Returns the latest source revision if there is an update, or None if the current source is up to date.
def get_newer_source_revision(): """Returns the latest source revision if there is an update, or None if the current source is up to date.""" if (environment.get_value('LOCAL_SRC') or environment.get_value('LOCAL_DEVELOPMENT')): logs.log('Using local source, skipping source code update.') return None root_directory = environment.get_value('ROOT_DIR') temp_directory = environment.get_value('BOT_TMPDIR') source_manifest_url = get_source_manifest_url() if (not get_source_url() or not source_manifest_url or not temp_directory or not root_directory): logs.log('Skipping source code update.') return None logs.log('Checking source code for updates.') try: source_version = get_remote_source_revision(source_manifest_url) except Exception: logs.log_error('Error occurred while checking source version.') return None local_source_version = get_local_source_revision() if not local_source_version: logs.log('No manifest found. Forcing an update.') return source_version logs.log('Local source code version: %s.' % local_source_version) logs.log('Remote source code version: %s.' % source_version) if local_source_version >= source_version: logs.log('Remote souce code <= local source code. No update.') # No source code update found. Source code is current, bail out. return None logs.log(f'New source code: {source_version}') return source_version
Run platform specific initialization scripts.
def run_platform_init_scripts(): """Run platform specific initialization scripts.""" logs.log('Running platform initialization scripts.') plt = environment.platform() if environment.is_android(): android_init.run() elif plt == 'CHROMEOS': chromeos_init.run() elif plt == 'FUCHSIA': fuchsia_init.run() elif plt == 'LINUX': linux_init.run() elif plt == 'MAC': mac_init.run() elif plt == 'WINDOWS': windows_init.run() else: raise RuntimeError('Unsupported platform') logs.log('Completed running platform initialization scripts.')
Updates source code files with latest version from appengine.
def update_source_code(): """Updates source code files with latest version from appengine.""" process_handler.cleanup_stale_processes() shell.clear_temp_directory() # ROOT_DIR just means the clusterfuzz directory. root_directory = environment.get_value('ROOT_DIR') cf_source_root_parent_dir = os.path.dirname(root_directory) temp_archive = os.path.join(cf_source_root_parent_dir, 'clusterfuzz-source.zip') try: storage.copy_file_from(get_source_url(), temp_archive) except Exception: logs.log_error('Could not retrieve source code archive from url.') return try: reader = archive.open(temp_archive) except Exception: logs.log_error('Bad zip file.') return src_directory = os.path.join(root_directory, 'src') error_occurred = False normalized_file_set = set() for file in reader.list_members(): filename = os.path.basename(file.name) # This file cannot be updated on the fly since it is running as server. if filename == 'adb': continue absolute_filepath = os.path.join(cf_source_root_parent_dir, file.name) if os.path.altsep: absolute_filepath = absolute_filepath.replace(os.path.altsep, os.path.sep) if os.path.realpath(absolute_filepath) != absolute_filepath: continue normalized_file_set.add(absolute_filepath) try: file_extension = os.path.splitext(filename)[1] # Remove any .so files first before overwriting, as they can be loaded # in the memory of existing processes. Overwriting them directly causes # segfaults in existing processes (e.g. run.py). if file_extension == '.so' and os.path.exists(absolute_filepath): os.remove(absolute_filepath) # On Windows, to update DLLs (and native .pyd extensions), we rename it # first so that we can install the new version. if (environment.platform() == 'WINDOWS' and file_extension in ['.dll', '.pyd'] and os.path.exists(absolute_filepath)): _rename_dll_for_update(absolute_filepath) except Exception: logs.log_error('Failed to remove or move %s before extracting new ' 'version.' % absolute_filepath) try: extracted_path = reader.extract( file.name, cf_source_root_parent_dir, trusted=True) mode = file.mode mode |= 0o440 os.chmod(extracted_path, mode) except: error_occurred = True logs.log_error(f'Failed to extract file {file.name} from source archive.') reader.close() if error_occurred: return clear_pyc_files(src_directory) clear_old_files(src_directory, normalized_file_set) local_manifest_path = os.path.join(root_directory, utils.LOCAL_SOURCE_MANIFEST) source_version = utils.read_data_from_file( local_manifest_path, eval_data=False).decode('utf-8').strip() os.remove(temp_archive) logs.log('Source code updated to %s.' % source_version)
Updates layout tests every day.
def update_tests_if_needed(): """Updates layout tests every day.""" data_directory = environment.get_value('FUZZ_DATA') error_occured = False expected_task_duration = 60 * 60 # 1 hour. retry_limit = environment.get_value('FAIL_RETRIES') temp_archive = os.path.join(data_directory, 'temp.zip') tests_url = environment.get_value('WEB_TESTS_URL') # Check if we have a valid tests url. if not tests_url: return # Layout test updates are usually disabled to speedup local testing. if environment.get_value('LOCAL_DEVELOPMENT'): return # |UPDATE_WEB_TESTS| env variable can be used to control our update behavior. if not environment.get_value('UPDATE_WEB_TESTS'): return last_modified_time = persistent_cache.get_value( TESTS_LAST_UPDATE_KEY, constructor=datetime.datetime.utcfromtimestamp) if (last_modified_time is not None and not dates.time_has_expired( last_modified_time, days=TESTS_UPDATE_INTERVAL_DAYS)): return logs.log('Updating layout tests.') tasks.track_task_start( tasks.Task('update_tests', '', ''), expected_task_duration) # Download and unpack the tests archive. for _ in range(retry_limit): try: shell.remove_directory(data_directory, recreate=True) storage.copy_file_from(tests_url, temp_archive) with archive.open(temp_archive) as reader: reader.extract_all(data_directory, trusted=True) shell.remove_file(temp_archive) error_occured = False break except: logs.log_error( 'Could not retrieve and unpack layout tests archive. Retrying.') error_occured = True if not error_occured: persistent_cache.set_value( TESTS_LAST_UPDATE_KEY, time.time(), persist_across_reboots=True) tasks.track_task_end()
Run update task.
def run(): """Run update task.""" # Since this code is particularly sensitive for bot stability, continue # execution but store the exception if anything goes wrong during one of these # steps. try: # Update heartbeat with current time. data_handler.update_heartbeat() # Check overall free disk space. If we are running too low, clear all # data directories like builds, fuzzers, data bundles, etc. shell.clear_data_directories_on_low_disk_space() # Download new layout tests once per day. if not environment.is_uworker(): update_tests_if_needed() except Exception: logs.log_error('Error occurred while running update task.') # Even if there is an exception in one of the other steps, we want to try to # update the source. If for some reason the source code update fails, it is # not necessary to run the init scripts. try: # If there is a newer revision, exit and let run.py update the source code. if get_newer_source_revision() is not None: if environment.is_trusted_host(): from clusterfuzz._internal.bot.untrusted_runner import host host.update_worker() sys.exit(0) # Run platform specific initialization scripts. run_platform_init_scripts() except Exception: logs.log_error('Error occurred while running update task.')
Adds the default issue metadata (e.g. components, labels) to testcase.
def _add_default_issue_metadata(testcase, fuzz_target_metadata): """Adds the default issue metadata (e.g. components, labels) to testcase.""" testcase_metadata = testcase.get_metadata() for key, default_value in fuzz_target_metadata.items(): # Only string metadata are supported. if not isinstance(default_value, str): continue # Add the default issue metadata first. This gives preference to uploader # specified issue metadata. new_value_list = utils.parse_delimited( default_value, delimiter=',', strip=True, remove_empty=True) # Append uploader specified testcase metadata value to end (for preference). uploader_value = testcase_metadata.get(key, '') uploader_value_list = utils.parse_delimited( uploader_value, delimiter=',', strip=True, remove_empty=True) for value in uploader_value_list: if value not in new_value_list: new_value_list.append(value) new_value = ','.join(new_value_list) if new_value == uploader_value: continue logs.log('Updating issue metadata for {} from {} to {}.'.format( key, uploader_value, new_value)) testcase.set_metadata(key, new_value)
Set up a custom or regular build based on revision. For regular builds, if a provided revision is not found, set up a build with the closest revision <= provided revision.
def setup_build(testcase: data_types.Testcase, bad_revisions) -> Optional[uworker_msg_pb2.Output]: """Set up a custom or regular build based on revision. For regular builds, if a provided revision is not found, set up a build with the closest revision <= provided revision.""" revision = testcase.crash_revision if revision and not build_manager.is_custom_binary(): build_bucket_path = build_manager.get_primary_bucket_path() revision_list = build_manager.get_revisions_list( build_bucket_path, bad_revisions, testcase=testcase) if not revision_list: return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.ANALYZE_NO_REVISIONS_LIST) revision_index = revisions.find_min_revision_index(revision_list, revision) if revision_index is None: return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.ANALYZE_NO_REVISION_INDEX) revision = revision_list[revision_index] build_manager.setup_build(revision) return None
Prepares the environment for execute_task.
def prepare_env_for_main(testcase_upload_metadata): """Prepares the environment for execute_task.""" # Reset redzones. environment.reset_current_memory_tool_options(redzone_size=128) # Unset window location size and position properties so as to use default. environment.set_value('WINDOW_ARG', '') # Adjust the test timeout, if user has provided one. if testcase_upload_metadata.timeout: environment.set_value('TEST_TIMEOUT', testcase_upload_metadata.timeout) # Adjust the number of retries, if user has provided one. if testcase_upload_metadata.retries is not None: environment.set_value('CRASH_RETRIES', testcase_upload_metadata.retries)
Sets up the |testcase| and builds. Returns the path to the testcase on success, None on error.
def setup_testcase_and_build( testcase, job_type, setup_input, bad_revisions) -> (Optional[str], Optional[uworker_msg_pb2.Output]): """Sets up the |testcase| and builds. Returns the path to the testcase on success, None on error.""" # Set up testcase and get absolute testcase path. _, testcase_file_path, error = setup.setup_testcase(testcase, job_type, setup_input) if error: return None, error # Set up build. error = setup_build(testcase, bad_revisions) if error: return None, error # Check if we have an application path. If not, our build failed # to setup correctly. if not build_manager.check_app_path(): # Let postprocess handle ANALYZE_BUILD_SETUP and restart tasks if needed. return None, uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.ANALYZE_BUILD_SETUP) update_testcase_after_build_setup(testcase) testcase.absolute_path = testcase_file_path return testcase_file_path, None
Updates the testcase entity with values from global state that was set during build setup.
def update_testcase_after_build_setup(testcase): """Updates the testcase entity with values from global state that was set during build setup.""" # NOTE: This must be done after setting up the build, which also sets # environment variables consumed by set_initial_testcase_metadata. See # https://crbug.com/1453576. # Set initial testcase metadata fields (e.g. build url, etc). data_handler.set_initial_testcase_metadata(testcase) # Update minimized arguments and use ones provided during user upload. if not testcase.minimized_arguments: minimized_arguments = environment.get_value('APP_ARGS') or '' additional_command_line_flags = testcase.get_metadata( 'uploaded_additional_args') if additional_command_line_flags: minimized_arguments += ' %s' % additional_command_line_flags environment.set_value('APP_ARGS', minimized_arguments) testcase.minimized_arguments = minimized_arguments
Initializes a testcase for the crash testing phase.
def initialize_testcase_for_main(testcase, job_type): """Initializes a testcase for the crash testing phase.""" # Update initial testcase information. testcase.job_type = job_type testcase.queue = tasks.default_queue() testcase.crash_state = '' testcase.put()
Tests for a crash with retries. Tries with HTTP (with retries) if initial attempts fail. Returns the most recent crash result and the possibly updated HTTP flag.
def test_for_crash_with_retries(fuzz_target, testcase, testcase_file_path, test_timeout): """Tests for a crash with retries. Tries with HTTP (with retries) if initial attempts fail. Returns the most recent crash result and the possibly updated HTTP flag.""" # Get the crash output. http_flag = testcase.http_flag result = testcase_manager.test_for_crash_with_retries( fuzz_target, testcase, testcase_file_path, test_timeout, http_flag=http_flag, compare_crash=False) # If we don't get a crash, try enabling http to see if we can get a crash. # Skip engine fuzzer jobs (e.g. libFuzzer, AFL) for which http testcase paths # are not applicable. if (not result.is_crash() and not http_flag and not environment.is_engine_fuzzer_job()): result_with_http = testcase_manager.test_for_crash_with_retries( fuzz_target, testcase, testcase_file_path, test_timeout, http_flag=True, compare_crash=False) if result_with_http.is_crash(): logs.log('Testcase needs http flag for crash.') http_flag = True result = result_with_http return result, http_flag return result, http_flag
Handles a non-crashing testcase. Either deletes the testcase or schedules another, final analysis.
def handle_noncrash(output): """Handles a non-crashing testcase. Either deletes the testcase or schedules another, final analysis.""" # Could not reproduce the crash. testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) log_message = ( f'Testcase didn\'t crash in {output.test_timeout} seconds (with retries)') data_handler.update_testcase_comment(testcase, data_types.TaskState.FINISHED, log_message) # For an unreproducible testcase, retry once on another bot to confirm # our results and in case this bot is in a bad state which we didn't catch # through our usual means. if is_first_analyze_attempt(testcase): testcase.status = 'Unreproducible, retrying' testcase.put() tasks.add_task('analyze', output.uworker_input.testcase_id, output.uworker_input.job_type) return testcase_upload_metadata = query_testcase_upload_metadata( output.uworker_input.testcase_id) data_handler.mark_invalid_uploaded_testcase( testcase, testcase_upload_metadata, 'Unreproducible')
Updates |testcase| based on |state|.
def update_testcase_after_crash(testcase, state, job_type, http_flag, analyze_task_output): """Updates |testcase| based on |state|.""" testcase.crash_type = state.crash_type testcase.crash_address = state.crash_address testcase.crash_state = state.crash_state testcase.http_flag = http_flag testcase.security_flag = crash_analyzer.is_security_issue( state.crash_stacktrace, state.crash_type, state.crash_address) # These are passed back to postprocess to update the testcase. analyze_task_output.crash_info_set = True analyze_task_output.http_flag = http_flag analyze_task_output.crash_type = state.crash_type analyze_task_output.crash_address = state.crash_address analyze_task_output.crash_state = state.crash_state analyze_task_output.security_flag = testcase.security_flag # If it is, guess the severity. if testcase.security_flag: testcase.security_severity = severity_analyzer.get_security_severity( state.crash_type, state.crash_stacktrace, job_type, bool(testcase.gestures)) if testcase.security_severity is not None: analyze_task_output.security_severity = testcase.security_severity
Runs preprocessing for analyze task.
def utask_preprocess(testcase_id, job_type, uworker_env): """Runs preprocessing for analyze task.""" # Get the testcase from the database and mark it as started. testcase = data_handler.get_testcase_by_id(testcase_id) data_handler.update_testcase_comment(testcase, data_types.TaskState.STARTED) testcase_upload_metadata = query_testcase_upload_metadata(testcase_id) if not testcase_upload_metadata: logs.log_error( 'Testcase %s has no associated upload metadata.' % testcase_id) testcase.key.delete() return None # Store the bot name and timestamp in upload metadata. testcase_upload_metadata.bot_name = environment.get_value('BOT_NAME') testcase_upload_metadata.timestamp = datetime.datetime.utcnow() testcase_upload_metadata.put() initialize_testcase_for_main(testcase, job_type) setup_input = setup.preprocess_setup_testcase(testcase, uworker_env) analyze_task_input = get_analyze_task_input() uworker_input = uworker_msg_pb2.Input( testcase_upload_metadata=uworker_io.entity_to_protobuf( testcase_upload_metadata), testcase=uworker_io.entity_to_protobuf(testcase), testcase_id=testcase_id, uworker_env=uworker_env, setup_input=setup_input, job_type=job_type, analyze_task_input=analyze_task_input, ) testcase_manager.preprocess_testcase_manager(testcase, uworker_input) return uworker_input
Copies the testcase updated fields to analyze_task_output to be updated in postprocess.
def _build_task_output( testcase: data_types.Testcase) -> uworker_msg_pb2.AnalyzeTaskOutput: """Copies the testcase updated fields to analyze_task_output to be updated in postprocess.""" analyze_task_output = uworker_msg_pb2.AnalyzeTaskOutput() analyze_task_output.crash_revision = int(testcase.crash_revision) analyze_task_output.absolute_path = testcase.absolute_path analyze_task_output.minimized_arguments = testcase.minimized_arguments if testcase.get_metadata('build_key'): analyze_task_output.build_key = testcase.get_metadata('build_key') if testcase.get_metadata('build_url'): analyze_task_output.build_url = testcase.get_metadata('build_url') if testcase.get_metadata('gn_args'): analyze_task_output.gn_args = testcase.get_metadata('gn_args') if testcase.platform: analyze_task_output.platform = testcase.platform if testcase.platform_id: analyze_task_output.platform_id = testcase.platform_id return analyze_task_output
Executes the untrusted part of analyze_task.
def utask_main(uworker_input): """Executes the untrusted part of analyze_task.""" testcase_upload_metadata = uworker_io.entity_from_protobuf( uworker_input.testcase_upload_metadata, data_types.TestcaseUploadMetadata) testcase = uworker_io.entity_from_protobuf(uworker_input.testcase, data_types.Testcase) uworker_io.check_handling_testcase_safe(testcase) prepare_env_for_main(testcase_upload_metadata) is_lsan_enabled = environment.get_value('LSAN') if is_lsan_enabled: # Creates empty local blacklist so all leaks will be visible to uploader. leak_blacklist.create_empty_local_blacklist() testcase_file_path, output = setup_testcase_and_build( testcase, uworker_input.job_type, uworker_input.setup_input, uworker_input.analyze_task_input.bad_revisions) testcase.crash_revision = environment.get_value('APP_REVISION') if not testcase_file_path: return output analyze_task_output = _build_task_output(testcase) # Initialize some variables. test_timeout = environment.get_value('TEST_TIMEOUT') fuzz_target = testcase_manager.get_fuzz_target_from_input(uworker_input) result, http_flag = test_for_crash_with_retries( fuzz_target, testcase, testcase_file_path, test_timeout) # Set application command line with the correct http flag. application_command_line = ( testcase_manager.get_command_line_for_application( testcase_file_path, needs_http=http_flag)) # Get the crash data. crashed = result.is_crash() crash_time = result.get_crash_time() state = result.get_symbolized_data() unsymbolized_crash_stacktrace = result.get_stacktrace(symbolized=False) # In the general case, we will not attempt to symbolize if we do not detect # a crash. For user uploads, we should symbolize anyway to provide more # information about what might be happening. crash_stacktrace_output = utils.get_crash_stacktrace_output( application_command_line, state.crash_stacktrace, unsymbolized_crash_stacktrace) testcase.crash_stacktrace = data_handler.filter_stacktrace( crash_stacktrace_output) analyze_task_output.crash_stacktrace = testcase.crash_stacktrace if not crashed: return uworker_msg_pb2.Output( analyze_task_output=analyze_task_output, error_type=uworker_msg_pb2.ErrorType.ANALYZE_NO_CRASH, test_timeout=test_timeout) # Update testcase crash parameters. update_testcase_after_crash(testcase, state, uworker_input.job_type, http_flag, analyze_task_output) # See if we have to ignore this crash. if crash_analyzer.ignore_stacktrace(state.crash_stacktrace): # TODO(metzman): Handle this by closing the testcase on the trusted worker. # Also, deal with the other cases where we are updating testcase comment # in untrusted. data_handler.close_invalid_uploaded_testcase( testcase, testcase_upload_metadata, 'Irrelevant') return uworker_msg_pb2.Output( analyze_task_output=analyze_task_output, error_type=uworker_msg_pb2.ErrorType.UNHANDLED) test_for_reproducibility(fuzz_target, testcase, testcase_file_path, state, test_timeout) analyze_task_output.one_time_crasher_flag = testcase.one_time_crasher_flag fuzz_target_metadata = engine_common.get_fuzz_target_issue_metadata( fuzz_target) return uworker_msg_pb2.Output( analyze_task_output=analyze_task_output, test_timeout=test_timeout, crash_time=crash_time, issue_metadata=fuzz_target_metadata)
Handles errors for scenarios where build setup fails.
def handle_build_setup_error(output): """Handles errors for scenarios where build setup fails.""" testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) data_handler.update_testcase_comment(testcase, data_types.TaskState.ERROR, 'Build setup failed') if is_first_analyze_attempt(testcase): task_name = 'analyze' testcase_fail_wait = environment.get_value('FAIL_WAIT') tasks.add_task( task_name, output.uworker_input.testcase_id, output.uworker_input.job_type, wait_time=testcase_fail_wait) return testcase_upload_metadata = query_testcase_upload_metadata( output.uworker_input.testcase_id) data_handler.mark_invalid_uploaded_testcase( testcase, testcase_upload_metadata, 'Build setup failed')
Updates the testcase using the info passed from utask_main.
def _update_testcase(output): """Updates the testcase using the info passed from utask_main.""" if not output.HasField('analyze_task_output'): return testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) analyze_task_output = output.analyze_task_output testcase.crash_revision = analyze_task_output.crash_revision testcase.absolute_path = analyze_task_output.absolute_path testcase.minimized_arguments = analyze_task_output.minimized_arguments testcase.crash_stacktrace = analyze_task_output.crash_stacktrace if analyze_task_output.crash_info_set: testcase.http_flag = analyze_task_output.http_flag testcase.crash_type = analyze_task_output.crash_type testcase.crash_address = analyze_task_output.crash_address testcase.crash_state = analyze_task_output.crash_state testcase.security_flag = analyze_task_output.security_flag if testcase.security_flag: if analyze_task_output.HasField('security_severity'): testcase.security_severity = analyze_task_output.security_severity else: testcase.security_severity = None testcase.one_time_crasher_flag = analyze_task_output.one_time_crasher_flag # For the following fields, we are assuming an empty string/ None is invalid. if analyze_task_output.build_key: testcase.set_metadata( 'build_key', analyze_task_output.build_key, update_testcase=False) if analyze_task_output.build_url: testcase.set_metadata( 'build_url', analyze_task_output.build_url, update_testcase=False) if analyze_task_output.gn_args: testcase.set_metadata( 'gn_args', analyze_task_output.gn_args, update_testcase=False) if analyze_task_output.platform: testcase.platform = analyze_task_output.platform if analyze_task_output.platform_id: testcase.platform_id = analyze_task_output.platform_id testcase.put()
Trusted: Cleans up after a uworker execute_task, writing anything needed to the db.
def utask_postprocess(output): """Trusted: Cleans up after a uworker execute_task, writing anything needed to the db.""" _update_testcase(output) if output.error_type != uworker_msg_pb2.ErrorType.NO_ERROR: _ERROR_HANDLER.handle(output) return testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) testcase_upload_metadata = query_testcase_upload_metadata( output.uworker_input.testcase_id) log_message = (f'Testcase crashed in {output.test_timeout} seconds ' f'(r{testcase.crash_revision})') data_handler.update_testcase_comment(testcase, data_types.TaskState.FINISHED, log_message) # Check to see if this is a duplicate. data_handler.check_uploaded_testcase_duplicate(testcase, testcase_upload_metadata) # Set testcase and metadata status if not set already. if testcase.status == 'Duplicate': # For testcase uploaded by bots (with quiet flag), don't create additional # tasks. if testcase_upload_metadata.quiet_flag: data_handler.close_invalid_uploaded_testcase( testcase, testcase_upload_metadata, 'Duplicate') return else: # New testcase. testcase.status = 'Processed' testcase_upload_metadata.status = 'Confirmed' # Reset the timestamp as well, to respect # data_types.MIN_ELAPSED_TIME_SINCE_REPORT. Otherwise it may get filed by # triage task prematurely without the grouper having a chance to run on this # testcase. testcase.timestamp = utils.utcnow() # Add new leaks to global blacklist to avoid detecting duplicates. # Only add if testcase has a direct leak crash and if it's reproducible. is_lsan_enabled = output.uworker_input.uworker_env.get('LSAN') if is_lsan_enabled: leak_blacklist.add_crash_to_global_blacklist_if_needed(testcase) # Update the testcase values. testcase.put() # Update the upload metadata. testcase_upload_metadata.security_flag = testcase.security_flag testcase_upload_metadata.put() _add_default_issue_metadata(testcase, output.issue_metadata) logs.log('Creating post-analyze tasks.') # Create tasks to # 1. Minimize testcase (minimize). # 2. Find regression range (regression). # 3. Find testcase impact on production branches (impact). # 4. Check whether testcase is fixed (progression). # 5. Get second stacktrace from another job in case of # one-time crashes (stack). task_creation.create_tasks(testcase)
Return full paths to corpus files in |corpus_path|.
def _get_corpus_file_paths(corpus_path): """Return full paths to corpus files in |corpus_path|.""" return [ os.path.join(corpus_path, filename) for filename in os.listdir(corpus_path) ]
Limit number of files and size of a corpus.
def _limit_corpus_size(corpus_url): """Limit number of files and size of a corpus.""" corpus_count = 0 corpus_size = 0 deleted_corpus_count = 0 bucket, _ = storage.get_bucket_name_and_path(corpus_url) for corpus_file in storage.get_blobs(corpus_url): corpus_count += 1 corpus_size += corpus_file['size'] if (corpus_count > CORPUS_FILES_LIMIT_FOR_FAILURES or corpus_size > CORPUS_SIZE_LIMIT_FOR_FAILURES): path_to_delete = storage.get_cloud_storage_file_path( bucket, corpus_file['name']) storage.delete(path_to_delete) deleted_corpus_count += 1 if deleted_corpus_count: logs.log('Removed %d files from oversized corpus: %s.' % (deleted_corpus_count, corpus_url))
Return time remaining.
def _get_time_remaining(start_time): """Return time remaining.""" time_used = int((datetime.datetime.utcnow() - start_time).total_seconds()) return CORPUS_PRUNING_TIMEOUT - time_used
Fills the cross pollination statistics in the corpus pruning output.
def _fill_cross_pollination_stats(stats, output): """Fills the cross pollination statistics in the corpus pruning output.""" if not stats: return statistics = uworker_msg_pb2.CrossPollinationStatistics( project_qualified_name=stats.project_qualified_name, sources=stats.sources, initial_corpus_size=stats.initial_corpus_size, corpus_size=stats.corpus_size, initial_edge_coverage=stats.initial_edge_coverage, edge_coverage=stats.edge_coverage, initial_feature_coverage=stats.initial_feature_coverage, feature_coverage=stats.feature_coverage) output.corpus_pruning_task_output.cross_pollination_stats.CopyFrom(statistics)
Log stats about cross pollination in BigQuery.
def _record_cross_pollination_stats(output): """Log stats about cross pollination in BigQuery.""" # If no stats were gathered due to a timeout or lack of corpus, return. if not output.corpus_pruning_task_output.HasField('cross_pollination_stats'): return stats = output.corpus_pruning_task_output.cross_pollination_stats bigquery_row = { 'project_qualified_name': stats.project_qualified_name, 'sources': stats.sources, 'initial_corpus_size': stats.initial_corpus_size, 'corpus_size': stats.corpus_size, 'initial_edge_coverage': stats.initial_edge_coverage, 'edge_coverage': stats.edge_coverage, 'initial_feature_coverage': stats.initial_feature_coverage, 'feature_coverage': stats.feature_coverage } # BigQuery not available in local development. This is necessary because the # untrusted runner is in a separate process and can't be easily mocked. # Check here instead of earlier to test as much of the function as we can. if environment.get_value('LOCAL_DEVELOPMENT') or environment.get_value( 'PY_UNITTESTS'): return client = big_query.Client( dataset_id='main', table_id='cross_pollination_statistics') client.insert([big_query.Insert(row=bigquery_row, insert_id=None)])
Run corpus pruning.
def do_corpus_pruning(context, revision): """Run corpus pruning.""" # Set |FUZZ_TARGET| environment variable to help with unarchiving only fuzz # target and its related files. environment.set_value('FUZZ_TARGET', context.fuzz_target.binary) if environment.is_trusted_host(): from clusterfuzz._internal.bot.untrusted_runner import tasks_host return tasks_host.do_corpus_pruning(context, revision) if not build_manager.setup_build(revision=revision): raise CorpusPruningError('Failed to setup build.') build_directory = environment.get_value('BUILD_DIR') start_time = datetime.datetime.utcnow() runner = Runner(build_directory, context) pruner = CorpusPruner(runner) fuzzer_binary_name = os.path.basename(runner.target_path) # Get initial corpus to process from GCS. context.sync_to_disk() initial_corpus_size = shell.get_directory_file_count( context.initial_corpus_path) # Restore a small batch of quarantined units back to corpus. context.restore_quarantined_units() # Shrink to a minimized corpus using corpus merge. pruner_stats = pruner.run(context.initial_corpus_path, context.minimized_corpus_path, context.bad_units_path) # Sync minimized corpus back to GCS. context.sync_to_gcs() logs.log('Saved minimize corpus.') # Create corpus backup. # Temporarily copy the past crash regressions folder into the minimized corpus # so that corpus backup archive can have both. regressions_input_dir = os.path.join(context.initial_corpus_path, 'regressions') regressions_output_dir = os.path.join(context.minimized_corpus_path, 'regressions') if shell.get_directory_file_count(regressions_input_dir): shutil.copytree(regressions_input_dir, regressions_output_dir) backup_succeeded = corpus_manager.backup_corpus( context.dated_backup_signed_url, context.corpus, context.minimized_corpus_path) corpus_backup_location = ( context.dated_backup_gcs_url if backup_succeeded else None) shell.remove_directory(regressions_output_dir) minimized_corpus_size_units = shell.get_directory_file_count( context.minimized_corpus_path) minimized_corpus_size_bytes = shell.get_directory_size( context.minimized_corpus_path) logs.log('Corpus pruned from %d to %d units.' % (initial_corpus_size, minimized_corpus_size_units)) # Process bad units found during merge. # Mapping of crash state -> CorpusCrash crashes = {} pruner.process_bad_units(context.bad_units_path, context.quarantine_corpus_path, crashes) context.quarantine_corpus.rsync_from_disk(context.quarantine_corpus_path) # Store corpus stats into CoverageInformation entity. project_qualified_name = context.fuzz_target.project_qualified_name() today = datetime.datetime.utcnow() coverage_info = data_types.CoverageInformation( fuzzer=project_qualified_name, date=today) quarantine_corpus_size = shell.get_directory_file_count( context.quarantine_corpus_path) quarantine_corpus_dir_size = shell.get_directory_size( context.quarantine_corpus_path) # Save the minimize corpus size before cross pollination to put in BigQuery. pre_pollination_corpus_size = minimized_corpus_size_units # Populate coverage stats. coverage_info.corpus_size_units = minimized_corpus_size_units coverage_info.corpus_size_bytes = minimized_corpus_size_bytes coverage_info.quarantine_size_units = quarantine_corpus_size coverage_info.quarantine_size_bytes = quarantine_corpus_dir_size coverage_info.corpus_backup_location = corpus_backup_location coverage_info.corpus_location = context.corpus.get_gcs_url() coverage_info.quarantine_location = context.quarantine_corpus.get_gcs_url() # Calculate remaining time to use for shared corpus merging. time_remaining = _get_time_remaining(start_time) if time_remaining <= 0: logs.log_warn('Not enough time for shared corpus merging.') return None cross_pollinator = CrossPollinator(runner) pollinator_stats = cross_pollinator.run(time_remaining) context.sync_to_gcs() # Update corpus size stats. minimized_corpus_size_units = shell.get_directory_file_count( context.minimized_corpus_path) minimized_corpus_size_bytes = shell.get_directory_size( context.minimized_corpus_path) coverage_info.corpus_size_units = minimized_corpus_size_units coverage_info.corpus_size_bytes = minimized_corpus_size_bytes logs.log('Finished.') sources = ','.join([ fuzzer.fuzz_target.project_qualified_name() for fuzzer in context.cross_pollinate_fuzzers ]) cross_pollination_stats = None if pruner_stats and pollinator_stats: cross_pollination_stats = CrossPollinationStats( project_qualified_name, sources, initial_corpus_size, pre_pollination_corpus_size, pruner_stats['edge_coverage'], pollinator_stats['edge_coverage'], pruner_stats['feature_coverage'], pollinator_stats['feature_coverage']) return CorpusPruningResult( coverage_info=coverage_info, crashes=list(crashes.values()), fuzzer_binary_name=fuzzer_binary_name, revision=environment.get_value('APP_REVISION'), cross_pollination_stats=cross_pollination_stats)
If running on a trusted host, updates the crash unit_path after copying the file locally.
def _update_crash_unit_path(context, crash): """If running on a trusted host, updates the crash unit_path after copying the file locally.""" if not environment.is_trusted_host(): return from clusterfuzz._internal.bot.untrusted_runner import file_host unit_path = os.path.join(context.bad_units_path, os.path.basename(crash.unit_path)) # Prevent the worker from escaping out of |context.bad_units_path|. if not file_host.is_directory_parent(unit_path, context.bad_units_path): raise CorpusPruningError('Invalid units path from worker.') file_host.copy_file_from_worker(crash.unit_path, unit_path) crash.unit_path = unit_path
Packs the corpus crashes in a zip file. The file is then uploaded using the signed upload url from the input.
def _upload_corpus_crashes_zip(context, result, corpus_crashes_blob_name, corpus_crashes_upload_url): """Packs the corpus crashes in a zip file. The file is then uploaded using the signed upload url from the input.""" temp_dir = environment.get_value('BOT_TMPDIR') zip_filename = os.path.join(temp_dir, corpus_crashes_blob_name) with zipfile.ZipFile(zip_filename, 'w') as zip_file: for crash in result.crashes: _update_crash_unit_path(context, crash) unit_name = os.path.basename(crash.unit_path) zip_file.write(crash.unit_path, unit_name, zipfile.ZIP_DEFLATED) with open(zip_filename, 'rb') as fp: data = fp.read() storage.upload_signed_url(data, corpus_crashes_upload_url) os.remove(zip_filename)
Process crashes found in the corpus.
def _process_corpus_crashes(output: uworker_msg_pb2.Output): """Process crashes found in the corpus.""" if not output.corpus_pruning_task_output.crashes: return corpus_pruning_output = output.corpus_pruning_task_output crash_revision = corpus_pruning_output.crash_revision fuzz_target = data_handler.get_fuzz_target(output.uworker_input.fuzzer_name) job_type = environment.get_value('JOB_NAME') minimized_arguments = f'%TESTCASE% {fuzz_target.binary}' project_name = data_handler.get_project_name(job_type) comment = (f'Fuzzer {fuzz_target.project_qualified_name()} generated corpus' f' testcase crashed (r{crash_revision})') # Copy the crashes zip file from cloud storage into a temporary directory. temp_dir = environment.get_value('BOT_TMPDIR') corpus_crashes_blob_name = ( output.uworker_input.corpus_pruning_task_input.corpus_crashes_blob_name) corpus_crashes_zip_local_path = os.path.join( temp_dir, f'{corpus_crashes_blob_name}.zip') storage.copy_file_from( blobs.get_gcs_path(corpus_crashes_blob_name), corpus_crashes_zip_local_path) with archive.open(corpus_crashes_zip_local_path) as zip_reader: for crash in corpus_pruning_output.crashes: existing_testcase = data_handler.find_testcase( project_name, crash.crash_type, crash.crash_state, crash.security_flag, fuzz_target=fuzz_target.project_qualified_name()) if existing_testcase: continue crash_local_unit_path = os.path.join(temp_dir, crash.unit_name) # Extract the crash unit_path into crash_local_unit_path zip_reader.extract(member=crash.unit_name, path=temp_dir) # Upload/store testcase. with open(crash_local_unit_path, 'rb') as f: key = blobs.write_blob(f) # Set the absolute_path property of the Testcase to a file in FUZZ_INPUTS # instead of the local quarantine directory. absolute_testcase_path = os.path.join( environment.get_value('FUZZ_INPUTS'), 'testcase') # TODO(https://b.corp.google.com/issues/328691756): Set trusted based on # the job when we start doing untrusted fuzzing. testcase_id = data_handler.store_testcase( crash=crash, fuzzed_keys=key, minimized_keys='', regression='', fixed='', one_time_crasher_flag=False, crash_revision=crash_revision, comment=comment, absolute_path=absolute_testcase_path, fuzzer_name=fuzz_target.engine, fully_qualified_fuzzer_name=fuzz_target.fully_qualified_name(), job_type=job_type, archived=False, archive_filename='', http_flag=False, gestures=None, redzone=DEFAULT_REDZONE, disable_ubsan=False, window_argument=None, timeout_multiplier=1.0, minimized_arguments=minimized_arguments, trusted=True) # Set fuzzer_binary_name in testcase metadata. testcase = data_handler.get_testcase_by_id(testcase_id) testcase.set_metadata('fuzzer_binary_name', corpus_pruning_output.fuzzer_binary_name) if output.issue_metadata: for key, value in output.issue_metadata.items(): testcase.set_metadata(key, value, update_testcase=False) testcase.put() # Create additional tasks for testcase (starting with minimization). testcase = data_handler.get_testcase_by_id(testcase_id) task_creation.create_tasks(testcase) os.remove(corpus_crashes_zip_local_path) # Cleanup the uploaded zip file. blobs.delete_blob(corpus_crashes_blob_name)
Select jobs to use for cross pollination.
def _select_targets_and_jobs_for_pollination(engine_name, current_fuzzer_name): """Select jobs to use for cross pollination.""" target_jobs = list(fuzz_target_utils.get_fuzz_target_jobs(engine=engine_name)) targets = fuzz_target_utils.get_fuzz_targets_for_target_jobs(target_jobs) targets_and_jobs = [(target, target_job) for target, target_job in zip(targets, target_jobs) if target_job.fuzz_target_name != current_fuzzer_name] selected_targets_and_jobs = random.SystemRandom().sample( targets_and_jobs, min( len(targets_and_jobs), CROSS_POLLINATE_FUZZER_COUNT)) return selected_targets_and_jobs
Return a list of fuzzer objects to use for cross pollination.
def _get_cross_pollinate_fuzzers( engine_name: str, current_fuzzer_name: str ) -> List[uworker_msg_pb2.CrossPollinateFuzzerProto]: """Return a list of fuzzer objects to use for cross pollination.""" cross_pollinate_fuzzers = [] selected_targets_and_jobs = _select_targets_and_jobs_for_pollination( engine_name, current_fuzzer_name) default_backup_bucket = utils.default_backup_bucket() for target, target_job in selected_targets_and_jobs: job = data_types.Job.query(data_types.Job.name == target_job.job).get() if not job: continue job_environment = job.get_environment() backup_bucket_name = job_environment.get('BACKUP_BUCKET', default_backup_bucket) if not backup_bucket_name: continue corpus_engine_name = job_environment.get('CORPUS_FUZZER_NAME_OVERRIDE', engine_name) cross_pollinate_fuzzers.append( uworker_msg_pb2.CrossPollinateFuzzerProto( fuzz_target=uworker_io.entity_to_protobuf(target), backup_bucket_name=backup_bucket_name, corpus_engine_name=corpus_engine_name, )) return cross_pollinate_fuzzers
Saves coverage information in datastore using an atomic transaction.
def _save_coverage_information(output): """Saves coverage information in datastore using an atomic transaction.""" if not output.corpus_pruning_task_output.HasField('coverage_info'): return cov_info = output.corpus_pruning_task_output.coverage_info # Use ndb.transaction with retries below to mitigate risk of a race condition. def _try_save_coverage_information(): """Implements save_coverage_information function.""" coverage_info = data_handler.get_coverage_information( cov_info.project_name, cov_info.timestamp.ToDatetime().date(), create_if_needed=True) # Intentionally skip edge and function coverage values as those would come # from fuzzer coverage cron task (see src/go/server/cron/coverage.go). coverage_info.corpus_size_units = cov_info.corpus_size_units coverage_info.corpus_size_bytes = cov_info.corpus_size_bytes coverage_info.corpus_location = cov_info.corpus_location if cov_info.corpus_backup_location: coverage_info.corpus_backup_location = cov_info.corpus_backup_location coverage_info.quarantine_size_units = cov_info.quarantine_size_units coverage_info.quarantine_size_bytes = cov_info.quarantine_size_bytes coverage_info.quarantine_location = cov_info.quarantine_location coverage_info.put() try: ndb.transaction( _try_save_coverage_information, retries=data_handler.DEFAULT_FAIL_RETRIES) except Exception as e: # TODO(metzman): Don't catch every exception, it makes testing almost # impossible. raise CorpusPruningError( 'Failed to save corpus pruning result: %s.' % repr(e))
Extracts and stores the coverage information in a proto.
def _extract_coverage_information(context, result): """Extracts and stores the coverage information in a proto.""" coverage_info = uworker_msg_pb2.CoverageInformation() coverage_info.project_name = context.fuzz_target.project_qualified_name() timestamp = timestamp_pb2.Timestamp() # pylint: disable=no-member timestamp.FromDatetime(result.coverage_info.date) coverage_info.timestamp.CopyFrom(timestamp) # Intentionally skip edge and function coverage values as those would come # from fuzzer coverage cron task. coverage_info.corpus_size_units = result.coverage_info.corpus_size_units coverage_info.corpus_size_bytes = result.coverage_info.corpus_size_bytes coverage_info.corpus_location = result.coverage_info.corpus_location if result.coverage_info.corpus_backup_location: coverage_info.corpus_backup_location = ( result.coverage_info.corpus_backup_location) coverage_info.quarantine_size_units = ( result.coverage_info.quarantine_size_units) coverage_info.quarantine_size_bytes = ( result.coverage_info.quarantine_size_bytes) coverage_info.quarantine_location = result.coverage_info.quarantine_location return coverage_info
Extracts the corpus crashes as a list of CrashInfo from the result.
def _extract_corpus_crashes(result): """Extracts the corpus crashes as a list of CrashInfo from the result.""" return [ uworker_msg_pb2.CrashInfo( crash_type=crash.crash_type, crash_state=crash.crash_state, security_flag=crash.security_flag, crash_address=crash.crash_address, crash_stacktrace=crash.crash_stacktrace, unit_name=os.path.basename(crash.unit_path)) for crash in result.crashes ]
Execute corpus pruning task.
def utask_main(uworker_input): """Execute corpus pruning task.""" fuzz_target = uworker_io.entity_from_protobuf( uworker_input.corpus_pruning_task_input.fuzz_target, data_types.FuzzTarget) revision = 0 # Trunk revision if not setup.update_fuzzer_and_data_bundles(uworker_input.setup_input): error_message = f'Failed to set up fuzzer {fuzz_target.engine}.' logs.log_error(error_message) return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.CORPUS_PRUNING_FUZZER_SETUP_FAILED) cross_pollinate_fuzzers = _get_cross_pollinate_fuzzers_from_protos( uworker_input.corpus_pruning_task_input.cross_pollinate_fuzzers) context = Context(uworker_input, fuzz_target, cross_pollinate_fuzzers) if uworker_input.global_blacklisted_functions: leak_blacklist.copy_global_to_local_blacklist( uworker_input.corpus_task_input.global_blacklisted_functions) uworker_output = None try: result = do_corpus_pruning(context, revision) issue_metadata = engine_common.get_fuzz_target_issue_metadata(fuzz_target) issue_metadata = issue_metadata or {} _upload_corpus_crashes_zip( context, result, uworker_input.corpus_pruning_task_input.corpus_crashes_blob_name, uworker_input.corpus_pruning_task_input.corpus_crashes_upload_url) uworker_output = uworker_msg_pb2.Output( corpus_pruning_task_output=uworker_msg_pb2.CorpusPruningTaskOutput( coverage_info=_extract_coverage_information(context, result), fuzzer_binary_name=result.fuzzer_binary_name, crash_revision=result.revision, crashes=_extract_corpus_crashes(result), corpus_backup_uploaded=bool(result.coverage_info.corpus_location)), issue_metadata=issue_metadata) _fill_cross_pollination_stats(result.cross_pollination_stats, uworker_output) except Exception as e: # TODO(metzman): Don't catch every exception, it makes testing almost # impossible. logs.log_error(f'Corpus pruning failed: {e}') uworker_output = uworker_msg_pb2.Output( error_type=uworker_msg_pb2.CORPUS_PRUNING_ERROR) finally: context.cleanup() return uworker_output
Creates the backup urls if a backup bucket is provided.
def _create_backup_urls(fuzz_target: data_types.FuzzTarget, corpus_pruning_task_input): """Creates the backup urls if a backup bucket is provided.""" backup_bucket_name = environment.get_value('BACKUP_BUCKET') if not backup_bucket_name: logs.log('No backup bucket provided, corpus backup will be skipped.') return timestamp = str(utils.utcnow().date()) dated_backup_gcs_url = corpus_manager.gcs_url_for_backup_file( backup_bucket_name, fuzz_target.engine, fuzz_target.project_qualified_name(), timestamp) latest_backup_gcs_url = corpus_manager.gcs_url_for_backup_file( backup_bucket_name, fuzz_target.engine, fuzz_target.project_qualified_name(), corpus_manager.LATEST_BACKUP_TIMESTAMP) dated_backup_signed_url = storage.get_signed_upload_url(dated_backup_gcs_url) corpus_pruning_task_input.dated_backup_gcs_url = dated_backup_gcs_url corpus_pruning_task_input.latest_backup_gcs_url = latest_backup_gcs_url corpus_pruning_task_input.dated_backup_signed_url = dated_backup_signed_url
Runs preprocessing for corpus pruning task.
def utask_preprocess(fuzzer_name, job_type, uworker_env): """Runs preprocessing for corpus pruning task.""" fuzz_target = data_handler.get_fuzz_target(fuzzer_name) task_name = f'corpus_pruning_{fuzzer_name}_{job_type}' # Get status of last execution. last_execution_metadata = data_handler.get_task_status(task_name) last_execution_failed = bool( last_execution_metadata and last_execution_metadata.status == data_types.TaskState.ERROR) # Make sure we're the only instance running for the given fuzzer and # job_type. if not data_handler.update_task_status(task_name, data_types.TaskState.STARTED): logs.log('A previous corpus pruning task is still running, exiting.') return None setup_input = ( setup.preprocess_update_fuzzer_and_data_bundles(fuzz_target.engine)) # TODO(unassigned): Use coverage information for better selection here. cross_pollinate_fuzzers = _get_cross_pollinate_fuzzers( fuzz_target.engine, fuzzer_name) # If our last execution failed, shrink to a randomized corpus of usable size # to prevent corpus from growing unbounded and recurring failures when trying # to minimize it. if last_execution_failed: # TODO(metzman): Is this too expensive to do in preprocess? corpus_urls = corpus_manager.get_pruning_corpora_urls( fuzz_target.engine, fuzz_target.project_qualified_name()) for corpus_url in corpus_urls: _limit_corpus_size(corpus_url) corpus, quarantine_corpus = corpus_manager.get_corpuses_for_pruning( fuzz_target.engine, fuzz_target.project_qualified_name()) (corpus_crashes_blob_name, corpus_crashes_upload_url) = blobs.get_blob_signed_upload_url() corpus_pruning_task_input = uworker_msg_pb2.CorpusPruningTaskInput( fuzz_target=uworker_io.entity_to_protobuf(fuzz_target), last_execution_failed=last_execution_failed, cross_pollinate_fuzzers=cross_pollinate_fuzzers, corpus=corpus.proto_corpus, quarantine_corpus=quarantine_corpus.proto_corpus, corpus_crashes_blob_name=corpus_crashes_blob_name, corpus_crashes_upload_url=corpus_crashes_upload_url) _create_backup_urls(fuzz_target, corpus_pruning_task_input) if environment.get_value('LSAN'): # Copy global blacklist into local suppressions file if LSan is enabled. setup_input.global_blacklisted_functions.extend( leak_blacklist.get_global_blacklisted_functions()) return uworker_msg_pb2.Input( job_type=job_type, fuzzer_name=fuzzer_name, uworker_env=uworker_env, setup_input=setup_input, corpus_pruning_task_input=corpus_pruning_task_input)
Updates the latest_backup with the dated_backup uploaded in utask_main if any.
def _update_latest_backup(output): """Updates the latest_backup with the dated_backup uploaded in utask_main if any.""" if not output.corpus_pruning_task_output.corpus_backup_uploaded: return dated_backup_gcs_url = ( output.uworker_input.corpus_pruning_task_input.dated_backup_gcs_url) latest_backup_gcs_url = ( output.uworker_input.corpus_pruning_task_input.latest_backup_gcs_url) try: if not storage.copy_blob(dated_backup_gcs_url, latest_backup_gcs_url): logs.log_error('backup_corpus: Failed to update latest corpus backup at ' f'{latest_backup_gcs_url}.') except: logs.log_error('backup_corpus: Failed to update latest corpus backup at ' f'{latest_backup_gcs_url}.')
Trusted: Handles errors and writes anything needed to the db.
def utask_postprocess(output): """Trusted: Handles errors and writes anything needed to the db.""" if output.error_type != uworker_msg_pb2.ErrorType.NO_ERROR: _ERROR_HANDLER.handle(output) return task_name = (f'corpus_pruning_{output.uworker_input.fuzzer_name}_' f'{output.uworker_input.job_type}') _update_latest_backup(output) _record_cross_pollination_stats(output) _save_coverage_information(output) _process_corpus_crashes(output) data_handler.update_task_status(task_name, data_types.TaskState.FINISHED)
Set multi-armed bandit strategy selection during preprocessing. Set multi-armed bandit strategy selection distribution as an environment variable so we can access it in launcher.
def do_multiarmed_bandit_strategy_selection(uworker_env): """Set multi-armed bandit strategy selection during preprocessing. Set multi-armed bandit strategy selection distribution as an environment variable so we can access it in launcher.""" # TODO: Remove environment variable once fuzzing engine refactor is # complete. if not environment.get_value( 'USE_BANDIT_STRATEGY_SELECTION', env=uworker_env): return selection_method = utils.random_weighted_choice(SELECTION_METHOD_DISTRIBUTION, 'probability') environment.set_value('STRATEGY_SELECTION_METHOD', selection_method.method_name, uworker_env) distribution = get_strategy_distribution_from_ndb() if not distribution: return environment.set_value('STRATEGY_SELECTION_DISTRIBUTION', distribution, uworker_env)
Read unsymbolized crash stacktrace.
def get_unsymbolized_crash_stacktrace(stack_file_path): """Read unsymbolized crash stacktrace.""" with open(stack_file_path, 'rb') as f: return utils.decode_to_unicode(f.read())
Find the first reproducible crash or the first valid crash. And return the crash and the one_time_crasher_flag.
def find_main_crash(crashes, full_fuzzer_name, test_timeout): """Find the first reproducible crash or the first valid crash. And return the crash and the one_time_crasher_flag.""" for crash in crashes: # Archiving testcase to blobstore when we need to because it's expensive. crash.archive_testcase_in_blobstore() # We need to check again if the crash is valid. In other words, we check # if archiving to blobstore succeeded. if not crash.is_valid(): continue # We pass an empty expected crash state since our initial stack from fuzzing # can be incomplete. So, make a judgement on reproducibility based on passed # security flag and crash state generated from re-running testcase in # test_for_reproducibility. Minimize task will later update the new crash # type and crash state parameters. fuzz_target = data_handler.get_fuzz_target(full_fuzzer_name) if testcase_manager.test_for_reproducibility( fuzz_target, crash.file_path, crash.crash_type, None, crash.security_flag, test_timeout, crash.http_flag, crash.gestures, arguments=crash.arguments): return crash, False # All crashes are non-reproducible. Therefore, we get the first valid one. for crash in crashes: if crash.is_valid(): return crash, True return None, None
Track fuzzer run result
def _track_fuzzer_run_result(fuzzer_name, generated_testcase_count, expected_testcase_count, return_code): """Track fuzzer run result""" if expected_testcase_count > 0: ratio = float(generated_testcase_count) / expected_testcase_count monitoring_metrics.FUZZER_TESTCASE_COUNT_RATIO.add(ratio, {'fuzzer': fuzzer_name}) def clamp(val, minimum, maximum): return max(minimum, min(maximum, val)) # Clamp return code to max, min int 32-bit, otherwise it can get detected as # type long and we will exception out in infra_libs parsing pipeline. min_int32 = -(2**31) max_int32 = 2**31 - 1 return_code = int(clamp(return_code, min_int32, max_int32)) monitoring_metrics.FUZZER_RETURN_CODE_COUNT.increment({ 'fuzzer': fuzzer_name, 'return_code': return_code, })
Track build run result.
def _track_build_run_result(job_type, _, is_bad_build): """Track build run result.""" # FIXME: Add support for |crash_revision| as part of state. monitoring_metrics.JOB_BAD_BUILD_COUNT.increment({ 'job': job_type, 'bad_build': is_bad_build })
Track testcase run result.
def _track_testcase_run_result(fuzzer, job_type, new_crash_count, known_crash_count): """Track testcase run result.""" monitoring_metrics.FUZZER_KNOWN_CRASH_COUNT.increment_by( known_crash_count, { 'fuzzer': fuzzer, }) monitoring_metrics.FUZZER_NEW_CRASH_COUNT.increment_by( new_crash_count, { 'fuzzer': fuzzer, }) monitoring_metrics.JOB_KNOWN_CRASH_COUNT.increment_by(known_crash_count, { 'job': job_type, }) monitoring_metrics.JOB_NEW_CRASH_COUNT.increment_by(new_crash_count, { 'job': job_type, })
Read and parse the last sync file for the GCS corpus.
def _last_sync_time(sync_file_path): """Read and parse the last sync file for the GCS corpus.""" if not os.path.exists(sync_file_path): return None file_contents = utils.read_data_from_file(sync_file_path, eval_data=False) if not file_contents: logs.log_warn('Empty last sync file.', path=sync_file_path) return None last_sync_time = None try: last_sync_time = datetime.datetime.utcfromtimestamp(float(file_contents)) except Exception as e: logs.log_error( 'Malformed last sync file: "%s".' % str(e), path=sync_file_path, contents=file_contents) return last_sync_time
Upload TestcaseRun stats.
def upload_testcase_run_stats(testcase_run): """Upload TestcaseRun stats.""" fuzzer_stats.upload_stats([testcase_run])
Add additional testcase run data.
def add_additional_testcase_run_data(testcase_run, fully_qualified_fuzzer_name, job_type, revision): """Add additional testcase run data.""" testcase_run['fuzzer'] = fully_qualified_fuzzer_name testcase_run['job'] = job_type testcase_run['build_revision'] = revision
Extract metadata from fuzzer output.
def get_fuzzer_metadata_from_output(fuzzer_output): """Extract metadata from fuzzer output.""" metadata = {} for line in fuzzer_output.splitlines(): match = FUZZER_METADATA_REGEX.match(line) if match: metadata[match.group(1)] = match.group(2) return metadata
Return fuzzed testcases from the data directories.
def get_testcases(testcase_count, testcase_directory, data_directory): """Return fuzzed testcases from the data directories.""" logs.log('Locating generated test cases.') # Get the list of testcase files. testcase_directories = [testcase_directory, data_directory] testcase_file_paths = testcase_manager.get_testcases_from_directories( testcase_directories) # If the fuzzer created a bot-specific files list, add those now. bot_testcases_file_path = utils.get_bot_testcases_file_path(data_directory) if os.path.exists(bot_testcases_file_path): bot_testcases_file_content = utils.read_data_from_file( bot_testcases_file_path, eval_data=False) shell.remove_file(bot_testcases_file_path) if bot_testcases_file_content: bot_file_paths = bot_testcases_file_content.splitlines() testcase_file_paths += [ utils.normalize_path(path) for path in bot_file_paths ] generated_testcase_count = len(testcase_file_paths) # Create output strings. generated_testcase_string = ( 'Generated %d/%d testcases.' % (generated_testcase_count, testcase_count)) # Log the number of testcases generated. logs.log(generated_testcase_string) # If we are running the same command (again and again) on this bot, # we want to be careful of scenarios when the fuzzer starts failing # or has nothing to do, causing no testcases to be generated. This # will put lot of burden on appengine remote api. if (environment.get_value('COMMAND_OVERRIDE') and generated_testcase_count == 0): logs.log('No testcases generated. Sleeping for ~30 minutes.') time.sleep(random.uniform(1800, 2100)) return (testcase_file_paths, generated_testcase_count, generated_testcase_string)
Return a list of random gestures.
def pick_gestures(test_timeout): """Return a list of random gestures.""" if not environment.get_value('ENABLE_GESTURES', True): # Gestures disabled. return [] # Probability of choosing gestures. if utils.random_number(0, DEFAULT_CHOOSE_PROBABILITY): return [] gesture_count = utils.random_number(1, MAX_GESTURES) gestures = gesture_handler.get_gestures(gesture_count) if not gestures: return [] # Pick a random trigger time to run the gesture at. min_gesture_time = int( utils.random_element_from_list([0.25, 0.50, 0.50, 0.50]) * test_timeout) max_gesture_time = test_timeout - 1 gesture_time = utils.random_number(min_gesture_time, max_gesture_time) gestures.append('Trigger:%d' % gesture_time) return gestures
Return a random size for redzone.
def pick_redzone(): """Return a random size for redzone.""" thread_multiplier = environment.get_value('THREAD_MULTIPLIER', 1) if thread_multiplier == 1: redzone_list = [ Redzone(16, 1.0), Redzone(32, 1.0), Redzone(64, 0.5), Redzone(128, 0.5), Redzone(256, 0.25), Redzone(512, 0.25), ] else: # For beefier boxes, prioritize using bigger redzones. redzone_list = [ Redzone(16, 0.25), Redzone(32, 0.25), Redzone(64, 0.50), Redzone(128, 0.50), Redzone(256, 1.0), Redzone(512, 1.0), ] return utils.random_weighted_choice(redzone_list).size
Choose whether to disable UBSan in an ASan+UBSan build.
def pick_ubsan_disabled(job_type): """Choose whether to disable UBSan in an ASan+UBSan build.""" # This is only applicable in an ASan build. memory_tool_name = environment.get_memory_tool_name(job_type) if memory_tool_name not in ['ASAN', 'HWASAN']: return False # Check if UBSan is enabled in this ASan build. If not, can't disable it. if not environment.get_value('UBSAN'): return False return not utils.random_number(0, DEFAULT_CHOOSE_PROBABILITY)
Return a random testcase timeout multiplier and adjust timeout.
def pick_timeout_multiplier(): """Return a random testcase timeout multiplier and adjust timeout.""" fuzz_test_timeout = environment.get_value('FUZZ_TEST_TIMEOUT') custom_timeout_multipliers = environment.get_value( 'CUSTOM_TIMEOUT_MULTIPLIERS') timeout_multiplier = 1.0 use_multiplier = not utils.random_number(0, DEFAULT_CHOOSE_PROBABILITY) if (use_multiplier and not fuzz_test_timeout and not custom_timeout_multipliers): timeout_multiplier = utils.random_element_from_list([0.5, 1.5, 2.0, 3.0]) elif use_multiplier and custom_timeout_multipliers: # Since they are explicitly set in the job definition, it is fine to use # custom timeout multipliers even in the case where FUZZ_TEST_TIMEOUT is # set. timeout_multiplier = utils.random_element_from_list( custom_timeout_multipliers) return timeout_multiplier
Set the test timeout based on a timeout value and multiplier.
def set_test_timeout(timeout, multipler): """Set the test timeout based on a timeout value and multiplier.""" test_timeout = int(timeout * multipler) environment.set_value('TEST_TIMEOUT', test_timeout) return test_timeout
Return a window argument with random size and x,y position.
def pick_window_argument(): """Return a window argument with random size and x,y position.""" default_window_argument = environment.get_value('WINDOW_ARG', '') window_argument_change_chance = not utils.random_number( 0, DEFAULT_CHOOSE_PROBABILITY) window_argument = '' if window_argument_change_chance: window_argument = default_window_argument if window_argument: width = utils.random_number( 100, utils.random_element_from_list([256, 1280, 2048])) height = utils.random_number( 100, utils.random_element_from_list([256, 1024, 1536])) left = utils.random_number(0, width) top = utils.random_number(0, height) window_argument = window_argument.replace('$WIDTH', str(width)) window_argument = window_argument.replace('$HEIGHT', str(height)) window_argument = window_argument.replace('$LEFT', str(left)) window_argument = window_argument.replace('$TOP', str(top)) # FIXME: Random seed is currently passed along to the next job # via WINDOW_ARG. Rename it without breaking existing tests. random_seed_argument = environment.get_value('RANDOM_SEED') if random_seed_argument: if window_argument: window_argument += ' ' seed = utils.random_number(-2147483648, 2147483647) window_argument += '%s=%d' % (random_seed_argument.strip(), seed) environment.set_value('WINDOW_ARG', window_argument) return window_argument
Truncate output in the middle according to limit.
def truncate_fuzzer_output(output, limit): """Truncate output in the middle according to limit.""" if len(output) < limit: return output separator = '\n...truncated...\n' reduced_limit = limit - len(separator) left = reduced_limit // 2 + reduced_limit % 2 right = reduced_limit // 2 assert reduced_limit > 0 return ''.join([output[:left], separator, output[-right:]])
Converts groups to crashes (in an array of uworker_msg_pb2.CrashInfo) for JobRun.
def convert_groups_to_crashes( groups: List[CrashGroup]) -> List[uworker_msg_pb2.CrashInfo]: """Converts groups to crashes (in an array of uworker_msg_pb2.CrashInfo) for JobRun.""" return [ uworker_msg_pb2.CrashInfo( is_new=group.is_new(), count=len(group.crashes), crash_type=group.main_crash.crash_type, crash_state=group.main_crash.crash_state, security_flag=group.main_crash.security_flag) for group in groups ]
Converts crashes to groups (in an array of dicts) for JobRun.
def convert_crashes_to_dicts( crashes: List[uworker_msg_pb2.CrashInfo]) -> List[Dict[str, Any]]: """Converts crashes to groups (in an array of dicts) for JobRun.""" return [{ 'is_new': crash_info.is_new, 'count': crash_info.count, 'crash_type': crash_info.crash_type, 'crash_state': crash_info.crash_state, 'security_flag': crash_info.security_flag, } for crash_info in crashes]
Upload job run stats.
def upload_job_run_stats(fuzzer_name: str, job_type: str, revision: int, timestamp: float, new_crash_count: int, known_crash_count: int, testcases_executed: int, groups: List[Dict[str, Any]]): """Upload job run stats.""" # New format. job_run = fuzzer_stats.JobRun(fuzzer_name, job_type, revision, timestamp, testcases_executed, new_crash_count, known_crash_count, groups) fuzzer_stats.upload_stats([job_run]) _track_testcase_run_result(fuzzer_name, job_type, new_crash_count, known_crash_count)
Store fuzzer run results in database.
def store_fuzzer_run_results(testcase_file_paths, fuzzer, fuzzer_command, fuzzer_output, fuzzer_return_code, generated_testcase_count, expected_testcase_count, generated_testcase_string, fuzz_task_input): """Store fuzzer run results in database.""" # Upload fuzzer script output to bucket. fuzzer_logs.upload_script_log( fuzzer_output, signed_upload_url=fuzz_task_input.script_log_upload_url) # Save the test results for the following cases. # 1. There is no result yet. # 2. There is no timestamp associated with the result. # 3. Last update timestamp is more than a day old. # 4. Return code is non-zero and was not found before. # 5. Testcases generated were fewer than expected in this run and zero return # code did occur before and zero generated testcases didn't occur before. # TODO(mbarbella): Break this up for readability. # pylint: disable=consider-using-in save_test_results = ( not fuzzer.result or not fuzzer.result_timestamp or dates.time_has_expired(fuzzer.result_timestamp, days=1) or (fuzzer_return_code != 0 and fuzzer_return_code != fuzzer.return_code) or (generated_testcase_count != expected_testcase_count and fuzzer.return_code == 0 and ' 0/' not in fuzzer.result)) # pylint: enable=consider-using-in if not save_test_results: return None logs.log('Started storing results from fuzzer run.') fuzzer_run_results_output = uworker_msg_pb2.StoreFuzzerRunResultsOutput() if testcase_file_paths: with open(testcase_file_paths[0], 'rb') as sample_testcase_file_handle: sample_testcase_file = sample_testcase_file_handle.read() fuzzer_run_results_output.uploaded_sample_testcase = True storage.upload_signed_url(sample_testcase_file, fuzz_task_input.sample_testcase_upload_url) # Store fuzzer console output. bot_name = environment.get_value('BOT_NAME') if fuzzer_return_code is not None: fuzzer_return_code_string = 'Return code (%d).' % fuzzer_return_code else: fuzzer_return_code_string = 'Fuzzer timed out.' truncated_fuzzer_output = truncate_fuzzer_output(fuzzer_output, data_types.ENTITY_SIZE_LIMIT) console_output = (f'{bot_name}: {fuzzer_return_code_string}\n{fuzzer_command}' f'\n{truncated_fuzzer_output}') fuzzer_run_results_output.console_output = console_output fuzzer_run_results_output.generated_testcase_string = ( generated_testcase_string) fuzzer_run_results_output.fuzzer_return_code = fuzzer_return_code return fuzzer_run_results_output
Does preprocessing for store_fuzzer_run_results. More specifically, gets URLs to upload a sample testcase and the logs.
def preprocess_store_fuzzer_run_results(fuzz_task_input): """Does preprocessing for store_fuzzer_run_results. More specifically, gets URLs to upload a sample testcase and the logs.""" fuzz_task_input.sample_testcase_upload_key = blobs.generate_new_blob_name() fuzz_task_input.sample_testcase_upload_url = blobs.get_signed_upload_url( fuzz_task_input.sample_testcase_upload_key) script_log_upload_key = blobs.generate_new_blob_name() fuzz_task_input.script_log_upload_url = blobs.get_signed_upload_url( script_log_upload_key)
Postprocess store_fuzzer_run_results.
def postprocess_store_fuzzer_run_results(output): """Postprocess store_fuzzer_run_results.""" if not output.fuzz_task_output.fuzzer_run_results: return uworker_input = output.uworker_input fuzzer = data_types.Fuzzer.query( data_types.Fuzzer.name == output.uworker_input.fuzzer_name).get() if not fuzzer: logs.log_fatal_and_exit('Fuzzer does not exist, exiting.') fuzzer_run_results = output.fuzz_task_output.fuzzer_run_results if fuzzer.revision != output.fuzz_task_output.fuzzer_revision: logs.log('Fuzzer was recently updated, skipping results from old version.') return fuzzer.sample_testcase = ( uworker_input.fuzz_task_input.sample_testcase_upload_key) fuzzer.console_output = fuzzer_run_results.console_output fuzzer.result = fuzzer_run_results.generated_testcase_string fuzzer.result_timestamp = datetime.datetime.utcnow() fuzzer.return_code = fuzzer_run_results.fuzzer_return_code fuzzer.put() logs.log('Finished storing results from fuzzer run.')
Get the right regression value.
def get_regression(one_time_crasher_flag): """Get the right regression value.""" if one_time_crasher_flag or build_manager.is_custom_binary(): return 'NA' return ''
Get the right fixed value.
def get_fixed_or_minimized_key(one_time_crasher_flag): """Get the right fixed value.""" return 'NA' if one_time_crasher_flag else ''
Get testcase timeout multiplier.
def get_testcase_timeout_multiplier(timeout_multiplier, crash, test_timeout, thread_wait_timeout): """Get testcase timeout multiplier.""" testcase_timeout_multiplier = timeout_multiplier if timeout_multiplier > 1 and (crash.crash_time + thread_wait_timeout) < ( test_timeout / timeout_multiplier): testcase_timeout_multiplier = 1.0 return testcase_timeout_multiplier
Create a testcase based on crash.
def create_testcase(group, context): """Create a testcase based on crash.""" crash = group.main_crash fully_qualified_fuzzer_name = get_fully_qualified_fuzzer_name(context) # TODO(https://b.corp.google.com/issues/328691756): Set trusted based on the # job when we start doing untrusted fuzzing. testcase_id = data_handler.store_testcase( crash=crash, fuzzed_keys=crash.fuzzed_key, minimized_keys=get_fixed_or_minimized_key(group.one_time_crasher_flag), regression=get_regression(group.one_time_crasher_flag), fixed=get_fixed_or_minimized_key(group.one_time_crasher_flag), one_time_crasher_flag=group.one_time_crasher_flag, crash_revision=context.crash_revision, comment='Fuzzer %s generated testcase crashed in %d seconds (r%d)' % (fully_qualified_fuzzer_name, crash.crash_time, context.crash_revision), absolute_path=crash.absolute_path, fuzzer_name=context.fuzzer_name, fully_qualified_fuzzer_name=fully_qualified_fuzzer_name, job_type=context.job_type, archived=crash.archived, archive_filename=crash.archive_filename, http_flag=crash.http_flag, gestures=crash.gestures, redzone=context.redzone, disable_ubsan=context.disable_ubsan, window_argument=context.window_argument, timeout_multiplier=get_testcase_timeout_multiplier( context.timeout_multiplier, crash, context.test_timeout, context.thread_wait_timeout), minimized_arguments=crash.arguments, trusted=True) testcase = data_handler.get_testcase_by_id(testcase_id) if context.fuzzer_metadata: for key, value in context.fuzzer_metadata.items(): testcase.set_metadata(key, value, update_testcase=False) testcase.put() if crash.fuzzing_strategies: testcase.set_metadata( 'fuzzing_strategies', crash.fuzzing_strategies, update_testcase=True) # If there is one, record the original file this testcase was mutated from. if (crash.file_path in context.testcases_metadata and 'original_file_path' in context.testcases_metadata[crash.file_path] and context.testcases_metadata[crash.file_path]['original_file_path']): testcase_relative_path = utils.get_normalized_relative_path( context.testcases_metadata[crash.file_path]['original_file_path'], context.data_directory) testcase.set_metadata('original_file_path', testcase_relative_path) # Track that app args appended by trials are required. trial_app_args = environment.get_value('TRIAL_APP_ARGS') if trial_app_args: testcase.set_metadata('additional_required_app_args', trial_app_args) # Create tasks to # 1. Minimize testcase (minimize). # 2. Find regression range (regression). # 3. Find testcase impact on production branches (impact). # 4. Check whether testcase is fixed (progression). # 5. Get second stacktrace from another job in case of # one-time crashers (stack). task_creation.create_tasks(testcase) return testcase
Filter crashes based on is_valid().
def filter_crashes(crashes: List[CrashInfo]) -> List[CrashInfo]: """Filter crashes based on is_valid().""" filtered = [] for crash in crashes: if not crash.is_valid(): logs.log( (f'Ignore crash (reason={crash.get_error()}, ' f'type={crash.crash_type}, state={crash.crash_state})'), stacktrace=crash.crash_stacktrace) continue filtered.append(crash) return filtered
Get the fuzzing engine.
def get_engine(context): """Get the fuzzing engine.""" if context.fuzz_target: return context.fuzz_target.engine return ''
Get the fully qualified fuzzer name.
def get_fully_qualified_fuzzer_name(context): """Get the fully qualified fuzzer name.""" if context.fuzz_target: return context.fuzz_target.fully_qualified_name() return context.fuzzer_name
Write a group of crashes to BigQuery.
def write_crashes_to_big_query(group, context): """Write a group of crashes to BigQuery.""" created_at = int(time.time()) # Many of ChromeOS fuzz targets run on Linux bots, so we incorrectly set the # linux platform for this. We cannot change platform_id in testcase as # otherwise linux bots can no longer lease those testcase. So, just change # this value in crash stats. This helps cleanup task put correct OS label. if environment.is_chromeos_job(context.job_type): actual_platform = 'chrome' else: actual_platform = context.platform_id # Write to a specific partition. table_id = ('crashes$%s' % ( datetime.datetime.utcfromtimestamp(created_at).strftime('%Y%m%d'))) client = big_query.Client(dataset_id='main', table_id=table_id) insert_id_prefix = ':'.join( [group.crashes[0].key, context.bot_name, str(created_at)]) rows = [] for index, crash in enumerate(group.crashes): created_testcase_id = None if crash == group.main_crash and group.newly_created_testcase: created_testcase_id = str(group.newly_created_testcase.key.id()) rows.append( big_query.Insert( row={ 'crash_type': crash.crash_type, 'crash_state': crash.crash_state, 'created_at': created_at, 'platform': actual_platform, 'crash_time_in_ms': int(crash.crash_time * 1000), 'parent_fuzzer_name': get_engine(context), 'fuzzer_name': get_fully_qualified_fuzzer_name(context), 'job_type': context.job_type, 'security_flag': crash.security_flag, 'project': context.project_name, 'reproducible_flag': not group.one_time_crasher_flag, 'revision': str(context.crash_revision), 'new_flag': group.is_new() and crash == group.main_crash, 'testcase_id': created_testcase_id }, insert_id='%s:%s' % (insert_id_prefix, index))) row_count = len(rows) try: result = client.insert(rows) if result is None: # Happens in case the big query function is disabled (local development). return errors = result.get('insertErrors', []) failed_count = len(errors) monitoring_metrics.BIG_QUERY_WRITE_COUNT.increment_by( row_count - failed_count, {'success': True}) monitoring_metrics.BIG_QUERY_WRITE_COUNT.increment_by( failed_count, {'success': False}) for error in errors: logs.log_error( ('Ignoring error writing the crash (%s) to BigQuery.' % group.crashes[error['index']].crash_type), exception=Exception(error)) except Exception: logs.log_error('Ignoring error writing a group of crashes to BigQuery') monitoring_metrics.BIG_QUERY_WRITE_COUNT.increment_by( row_count, {'success': False})
Update testcase variant if this is not already covered by existing testcase variant on this job.
def _update_testcase_variant_if_needed(group, context): """Update testcase variant if this is not already covered by existing testcase variant on this job.""" assert group.existing_testcase variant = data_handler.get_or_create_testcase_variant( group.existing_testcase.key.id(), context.job_type) if not variant or variant.status == data_types.TestcaseVariantStatus.PENDING: # Either no variant created yet since minimization hasn't finished OR # variant analysis is not yet finished. Wait in both cases, since we # prefer existing testcase over current one. return if (variant.status == data_types.TestcaseVariantStatus.REPRODUCIBLE and variant.is_similar): # Already have a similar reproducible variant, don't need to update. return variant.reproducer_key = group.main_crash.fuzzed_key if group.one_time_crasher_flag: variant.status = data_types.TestcaseVariantStatus.FLAKY else: variant.status = data_types.TestcaseVariantStatus.REPRODUCIBLE variant.revision = context.crash_revision variant.crash_type = group.main_crash.crash_type variant.crash_state = group.main_crash.crash_state variant.security_flag = group.main_crash.security_flag variant.is_similar = True variant.put()
Process a list of crashes.
def process_crashes(crashes, context): """Process a list of crashes.""" processed_groups = [] new_crash_count = 0 known_crash_count = 0 def key_fn(crash): return crash.key # Filter invalid crashes. crashes = filter_crashes(crashes) group_of_crashes = itertools.groupby(sorted(crashes, key=key_fn), key_fn) for _, grouped_crashes in group_of_crashes: group = CrashGroup(list(grouped_crashes), context) # Archiving testcase to blobstore might fail for all crashes within this # group. if not group.main_crash: logs.log('Unable to store testcase in blobstore: %s' % group.crashes[0].crash_state) continue logs.log( 'Process the crash group (file=%s, ' 'fuzzed_key=%s, ' 'return code=%s, ' 'crash time=%d, ' 'crash type=%s, ' 'crash state=%s, ' 'security flag=%s, ' 'crash stacktrace=%s)' % (group.main_crash.filename, group.main_crash.fuzzed_key, group.main_crash.return_code, group.main_crash.crash_time, group.main_crash.crash_type, group.main_crash.crash_state, group.main_crash.security_flag, group.main_crash.crash_stacktrace)) if group.should_create_testcase(): group.newly_created_testcase = create_testcase( group=group, context=context) else: _update_testcase_variant_if_needed(group, context) write_crashes_to_big_query(group, context) if group.is_new(): new_crash_count += 1 known_crash_count += len(group.crashes) - 1 else: known_crash_count += len(group.crashes) processed_groups.append(group) # Artificial delay to throttle appengine updates. time.sleep(1) logs.log('Finished processing crashes.') logs.log(f'New crashes: {new_crash_count}, known crashes: {known_crash_count}' f', processed groups: {processed_groups}') return new_crash_count, known_crash_count, processed_groups
Queries and returns the distribution stored in the ndb table.
def get_strategy_distribution_from_ndb(): """Queries and returns the distribution stored in the ndb table.""" query = data_types.FuzzStrategyProbability.query() distribution = [] for strategy_entry in list(ndb_utils.get_all_from_query(query)): distribution.append({ 'strategy_name': strategy_entry.strategy_name, 'probability': strategy_entry.probability, 'engine': strategy_entry.engine }) return distribution
Get issue metadata from environment.
def _get_issue_metadata_from_environment(variable_name): """Get issue metadata from environment.""" values = str(environment.get_value_string(variable_name, '')).split(',') # Allow a variation with a '_1' to specified. This is needed in cases where # this is specified in both the job and the bot environment. values.extend( str(environment.get_value_string(variable_name + '_1', '')).split(',')) return [value.strip() for value in values if value.strip()]
Add issue metadata from environment.
def _add_issue_metadata_from_environment(metadata): """Add issue metadata from environment.""" def _append(old, new_values): if not old: return ','.join(new_values) return ','.join(old.split(',') + new_values) components = _get_issue_metadata_from_environment('AUTOMATIC_COMPONENTS') if components: metadata['issue_components'] = _append( metadata.get('issue_components'), components) labels = _get_issue_metadata_from_environment('AUTOMATIC_LABELS') if labels: metadata['issue_labels'] = _append(metadata.get('issue_labels'), labels)
Run engine for fuzzing.
def run_engine_fuzzer(engine_impl, target_name, sync_corpus_directory, testcase_directory): """Run engine for fuzzing.""" if environment.is_trusted_host(): from clusterfuzz._internal.bot.untrusted_runner import tasks_host return tasks_host.engine_fuzz(engine_impl, target_name, sync_corpus_directory, testcase_directory) build_dir = environment.get_value('BUILD_DIR') target_path = engine_common.find_fuzzer_path(build_dir, target_name) options = engine_impl.prepare(sync_corpus_directory, target_path, build_dir) fuzz_test_timeout = environment.get_value('FUZZ_TEST_TIMEOUT') additional_processing_time = engine_impl.fuzz_additional_processing_timeout( options) fuzz_test_timeout -= additional_processing_time if fuzz_test_timeout <= 0: raise FuzzTaskError(f'Invalid engine timeout: ' f'{fuzz_test_timeout} - {additional_processing_time}') result = engine_impl.fuzz(target_path, options, testcase_directory, fuzz_test_timeout) logs.log('Used strategies.', strategies=options.strategies) for strategy, value in options.strategies.items(): result.stats['strategy_' + strategy] = value # Format logs with header and strategy information. log_header = engine_common.get_log_header(result.command, result.time_executed) formatted_strategies = engine_common.format_fuzzing_strategies( options.strategies) result.logs = log_header + '\n' + result.logs + '\n' + formatted_strategies fuzzer_metadata = { 'fuzzer_binary_name': target_name, } fuzzer_metadata.update(engine_common.get_all_issue_metadata(target_path)) _add_issue_metadata_from_environment(fuzzer_metadata) # Cleanup fuzzer temporary artifacts (e.g. mutations dir, merge dirs. etc). fuzzer_utils.cleanup() return result, fuzzer_metadata, options.strategies
Runs the given fuzzer for one round.
def utask_main(uworker_input): """Runs the given fuzzer for one round.""" session = _make_session(uworker_input) return session.run()
Picks a random fuzz target from job_type for use in fuzzing.
def _pick_fuzz_target(): """Picks a random fuzz target from job_type for use in fuzzing.""" if not environment.is_engine_fuzzer_job(): logs.log('Not engine fuzzer. Not picking fuzz target.') return None if not has_standard_build(): logs.log('Split build. Not picking fuzz target.') return None logs.log('Picking fuzz target.') target_weights = fuzzer_selection.get_fuzz_target_weights() return build_manager.set_random_fuzz_target_for_fuzzing_if_needed( target_weights.keys(), target_weights)
Preprocess untrusted task.
def utask_preprocess(fuzzer_name, job_type, uworker_env): """Preprocess untrusted task.""" setup_input = setup.preprocess_update_fuzzer_and_data_bundles(fuzzer_name) do_multiarmed_bandit_strategy_selection(uworker_env) environment.set_value('PROJECT_NAME', data_handler.get_project_name(job_type), uworker_env) fuzz_target = _preprocess_get_fuzz_target(fuzzer_name, job_type) fuzz_task_input = uworker_msg_pb2.FuzzTaskInput() if fuzz_target: fuzz_task_input.fuzz_target.CopyFrom( uworker_io.entity_to_protobuf(fuzz_target)) preprocess_store_fuzzer_run_results(fuzz_task_input) if environment.get_value('LSAN'): # Copy global blacklist into local suppressions file if LSan is enabled. fuzz_task_input.global_blacklisted_functions.extend( leak_blacklist.get_global_blacklisted_functions()) return uworker_msg_pb2.Input( fuzz_task_input=fuzz_task_input, job_type=job_type, fuzzer_name=fuzzer_name, uworker_env=uworker_env, setup_input=setup_input, )
Saves fuzz targets that were seen in the build to the database.
def save_fuzz_targets(output): """Saves fuzz targets that were seen in the build to the database.""" if not output.fuzz_task_output.fuzz_targets: return logs.log(f'Saving fuzz targets: {output.fuzz_task_output.fuzz_targets}.') data_handler.record_fuzz_targets(output.uworker_input.fuzzer_name, output.fuzz_task_output.fuzz_targets, output.uworker_input.job_type)
Preprocess in a trusted bot.
def utask_preprocess(testcase_id, job_type, uworker_env): """Preprocess in a trusted bot.""" # Locate the testcase associated with the id. testcase = data_handler.get_testcase_by_id(testcase_id) # Allow setting up a different fuzzer. minimize_fuzzer_override = environment.get_value('MINIMIZE_FUZZER_OVERRIDE') setup_input = setup.preprocess_setup_testcase( testcase, uworker_env, fuzzer_override=minimize_fuzzer_override) # TODO(metzman): This should be removed. if not environment.is_minimization_supported(): # TODO(ochang): More robust check for engine minimization support. _skip_minimization(testcase, 'Engine does not support minimization.') return None # Update comments to reflect bot information. data_handler.update_testcase_comment(testcase, data_types.TaskState.STARTED) uworker_input = uworker_msg_pb2.Input( job_type=job_type, testcase_id=str(testcase_id), testcase=uworker_io.entity_to_protobuf(testcase), setup_input=setup_input, minimize_task_input=_get_minimize_task_input(testcase), uworker_env=uworker_env) testcase_manager.preprocess_testcase_manager(testcase, uworker_input) return uworker_input
Attempt to minimize a given testcase.
def utask_main(uworker_input: uworker_msg_pb2.Input): """Attempt to minimize a given testcase.""" testcase = uworker_io.entity_from_protobuf(uworker_input.testcase, data_types.Testcase) uworker_io.check_handling_testcase_safe(testcase) minimize_task_input = uworker_input.minimize_task_input # Setup testcase and its dependencies. file_list, testcase_file_path, uworker_error_output = setup.setup_testcase( testcase, uworker_input.job_type, uworker_input.setup_input) if uworker_error_output: return uworker_error_output # Initialize variables. max_timeout = environment.get_value('TEST_TIMEOUT', 10) app_arguments = environment.get_value('APP_ARGS') # Set up a custom or regular build based on revision. last_tested_crash_revision = testcase.get_metadata( 'last_tested_crash_revision') crash_revision = last_tested_crash_revision or testcase.crash_revision build_manager.setup_build(crash_revision) # Check if we have an application path. If not, our build failed # to setup correctly. if not build_manager.check_app_path(): logs.log_error('Unable to setup build for minimization.') return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_SETUP) if environment.is_libfuzzer_job(): fuzz_target = testcase_manager.get_fuzz_target_from_input(uworker_input) return do_libfuzzer_minimization(fuzz_target, minimize_task_input, testcase, testcase_file_path) if environment.is_engine_fuzzer_job(): logs.log_error( 'Engine does not support minimization. Something went wrong as this' ' should have been detected in preprocess.') return None max_threads = utils.maximum_parallel_processes_allowed() # Prepare the test case runner. crash_retries = environment.get_value('CRASH_RETRIES') warmup_timeout = environment.get_value('WARMUP_TIMEOUT') required_arguments = environment.get_value('REQUIRED_APP_ARGS', '') # Add any testcase-specific required arguments if needed. additional_required_arguments = testcase.get_metadata( 'additional_required_app_args') if additional_required_arguments: required_arguments = f'{required_arguments} {additional_required_arguments}' input_directory = environment.get_value('FUZZ_INPUTS') # Get deadline to finish this task. deadline = tasks.get_task_completion_deadline() test_runner = TestRunner(testcase, testcase_file_path, file_list, input_directory, app_arguments, required_arguments, max_threads, deadline) # Verify the crash with a long timeout. warmup_crash_occurred = False result = test_runner.run(timeout=warmup_timeout, log_command=True) if result.is_crash(): warmup_crash_occurred = True logs.log(f'Warmup crash occurred in {result.crash_time} seconds.') saved_unsymbolized_crash_state, flaky_stack, crash_times = ( check_for_initial_crash(test_runner, crash_retries, testcase)) # If the warmup crash occurred but we couldn't reproduce this in with # multiple processes running in parallel, try to minimize single threaded. reproducible_crash_count = ( testcase_manager.REPRODUCIBILITY_FACTOR * crash_retries) if (len(crash_times) < reproducible_crash_count and warmup_crash_occurred and max_threads > 1): logs.log('Attempting to continue single-threaded.') max_threads = 1 test_runner = TestRunner(testcase, testcase_file_path, file_list, input_directory, app_arguments, required_arguments, max_threads, deadline) saved_unsymbolized_crash_state, flaky_stack, crash_times = ( check_for_initial_crash(test_runner, crash_retries, testcase)) if not crash_times: # We didn't crash at all. This might be a legitimately unreproducible # test case, so it will get marked as such after being retried on other # bots. return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_UNREPRODUCIBLE_CRASH) minimize_task_output = uworker_msg_pb2.MinimizeTaskOutput() if flaky_stack: testcase.flaky_stack = flaky_stack minimize_task_output.flaky_stack = flaky_stack is_redo = testcase.get_metadata('redo_minimize') if not is_redo and len(crash_times) < reproducible_crash_count: error_message = ( 'Crash occurs, but not too consistently. Skipping minimization ' f'(crashed {len(crash_times)}/{crash_retries})') return uworker_msg_pb2.Output( error_message=error_message, minimize_task_output=minimize_task_output, error_type=uworker_msg_pb2.ErrorType.MINIMIZE_CRASH_TOO_FLAKY) test_runner.set_test_expectations(testcase.security_flag, flaky_stack, saved_unsymbolized_crash_state) # Use the max crash time unless this would be greater than the max timeout. test_timeout = min(max(crash_times), max_timeout) + 1 logs.log(f'Using timeout {test_timeout} (was {max_timeout})') test_runner.timeout = test_timeout logs.log('Starting minimization.') if should_attempt_phase(testcase, MinimizationPhase.GESTURES): gestures = minimize_gestures(test_runner, testcase) # We can't call check_deadline_exceeded_and_store_partial_minimized_testcase # at this point because we do not have a test case to store. if testcase.security_flag and len(testcase.gestures) != len(gestures): # Re-run security severity analysis since gestures affect the severity. testcase.security_severity = severity_analyzer.get_security_severity( testcase.crash_type, data_handler.get_stacktrace(testcase), uworker_input.job_type, bool(gestures)) minimize_task_output.security_severity_updated = True if testcase.security_severity is not None: minimize_task_output.security_severity = testcase.security_severity testcase.gestures = gestures del minimize_task_output.gestures[:] minimize_task_output.gestures.extend(gestures) testcase.set_metadata('minimization_phase', MinimizationPhase.MAIN_FILE, False) minimize_task_output.minimization_phase = MinimizationPhase.MAIN_FILE if time.time() > test_runner.deadline: return uworker_msg_pb2.Output( minimize_task_output=minimize_task_output, error_type=uworker_msg_pb2.ErrorType. MINIMIZE_DEADLINE_EXCEEDED_IN_MAIN_FILE_PHASE) # Minimize the main file. data = utils.get_file_contents_with_fatal_error_on_failure(testcase_file_path) if should_attempt_phase(testcase, MinimizationPhase.MAIN_FILE): data = minimize_main_file(test_runner, testcase_file_path, data) if check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase, input_directory, file_list, data, testcase_file_path, minimize_task_input, minimize_task_output): return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_DEADLINE_EXCEEDED, minimize_task_output=minimize_task_output) testcase.set_metadata('minimization_phase', MinimizationPhase.FILE_LIST, False) minimize_task_output.minimization_phase = MinimizationPhase.FILE_LIST # Minimize the file list. if should_attempt_phase(testcase, MinimizationPhase.FILE_LIST): if environment.get_value('MINIMIZE_FILE_LIST', True): file_list = minimize_file_list(test_runner, file_list, input_directory, testcase_file_path) if check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase, input_directory, file_list, data, testcase_file_path, minimize_task_input, minimize_task_output): return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_DEADLINE_EXCEEDED, minimize_task_output=minimize_task_output) else: logs.log('Skipping minimization of file list.') testcase.set_metadata('minimization_phase', MinimizationPhase.RESOURCES, False) minimize_task_output.minimization_phase = MinimizationPhase.RESOURCES # Minimize any files remaining in the file list. if should_attempt_phase(testcase, MinimizationPhase.RESOURCES): if environment.get_value('MINIMIZE_RESOURCES', True): for dependency in file_list: minimize_resource(test_runner, dependency, input_directory, testcase_file_path) if check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase, input_directory, file_list, data, testcase_file_path, minimize_task_input, minimize_task_output): return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_DEADLINE_EXCEEDED, minimize_task_output=minimize_task_output) else: logs.log('Skipping minimization of resources.') testcase.set_metadata('minimization_phase', MinimizationPhase.ARGUMENTS, False) minimize_task_output.minimization_phase = MinimizationPhase.ARGUMENTS if should_attempt_phase(testcase, MinimizationPhase.ARGUMENTS): app_arguments = minimize_arguments(test_runner, app_arguments) # Arguments must be stored here in case we time out below. testcase.minimized_arguments = app_arguments minimize_task_output.minimized_arguments = app_arguments if check_deadline_exceeded_and_store_partial_minimized_testcase( deadline, testcase, input_directory, file_list, data, testcase_file_path, minimize_task_input, minimize_task_output): return uworker_msg_pb2.Output( error_type=uworker_msg_pb2.ErrorType.MINIMIZE_DEADLINE_EXCEEDED, minimize_task_output=minimize_task_output) command = testcase_manager.get_command_line_for_application( testcase_file_path, app_args=app_arguments, needs_http=testcase.http_flag) last_crash_result = test_runner.last_failing_result store_minimized_testcase(testcase, input_directory, file_list, data, testcase_file_path, minimize_task_input, minimize_task_output) minimize_task_output.last_crash_result_dict.clear() minimize_task_output.last_crash_result_dict.update( _extract_crash_result(last_crash_result, command, minimize_task_input)) return uworker_msg_pb2.Output(minimize_task_output=minimize_task_output)
Cleanup the blobs created in preprocess if they weren't used during utask_main.
def _cleanup_unused_blobs_from_storage(output: uworker_msg_pb2.Output): """Cleanup the blobs created in preprocess if they weren't used during utask_main.""" delete_testcase_blob = True delete_stacktrace_blob = True if output.HasField('minimize_task_output'): # If minimized_keys was set, we should not cleanup the corresponding blob. if output.minimize_task_output.HasField("minimized_keys"): delete_testcase_blob = False stacktrace_blob_key = output.minimize_task_output.last_crash_result_dict[ 'crash_stacktrace'] if stacktrace_blob_key.startswith(data_types.BLOBSTORE_STACK_PREFIX): delete_stacktrace_blob = False testcase_blob_name = ( output.uworker_input.minimize_task_input.testcase_blob_name) stacktrace_blob_name = ( output.uworker_input.minimize_task_input.stacktrace_blob_name) if delete_testcase_blob: blobs.delete_blob(testcase_blob_name) if delete_stacktrace_blob: blobs.delete_blob(stacktrace_blob_name)
Updates the tescase using the values passed from utask_main. This is done at the beginning of utask_postprocess and before error handling is called.
def update_testcase(output: uworker_msg_pb2.Output): """Updates the tescase using the values passed from utask_main. This is done at the beginning of utask_postprocess and before error handling is called.""" if not output.HasField('minimize_task_output'): return minimize_task_output = output.minimize_task_output testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) _update_testcase_memory_tool_options(testcase, minimize_task_output.memory_tool_options) if minimize_task_output.security_severity_updated: if minimize_task_output.HasField('security_severity'): testcase.security_severity = minimize_task_output.security_severity else: testcase.security_severity = None if minimize_task_output.HasField('minimization_phase'): testcase.set_metadata('minimization_phase', minimize_task_output.minimization_phase) if minimize_task_output.flaky_stack: testcase.flaky_stack = minimize_task_output.flaky_stack if minimize_task_output.HasField('minimized_arguments'): testcase.minimized_arguments = minimize_task_output.minimized_arguments if minimize_task_output.HasField('archive_state'): testcase.archive_state = minimize_task_output.archive_state if minimize_task_output.HasField('absolute_path'): testcase.absolute_path = minimize_task_output.absolute_path if minimize_task_output.gestures: # One must convert repeated fields to lists in order to save them using ndb. testcase.gestures = list(minimize_task_output.gestures) if minimize_task_output.HasField('minimized_keys'): testcase.minimized_keys = minimize_task_output.minimized_keys testcase.put()
Handles errors occuring during setup.
def handle_minimize_setup_error(output): """Handles errors occuring during setup.""" build_fail_wait = environment.get_value('FAIL_WAIT') if environment.get_value('ORIGINAL_JOB_NAME'): testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) _skip_minimization(testcase, 'Failed to setup build for overridden job.') else: # Only recreate task if this isn't an overriden job. It's possible that a # revision exists for the original job, but doesn't exist for the # overriden job. build_fail_wait = environment.get_value('FAIL_WAIT') tasks.add_task( 'minimize', output.uworker_input.testcase_id, output.uworker_input.job_type, wait_time=build_fail_wait)
Handles unreproducible crashes.
def handle_minimize_unreproducible_crash(output): """Handles unreproducible crashes.""" testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) data_handler.update_testcase_comment(testcase, data_types.TaskState.ERROR, 'Unable to reproduce crash') task_creation.mark_unreproducible_if_flaky(testcase, 'minimize', True)
Schedules postminimize tasks when the crash is too flaky.
def handle_minimize_crash_too_flaky(output): """Schedules postminimize tasks when the crash is too flaky.""" # We reproduced this crash at least once. It's too flaky to minimize, but # maybe we'll have more luck in the other jobs. testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) testcase.minimized_keys = 'NA' data_handler.update_testcase_comment(testcase, data_types.TaskState.ERROR, output.error_message) task_creation.create_postminimize_tasks(testcase)
Reschedules the minimize task when the deadline is exceeded just before starting the main file phase.
def handle_minimize_deadline_exceeded_in_main_file_phase(output): """Reschedules the minimize task when the deadline is exceeded just before starting the main file phase.""" tasks.add_task('minimize', output.uworker_input.testcase_id, output.uworker_input.job_type)
Reschedules a minimize task when minimization deadline is exceeded or calls _skip_minimization when the number of reattempts is surpassed.
def handle_minimize_deadline_exceeded(output: uworker_msg_pb2.Output): """Reschedules a minimize task when minimization deadline is exceeded or calls _skip_minimization when the number of reattempts is surpassed.""" testcase = data_handler.get_testcase_by_id(output.uworker_input.testcase_id) attempts = testcase.get_metadata( 'minimization_deadline_exceeded_attempts', default=0) if attempts >= MAX_DEADLINE_EXCEEDED_ATTEMPTS: _skip_minimization(testcase, 'Exceeded minimization deadline too many times.') else: testcase.set_metadata('minimization_deadline_exceeded_attempts', attempts + 1) tasks.add_task('minimize', output.uworker_input.testcase_id, output.uworker_input.job_type)