response
stringlengths
1
33.1k
instruction
stringlengths
22
582k
Adds all current event devices to the global dict of event devices. Returns: The number of event devices connected, at the time UKIP was started. Raises: TypeError: If there is an error in converting the PID/VID of a USB device. ValueError: If there is an error in converting the PID/VID of a USB device. RuntimeError: If there is an error in launching the thread. DeviceError: If there is an error in creating the device list.
def init_device_list() -> int: """Adds all current event devices to the global dict of event devices. Returns: The number of event devices connected, at the time UKIP was started. Raises: TypeError: If there is an error in converting the PID/VID of a USB device. ValueError: If there is an error in converting the PID/VID of a USB device. RuntimeError: If there is an error in launching the thread. DeviceError: If there is an error in creating the device list. """ device_count = 0 try: local_device_context = pyudev.Context() local_device_monitor = pyudev.Monitor.from_netlink(local_device_context) local_device_monitor.filter_by(subsystem='input') except (ValueError, EnvironmentError, DeviceError) as mex: log.warning( 'There was an error creating the initial list of USB devices: %s', mex) raise DeviceError('The device context and monitor could not be created.') for device in local_device_context.list_devices(): if device.device_node and device.device_node.startswith( '/dev/input/event') and (device.get('ID_VENDOR_ID') and device.get('ID_MODEL_ID')): try: vendor_id = int(device.get('ID_VENDOR_ID'), 16) product_id = int(device.get('ID_MODEL_ID'), 16) except (TypeError, ValueError) as mex: log.error( 'There was an error in converting the PID and VID of a USB device: ' '%s', mex) continue try: threading.Thread( target=monitor_device_thread, args=(device, vendor_id, product_id)).start() device_count += 1 except RuntimeError as e: log.error( 'There was an runtime error in starting the monitoring thread %s', e) return device_count
Saves given data as a .pkl (pickle) file Paramters: data(dict): Dictionary containing all the necessary data to save
def save_data(data): """ Saves given data as a .pkl (pickle) file Paramters: data(dict): Dictionary containing all the necessary data to save """ # Open data file, create it if it does not exist with open('data.pkl', 'wb') as data_file: pickle.dump(data, data_file)
Loads saved pkl file and returns the stored data Returns(dict): Dictionary containing all the saved data
def load_data() -> dict: """ Loads saved pkl file and returns the stored data Returns(dict): Dictionary containing all the saved data """ try: with open('data.pkl', 'rb') as data_file: # Open data file data = pickle.load(data_file) return data except (ValueError, FileNotFoundError): # Data File is corrupted or not found so recreate it save_data(data=DEFAULT_DATA) return load_data()
Get the model hash dictionary
def load_model_hash_data(dictionary): '''Get the model hash dictionary''' with open(dictionary, 'r') as d: return json.load(d)
Attempts to decrypt VIP model link with given input code
def vip_downloads(password, link_type=VIP_REPO): """Attempts to decrypt VIP model link with given input code""" try: kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=link_type[0], iterations=390000,) key = base64.urlsafe_b64encode(kdf.derive(bytes(password, 'utf-8'))) f = Fernet(key) return str(f.decrypt(link_type[1]), 'UTF-8') except Exception: return NO_CODE
Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True) device (torch.device, str, or None): if provided, device on which to execute the computation, otherwise `mix.device` is assumed. When `device` is different from `mix.device`, only local computations will be on `device`, while the entire tracks will be stored on `mix.device`.
def apply_model(model, mix, shifts=1, split=True, overlap=0.25, transition_power=1., static_shifts=1, set_progress_bar=None, device=None, progress=False, num_workers=0, pool=None): """ Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True) device (torch.device, str, or None): if provided, device on which to execute the computation, otherwise `mix.device` is assumed. When `device` is different from `mix.device`, only local computations will be on `device`, while the entire tracks will be stored on `mix.device`. """ global fut_length global bag_num global prog_bar if device is None: device = mix.device else: device = th.device(device) if pool is None: if num_workers > 0 and device.type == 'cpu': pool = ThreadPoolExecutor(num_workers) else: pool = DummyPoolExecutor() kwargs = { 'shifts': shifts, 'split': split, 'overlap': overlap, 'transition_power': transition_power, 'progress': progress, 'device': device, 'pool': pool, 'set_progress_bar': set_progress_bar, 'static_shifts': static_shifts, } if isinstance(model, BagOfModels): # Special treatment for bag of model. # We explicitely apply multiple times `apply_model` so that the random shifts # are different for each model. estimates = 0 totals = [0] * len(model.sources) bag_num = len(model.models) fut_length = 0 prog_bar = 0 current_model = 0 #(bag_num + 1) for sub_model, weight in zip(model.models, model.weights): original_model_device = next(iter(sub_model.parameters())).device sub_model.to(device) fut_length += fut_length current_model += 1 out = apply_model(sub_model, mix, **kwargs) sub_model.to(original_model_device) for k, inst_weight in enumerate(weight): out[:, k, :, :] *= inst_weight totals[k] += inst_weight estimates += out del out for k in range(estimates.shape[1]): estimates[:, k, :, :] /= totals[k] return estimates model.to(device) model.eval() assert transition_power >= 1, "transition_power < 1 leads to weird behavior." batch, channels, length = mix.shape if shifts: kwargs['shifts'] = 0 max_shift = int(0.5 * model.samplerate) mix = tensor_chunk(mix) padded_mix = mix.padded(length + 2 * max_shift) out = 0 for _ in range(shifts): offset = random.randint(0, max_shift) shifted = TensorChunk(padded_mix, offset, length + max_shift - offset) shifted_out = apply_model(model, shifted, **kwargs) out += shifted_out[..., max_shift - offset:] out /= shifts return out elif split: kwargs['split'] = False out = th.zeros(batch, len(model.sources), channels, length, device=mix.device) sum_weight = th.zeros(length, device=mix.device) segment = int(model.samplerate * model.segment) stride = int((1 - overlap) * segment) offsets = range(0, length, stride) scale = float(format(stride / model.samplerate, ".2f")) # We start from a triangle shaped weight, with maximal weight in the middle # of the segment. Then we normalize and take to the power `transition_power`. # Large values of transition power will lead to sharper transitions. weight = th.cat([th.arange(1, segment // 2 + 1, device=device), th.arange(segment - segment // 2, 0, -1, device=device)]) assert len(weight) == segment # If the overlap < 50%, this will translate to linear transition when # transition_power is 1. weight = (weight / weight.max())**transition_power futures = [] for offset in offsets: chunk = TensorChunk(mix, offset, segment) future = pool.submit(apply_model, model, chunk, **kwargs) futures.append((future, offset)) offset += segment if progress: futures = tqdm.tqdm(futures, unit_scale=scale, ncols=120, unit='seconds') for future, offset in futures: if set_progress_bar: fut_length = (len(futures) * bag_num * static_shifts) prog_bar += 1 set_progress_bar(0.1, (0.8/fut_length*prog_bar)) chunk_out = future.result() chunk_length = chunk_out.shape[-1] out[..., offset:offset + segment] += (weight[:chunk_length] * chunk_out).to(mix.device) sum_weight[offset:offset + segment] += weight[:chunk_length].to(mix.device) assert sum_weight.min() > 0 out /= sum_weight return out else: if hasattr(model, 'valid_length'): valid_length = model.valid_length(length) else: valid_length = length mix = tensor_chunk(mix) padded_mix = mix.padded(valid_length).to(device) with th.no_grad(): out = model(padded_mix) return center_trim(out, length)
Rescale initial weight scale. It is unclear why it helps but it certainly does.
def rescale_conv(conv, reference): """Rescale initial weight scale. It is unclear why it helps but it certainly does. """ std = conv.weight.std().detach() scale = (std / reference)**0.5 conv.weight.data /= scale if conv.bias is not None: conv.bias.data /= scale
Element-wise arctangent function of y/x. Returns a new tensor with signed angles in radians. It is an alternative implementation of torch.atan2 Args: y (Tensor): First input tensor x (Tensor): Second input tensor [shape=y.shape] Returns: Tensor: [shape=y.shape].
def atan2(y, x): r"""Element-wise arctangent function of y/x. Returns a new tensor with signed angles in radians. It is an alternative implementation of torch.atan2 Args: y (Tensor): First input tensor x (Tensor): Second input tensor [shape=y.shape] Returns: Tensor: [shape=y.shape]. """ pi = 2 * torch.asin(torch.tensor(1.0)) x += ((x == 0) & (y == 0)) * 1.0 out = torch.atan(y / x) out += ((y >= 0) & (x < 0)) * pi out -= ((y < 0) & (x < 0)) * pi out *= 1 - ((y > 0) & (x == 0)) * 1.0 out += ((y > 0) & (x == 0)) * (pi / 2) out *= 1 - ((y < 0) & (x == 0)) * 1.0 out += ((y < 0) & (x == 0)) * (-pi / 2) return out
Computes the norm value of a torch Tensor, assuming that it comes as real and imaginary part in its last dimension. Args: x (Tensor): Input Tensor of shape [shape=(..., 2)] Returns: Tensor: shape as x excluding the last dimension.
def _norm(x: torch.Tensor) -> torch.Tensor: r"""Computes the norm value of a torch Tensor, assuming that it comes as real and imaginary part in its last dimension. Args: x (Tensor): Input Tensor of shape [shape=(..., 2)] Returns: Tensor: shape as x excluding the last dimension. """ return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2
Element-wise multiplication of two complex Tensors described through their real and imaginary parts. The result is added to the `out` tensor
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplication of two complex Tensors described through their real and imaginary parts. The result is added to the `out` tensor""" # check `out` and allocate it if needed target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0]) else: out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]) out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]) return out
Element-wise multiplication of two complex Tensors described through their real and imaginary parts can work in place in case out is a only
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplication of two complex Tensors described through their real and imaginary parts can work in place in case out is a only""" target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)]) if out is None or out.shape != target_shape: out = torch.zeros(target_shape, dtype=a.dtype, device=a.device) if out is a: real_a = a[..., 0] out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0] else: out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1] out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0] return out
Element-wise multiplicative inverse of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise multiplicative inverse of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z""" ez = _norm(z) if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] / ez out[..., 1] = -z[..., 1] / ez return out
Element-wise complex conjugate of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor: """Element-wise complex conjugate of a Tensor with complex entries described through their real and imaginary parts. can work in place in case out is z""" if out is None or out.shape != z.shape: out = torch.zeros_like(z) out[..., 0] = z[..., 0] out[..., 1] = -z[..., 1] return out
Invert 1x1 or 2x2 matrices Will generate errors if the matrices are singular: user must handle this through his own regularization schemes. Args: M (Tensor): [shape=(..., nb_channels, nb_channels, 2)] matrices to invert: must be square along dimensions -3 and -2 Returns: invM (Tensor): [shape=M.shape] inverses of M
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor: """ Invert 1x1 or 2x2 matrices Will generate errors if the matrices are singular: user must handle this through his own regularization schemes. Args: M (Tensor): [shape=(..., nb_channels, nb_channels, 2)] matrices to invert: must be square along dimensions -3 and -2 Returns: invM (Tensor): [shape=M.shape] inverses of M """ nb_channels = M.shape[-2] if out is None or out.shape != M.shape: out = torch.empty_like(M) if nb_channels == 1: # scalar case out = _inv(M, out) elif nb_channels == 2: # two channels case: analytical expression # first compute the determinent det = _mul(M[..., 0, 0, :], M[..., 1, 1, :]) det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :]) # invert it invDet = _inv(det) # then fill out the matrix with the inverse out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :]) out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :]) out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :]) out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :]) else: raise Exception("Only 2 channels are supported for the torch version.") return out
Expectation maximization algorithm, for refining source separation estimates. This algorithm allows to make source separation results better by enforcing multichannel consistency for the estimates. This usually means a better perceptual quality in terms of spatial artifacts. The implementation follows the details presented in [1]_, taking inspiration from the original EM algorithm proposed in [2]_ and its weighted refinement proposed in [3]_, [4]_. It works by iteratively: * Re-estimate source parameters (power spectral densities and spatial covariance matrices) through :func:`get_local_gaussian_model`. * Separate again the mixture with the new parameters by first computing the new modelled mixture covariance matrices with :func:`get_mix_model`, prepare the Wiener filters through :func:`wiener_gain` and apply them with :func:`apply_filter``. References ---------- .. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and N. Takahashi and Y. Mitsufuji, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] N.Q. Duong and E. Vincent and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. .. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [4] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [5] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Args: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] initial estimates for the sources x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)] complex STFT of the mixture signal iterations (int): [scalar] number of iterations for the EM algorithm. eps (float or None): [scalar] The epsilon value to use for regularization and filters. Returns: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] estimated sources after iterations v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)] estimated power spectral densities R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)] estimated spatial covariance matrices Notes: * You need an initial estimate for the sources to apply this algorithm. This is precisely what the :func:`wiener` function does. * This algorithm *is not* an implementation of the "exact" EM proposed in [1]_. In particular, it does compute the posterior covariance matrices the same (exact) way. Instead, it uses the simplified approximate scheme initially proposed in [5]_ and further refined in [3]_, [4]_, that boils down to just take the empirical covariance of the recent source estimates, followed by a weighted average for the update of the spatial covariance matrix. It has been empirically demonstrated that this simplified algorithm is more robust for music separation. Warning: It is *very* important to make sure `x.dtype` is `torch.float64` if you want double precision, because this function will **not** do such conversion for you from `torch.complex32`, in case you want the smaller RAM usage on purpose. It is usually always better in terms of quality to have double precision, by e.g. calling :func:`expectation_maximization` with ``x.to(torch.float64)``.
def expectation_maximization( y: torch.Tensor, x: torch.Tensor, iterations: int = 2, eps: float = 1e-10, batch_size: int = 200, ): r"""Expectation maximization algorithm, for refining source separation estimates. This algorithm allows to make source separation results better by enforcing multichannel consistency for the estimates. This usually means a better perceptual quality in terms of spatial artifacts. The implementation follows the details presented in [1]_, taking inspiration from the original EM algorithm proposed in [2]_ and its weighted refinement proposed in [3]_, [4]_. It works by iteratively: * Re-estimate source parameters (power spectral densities and spatial covariance matrices) through :func:`get_local_gaussian_model`. * Separate again the mixture with the new parameters by first computing the new modelled mixture covariance matrices with :func:`get_mix_model`, prepare the Wiener filters through :func:`wiener_gain` and apply them with :func:`apply_filter``. References ---------- .. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and N. Takahashi and Y. Mitsufuji, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] N.Q. Duong and E. Vincent and R.Gribonval. "Under-determined reverberant audio source separation using a full-rank spatial covariance model." IEEE Transactions on Audio, Speech, and Language Processing 18.7 (2010): 1830-1840. .. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [4] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [5] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Args: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] initial estimates for the sources x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)] complex STFT of the mixture signal iterations (int): [scalar] number of iterations for the EM algorithm. eps (float or None): [scalar] The epsilon value to use for regularization and filters. Returns: y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)] estimated sources after iterations v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)] estimated power spectral densities R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)] estimated spatial covariance matrices Notes: * You need an initial estimate for the sources to apply this algorithm. This is precisely what the :func:`wiener` function does. * This algorithm *is not* an implementation of the "exact" EM proposed in [1]_. In particular, it does compute the posterior covariance matrices the same (exact) way. Instead, it uses the simplified approximate scheme initially proposed in [5]_ and further refined in [3]_, [4]_, that boils down to just take the empirical covariance of the recent source estimates, followed by a weighted average for the update of the spatial covariance matrix. It has been empirically demonstrated that this simplified algorithm is more robust for music separation. Warning: It is *very* important to make sure `x.dtype` is `torch.float64` if you want double precision, because this function will **not** do such conversion for you from `torch.complex32`, in case you want the smaller RAM usage on purpose. It is usually always better in terms of quality to have double precision, by e.g. calling :func:`expectation_maximization` with ``x.to(torch.float64)``. """ # dimensions (nb_frames, nb_bins, nb_channels) = x.shape[:-1] nb_sources = y.shape[-1] regularization = torch.cat( ( torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None], torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device), ), dim=2, ) regularization = torch.sqrt(torch.as_tensor(eps)) * ( regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1)) ) # allocate the spatial covariance matrices R = [ torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device) for j in range(nb_sources) ] weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device) v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device) for it in range(iterations): # constructing the mixture covariance matrix. Doing it with a loop # to avoid storing anytime in RAM the whole 6D tensor # update the PSD as the average spectrogram over channels v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2) # update spatial covariance matrices (weighted update) for j in range(nb_sources): R[j] = torch.tensor(0.0, device=x.device) weight = torch.tensor(eps, device=x.device) pos: int = 0 batch_size = batch_size if batch_size else nb_frames while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0) weight = weight + torch.sum(v[t, ..., j], dim=0) R[j] = R[j] / weight[..., None, None, None] weight = torch.zeros_like(weight) # cloning y if we track gradient, because we're going to update it if y.requires_grad: y = y.clone() pos = 0 while pos < nb_frames: t = torch.arange(pos, min(nb_frames, pos + batch_size)) pos = int(t[-1]) + 1 y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype) # compute mix covariance matrix Cxx = regularization for j in range(nb_sources): Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone()) # invert it inv_Cxx = _invert(Cxx) # separate the sources for j in range(nb_sources): # create a wiener gain for this source gain = torch.zeros_like(inv_Cxx) # computes multichannel Wiener gain as v_j R_j inv_Cxx indices = torch.cartesian_prod( torch.arange(nb_channels), torch.arange(nb_channels), torch.arange(nb_channels), ) for index in indices: gain[:, :, index[0], index[1], :] = _mul_add( R[j][None, :, index[0], index[2], :].clone(), inv_Cxx[:, :, index[2], index[1], :], gain[:, :, index[0], index[1], :], ) gain = gain * v[t, ..., None, None, None, j] # apply it to the mixture for i in range(nb_channels): y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j]) return y, v, R
Wiener-based separation for multichannel audio. The method uses the (possibly multichannel) spectrograms of the sources to separate the (complex) Short Term Fourier Transform of the mix. Separation is done in a sequential way by: * Getting an initial estimate. This can be done in two ways: either by directly using the spectrograms with the mixture phase, or by using a softmasking strategy. This initial phase is controlled by the `softmask` flag. * If required, adding an additional residual target as the mix minus all targets. * Refinining these initial estimates through a call to :func:`expectation_maximization` if the number of iterations is nonzero. This implementation also allows to specify the epsilon value used for regularization. It is based on [1]_, [2]_, [3]_, [4]_. References ---------- .. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and N. Takahashi and Y. Mitsufuji, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [4] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Args: targets_spectrograms (Tensor): spectrograms of the sources [shape=(nb_frames, nb_bins, nb_channels, nb_sources)]. This is a nonnegative tensor that is usually the output of the actual separation method of the user. The spectrograms may be mono, but they need to be 4-dimensional in all cases. mix_stft (Tensor): [shape=(nb_frames, nb_bins, nb_channels, complex=2)] STFT of the mixture signal. iterations (int): [scalar] number of iterations for the EM algorithm softmask (bool): Describes how the initial estimates are obtained. * if `False`, then the mixture phase will directly be used with the spectrogram as initial estimates. * if `True`, initial estimates are obtained by multiplying the complex mix element-wise with the ratio of each target spectrogram with the sum of them all. This strategy is better if the model are not really good, and worse otherwise. residual (bool): if `True`, an additional target is created, which is equal to the mixture minus the other targets, before application of expectation maximization eps (float): Epsilon value to use for computing the separations. This is used whenever division with a model energy is performed, i.e. when softmasking and when iterating the EM. It can be understood as the energy of the additional white noise that is taken out when separating. Returns: Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources) STFT of estimated sources Notes: * Be careful that you need *magnitude spectrogram estimates* for the case `softmask==False`. * `softmask=False` is recommended * The epsilon value will have a huge impact on performance. If it's large, only the parts of the signal with a significant energy will be kept in the sources. This epsilon then directly controls the energy of the reconstruction error. Warning: As in :func:`expectation_maximization`, we recommend converting the mixture `x` to double precision `torch.float64` *before* calling :func:`wiener`.
def wiener( targets_spectrograms: torch.Tensor, mix_stft: torch.Tensor, iterations: int = 1, softmask: bool = False, residual: bool = False, scale_factor: float = 10.0, eps: float = 1e-10, ): """Wiener-based separation for multichannel audio. The method uses the (possibly multichannel) spectrograms of the sources to separate the (complex) Short Term Fourier Transform of the mix. Separation is done in a sequential way by: * Getting an initial estimate. This can be done in two ways: either by directly using the spectrograms with the mixture phase, or by using a softmasking strategy. This initial phase is controlled by the `softmask` flag. * If required, adding an additional residual target as the mix minus all targets. * Refinining these initial estimates through a call to :func:`expectation_maximization` if the number of iterations is nonzero. This implementation also allows to specify the epsilon value used for regularization. It is based on [1]_, [2]_, [3]_, [4]_. References ---------- .. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and N. Takahashi and Y. Mitsufuji, "Improving music source separation based on deep neural networks through data augmentation and network blending." 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. .. [2] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source separation with deep neural networks." IEEE/ACM Transactions on Audio, Speech, and Language Processing 24.9 (2016): 1652-1664. .. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music separation with deep neural networks." 2016 24th European Signal Processing Conference (EUSIPCO). IEEE, 2016. .. [4] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for source separation." IEEE Transactions on Signal Processing 62.16 (2014): 4298-4310. Args: targets_spectrograms (Tensor): spectrograms of the sources [shape=(nb_frames, nb_bins, nb_channels, nb_sources)]. This is a nonnegative tensor that is usually the output of the actual separation method of the user. The spectrograms may be mono, but they need to be 4-dimensional in all cases. mix_stft (Tensor): [shape=(nb_frames, nb_bins, nb_channels, complex=2)] STFT of the mixture signal. iterations (int): [scalar] number of iterations for the EM algorithm softmask (bool): Describes how the initial estimates are obtained. * if `False`, then the mixture phase will directly be used with the spectrogram as initial estimates. * if `True`, initial estimates are obtained by multiplying the complex mix element-wise with the ratio of each target spectrogram with the sum of them all. This strategy is better if the model are not really good, and worse otherwise. residual (bool): if `True`, an additional target is created, which is equal to the mixture minus the other targets, before application of expectation maximization eps (float): Epsilon value to use for computing the separations. This is used whenever division with a model energy is performed, i.e. when softmasking and when iterating the EM. It can be understood as the energy of the additional white noise that is taken out when separating. Returns: Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources) STFT of estimated sources Notes: * Be careful that you need *magnitude spectrogram estimates* for the case `softmask==False`. * `softmask=False` is recommended * The epsilon value will have a huge impact on performance. If it's large, only the parts of the signal with a significant energy will be kept in the sources. This epsilon then directly controls the energy of the reconstruction error. Warning: As in :func:`expectation_maximization`, we recommend converting the mixture `x` to double precision `torch.float64` *before* calling :func:`wiener`. """ if softmask: # if we use softmask, we compute the ratio mask for all targets and # multiply by the mix stft y = ( mix_stft[..., None] * ( targets_spectrograms / (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype)) )[..., None, :] ) else: # otherwise, we just multiply the targets spectrograms with mix phase # we tacitly assume that we have magnitude estimates. angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None] nb_sources = targets_spectrograms.shape[-1] y = torch.zeros( mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device ) y[..., 0, :] = targets_spectrograms * torch.cos(angle) y[..., 1, :] = targets_spectrograms * torch.sin(angle) if residual: # if required, adding an additional target as the mix minus # available targets y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1) if iterations == 0: return y # we need to refine the estimates. Scales down the estimates for # numerical stability max_abs = torch.max( torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device), torch.sqrt(_norm(mix_stft)).max() / scale_factor, ) mix_stft = mix_stft / max_abs y = y / max_abs # call expectation maximization y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0] # scale estimates up again y = y * max_abs return y
Compute the empirical covariance for a source. Args: y_j (Tensor): complex stft of the source. [shape=(nb_frames, nb_bins, nb_channels, 2)]. Returns: Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)] just y_j * conj(y_j.T): empirical covariance for each TF bin.
def _covariance(y_j): """ Compute the empirical covariance for a source. Args: y_j (Tensor): complex stft of the source. [shape=(nb_frames, nb_bins, nb_channels, 2)]. Returns: Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)] just y_j * conj(y_j.T): empirical covariance for each TF bin. """ (nb_frames, nb_bins, nb_channels) = y_j.shape[:-1] Cj = torch.zeros( (nb_frames, nb_bins, nb_channels, nb_channels, 2), dtype=y_j.dtype, device=y_j.device, ) indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels)) for index in indices: Cj[:, :, index[0], index[1], :] = _mul_add( y_j[:, :, index[0], :], _conj(y_j[:, :, index[1], :]), Cj[:, :, index[0], index[1], :], ) return Cj
Tiny wrapper around F.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happen.
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.): """Tiny wrapper around F.pad, just to allow for reflect padding on small input. If this is the case, we insert extra 0 padding to the right before the reflection happen.""" x0 = x length = x.shape[-1] padding_left, padding_right = paddings if mode == 'reflect': max_pad = max(padding_left, padding_right) if length <= max_pad: extra_pad = max_pad - length + 1 extra_pad_right = min(padding_right, extra_pad) extra_pad_left = extra_pad - extra_pad_right paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right) x = F.pad(x, (extra_pad_left, extra_pad_right)) out = F.pad(x, paddings, mode, value) assert out.shape[-1] == length + padding_left + padding_right assert (out[..., padding_left: padding_left + length] == x0).all() return out
Linear upsampling, the output will be `stride` times longer.
def upsample(x, stride): """ Linear upsampling, the output will be `stride` times longer. """ batch, channels, time = x.size() weight = th.arange(stride, device=x.device, dtype=th.float) / stride x = x.view(batch, channels, time, 1) out = x[..., :-1, :] * (1 - weight) + x[..., 1:, :] * weight return out.reshape(batch, channels, -1)
Downsample x by decimation.
def downsample(x, stride): """ Downsample x by decimation. """ return x[:, :, ::stride]
`name` must be a bag of models name or a pretrained signature from the remote AWS model repo or the specified local repo if `repo` is not None.
def get_model(name: str, repo: tp.Optional[Path] = None): """`name` must be a bag of models name or a pretrained signature from the remote AWS model repo or the specified local repo if `repo` is not None. """ if name == 'demucs_unittest': return demucs_unittest() model_repo: ModelOnlyRepo if repo is None: models = _parse_remote_files(REMOTE_ROOT / 'files.txt') model_repo = RemoteRepo(models) bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo) else: if not repo.is_dir(): fatal(f"{repo} must exist and be a directory.") model_repo = LocalRepo(repo) bag_repo = BagOnlyRepo(repo, model_repo) any_repo = AnyModelRepo(model_repo, bag_repo) model = any_repo.get_model(name) model.eval() return model
Load local model package or pre-trained model.
def get_model_from_args(args): """ Load local model package or pre-trained model. """ return get_model(name=args.name, repo=args.repo)
Return the quantizer given the XP quantization args.
def get_quantizer(model, args, optimizer=None): """Return the quantizer given the XP quantization args.""" quantizer = None if args.diffq: quantizer = DiffQuantizer( model, min_size=args.min_size, group_size=args.group_size) if optimizer is not None: quantizer.setup_optimizer(optimizer) elif args.qat: quantizer = UniformQuantizer( model, bits=args.qat, min_size=args.min_size) return quantizer
Load a model from the given serialized model, either given as a dict (already loaded) or a path to a file on disk.
def load_model(path_or_package, strict=False): """Load a model from the given serialized model, either given as a dict (already loaded) or a path to a file on disk.""" if isinstance(path_or_package, dict): package = path_or_package elif isinstance(path_or_package, (str, Path)): with warnings.catch_warnings(): warnings.simplefilter("ignore") path = path_or_package package = torch.load(path, 'cpu') else: raise ValueError(f"Invalid type for {path_or_package}.") klass = package["klass"] args = package["args"] kwargs = package["kwargs"] if strict: model = klass(*args, **kwargs) else: sig = inspect.signature(klass) for key in list(kwargs): if key not in sig.parameters: warnings.warn("Dropping inexistant parameter " + key) del kwargs[key] model = klass(*args, **kwargs) state = package["state"] set_state(model, state) return model
Get the state from a model, potentially with quantization applied. If `half` is True, model are stored as half precision, which shouldn't impact performance but half the state size.
def get_state(model, quantizer, half=False): """Get the state from a model, potentially with quantization applied. If `half` is True, model are stored as half precision, which shouldn't impact performance but half the state size.""" if quantizer is None: dtype = torch.half if half else None state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()} else: state = quantizer.get_quantized_state() state['__quantized'] = True return state
Set the state on a given model.
def set_state(model, state, quantizer=None): """Set the state on a given model.""" if state.get('__quantized'): if quantizer is not None: quantizer.restore_quantized_state(model, state['quantized']) else: restore_quantized_state(model, state) else: model.load_state_dict(state) return state
Save the given value on disk, along with a sha256 hash. Should be used with the output of either `serialize_model` or `get_state`.
def save_with_checksum(content, path): """Save the given value on disk, along with a sha256 hash. Should be used with the output of either `serialize_model` or `get_state`.""" buf = io.BytesIO() torch.save(content, buf) sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8] path = path.parent / (path.stem + "-" + sig + path.suffix) path.write_bytes(buf.getvalue())
Context manager that swaps the state of a model, e.g: # model is in old state with swap_state(model, new_state): # model in new state # model back to old state
def swap_state(model, state): """ Context manager that swaps the state of a model, e.g: # model is in old state with swap_state(model, new_state): # model in new state # model back to old state """ old_state = copy_state(model.state_dict()) model.load_state_dict(state, strict=False) try: yield finally: model.load_state_dict(old_state)
The input of normlization will be (M, C, K), where M is batch size, C is channel size and K is sequence length.
def chose_norm(norm_type, channel_size): """The input of normlization will be (M, C, K), where M is batch size, C is channel size and K is sequence length. """ if norm_type == "gLN": return GlobalLayerNorm(channel_size) elif norm_type == "cLN": return ChannelwiseLayerNorm(channel_size) elif norm_type == "id": return nn.Identity() else: # norm_type == "BN": # Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics # along M and K, so this BN usage is right. return nn.BatchNorm1d(channel_size)
The input of normlization will be (M, C, K), where M is batch size, C is channel size and K is sequence length.
def chose_norm(norm_type, channel_size): """The input of normlization will be (M, C, K), where M is batch size, C is channel size and K is sequence length. """ if norm_type == "gLN": return GlobalLayerNorm(channel_size) elif norm_type == "cLN": return ChannelwiseLayerNorm(channel_size) elif norm_type == "id": return nn.Identity() else: # norm_type == "BN": # Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics # along M and K, so this BN usage is right. return nn.BatchNorm1d(channel_size)
:param d_model: dimension of the model :param height: height of the positions :param width: width of the positions :return: d_model*height*width position matrix
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000): """ :param d_model: dimension of the model :param height: height of the positions :param width: width of the positions :return: d_model*height*width position matrix """ if d_model % 4 != 0: raise ValueError( "Cannot use sin/cos positional encoding with " "odd dimension (got dim={:d})".format(d_model) ) pe = torch.zeros(d_model, height, width) # Each dimension use half of d_model d_model = int(d_model / 2) div_term = torch.exp( torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model) ) pos_w = torch.arange(0.0, width).unsqueeze(1) pos_h = torch.arange(0.0, height).unsqueeze(1) pe[0:d_model:2, :, :] = ( torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) ) pe[1:d_model:2, :, :] = ( torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1) ) pe[d_model::2, :, :] = ( torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) ) pe[d_model + 1:: 2, :, :] = ( torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width) ) return pe[None, :].to(device)
When the input of the Decoder has length T1 and the output T2 The mask matrix has shape (T2, T1)
def get_elementary_mask( T1, T2, mask_type, sparse_attn_window, global_window, mask_random_seed, sparsity, device, ): """ When the input of the Decoder has length T1 and the output T2 The mask matrix has shape (T2, T1) """ assert mask_type in ["diag", "jmask", "random", "global"] if mask_type == "global": mask = torch.zeros(T2, T1, dtype=torch.bool) mask[:, :global_window] = True line_window = int(global_window * T2 / T1) mask[:line_window, :] = True if mask_type == "diag": mask = torch.zeros(T2, T1, dtype=torch.bool) rows = torch.arange(T2)[:, None] cols = ( (T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1)) .long() .clamp(0, T1 - 1) ) mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols)) elif mask_type == "jmask": mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool) rows = torch.arange(T2 + 2)[:, None] t = torch.arange(0, int((2 * T1) ** 0.5 + 1)) t = (t * (t + 1) / 2).int() t = torch.cat([-t.flip(0)[:-1], t]) cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1) mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols)) mask = mask[1:-1, 1:-1] elif mask_type == "random": gene = torch.Generator(device=device) gene.manual_seed(mask_random_seed) mask = ( torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1) > sparsity ) mask = mask.to(device) return mask
Return a SparseCSRTensor mask that is a combination of elementary masks mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
def get_mask( T1, T2, mask_type, sparse_attn_window, global_window, mask_random_seed, sparsity, device, ): """ Return a SparseCSRTensor mask that is a combination of elementary masks mask_type can be a combination of multiple masks: for instance "diag_jmask_random" """ from xformers.sparse import SparseCSRTensor # create a list mask_types = mask_type.split("_") all_masks = [ get_elementary_mask( T1, T2, mask, sparse_attn_window, global_window, mask_random_seed, sparsity, device, ) for mask in mask_types ] final_mask = torch.stack(all_masks).sum(axis=0) > 0 return SparseCSRTensor.from_dense(final_mask[None])
Given input of size [*OT, T], output Tensor of size [*OT, F, K] with K the kernel size, by extracting frames with the given stride. This will pad the input so that `F = ceil(T / K)`. see https://github.com/pytorch/pytorch/issues/60466
def unfold(a, kernel_size, stride): """Given input of size [*OT, T], output Tensor of size [*OT, F, K] with K the kernel size, by extracting frames with the given stride. This will pad the input so that `F = ceil(T / K)`. see https://github.com/pytorch/pytorch/issues/60466 """ *shape, length = a.shape n_frames = math.ceil(length / stride) tgt_length = (n_frames - 1) * stride + kernel_size a = F.pad(a, (0, tgt_length - length)) strides = list(a.stride()) assert strides[-1] == 1, 'data should be contiguous' strides = strides[:-1] + [stride, 1] return a.as_strided([*shape, n_frames, kernel_size], strides)
Center trim `tensor` with respect to `reference`, along the last dimension. `reference` can also be a number, representing the length to trim to. If the size difference != 0 mod 2, the extra sample is removed on the right side.
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]): """ Center trim `tensor` with respect to `reference`, along the last dimension. `reference` can also be a number, representing the length to trim to. If the size difference != 0 mod 2, the extra sample is removed on the right side. """ ref_size: int if isinstance(reference, torch.Tensor): ref_size = reference.size(-1) else: ref_size = reference delta = tensor.size(-1) - ref_size if delta < 0: raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.") if delta: tensor = tensor[..., delta // 2:-(delta - delta // 2)] return tensor
Exponential Moving Average callback. Returns a single function that can be called to repeatidly update the EMA with a dict of metrics. The callback will return the new averaged dict of metrics. Note that for `beta=1`, this is just plain averaging.
def EMA(beta: float = 1): """ Exponential Moving Average callback. Returns a single function that can be called to repeatidly update the EMA with a dict of metrics. The callback will return the new averaged dict of metrics. Note that for `beta=1`, this is just plain averaging. """ fix: tp.Dict[str, float] = defaultdict(float) total: tp.Dict[str, float] = defaultdict(float) def _update(metrics: dict, weight: float = 1) -> dict: nonlocal total, fix for key, value in metrics.items(): total[key] = total[key] * beta + weight * float(value) fix[key] = fix[key] * beta + weight return {key: tot / fix[key] for key, tot in total.items()} return _update
Given `num` bytes, return human readable size. Taken from https://stackoverflow.com/a/1094933
def sizeof_fmt(num: float, suffix: str = 'B'): """ Given `num` bytes, return human readable size. Taken from https://stackoverflow.com/a/1094933 """ for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix)
Average `metric` which should be a float across all hosts. `count` should be the weight for this particular host (i.e. number of examples).
def average_metric(metric, count=1.): """ Average `metric` which should be a float across all hosts. `count` should be the weight for this particular host (i.e. number of examples). """ metric = th.tensor([count, count * metric], dtype=th.float32, device='cuda') distributed.all_reduce(metric, op=distributed.ReduceOp.SUM) return metric[1].item() / metric[0].item()
Return a port number that is most likely free. This could suffer from a race condition although it should be quite rare.
def free_port(host='', low=20000, high=40000): """ Return a port number that is most likely free. This could suffer from a race condition although it should be quite rare. """ sock = socket.socket() while True: port = random.randint(low, high) try: sock.bind((host, port)) except OSError as error: if error.errno == errno.EADDRINUSE: continue raise return port
Given `num` bytes, return human readable size. Taken from https://stackoverflow.com/a/1094933
def sizeof_fmt(num, suffix='B'): """ Given `num` bytes, return human readable size. Taken from https://stackoverflow.com/a/1094933 """ for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix)
Given `seconds` seconds, return human readable duration.
def human_seconds(seconds, display='.2f'): """ Given `seconds` seconds, return human readable duration. """ value = seconds * 1e6 ratios = [1e3, 1e3, 60, 60, 24] names = ['us', 'ms', 's', 'min', 'hrs', 'days'] last = names.pop(0) for name, ratio in zip(names, ratios): if value / ratio < 0.3: break value /= ratio last = name return f"{format(value, display)} {last}"
Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True)
def apply_model_v1(model, mix, shifts=None, split=False, progress=False, set_progress_bar=None): """ Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True) """ channels, length = mix.size() device = mix.device progress_value = 0 if split: out = th.zeros(4, channels, length, device=device) shift = model.samplerate * 10 offsets = range(0, length, shift) scale = 10 if progress: offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds') for offset in offsets: chunk = mix[..., offset:offset + shift] if set_progress_bar: progress_value += 1 set_progress_bar(0.1, (0.8/len(offsets)*progress_value)) chunk_out = apply_model_v1(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar) else: chunk_out = apply_model_v1(model, chunk, shifts=shifts) out[..., offset:offset + shift] = chunk_out offset += shift return out elif shifts: max_shift = int(model.samplerate / 2) mix = F.pad(mix, (max_shift, max_shift)) offsets = list(range(max_shift)) random.shuffle(offsets) out = 0 for offset in offsets[:shifts]: shifted = mix[..., offset:offset + length + max_shift] if set_progress_bar: shifted_out = apply_model_v1(model, shifted, set_progress_bar=set_progress_bar) else: shifted_out = apply_model_v1(model, shifted) out += shifted_out[..., max_shift - offset:max_shift - offset + length] out /= shifts return out else: valid_length = model.valid_length(length) delta = valid_length - length padded = F.pad(mix, (delta // 2, delta - delta // 2)) with th.no_grad(): out = model(padded.unsqueeze(0))[0] return center_trim(out, mix)
Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True)
def apply_model_v2(model, mix, shifts=None, split=False, overlap=0.25, transition_power=1., progress=False, set_progress_bar=None): """ Apply model to a given mixture. Args: shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec and apply the oppositve shift to the output. This is repeated `shifts` time and all predictions are averaged. This effectively makes the model time equivariant and improves SDR by up to 0.2 points. split (bool): if True, the input will be broken down in 8 seconds extracts and predictions will be performed individually on each and concatenated. Useful for model with large memory footprint like Tasnet. progress (bool): if True, show a progress bar (requires split=True) """ assert transition_power >= 1, "transition_power < 1 leads to weird behavior." device = mix.device channels, length = mix.shape progress_value = 0 if split: out = th.zeros(len(model.sources), channels, length, device=device) sum_weight = th.zeros(length, device=device) segment = model.segment_length stride = int((1 - overlap) * segment) offsets = range(0, length, stride) scale = stride / model.samplerate if progress: offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds') # We start from a triangle shaped weight, with maximal weight in the middle # of the segment. Then we normalize and take to the power `transition_power`. # Large values of transition power will lead to sharper transitions. weight = th.cat([th.arange(1, segment // 2 + 1), th.arange(segment - segment // 2, 0, -1)]).to(device) assert len(weight) == segment # If the overlap < 50%, this will translate to linear transition when # transition_power is 1. weight = (weight / weight.max())**transition_power for offset in offsets: chunk = TensorChunk(mix, offset, segment) if set_progress_bar: progress_value += 1 set_progress_bar(0.1, (0.8/len(offsets)*progress_value)) chunk_out = apply_model_v2(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar) else: chunk_out = apply_model_v2(model, chunk, shifts=shifts) chunk_length = chunk_out.shape[-1] out[..., offset:offset + segment] += weight[:chunk_length] * chunk_out sum_weight[offset:offset + segment] += weight[:chunk_length] offset += segment assert sum_weight.min() > 0 out /= sum_weight return out elif shifts: max_shift = int(0.5 * model.samplerate) mix = tensor_chunk(mix) padded_mix = mix.padded(length + 2 * max_shift) out = 0 for _ in range(shifts): offset = random.randint(0, max_shift) shifted = TensorChunk(padded_mix, offset, length + max_shift - offset) if set_progress_bar: progress_value += 1 shifted_out = apply_model_v2(model, shifted, set_progress_bar=set_progress_bar) else: shifted_out = apply_model_v2(model, shifted) out += shifted_out[..., max_shift - offset:] out /= shifts return out else: valid_length = model.valid_length(length) mix = tensor_chunk(mix) padded_mix = mix.padded(valid_length) with th.no_grad(): out = model(padded_mix.unsqueeze(0))[0] return center_trim(out, length)
Determines secondary stem
def secondary_stem(stem:str): """Determines secondary stem""" stem = stem if stem else NO_STEM if stem in STEM_PAIR_MAPPER.keys(): for key, value in STEM_PAIR_MAPPER.items(): if stem in key: secondary_stem = value else: secondary_stem = stem.replace(NO_STEM, "") if NO_STEM in stem else f"{NO_STEM}{stem}" return secondary_stem
Internal function.
def _require(tkroot): '''Internal function.''' global TkdndVersion try: import os.path import platform if platform.system()=="Darwin": tkdnd_platform_rep = "osx_arm" if platform.processor() == ARM or ARM in platform.platform() else "osx64" elif platform.system()=="Linux": tkdnd_platform_rep = "linux64" elif platform.system()=="Windows": tkdnd_platform_rep = "win64" else: raise RuntimeError('Plaform not supported.') module_path = os.path.join(os.path.dirname(__file__), 'tkdnd', tkdnd_platform_rep) tkroot.tk.call('lappend', 'auto_path', module_path) TkdndVersion = tkroot.tk.call('package', 'require', 'tkdnd') except tkinter.TclError: raise RuntimeError('Unable to load tkdnd library.') return TkdndVersion
Normalize audio
def normalize(wave, is_normalize=False): """Normalize audio""" maxv = np.abs(wave).max() if maxv > 1.0: if is_normalize: print("Above clipping threshold.") wave /= maxv return wave
Ensure that the audio array is in the (channels, samples) format. Parameters: audio_array (ndarray): Input audio array. Returns: ndarray: Transposed audio array if necessary.
def auto_transpose(audio_array:np.ndarray): """ Ensure that the audio array is in the (channels, samples) format. Parameters: audio_array (ndarray): Input audio array. Returns: ndarray: Transposed audio array if necessary. """ # If the second dimension is 2 (indicating stereo channels), transpose the array if audio_array.shape[1] == 2: return audio_array.T return audio_array
Detect silence at the beginning of an audio signal. :param audio: np.array, audio signal :param sr: int, sample rate :param silence_threshold: float, magnitude threshold below which is considered silence :param frame_length: int, the number of samples to consider for each check :return: float, duration of the leading silence in milliseconds
def detect_leading_silence(audio, sr, silence_threshold=0.007, frame_length=1024): """ Detect silence at the beginning of an audio signal. :param audio: np.array, audio signal :param sr: int, sample rate :param silence_threshold: float, magnitude threshold below which is considered silence :param frame_length: int, the number of samples to consider for each check :return: float, duration of the leading silence in milliseconds """ if len(audio.shape) == 2: # If stereo, pick the channel with more energy to determine the silence channel = np.argmax(np.sum(np.abs(audio), axis=1)) audio = audio[channel] for i in range(0, len(audio), frame_length): if np.max(np.abs(audio[i:i+frame_length])) > silence_threshold: return (i / sr) * 1000 return (len(audio) / sr) * 1000
Adjust the leading silence of the target_audio to match the leading silence of the reference_audio. :param target_audio: np.array, audio signal that will have its silence adjusted :param reference_audio: np.array, audio signal used as a reference :param sr: int, sample rate :param silence_threshold: float, magnitude threshold below which is considered silence :param frame_length: int, the number of samples to consider for each check :return: np.array, target_audio adjusted to have the same leading silence as reference_audio
def adjust_leading_silence(target_audio, reference_audio, silence_threshold=0.01, frame_length=1024): """ Adjust the leading silence of the target_audio to match the leading silence of the reference_audio. :param target_audio: np.array, audio signal that will have its silence adjusted :param reference_audio: np.array, audio signal used as a reference :param sr: int, sample rate :param silence_threshold: float, magnitude threshold below which is considered silence :param frame_length: int, the number of samples to consider for each check :return: np.array, target_audio adjusted to have the same leading silence as reference_audio """ def find_silence_end(audio): if len(audio.shape) == 2: # If stereo, pick the channel with more energy to determine the silence channel = np.argmax(np.sum(np.abs(audio), axis=1)) audio_mono = audio[channel] else: audio_mono = audio for i in range(0, len(audio_mono), frame_length): if np.max(np.abs(audio_mono[i:i+frame_length])) > silence_threshold: return i return len(audio_mono) ref_silence_end = find_silence_end(reference_audio) target_silence_end = find_silence_end(target_audio) silence_difference = ref_silence_end - target_silence_end try: ref_silence_end_p = (ref_silence_end / 44100) * 1000 target_silence_end_p = (target_silence_end / 44100) * 1000 silence_difference_p = ref_silence_end_p - target_silence_end_p print("silence_difference: ", silence_difference_p) except Exception as e: pass if silence_difference > 0: # Add silence to target_audio if len(target_audio.shape) == 2: # stereo silence_to_add = np.zeros((target_audio.shape[0], silence_difference)) else: # mono silence_to_add = np.zeros(silence_difference) return np.hstack((silence_to_add, target_audio)) elif silence_difference < 0: # Remove silence from target_audio if len(target_audio.shape) == 2: # stereo return target_audio[:, -silence_difference:] else: # mono return target_audio[-silence_difference:] else: # No adjustment needed return target_audio
This fixture creates a directory structure to enable reload parameter tests The fixture has the following structure: root ├── [app, app_first, app_second, app_third] │   ├── css │   │   └── main.css │   ├── js │   │   └── main.js │   ├── src │   │   └── main.py │   └── sub │   └── sub.py ├── ext │   └── ext.jpg ├── .dotted ├── .dotted_dir │   └── file.txt └── main.py
def reload_directory_structure(tmp_path_factory: pytest.TempPathFactory): """ This fixture creates a directory structure to enable reload parameter tests The fixture has the following structure: root ├── [app, app_first, app_second, app_third] │   ├── css │   │   └── main.css │   ├── js │   │   └── main.js │   ├── src │   │   └── main.py │   └── sub │   └── sub.py ├── ext │   └── ext.jpg ├── .dotted ├── .dotted_dir │   └── file.txt └── main.py """ root = tmp_path_factory.mktemp("reload_directory") apps = ["app", "app_first", "app_second", "app_third"] root_file = root / "main.py" root_file.touch() dotted_file = root / ".dotted" dotted_file.touch() dotted_dir = root / ".dotted_dir" dotted_dir.mkdir() dotted_dir_file = dotted_dir / "file.txt" dotted_dir_file.touch() for app in apps: app_path = root / app app_path.mkdir() dir_files = [ ("src", ["main.py"]), ("js", ["main.js"]), ("css", ["main.css"]), ("sub", ["sub.py"]), ] for directory, files in dir_files: directory_path = app_path / directory directory_path.mkdir() for file in files: file_path = directory_path / file file_path.touch() ext_dir = root / "ext" ext_dir.mkdir() ext_file = ext_dir / "ext.jpg" ext_file.touch() yield root
Find an unused localhost port from 1024-65535 and return it.
def _unused_port(socket_type: int) -> int: """Find an unused localhost port from 1024-65535 and return it.""" with contextlib.closing(socket.socket(type=socket_type)) as sock: sock.bind(("127.0.0.1", 0)) return sock.getsockname()[1]
Test that one can specify the use_colors option when using the default logging config.
def test_log_config_default( mocked_logging_config_module: MagicMock, use_colors: bool | None, expected: bool | None, logging_config: dict[str, Any], ) -> None: """ Test that one can specify the use_colors option when using the default logging config. """ config = Config(app=asgi_app, use_colors=use_colors, log_config=logging_config) config.load() mocked_logging_config_module.dictConfig.assert_called_once_with(logging_config) (provided_dict_config,), _ = mocked_logging_config_module.dictConfig.call_args assert provided_dict_config["formatters"]["default"]["use_colors"] == expected
Test that one can load a json config from disk.
def test_log_config_json( mocked_logging_config_module: MagicMock, logging_config: dict[str, Any], json_logging_config: str, mocker: MockerFixture, ) -> None: """ Test that one can load a json config from disk. """ mocked_open = mocker.patch("uvicorn.config.open", mocker.mock_open(read_data=json_logging_config)) config = Config(app=asgi_app, log_config="log_config.json") config.load() mocked_open.assert_called_once_with("log_config.json") mocked_logging_config_module.dictConfig.assert_called_once_with(logging_config)
Test that one can load a yaml config from disk.
def test_log_config_yaml( mocked_logging_config_module: MagicMock, logging_config: dict[str, Any], yaml_logging_config: str, mocker: MockerFixture, config_filename: str, ) -> None: """ Test that one can load a yaml config from disk. """ mocked_open = mocker.patch("uvicorn.config.open", mocker.mock_open(read_data=yaml_logging_config)) config = Config(app=asgi_app, log_config=config_filename) config.load() mocked_open.assert_called_once_with(config_filename) mocked_logging_config_module.dictConfig.assert_called_once_with(logging_config)
Test that one can load a configparser config from disk.
def test_log_config_file( mocked_logging_config_module: MagicMock, config_file: str | configparser.RawConfigParser | typing.IO[Any], ) -> None: """ Test that one can load a configparser config from disk. """ config = Config(app=asgi_app, log_config=config_file) config.load() mocked_logging_config_module.fileConfig.assert_called_once_with(config_file, disable_existing_loggers=False)
Test that one can load environment variables using an env file.
def test_env_file( web_concurrency: int, forwarded_allow_ips: str, caplog: pytest.LogCaptureFixture, tmp_path: Path, ) -> None: """ Test that one can load environment variables using an env file. """ fp = tmp_path / ".env" content = f"WEB_CONCURRENCY={web_concurrency}\n" f"FORWARDED_ALLOW_IPS={forwarded_allow_ips}\n" fp.write_text(content) with caplog.at_level(logging.INFO): config = Config(app=asgi_app, env_file=fp) config.load() assert config.workers == int(str(os.getenv("WEB_CONCURRENCY"))) assert config.forwarded_allow_ips == os.getenv("FORWARDED_ALLOW_IPS") assert len(caplog.records) == 1 assert f"Loading environment from '{fp}'" in caplog.records[0].message
Replace `sig` handling with a normal exception via `signal
def capture_signal_sync(sig: signal.Signals) -> Generator[list[int], None, None]: """Replace `sig` handling with a normal exception via `signal""" witness: list[int] = [] original_handler = signal.signal(sig, lambda signum, frame: witness.append(signum)) yield witness signal.signal(sig, original_handler)
Replace `sig` handling with a normal exception via `asyncio
def capture_signal_async(sig: signal.Signals) -> Generator[list[int], None, None]: # pragma: py-win32 """Replace `sig` handling with a normal exception via `asyncio""" witness: list[int] = [] original_handler = signal.getsignal(sig) asyncio.get_running_loop().add_signal_handler(sig, witness.append, sig) yield witness signal.signal(sig, original_handler)
Changes working directory and returns to previous on exit.
def as_cwd(path: Path): """Changes working directory and returns to previous on exit.""" prev_cwd = Path.cwd() os.chdir(path) try: yield finally: os.chdir(prev_cwd)
A basic sanity check. Simply run the supervisor against a no-op server, and signal for it to quit immediately.
def test_multiprocess_run() -> None: """ A basic sanity check. Simply run the supervisor against a no-op server, and signal for it to quit immediately. """ config = Config(app=app, workers=2) supervisor = Multiprocess(config, target=run, sockets=[]) supervisor.signal_handler(sig=signal.SIGINT, frame=None) supervisor.run()
Called in the parent process, to instantiate a new child process instance. The child is not yet started at this point. * config - The Uvicorn configuration instance. * target - A callable that accepts a list of sockets. In practice this will be the `Server.run()` method. * sockets - A list of sockets to pass to the server. Sockets are bound once by the parent process, and then passed to the child processes.
def get_subprocess( config: Config, target: Callable[..., None], sockets: list[socket], ) -> SpawnProcess: """ Called in the parent process, to instantiate a new child process instance. The child is not yet started at this point. * config - The Uvicorn configuration instance. * target - A callable that accepts a list of sockets. In practice this will be the `Server.run()` method. * sockets - A list of sockets to pass to the server. Sockets are bound once by the parent process, and then passed to the child processes. """ # We pass across the stdin fileno, and reopen it in the child process. # This is required for some debugging environments. try: stdin_fileno = sys.stdin.fileno() # The `sys.stdin` can be `None`, see https://docs.python.org/3/library/sys.html#sys.__stdin__. except (AttributeError, OSError): stdin_fileno = None kwargs = { "config": config, "target": target, "sockets": sockets, "stdin_fileno": stdin_fileno, } return spawn.Process(target=subprocess_started, kwargs=kwargs)
Called when the child process starts. * config - The Uvicorn configuration instance. * target - A callable that accepts a list of sockets. In practice this will be the `Server.run()` method. * sockets - A list of sockets to pass to the server. Sockets are bound once by the parent process, and then passed to the child processes. * stdin_fileno - The file number of sys.stdin, so that it can be reattached to the child process.
def subprocess_started( config: Config, target: Callable[..., None], sockets: list[socket], stdin_fileno: int | None, ) -> None: """ Called when the child process starts. * config - The Uvicorn configuration instance. * target - A callable that accepts a list of sockets. In practice this will be the `Server.run()` method. * sockets - A list of sockets to pass to the server. Sockets are bound once by the parent process, and then passed to the child processes. * stdin_fileno - The file number of sys.stdin, so that it can be reattached to the child process. """ # Re-open stdin. if stdin_fileno is not None: sys.stdin = os.fdopen(stdin_fileno) # Logging needs to be setup again for each child. config.configure_logging() # Now we can call into `Server.run(sockets=sockets)` target(sockets=sockets)
Return an ASGI message, with any body-type content omitted and replaced with a placeholder.
def message_with_placeholders(message: Any) -> Any: """ Return an ASGI message, with any body-type content omitted and replaced with a placeholder. """ new_message = message.copy() for attr in PLACEHOLDER_FORMAT.keys(): if message.get(attr) is not None: content = message[attr] placeholder = PLACEHOLDER_FORMAT[attr].format(length=len(content)) new_message[attr] = placeholder return new_message
Builds a scope and request message into a WSGI environ object.
def build_environ(scope: HTTPScope, message: ASGIReceiveEvent, body: io.BytesIO) -> Environ: """ Builds a scope and request message into a WSGI environ object. """ script_name = scope.get("root_path", "").encode("utf8").decode("latin1") path_info = scope["path"].encode("utf8").decode("latin1") if path_info.startswith(script_name): path_info = path_info[len(script_name) :] environ = { "REQUEST_METHOD": scope["method"], "SCRIPT_NAME": script_name, "PATH_INFO": path_info, "QUERY_STRING": scope["query_string"].decode("ascii"), "SERVER_PROTOCOL": "HTTP/%s" % scope["http_version"], "wsgi.version": (1, 0), "wsgi.url_scheme": scope.get("scheme", "http"), "wsgi.input": body, "wsgi.errors": sys.stdout, "wsgi.multithread": True, "wsgi.multiprocess": True, "wsgi.run_once": False, } # Get server name and port - required in WSGI, not in ASGI server = scope.get("server") if server is None: server = ("localhost", 80) environ["SERVER_NAME"] = server[0] environ["SERVER_PORT"] = server[1] # Get client IP address client = scope.get("client") if client is not None: environ["REMOTE_ADDR"] = client[0] # Go through headers and make them into environ entries for name, value in scope.get("headers", []): name_str: str = name.decode("latin1") if name_str == "content-length": corrected_name = "CONTENT_LENGTH" elif name_str == "content-type": corrected_name = "CONTENT_TYPE" else: corrected_name = "HTTP_%s" % name_str.upper().replace("-", "_") # HTTPbis say only ASCII chars are allowed in headers, but we latin1 # just in case value_str: str = value.decode("latin1") if corrected_name in environ: corrected_name_environ = environ[corrected_name] assert isinstance(corrected_name_environ, str) value_str = corrected_name_environ + "," + value_str environ[corrected_name] = value_str return environ
Load a config file and merge it into the default options.
def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as fopen: yaml_config = AttrDict(yaml.load(fopen)) merge_dicts(yaml_config, __C)
Set config keys via list (e.g., from command line).
def cfg_from_list(args_list): """Set config keys via list (e.g., from command line).""" from ast import literal_eval assert len(args_list) % 2 == 0, 'Specify values or keys for args' for key, value in zip(args_list[0::2], args_list[1::2]): key_list = key.split('.') cfg = __C for subkey in key_list[:-1]: assert subkey in cfg, 'Config key {} not found'.format(subkey) cfg = cfg[subkey] subkey = key_list[-1] assert subkey in cfg, 'Config key {} not found'.format(subkey) try: # handle the case when v is a string literal val = literal_eval(value) except BaseException: val = value assert isinstance(val, type(cfg[subkey])) or cfg[subkey] is None, \ 'type {} does not match original type {}'.format( type(val), type(cfg[subkey])) cfg[subkey] = val
case 1: CHECKPOINT.RESUME = False and TRAIN.PARAMS_FILE is not none: load params_file case 2: CHECKPOINT.RESUME = True and TRAIN.PARAMS_FILE is not none: case 2a: if checkpoint exist: use checkpoint case 2b: if checkpoint not exist: use params_file case 3: CHECKPOINT.RESUME = True and TRAIN.PARAMS_FILE is none: case 3a: if checkpoint exist: use checkpoint case 3b: if checkpoint not exist: set start_model_iter = 0
def load_model_from_params_file(model): """ case 1: CHECKPOINT.RESUME = False and TRAIN.PARAMS_FILE is not none: load params_file case 2: CHECKPOINT.RESUME = True and TRAIN.PARAMS_FILE is not none: case 2a: if checkpoint exist: use checkpoint case 2b: if checkpoint not exist: use params_file case 3: CHECKPOINT.RESUME = True and TRAIN.PARAMS_FILE is none: case 3a: if checkpoint exist: use checkpoint case 3b: if checkpoint not exist: set start_model_iter = 0 """ use_checkpoint = cfg.CHECKPOINT.RESUME and find_checkpoint() if cfg.TRAIN.PARAMS_FILE and not use_checkpoint: logger.info('Initializing from pre-trained file...') start_model_iter, prev_lr = initialize_params_from_file( model=model, weights_file=cfg.TRAIN.PARAMS_FILE, load_momentum=False, # not load momentum if it is pretrained ) logger.info(('Loaded: start_model_iter: {}; prev_lr: {:.8f}').format( start_model_iter, prev_lr)) model.current_lr = prev_lr # correct start_model_iter if pretraining uses a different batch size # (mainly used for 1-node warmup) if cfg.TRAIN.RESUME_FROM_BATCH_SIZE > 0: start_model_iter = misc.resume_from(start_model_iter) # if we only want the weights if cfg.TRAIN.RESET_START_ITER: start_model_iter = 0 elif use_checkpoint: logger.info('Initializing from checkpoints...') start_model_iter, prev_lr = initialize_params_from_file( model=model, weights_file=get_checkpoint_resume_file()) logger.info(('Loaded: start_model_iter: {}; prev_lr: {:.8f}').format( start_model_iter, prev_lr)) model.current_lr = prev_lr else: # no checkpoint, no params_file # Do nothing and return 0 start_model_iter = 0 logger.info('No checkpoint found; training from scratch...') return start_model_iter
Get the learning rate at iteration it according to the cfg.SOLVER settings.
def get_lr_at_iter(it): """Get the learning rate at iteration it according to the cfg.SOLVER settings. """ lr = get_lr_func()(it) lr = np.float32(lr) """ Warmup hacks (gradual linear): Example: cfg.SOLVER.WARMUP.WARMUP_START_LR: 0.1 cfg.SOLVER.WARMUP.WARMUP_END_ITER: 5005 * 5 get_lr_func()(5005 * 5) = 3.2 for cur_iter in [0, 5005 * 5) linearly from [0.1, 3.2) """ last_it = cfg.SOLVER.WARMUP.WARMUP_END_ITER if cfg.SOLVER.WARMUP.WARMUP_ON and it < last_it: lr_start = np.float32(cfg.SOLVER.WARMUP.WARMUP_START_LR) lr_end = np.float32(get_lr_func()(last_it)) lr = it * (lr_end - lr_start) / (last_it - 1) + lr_start return np.float32(lr)
For cfg.SOLVER.LR_POLICY = 'steps_with_lrs' Change the learning rate to specified values at specified iterations. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.LRS: [0.02, 0.002, 0.0002] for cur_iter in [0, 59] use 0.02 in [60, 79] use 0.002 in [80, inf] use 0.0002
def lr_func_steps_with_lrs(cur_iter): """ For cfg.SOLVER.LR_POLICY = 'steps_with_lrs' Change the learning rate to specified values at specified iterations. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.LRS: [0.02, 0.002, 0.0002] for cur_iter in [0, 59] use 0.02 in [60, 79] use 0.002 in [80, inf] use 0.0002 """ ind = get_step_index(cur_iter) return cfg.SOLVER.LRS[ind]
For cfg.SOLVER.LR_POLICY = 'steps_with_relative_lrs' Change the learning rate to specified values at specified iterations. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.BASE_LR: 0.02 cfg.SOLVER.LRS: [1, 0.1, 0.01] for cur_iter in [0, 59] use 0.02 in [60, 79] use 0.002 in [80, inf] use 0.0002
def lr_func_steps_with_relative_lrs(cur_iter): """ For cfg.SOLVER.LR_POLICY = 'steps_with_relative_lrs' Change the learning rate to specified values at specified iterations. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.BASE_LR: 0.02 cfg.SOLVER.LRS: [1, 0.1, 0.01] for cur_iter in [0, 59] use 0.02 in [60, 79] use 0.002 in [80, inf] use 0.0002 """ ind = get_step_index(cur_iter) return cfg.SOLVER.LRS[ind] * cfg.SOLVER.BASE_LR
For cfg.SOLVER.LR_POLICY = 'steps_with_decay' Change the learning rate specified iterations based on the formula lr = base_lr * gamma ** lr_step_count. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.BASE_LR: 0.02 cfg.SOLVER.GAMMA: 0.1 for cur_iter in [0, 59] use 0.02 = 0.02 * 0.1 ** 0 in [60, 79] use 0.002 = 0.02 * 0.1 ** 1 in [80, inf] use 0.0002 = 0.02 * 0.1 ** 2
def lr_func_steps_with_decay(cur_iter): """ For cfg.SOLVER.LR_POLICY = 'steps_with_decay' Change the learning rate specified iterations based on the formula lr = base_lr * gamma ** lr_step_count. Example: cfg.SOLVER.MAX_ITER: 90 cfg.SOLVER.STEPS: [0, 60, 80] cfg.SOLVER.BASE_LR: 0.02 cfg.SOLVER.GAMMA: 0.1 for cur_iter in [0, 59] use 0.02 = 0.02 * 0.1 ** 0 in [60, 79] use 0.002 = 0.02 * 0.1 ** 1 in [80, inf] use 0.0002 = 0.02 * 0.1 ** 2 """ ind = get_step_index(cur_iter) return cfg.SOLVER.BASE_LR * cfg.SOLVER.GAMMA ** ind
For cfg.SOLVER.LR_POLICY = 'step'
def lr_func_step(cur_iter): """ For cfg.SOLVER.LR_POLICY = 'step' """ return ( cfg.SOLVER.BASE_LR * cfg.SOLVER.GAMMA ** (cur_iter // cfg.SOLVER.STEP_SIZE))
Given an iteration, find which learning rate step we're at.
def get_step_index(cur_iter): """Given an iteration, find which learning rate step we're at.""" assert cfg.SOLVER.STEPS[0] == 0, 'The first step should always start at 0.' steps = cfg.SOLVER.STEPS + [cfg.SOLVER.MAX_ITER] for ind, step in enumerate(steps): # NoQA if cur_iter < step: break return ind - 1
Compute the number of corret hits
def compute_topk_correct_hits(top_k, preds, labels): '''Compute the number of corret hits''' batch_size = preds.shape[0] top_k_preds = np.zeros((batch_size, top_k), dtype=np.float32) for i in range(batch_size): top_k_preds[i, :] = np.argsort(-preds[i, :])[:top_k] correctness = np.zeros(batch_size, dtype=np.int32) for i in range(batch_size): if labels[i] in top_k_preds[i, :].astype(np.int32).tolist(): correctness[i] = 1 correct_hits = sum(correctness) return correct_hits
Summed values of a blob on each gpu
def sum_multi_gpu_blob(blob_name): """Summed values of a blob on each gpu""" value = 0 num_gpus = cfg.NUM_GPUS root_gpu_id = cfg.ROOT_GPU_ID for idx in range(root_gpu_id, root_gpu_id + num_gpus): value += workspace.FetchBlob('gpu_{}/{}'.format(idx, blob_name)) return value
Summed values of batch size on each gpu
def get_batch_size_from_workspace(): """Summed values of batch size on each gpu""" value = 0 num_gpus = cfg.NUM_GPUS root_gpu_id = cfg.ROOT_GPU_ID for idx in range(root_gpu_id, root_gpu_id + num_gpus): value += workspace.FetchBlob('gpu_{}/{}'.format(idx, 'pred')).shape[0] return value
To save test-time memory, we perform multi-clip test in multiple "sections": e.g., 10-clip test can be done in 2 sections of 5-clip test
def test_net_one_section(): """ To save test-time memory, we perform multi-clip test in multiple "sections": e.g., 10-clip test can be done in 2 sections of 5-clip test """ timer = Timer() results = [] seen_inds = defaultdict(int) logger.warning('Testing started...') # for monitoring cluster jobs test_model = model_builder_video.ModelBuilder( name='{}_test'.format(cfg.MODEL.MODEL_NAME), train=False, use_cudnn=True, cudnn_exhaustive_search=True, split=cfg.TEST.DATA_TYPE) test_model.build_model() if cfg.PROF_DAG: test_model.net.Proto().type = 'prof_dag' else: test_model.net.Proto().type = 'dag' workspace.RunNetOnce(test_model.param_init_net) workspace.CreateNet(test_model.net) misc.save_net_proto(test_model.net) misc.save_net_proto(test_model.param_init_net) total_test_net_iters = int( math.ceil(float(cfg.TEST.DATASET_SIZE * cfg.TEST.NUM_TEST_CLIPS) / cfg.TEST.BATCH_SIZE)) if cfg.TEST.PARAMS_FILE: checkpoints.load_model_from_params_file_for_test( test_model, cfg.TEST.PARAMS_FILE) else: raise Exception('No params files specified for testing model.') for test_iter in range(total_test_net_iters): timer.tic() workspace.RunNet(test_model.net.Proto().name) timer.toc() if test_iter == 0: misc.print_net(test_model) os.system('nvidia-smi') test_debug = False if test_debug is True: save_path = 'temp_save/' data_blob = workspace.FetchBlob('gpu_0/data') label_blob = workspace.FetchBlob('gpu_0/labels') print(label_blob) data_blob = data_blob * cfg.MODEL.STD + cfg.MODEL.MEAN for i in range(data_blob.shape[0]): for j in range(4): temp_img = data_blob[i, :, j, :, :] temp_img = temp_img.transpose([1, 2, 0]) temp_img = temp_img.astype(np.uint8) fname = save_path + 'ori_' + str(test_iter) \ + '_' + str(i) + '_' + str(j) + '.jpg' cv2.imwrite(fname, temp_img) video_ids_list = [] # for logging for gpu_id in range(cfg.NUM_GPUS): prefix = 'gpu_{}/'.format(gpu_id) softmax_gpu = workspace.FetchBlob(prefix + cfg.TEST.OUTPUT_NAME) softmax_gpu = softmax_gpu.reshape((softmax_gpu.shape[0], -1)) # This is the index of the video for recording results, not the actual class label for the video video_id_gpu = workspace.FetchBlob(prefix + 'labels') for i in range(len(video_id_gpu)): seen_inds[video_id_gpu[i]] += 1 video_ids_list.append(video_id_gpu[0]) # print(video_id_gpu) # collect results for i in range(softmax_gpu.shape[0]): probs = softmax_gpu[i].tolist() vid = video_id_gpu[i] if seen_inds[vid] > cfg.TEST.NUM_TEST_CLIPS: logger.warning('Video id {} have been seen. Skip.'.format( vid,)) continue save_pairs = [vid, probs] results.append(save_pairs) # ---- log eta = timer.average_time * (total_test_net_iters - test_iter - 1) eta = str(datetime.timedelta(seconds=int(eta))) logger.info(('{}/{} iter ({}/{} videos):' + ' Time: {:.3f} (ETA: {}). ID: {}').format( test_iter, total_test_net_iters, len(seen_inds), cfg.TEST.DATASET_SIZE, timer.diff, eta, video_ids_list,)) return results
a simpler wrapper that creates the elements for train/test models
def create_wrapper(is_train): """ a simpler wrapper that creates the elements for train/test models """ if is_train: suffix = '_train' split = cfg.TRAIN.DATA_TYPE use_mem_cache = cfg.TRAIN.MEM_CACHE else: # is test suffix = '_test'.format(cfg.MODEL.MODEL_NAME) split = cfg.TEST.DATA_TYPE use_mem_cache = True # we always cache for test model = model_builder_video.ModelBuilder( name=cfg.MODEL.MODEL_NAME + suffix, train=is_train, use_cudnn=True, cudnn_exhaustive_search=True, ws_nbytes_limit=(cfg.CUDNN_WORKSPACE_LIMIT * 1024 * 1024), split=split, use_mem_cache=use_mem_cache, ) model.build_model() if cfg.PROF_DAG: model.net.Proto().type = 'prof_dag' else: model.net.Proto().type = 'dag' workspace.RunNetOnce(model.param_init_net) workspace.CreateNet(model.net) # model.start_data_loader() timer = Timer() meter = metrics.MetricsCalculator(model=model, split=split) misc.save_net_proto(model.net) misc.save_net_proto(model.param_init_net) return model, timer, meter
Bernstein polynomial.
def bernstein(n, k): """Bernstein polynomial.""" coeff = binom(n, k) def _bpoly(x): return coeff * x**k * (1 - x) ** (n - k) return _bpoly
Build Bézier curve from points.
def bezier(points, at): """Build Bézier curve from points.""" warnings.warn( message="Deprecated. CatmulClark builds nicer splines.", category=FutureWarning, stacklevel=1, ) at = np.asarray(at) at_flat = at.ravel() n = len(points) curve = np.zeros((at_flat.shape[0], 2)) for ii in range(n): curve += np.outer(bernstein(n - 1, ii)(at_flat), points[ii]) return curve.reshape((*at.shape, 2))
Parses a line of a requirements.txt file.
def _strip_comments_from_line(s: str) -> str: """Parses a line of a requirements.txt file.""" requirement, *_ = s.split('#') return requirement.strip()
Returns a list of dependencies for setup() from requirements.txt.
def _parse_requirements(requirements_txt_path: str) -> list[str]: """Returns a list of dependencies for setup() from requirements.txt.""" # Currently a requirements.txt is being used to specify dependencies. In order # to avoid specifying it in two places, we're going to use that file as the # source of truth. with open(requirements_txt_path) as fp: # Parse comments. lines = [_strip_comments_from_line(line) for line in fp.read().splitlines()] # Remove empty lines and direct github repos (not allowed in PyPI setups) return [l for l in lines if (l and 'github.com' not in l)]
Dummy evaluator used as an example.
def evaluate_trial(trial: vz.Trial) -> vz.Measurement: """Dummy evaluator used as an example.""" learning_rate = trial.parameters.get_value('learning_rate') num_layers = trial.parameters.get_value('num_layers') m = vz.Measurement() m.metrics = {'accuracy': learning_rate * num_layers} # dummy accuracy if FLAGS.multiobjective: m.metrics['latency'] = 0.5 * num_layers return m
Default optimizer and random restarts that work okay for most cases.
def default_optimizer(maxiter: int = 50) -> Optimizer: """Default optimizer and random restarts that work okay for most cases.""" # NOTE: Production algorithms are recommended to stay away from using this. return JaxoptScipyLbfgsB(LbfgsBOptions(maxiter=maxiter, best_n=None))
Converts a dict of (..., D_i) arrays to a (..., \sum_i D_i) array.
def dict_to_array(array_dict: Mapping[Any, np.ndarray]) -> np.ndarray: r"""Converts a dict of (..., D_i) arrays to a (..., \sum_i D_i) array.""" return np.concatenate(list(array_dict.values()), axis=-1)
Create a default getter for the given parameter config.
def _create_default_getter( pconfig: pyvizier.ParameterConfig, ) -> Callable[[pyvizier.TrialSuggestion], Any]: """Create a default getter for the given parameter config.""" def getter(trial, pconfig=pconfig): if pconfig.name not in trial.parameters: return None pvalue = trial.parameters[pconfig.name] if pconfig.type == pyvizier.ParameterType.DOUBLE: return pvalue.as_float elif pconfig.type == pyvizier.ParameterType.DISCRETE: return pvalue.as_float elif pconfig.type == pyvizier.ParameterType.INTEGER: return pvalue.as_int else: return pvalue.as_str return getter
Compute the Kumaraswamy CDF. Arguments: x: values in [0,1]. shape: (num_samples, num_features) a: positive value. b: positive value. Returns: The CDF(x). shape: (num_samples, num_cdfs).
def kumaraswamy_cdf(x: np.ndarray, a: float, b: float) -> np.ndarray: """Compute the Kumaraswamy CDF. Arguments: x: values in [0,1]. shape: (num_samples, num_features) a: positive value. b: positive value. Returns: The CDF(x). shape: (num_samples, num_cdfs). """ return 1 - (1 - x**a) ** b
Compute the inverse of the Kumaraswamy CDF. Arguments: f: values in [0,1]. shape: (num_samples, num_cdfs) a: positive value. b: positive value. Returns: The Inv_CDF(x). shape: (num_samples, num_features).
def kumaraswamy_inv_cdf(f: np.ndarray, a: float, b: float) -> np.ndarray: """Compute the inverse of the Kumaraswamy CDF. Arguments: f: values in [0,1]. shape: (num_samples, num_cdfs) a: positive value. b: positive value. Returns: The Inv_CDF(x). shape: (num_samples, num_features). """ return (1 - (1 - f) ** (1 / b)) ** (1 / a)
Returns the padded shape according to `padding_types`.
def _padded_dimensions( dims: Sequence[int], padding_types: Sequence[PaddingType] ) -> tuple[int, ...]: """Returns the padded shape according to `padding_types`.""" new_dims = [] for dim, padding_type in zip(dims, padding_types): if padding_type == PaddingType.NONE: new_dims.append(dim) elif padding_type == PaddingType.MULTIPLES_OF_10: new_dims.append(int(math.ceil(dim / 10.0)) * 10) elif padding_type == PaddingType.POWERS_OF_2: if dim == 0: new_dims.append(0) else: new_dims.append(int(2 ** (math.ceil(math.log(dim, 2))))) else: raise ValueError(f'{padding_type} unexpected.') return tuple(new_dims)
Assertion function for comparing two (nested) dictionaries.
def assert_arraytree_allclose( d1: Mapping[str, Any], d2: Mapping[str, Any], **kwargs ) -> None: """Assertion function for comparing two (nested) dictionaries.""" np.testing.assert_equal(d1.keys(), d2.keys()) for k, v in d1.items(): if isinstance(v, dict): assert_arraytree_allclose(v, d2[k], **kwargs) else: try: np.testing.assert_allclose(v, d2[k], **kwargs) except TypeError as e: np.testing.assert_equal( v, d2[k], err_msg=f'Using assert_equal due to typeerror: {e}.' )
Search space with float parameter types.
def flat_continuous_space_with_scaling() -> vz.SearchSpace: """Search space with float parameter types.""" space = vz.SearchSpace() root = space.root root.add_float_param('lineardouble', -1., 2.) root.add_float_param('logdouble', 1e-4, 1e2, scale_type=vz.ScaleType.LOG) return space
Trials of search space with float parameter types.
def flat_continuous_space_with_scaling_trials( count: int = 1, ) -> list[vz.TrialSuggestion]: """Trials of search space with float parameter types.""" trials = [] for _ in range(count): trials.append( vz.Trial({ 'lineardouble': np.random.uniform(low=-1.0, high=2.0), 'logdouble': np.random.uniform(low=1e-4, high=1e2), }) ) return trials
Search space with all parameter types.
def flat_space_with_all_types() -> vz.SearchSpace: """Search space with all parameter types.""" space = vz.SearchSpace() root = space.root root.add_float_param('lineardouble', -1., 2.) root.add_float_param('logdouble', 1e-4, 1e2, scale_type=vz.ScaleType.LOG) root.add_int_param('integer', -2, 2) root.add_categorical_param('categorical', ['a', 'aa', 'aaa']) root.add_bool_param('boolean') root.add_discrete_param('discrete_double', [-.5, 1.0, 1.2]) root.add_discrete_param( 'discrete_logdouble', [1e-5, 1e-2, 1e-1], scale_type=vz.ScaleType.LOG) root.add_discrete_param('discrete_int', [-1, 1, 2]) return space
Conditional space for a simple AutoML task.
def conditional_automl_space() -> vz.SearchSpace: """Conditional space for a simple AutoML task.""" space = vz.SearchSpace() root = space.select_root() root.add_categorical_param( 'model_type', ['linear', 'dnn'], default_value='dnn' ) dnn = root.select('model_type', ['dnn']) dnn.add_float_param( 'learning_rate', 0.0001, 1.0, default_value=0.001, scale_type=vz.ScaleType.LOG, ) linear = root.select('model_type', ['linear']) linear.add_float_param( 'learning_rate', 0.1, 1.0, default_value=0.1, scale_type=vz.ScaleType.LOG ) _ = dnn.add_categorical_param('optimizer_type', ['adam', 'evolution']) # Chained select() calls, path length of 1. root.select('model_type', ['dnn']).select( 'optimizer_type', ['adam'] ).add_float_param( 'learning_rate', 0.1, 1.0, default_value=0.1, scale_type=vz.ScaleType.LOG ) # Chained select() calls, path length of 2. ko = ( root.select('model_type', ['dnn']) .select('optimizer_type', ['adam']) .add_bool_param('use_special_logic', default_value=False) ) ko2 = ko.select_values(['True']) _ = ko2.add_float_param( 'special_logic_parameter', 1.0, 3.0, default_value=2.1 ) return space
Creates a shape validator for attrs. For example, _shape_equals(lambda s : [3, None]) validates that the shape has length 2 and its first element is 3. Code Example: @attrs.define class TestAttr: x = attrs.field(validator=attrs_utils.shape_equals(lambda v: (3, v.d))) d = attrs.field() _TestAttr(np.zeros([3, 2]), 2) # OK _TestAttr(np.zeros([3, 5]), None) # OK _TestAttr(np.zeros([3, 2]), 4) # Raises ValueError Args: instance_to_shape: Takes instance as input and returns the desired shape for the instance. `None` is treated as "any number". Returns: A validator that can be passed into attrs.ib or attrs.field.
def shape_equals(instance_to_shape: Callable[[Any], Collection[Optional[int]]]): """Creates a shape validator for attrs. For example, _shape_equals(lambda s : [3, None]) validates that the shape has length 2 and its first element is 3. Code Example: @attrs.define class TestAttr: x = attrs.field(validator=attrs_utils.shape_equals(lambda v: (3, v.d))) d = attrs.field() _TestAttr(np.zeros([3, 2]), 2) # OK _TestAttr(np.zeros([3, 5]), None) # OK _TestAttr(np.zeros([3, 2]), 4) # Raises ValueError Args: instance_to_shape: Takes instance as input and returns the desired shape for the instance. `None` is treated as "any number". Returns: A validator that can be passed into attrs.ib or attrs.field. """ def validator(instance, attribute, value) -> None: shape = instance_to_shape(instance) def _validator_boolean(): if len(value.shape) != len(shape): return False for s1, s2 in zip(value.shape, shape): if (s2 is not None) and (s1 != s2): return False return True if not _validator_boolean(): raise ValueError(f'{attribute.name} has shape {value.shape} ' f'which does not match the expected shape {shape}') return validator
Example: json.loads(..., object_hook=numpy_hook).
def numpy_hook(obj: Any) -> Any: """Example: json.loads(..., object_hook=numpy_hook).""" if 'dtype' not in obj: return obj if 'shape' not in obj: return obj return np.array(obj['value'], dtype=obj['dtype']).reshape(obj['shape'])
Context manager for turning on the profiler.
def collect_events() -> Generator[List[ProfileEvent], None, None]: """Context manager for turning on the profiler.""" try: if _GLOBAL_SOTRAGE.active: raise RuntimeError( 'There can be only one `collect_events()` context manager active at' ' the same time.' ) _GLOBAL_SOTRAGE.active = True yield _GLOBAL_SOTRAGE.events finally: _GLOBAL_SOTRAGE.active = False # It's important to create a new instance here as opposed to resetting # the same object, so the yieled `events` persist outside the context. _GLOBAL_SOTRAGE.events = list()
Context manager for measuring the timing. Example: ``` with timeit('scope_name') as duration: ... duration() # returns the duration. ``` Also see: record_runtime, which is the decorator equivalent of this. Args: name: also_log: If True, also create a log. Yields: A callable with zero input arguments. Returns the elapsed time until call, or the end of the context, whichever comes earlier.
def timeit( name: str, also_log: bool = False ) -> Generator[Callable[[], datetime.timedelta], None, None]: """Context manager for measuring the timing. Example: ``` with timeit('scope_name') as duration: ... duration() # returns the duration. ``` Also see: record_runtime, which is the decorator equivalent of this. Args: name: also_log: If True, also create a log. Yields: A callable with zero input arguments. Returns the elapsed time until call, or the end of the context, whichever comes earlier. """ start = datetime.datetime.now() duration = None try: with _enter_profile_scope(name): def func() -> datetime.timedelta: if duration is None: return datetime.datetime.now() - start return duration yield func finally: duration = datetime.datetime.now() - start event = _GLOBAL_SOTRAGE.add(EventType.TIMER, (name, duration)) if also_log: logging.info( 'Timed %s: took %s seconds. Full event string: %s', name, duration.total_seconds(), event, )
Decorates the function to record the runtime. Also see: timeit(), which is the context manager equivalent of this. Args: func: Function being decorated. name_prefix: A prefix to add to the function name. name: The name to record. Defaults to func.__qualname__. also_log: Whether to also logging.info the runtime duration. block_until_ready: If True and running on an acceleartor, wait for the async dispatch results from this function, if any. See https://jax.readthedocs.io/en/latest/async_dispatch.html Returns: Decorated function, or decorator.
def record_runtime( func: Optional[Callable[..., Any]] = None, *, name_prefix: str = '', name: str = '', also_log: bool = False, block_until_ready: bool = False, ) -> Any: """Decorates the function to record the runtime. Also see: timeit(), which is the context manager equivalent of this. Args: func: Function being decorated. name_prefix: A prefix to add to the function name. name: The name to record. Defaults to func.__qualname__. also_log: Whether to also logging.info the runtime duration. block_until_ready: If True and running on an acceleartor, wait for the async dispatch results from this function, if any. See https://jax.readthedocs.io/en/latest/async_dispatch.html Returns: Decorated function, or decorator. """ # This is required for the decorator to work both with and without # optional arguments. if func is None: return functools.partial( record_runtime, name_prefix=name_prefix, name=name, also_log=also_log, block_until_ready=block_until_ready, ) name = name or func.__qualname__ full_name = name if name_prefix: full_name = f'{name_prefix}.{name}' @functools.wraps(func) def wrapper(*args, **kwargs): """Calculates runtime of the given function.""" with timeit(name=full_name, also_log=also_log): result = func(*args, **kwargs) if block_until_ready: result = jax.block_until_ready(result) return result return wrapper
Decorates the function to record the runtime of functions. Args: func: Function being decorated. name: The name to record. Defaults to func.__qualname__. also_log: Whether to also logging.info the runtime duration. Returns: Decorated function, or decorator.
def record_tracing( func: Optional[Callable[..., Any]] = None, *, name: str = '', also_log: bool = True, ) -> Any: """Decorates the function to record the runtime of functions. Args: func: Function being decorated. name: The name to record. Defaults to func.__qualname__. also_log: Whether to also logging.info the runtime duration. Returns: Decorated function, or decorator. """ # This is required for the decorator to work both with and without # optional arguments. if func is None: return functools.partial( record_tracing, name=name, also_log=also_log, ) name = name or func.__qualname__ @functools.wraps(func) def wrapper(*args, **kwargs): if config.include_args_in_trace_records(): data = f'{name} with args={args} kwargs={kwargs}' else: data = name event = _GLOBAL_SOTRAGE.add(EventType.JIT_TRACING, data) if also_log: logging.info('Tracing %s. Full event string: %s', name, event) with _enter_profile_scope(name): result = func(*args, **kwargs) return result return wrapper