ID
int64 1
1.07k
| Comment
stringlengths 8
1.13k
| Code
stringlengths 10
4.28k
| Label
stringclasses 4
values | Source
stringlengths 21
21
| File
stringlengths 4
82
|
---|---|---|---|---|---|
301 | _gaze duration Construct a maximal lmer() model | AOIKey.GazeDur.max <- lmer(logGazeDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) AOICohcue.GazeDur.max <- lmer(logGazeDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) AOISpillover.GazeDur.max <- lmer(logGazeDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) | Statistical Modeling | https://osf.io/hn3bu/ | AnalysisCode.R |
302 | _regressions out Construct a maximal glmer() model | AOIKey.RegrOut.max <- glmer(IA_REGRESSION_OUT ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, family = "binomial", control = glmerControl(optimizer ="bobyqa")) AOICohcue.RegrOut.max <- glmer(IA_REGRESSION_OUT ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, family = "binomial", control = glmerControl(optimizer ="bobyqa")) AOISpillover.RegrOut.max <- glmer(IA_REGRESSION_OUT ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, family = "binomial", control = glmerControl(optimizer ="bobyqa")) AOISpillover.RegrOut.max <- glmer(IA_REGRESSION_OUT ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, family = "binomial", control = glmerControl(optimizer ="bobyqa")) | Statistical Modeling | https://osf.io/hn3bu/ | AnalysisCode.R |
303 | _firstfixation duration Construct a maximal lmer() model | AOISpillover.FF.max <- lmer(logFirstFixDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) AOIWrapUp.FF.max <- lmer(logFirstFixDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) AOICohcue.FF.max <- lmer(logFirstFixDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) AOISpillover.FF.max <- lmer(logFirstFixDur ~ 1 + Ambiguity.code + Vocab.Cent + ART.Cent + Ambiguity.code : Vocab.Cent + Ambiguity.code : ART.Cent + (1 + Ambiguity.code | RECORDING_SESSION_LABEL) + (1 + Vocab.Cent + ART.Cent | item), data = Data.CorrTrials, REML=FALSE) | Statistical Modeling | https://osf.io/hn3bu/ | AnalysisCode.R |
304 | Creating subsets of coins by time period and obtaining measures for each of the time periods | for (i in dates) { dsub <- (subset(df, df$DATE == i)) motifs <- cbind(dsub[318:681]) denom <- cbind(dsub[256:309]) DATE[i] <- i HDenomination[i] <- entropy(denom) HMotifs[i] <- entropy(motifs) CEDenominationsMotifs[i] <- condentropy(denom, motifs) NormCEDenominationsMotifs[i] <- condentropy(denom, motifs) / entropy(denom) CEMotifsDenominations[i] <- condentropy(motifs, denom) NormCEMotifsDenominations[i] <- condentropy(motifs, denom) / entropy(motifs) MI[i] <- mutinformation(denom, motifs) NDenominations[i] <- length(unique(dsub$DENOMINATION)) NCoins[i] <- length(unique(dsub$ID)) } | Data Variable | https://osf.io/uckzx/ | P2_analysis_newbins.R |
305 | STATISTICAL TESTING: nonparametric Spearman's correlation nonnormalized conditional entropy | cor.test(results$DATE, results$CEDenominationsMotifs, method = "spearman") rdates <- rev(dates) #dates = years BCE plot(results$DATE, results$CEDenominationsMotifs, xlim = c(600,330), xaxt='n', xlab = "YEAR BCE", ylab = "H(D|d)", main = "P2: Conditional entropy of denomination given designs") axis(1, at = rdates, labels = rdates) | Statistical Test | https://osf.io/uckzx/ | P2_analysis_newbins.R |
306 | Plots with H(D|d) nonnormalized conditional entropy Getting mean, median and standard deviation across different authorities per period for nonnormalized conditional entropy of denomination given designs | N <- aggregate(CEDenominationsMotifs ~ DATE, data = resultspoleis, FUN = length) MEAN <- aggregate(CEDenominationsMotifs ~ DATE, data = resultspoleis, FUN = mean) MEDIAN <- aggregate(CEDenominationsMotifs ~ DATE, data = resultspoleis, FUN = median) SD <- aggregate(CEDenominationsMotifs ~ DATE, data = resultspoleis, FUN = sd) resultspoleis_summary <- cbind.data.frame(N, MEAN$CEDenominationsMotifs, MEDIAN$CEDenominationsMotifs, SD$CEDenominationsMotifs) colnames(resultspoleis_summary) <- c("DATE","N","MEAN","MEDIAN","SD") resultspoleis_summary$SE <- resultspoleis_summary$SD / sqrt(resultspoleis_summary$N) | Visualization | https://osf.io/uckzx/ | P2_analysis_newbins.R |
307 | Plot mean and median H(D|d) across authorities per period | require(ggplot2) ggmean <- ggplot(resultspoleis_summary,aes(x=DATE,y=MEAN)) + labs(title = "P2: Mean conditional entropy of denominations given designs across authorities", x = "Year BCE", y = "mean H(D|d) across authorities") + scale_x_reverse() + geom_errorbar(aes(ymin=resultspoleis_summary$MEAN-resultspoleis_summary$SE, ymax=resultspoleis_summary$MEAN+resultspoleis_summary$SE),width=.1) + geom_line() + geom_point() ggmean ggmedian <- ggplot(resultspoleis_summary,aes(x=DATE,y=MEDIAN)) + labs(title = "P2: Median conditional entropy of denominations given designs across authorities", x = "Year BCE", y = "median H(D|d) across authorities") + scale_x_reverse() + geom_line() + geom_point() ggmedian | Visualization | https://osf.io/uckzx/ | P2_analysis_newbins.R |
308 | REGRESSION ANALYSIS: GROUPING BY AUTHORITIES nonnormalized CE | resultspoleis$AUTHORITIES <- rownames(resultspoleis) resultspoleis$DATE <- as.numeric(as.character(resultspoleis$DATE)) | Statistical Modeling | https://osf.io/uckzx/ | P2_analysis_newbins.R |
309 | Meanimputes missing values for a vector x NOTE: see http://www.mailarchive.com/[email protected]/msg58289.html Args: x: numeric vector Returns: x, with missing values replaced by mean(x) | return(replace(x, is.na(x), mean(x, na.rm = T))) } makeConstructMatrix <- function(net, a) { | Data Variable | https://osf.io/2phst/ | mse_values_for_density_smoother.R |
310 | how many missing data for WVSES questions? | sum(is.na(df21$WVSE1)) sum(is.na(df21$WVSE2)) | Data Variable | https://osf.io/9jzfr/ | 20180714Study2analysisscriptextradata.R |
311 | To log transform Years | TEST_data <- TEST_data %>% mutate(Yearslog = log(Years)) | Data Variable | https://osf.io/4g2tu/ | custom_functions.R |
312 | Making factors for reasons based on factor analysis. This is making a new data frames that also has plans | TEST_data_withplans <- dplyr::select( TEST_data, c( 'Hierarchy':'Cooperate', 'plan_materials', 'plan_MS', 'self_MS_prestige', 'self_MS_cooper', 'self_materials_prestige', 'self_materials_cooper' ) ) | Data Variable | https://osf.io/4g2tu/ | custom_functions.R |
313 | Word Cloud GG plot | ggwordcloudc <- function(x,y){ freqt<-count(x,y) set.seed(42) ggplot(freqt, aes( label = y, size = n, color=factor(sample.int(10,nrow(x),replace=TRUE)))) + geom_text_wordcloud(area_corr = TRUE) + scale_size_area(max_size = 24) + theme_minimal() } | Visualization | https://osf.io/4g2tu/ | custom_functions.R |
314 | Calculate quantiles for eigenvalues, but only store those from simulated CF model in percentile1 | percentile <- apply(parallel$values, 2, function(x) quantile(x, .95)) min <- as.numeric(nrow(obs)) min <- (4 * min) - (min - 1) max <- as.numeric(nrow(obs)) max <- 4 * max percentile1 <- percentile[min:max] percentile <- apply(parallel$values, 2, function(x) quantile(x, .95)) min <- as.numeric(nrow(obs)) min <- (4 * min) - (min - 1) max <- as.numeric(nrow(obs)) max <- 4 * max percentile1 = percentile[min:max] | Data Variable | https://osf.io/4g2tu/ | custom_functions.R |
315 | Label the yaxis 'Eigenvalue' | scale_y_continuous(name = 'Eigenvalue') + | Visualization | https://osf.io/4g2tu/ | custom_functions.R |
316 | Label the xaxis 'Factor Number', and ensure that it ranges from 1max of factors, increasing by one with each 'tick' mark. | scale_x_continuous(name = 'Factor Number', breaks = min(eigendat$num):max(eigendat$num)) + | Visualization | https://osf.io/4g2tu/ | custom_functions.R |
317 | drop row without fid data and without distance burrow data | fid <- fid[!is.na(fid$FID),] fid <- fid[!is.na(fid$dist_burrow),] | Data Variable | https://osf.io/3wy58/ | bivariate_model_summer_revision.R |
318 | get probability contours for plot | kd <- ks::kde(plot_data, compute.cont=TRUE) contour_90 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["10%"])[[1]]) contour_90 <- data.frame(contour_90) contour_80 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["20%"])[[1]]) contour_80 <- data.frame(contour_80) contour_70 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["30%"])[[1]]) contour_70 <- data.frame(contour_70) contour_60 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["40%"])[[1]]) contour_60 <- data.frame(contour_60) contour_50 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["50%"])[[1]]) contour_50 <- data.frame(contour_50) contour_40 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["60%"])[[1]]) contour_40 <- data.frame(contour_40) contour_30 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["70%"])[[1]]) contour_30 <- data.frame(contour_30) contour_20 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["80%"])[[1]]) contour_20 <- data.frame(contour_20) contour_10 <- with(kd, contourLines(x=eval.points[[1]], y=eval.points[[2]], z=estimate, levels=cont["90%"])[[1]]) contour_10 <- data.frame(contour_10) | Visualization | https://osf.io/3wy58/ | bivariate_model_summer_revision.R |
319 | pcurve pcurve(m.cor) Funnel plot, symmetry test (Egger's regression), failsafe n | pdf("Self_control_Funnel.pdf",width=5,height=5) funnel(m.cor,xlab = "Correlation") dev.off() eggers.test(x = m.cor) fsn(yi=m.cor$TE, sei=m.cor$seTE, type="Rosenthal") plot(copas(m.cor)) copas(m.cor) | Visualization | https://osf.io/sqfnt/ | Goal |
320 | H3a: stress ~ trust set Cauchy prior (0, 1) as stated in the preregistration | prior.coef <- brms::prior(cauchy(0,1),class='b') | Statistical Modeling | https://osf.io/z39us/ | Posthoc_H3b.R |
321 | Fit logistic model to each individual's data to estimate PSEs | jdat$PSE <- 500 for(i in as.numeric(levels(jdat$Subject))){ dat <- subset(jdat, Subject==i) if(dat$cannot_fit[1]==0){ fit.glm <- glm(faster ~ Distort, family=binomial, data=dat) jdat$PSE[jdat$Subject==i] <- -coef(fit.glm)[1]/coef(fit.glm)[2] #PSE is -b0/b1 } } | Statistical Modeling | https://osf.io/wxgm5/ | Exp2_judgment.R |
322 | Linear mixed effects model for graded judgments | mod_full <- lmer(GradedJudge ~ Context*(GMSI_Gen_Z + Order*Distort) + (1|Subject), data=jdat2) summary(mod_full) Anova(mod_full, type=3, test='Chisq') | Statistical Modeling | https://osf.io/wxgm5/ | Exp2_judgment.R |
323 | Custom function for weighted Likert plot | panel <- function(...){ HH::panel.likert(...) vals <- list(...) df <- data.frame(x = vals$x, y = vals$y, groups = vals$groups) grps <- as.character(df$groups) for(i in 1:length(colnames(likertscipop.df))){ grps <- sub(paste0('^', colnames(likertscipop.df)[i]), i, grps) } df <- df[order(df$y,grps),] df$correctX <- ave(df$x, df$y, FUN = function(x){ x[x < 0] <- rev(cumsum(rev(x[x < 0]))) - x[x < 0]/2 x[x > 0] <- cumsum(x[x > 0]) - x[x > 0]/2 return(x) }) subs <- sub(' Positive$', '', df$groups) collapse <- subs[-1] == subs[-length(subs)] & df$y[-1] == df$y[-length(df$y)] df$abs <- abs(df$x) df$abs[c(collapse, F)] <- df$abs[c(collapse, F)] + df$abs[c(F, collapse)] df$correctX[c(collapse, F)] <- 0 df <- df[c(T, !collapse),] df$perc <- round(ave(df$abs, df$y, FUN = function(x){x/sum(x) * 100}), 1) df$perc <- paste0(df$perc,'%') df$perc[df$perc == "0%"] <- "" lattice::panel.text(x = df$correctX, y = df$y, label = df$perc, cex = 1.2, font = 1, col = "white") } | Visualization | https://osf.io/qj4xr/ | 02_prevalence-of-scipop.R |
324 | calculate mean and sd in deduplicated data set | means <- c(means, paste0(Round(mean(desc[!duplicated(desc$id), i])), " (", Round(sd(desc[!duplicated(desc$id), i])), ")")) } } | Data Variable | https://osf.io/nxyh3/ | 02b_Descriptives_Study2.R |
325 | For each person combine component scores F, with loading matrix B and error values E to obtain latent structure For each person standardized the data using the withinperson mean and standard deviation | Y = matrix(0,nrow(data),P) colnames(Y) = sprintf("Y%d",seq(1:P)) Error.var = matrix(0,nrow(data),P) colnames(Error.var) = sprintf("E%d",seq(1:P)) FB.var = matrix(0,nrow(data),P) colnames(FB.var) = sprintf("FB%d",seq(1:P)) for (i in 1:N){ n.i = which(data$ID==i) E = sqrt(var.E)*mvrnorm(length(n.i), rep(0,P), diag(P)) Y[n.i,] = F[n.i,] %*% t(B) + E Error.var[n.i,] = E FB.var[n.i,] = F[n.i,] %*% t(B) } data = cbind(data,Y) return(list(Sigma.Psi=NULL,Psi=Psi,Psi.i=NULL,lambda.max.list=NULL,Components=F,data=data, Error.var=Error.var,FB.var=FB.var)) } | Statistical Modeling | https://osf.io/rs6un/ | Data.PC.VAR.Fixed.R |
326 | Statistical analysis Make GramGender a factor with two levels (feminine, masculine) | subset.for.plot$GramGender <- as.factor(subset.for.plot$GramGender) | Data Variable | https://osf.io/przvy/ | study1-rscript.R |
327 | Summary statistics on the reported frequence of the structures | data_struc_names <- as.data.frame(sort(table(data$structures_names))) data_struc_names range(table(data$structures_names)) mean(table(data$structures_names)) sd(table(data$structures_names)) median(table(data$structures_names)) sort(table(data$structures_names)) | Data Variable | https://osf.io/fwc2p/ | Keuken_etal_UHF_MRI_review_analysis_script.r |
328 | Exclude subjects who have missing values on the ability test or on selfviewed ability | mst2 <- subset(mst2, (Raven_self != "NA") & (Raven_obj != "NA") ) | Data Variable | https://osf.io/m6pb2/ | Data_preparation_Sample_A.R |
329 | DESCRIPTIVE STATISTICS compute and save sample statistics (age distribution, number of females) | age <- round(select(psych::describe(mst2_descr$age), n, min, max, mean, sd),2) age$n <- nrow(mst2_descr) sampstats <- mutate(age, female=plyr::count(mst2_descr$sex)[plyr::count(mst2_descr$sex)[,1]=="1",]["freq"] ) write.table(sampstats, file="Descriptives/age_sex_Sample_A_mst2.dat", sep="\t", row.names=FALSE) | Data Variable | https://osf.io/m6pb2/ | Data_preparation_Sample_A.R |
330 | get estimated variance of tanh1 (p hat) | dvartanh <- (1-(pe^2))^2 vartanh <- v/dvartanh vartanh | Statistical Modeling | https://osf.io/9jzfr/ | metaBigFiveextraversion.R |
331 | We have weak evidence between precohort and coronacohort groups test for strong invariance fit model as multigroup model | est_s <- cfa(mod_s,quop_use, estimator = "MLR", missing = "FIML", group = "corona", group.equal = c("loadings","intercepts"), cluster = "class") | Statistical Test | https://osf.io/vphyt/ | Text_Level.R |
332 | find the stations that have 90% of data after 2001 | Pdata_2000 <- Pdata[Dates >= "2000-01-01",] result <- rep(0,(ncol(Pdata_2000)-3)) for (i in 4:ncol(Pdata_2000)) { result[i-3] <- sum(ifelse(is.na(Pdata_2000[,i]),1,0))/nrow(Pdata_2000) } | Data Variable | https://osf.io/5ezfk/ | SantaLuciaStationsToPCPFile.R |
333 | result indicates the fraction of NA data for the stations throw out all the columns and rows where result >0.1 | Pdata_new <- Pdata_2000[,-(which(result>0.1)+3)] Stations <- Stations[-which(result>0.1),] sub_b_sp <- SpatialPoints(cbind(Subbasins$Long_, Subbasins$Lat), proj4string=CRS("+proj=longlat +datum=WGS84 +no_defs")) | Data Variable | https://osf.io/5ezfk/ | SantaLuciaStationsToPCPFile.R |
334 | create dichotomous variable coded as 0 no, 1 yes | dat[, pb_investigated_dich := ifelse(pb_investigated == "yes", 1, 0)] | Data Variable | https://osf.io/dqc3y/ | calc_vars.R |
335 | show ttest, cohen's d, and corrected pvals + CIs for all tests | idx = 1 for (i in all_groups) { cat("\n") print(sprintf('TEST: %s, %s = %d', equation, grouping, i)) t <- t.test(formula = eval(parse(text = equation)), data = filter(df, .data[[grouping]] == i), paired = TRUE, conf.level = ci_level) print(t) print(sprintf('adjusted pval: %.4f', pvals_adj[idx])) d <- effsize::cohen.d(formula = eval(parse(text = paste0(equation, '| Subject(id)'))), data = filter(df, .data[[grouping]] == i), paired = TRUE) print(d) | Statistical Test | https://osf.io/xgwzf/ | utils.R |
336 | show wilcox test, cliff's d, and corrected pvals for all tests | idx = 1 for (i in all_groups) { print(sprintf('TEST: %s, %s = %d', equation, grouping, i)) w <- wilcox.test(formula = eval(parse(text = equation)), data = filter(df, .data[[grouping]] == i), paired = TRUE) print(w) print(sprintf('adjusted pval: %.4f', pvals_adj[idx])) d <- effsize::cliff.delta(formula = eval(parse(text = equation)), data = filter(df, .data[[grouping]] == i), paired = TRUE) print(d) | Visualization | https://osf.io/xgwzf/ | utils.R |
337 | fit tree with quadratic model | hrstree <- semtree(fitted_quadratic_lgcm, as.data.frame(rndhrs_subset), control=semtree.control(verbose=TRUE, method="naive", missing="party", min.bucket = 500, min.N = 250, exclude.heywood = FALSE | Statistical Modeling | https://osf.io/3uyjt/ | tree.R |
338 | then determine which response was given unbiased guessing probablity of 1/N | p.guess <- rep(1/n.acc, n.acc) out$R[timer.replace] <- sample(1:n.acc, size=sum(timer.replace), replace=TRUE, prob=p.guess) } out } | Statistical Modeling | https://osf.io/tbczv/ | TRDM-functions.r |
339 | BassAckward EFA We use bassAckward() to get the correlations between factors from successive solutions, so that we can create the hierarchical diagrams. The correlations are contained in the "bass.ack" result (See capture.output below). In multifactor solutions, the factors obtained from fa() and bassAckward() can be matched by their sequential order (i.e., first factor in fa() is the same as the first factor from bassAckward()). Note: BassAckwards is consistent with faCor but not factor.scores | bass.usm=bassAckward(usm, nfactors=7, fm='ml', cut = .45, lr=F, items=F, plot=T) bass.uss=bassAckward(uss, nfactors=8, fm='ml', cut = .45, lr=F, items=F, plot=T) bass.its=bassAckward(its, nfactors=9, fm='ml', cut = .45, lr=F, items=F, plot=T) bassAckward.diagram(bass.its, lr=T, items=F, cut=.6) capture.output(bass.usm[["bass.ack"]],file='bassAck USM.csv') capture.output(bass.uss[["bass.ack"]],file='bassAck USS.csv') capture.output(bass.its[["bass.ack"]],file='bassAck ITS.csv') | Data Variable | https://osf.io/w7afh/ | EFA script.R |
340 | In the loop below, users define the datasets and the number of solutions to obtain, and the script returns the fa() results, the structure matrices with item labels, and factor congruence coefficients across samples. res stores complete fa results load stores structure matrices pv stores percent of variance accounted by the factors in each solution fcong stores matrices with factor congruence coefficients | for (i in 1:9) { # i = number of solutions we want for(s in seq_along(dl)) { # for each sample in "dl"... id=c('M','U','I')[s] # letter identifier for each sample: M = Mturk, U = US students, I = Italian students fa1=fa(dl[[s]],nfactors=i,fm='ml') # conduct EFA (oblimin rotation, ML estimation) pv[[s]][[i]]=fa1$Vaccounted[2,] # proportion variance accounted for by each factor colnames(fa1$Structure)=sub('ML',id,colnames(fa1$Structure)) # rename the factor labels according to sample res[[s]][[i]]=fa1 # append fa results to list load[[s]][[i]]=merge(unclass(fa.sort(fa1$Structure)), labels, by='row.names', sort=F) # attach item labels to structure loadings and append to list write.table(rbind(load[[s]][[i]],''), file=paste0("load",s,".csv"), row.names=F, sep=',', append=T) # write matrix of structure loadings to file } fcong[[paste0(i,'_USM_USS')]]=fa.congruence(res[[1]][[i]],res[[2]][[i]],structure=T) # append factor congruence coefficients for usm and uss fcong[[paste0(i,'_USM_ITS')]]=fa.congruence(res[[1]][[i]],res[[3]][[i]],structure=T) fcong[[paste0(i,'_USS_ITS')]]=fa.congruence(res[[2]][[i]],res[[3]][[i]],structure=T) } capture.output(fcong,file='fcong.csv') capture.output(pv,file='pvaccounted.csv') rm(fa1,fcong,load,pv,res,i,s,id) # cleaning afterwards | Statistical Modeling | https://osf.io/w7afh/ | EFA script.R |
341 | Onefactor EFA Here, we obtain the correlations among the four factors (obliquely rotated) and use them to find the factor loadings on a general factor We also compute and save the factor scores for the 4 factors and the general factor 4factor EFA | fa4.usm=fa(usm[,(items),with=F], nfactors=4, fm='ml') fa4.uss=fa(uss[,(items),with=F], nfactors=4, fm='ml') fa4.its=fa(its[,(items),with=F], nfactors=4, fm='ml') | Statistical Modeling | https://osf.io/w7afh/ | EFA script.R |
342 | 1factor EFA using the factor scores (we need these scores in order to obtain the general factor scores) | fa1.usm=fa(usm[,(fnames),with=F], nfactors=1, fm='ml') fa1.uss=fa(uss[,(fnames),with=F], nfactors=1, fm='ml') fa1.its=fa(its[,(fnames),with=F], nfactors=1, fm='ml') | Statistical Modeling | https://osf.io/w7afh/ | EFA script.R |
343 | in case xlim is set to 0, and some value has been given to xrange, center plot symmetrically on zero, using maximal extension in case range is set to 0, and given range otherwise | if (xlim[1]==0 & !is.null(xrange)) { if (xrange==0) { maxext <- max(abs(min(paramSampleVec)), abs(max(paramSampleVec))) #largest extension into positive or negative range xlim = c(-maxext, maxext) #centers plot symmetrically on zero } else { xlim = c(-xrange, xrange) } } | Visualization | https://osf.io/qy5sd/ | plotPostKO.R |
344 | compute and save correlation table of selfrated and objective ability measures and outcome aggregates, | varnames <- c("Raven","reasoning_self","MWTB","vocabulary_self","global_selfevaluation","well_being","agency_self","communion_self","agency_peer","communion_peer") outcomes_pils <- dplyr::select(pils, Z_Raven_obj, Z_Raven_self, Z_MWTB_obj, Z_MWTB_self, Z_global_selfeval, Z_well_being, Z_agency_self, Z_comm_self, Z_agency_peer, Z_comm_peer) names(outcomes_pils) <- varnames cor_aggr <- corcons(outcomes_pils) write.table(cor_aggr, file="Descriptives/correlations_aggr_Sample_B_pils.dat", sep="\t") | Statistical Modeling | https://osf.io/m6pb2/ | Data_preparation_Sample_B.R |
345 | Function 5 Stouffer test for a vector of ppvalues | stouffer=function(pp) sum(qnorm(pp),na.rm=TRUE)/sqrt(sum(!is.na(pp))) | Statistical Test | https://osf.io/ujpyn/ | pcurve_app4.052.r |
346 | 1.4 Create family to turn t>F and z>chi2 | family=test family=ifelse(test=="t","f",family) family=ifelse(test=="z","c",family) | Statistical Test | https://osf.io/ujpyn/ | pcurve_app4.052.r |
347 | 1.9 Take value after equal sign, the value of the teststatistic, and put it in vector "equal" | equal=abs(as.numeric(substring(raw,eq+1))) | Data Variable | https://osf.io/ujpyn/ | pcurve_app4.052.r |
348 | Compute ppvalues for the half | pp33.half=ifelse(family=="f" & p<.025, (1/prop25)*( pf(value,df1=df1,df2=df2,ncp=ncp33)-(1-prop25)),NA) pp33.half=ifelse(family=="c" & p<.025, (1/prop25)*(pchisq(value,df=df1, ncp=ncp33)-(1-prop25)),pp33.half) pp33.half=pbound(pp33.half) | Statistical Modeling | https://osf.io/ujpyn/ | pcurve_app4.052.r |
349 | remove lower triangle of correlation matrix | else if(removeTriangle[1]=="lower"){ Rnew <- as.matrix(Rnew) Rnew[lower.tri(Rnew, diag = TRUE)] <- "" Rnew <- as.data.frame(Rnew) } | Data Variable | https://osf.io/xhrw6/ | corstars.R |
350 | mean RTs by condition | pretrain_study_rt <- pretrain_study %>% filter(block == 3) %>% group_by(id, condition) %>% summarise(mean_rt = mean(rt)) %>% ungroup() | Data Variable | https://osf.io/xgwzf/ | exp3_analysis.R |
351 | show get descriptive stats (how many/what proportion of participants reach each accuracy level) | pretrain_test_acc %>% group_by(test_rep) %>% summarise(n_80 = sum(mean_acc > 0.8), n_100 = sum(mean_acc == 1), prop_100 = sum(mean_acc == 1) / length(mean_acc), prop_80 = sum(mean_acc > 0.8) / length(mean_acc)) pretrain_test_acc %>% filter(test_rep == max(pretrain_test_acc$test_rep)) %>% summarise(group_mean_acc = mean(mean_acc), group_sd_acc = sd(mean_acc)) | Visualization | https://osf.io/xgwzf/ | exp3_analysis.R |
352 | P1 COUNTED as 6 seconds until sound event to normalize across trials P2 COUNTED AS FROM SOUND ONSENT (6SECONDS) plus 9 SECONDS 15 SECONDS P3 COUNTED AS 20 SECONDS FROM P2 TO ALMOST END OF THE TRIAL ORDER PAPAMETER 'OPA', FISHER Z TRANSFORMED ORDER PARAMETER 'FOPA' P2 processing | OPAmedianP2<-read.csv(file="OPAmedianP2.csv", sep = "", header=FALSE) colnames(OPAmedianP2)<-c(colheaderChronos) DW_OPAmedianP2=add_column(OPAmedianP2, GR, .before = 1) FOPAmedianP2=FisherZ(OPAmedianP2) DW_FOPAmedianP2=add_column(FOPAmedianP2, GR, .before = 1) DL_OPAmedianP2=melt(DW_OPAmedianP2, id=c("GR"), measured=c("colheaderChronos")) DL_FOPAmedianP2=melt(DW_FOPAmedianP2, id=c("GR"), measured=c("colheaderChronos")) colnames(DL_OPAmedianP2)<-c("GrNr", "TrialNr","OPAmedianP2") colnames(DL_FOPAmedianP2)<-c("GrNr", "TrialNr","FOPAmedianP2") | Data Variable | https://osf.io/dzwct/ | Fisher_Z_3PERIODS_median.R |
353 | plotting correlations with qgraph | cor_graph <- qgraph(correlations) | Visualization | https://osf.io/8akru/ | workshop_example.R |
354 | estimate regularized logistic nodewise regression network define where to binarize variables eLASSO (LASSO with EBIC model selection) listwise deletion of missing values (pairwise not possible for regressions) | Ising_net <- estimateNetwork(data, default = "IsingFit", split = split, missing = "listwise", rule = "OR") | Statistical Modeling | https://osf.io/8akru/ | workshop_example.R |
355 | standardize the variables (to obtain standardized coefficients) | dfAD[,c("S","R","H")] <- data.frame(apply(dfAD[,c("S","R","H")], 2, scale)) dfBE[,c("S","R","H")] <- data.frame(apply(dfBE[,c("S","R","H")], 2, scale)) dfCF[,c("S","R","H")] <- data.frame(apply(dfCF[,c("S","R","H")], 2, scale)) | Statistical Modeling | https://osf.io/fbshg/ | ComF_SOM_Rcode.R |
356 | run logistic regression on each subset, and predict the probability of outcome for each country at each wave. these data points are used for the metaanalysis | response <- deparse(form[[2]]) data_list <- lapply(1:nrow(sub_data), function(i) { dat <- sub_data$data[[i]] if (!all_na(dat$migrant) && !all_na(dat[[response]]) && nlevels(droplevels(dat$migrant)) > 1) { m <- glm(form, family = binomial(), data = dat) pr <- ggemmeans(m, "migrant") pr$wave <- sub_data$wave[i] pr$country <- sub_data$country[i] pr } else { NA } }) | Statistical Modeling | https://osf.io/7wd8e/ | 06-Trends.R |
357 | Binomial test for significant improvement in accuracy. | ifelse(rf_probs > .5, 0, 1) %>% sum %>% # count number of continuous responses binom.test(., nrow(pv), p = baseline) | Statistical Test | https://osf.io/x8vyw/ | 02_random_forest_analysis.R |
358 | Multiple item parameters and thresholds were in one cell. Split them into separate columns | item.dif <- cbind(item.dif, str_split_fixed(item.dif$orig.parameter, " ", 3)) item.dif <- cbind(item.dif, str_split_fixed(item.dif$orig.threshold, " ", 2)) item.dif2 <- cbind(item.dif2, str_split_fixed(item.dif2$orig.parameter, " ", 3)) item.dif2$Tau3 <- ifelse(item.dif2$item == "CR021Q08", 0.74200, NA) item.dif2 <- cbind(item.dif2, str_split_fixed(item.dif2$orig.threshold, " ", 3)) | Data Variable | https://osf.io/8fzns/ | 1_Get_Item-Params_TR.R |
359 | interrater reliability create dataframe of reliability statistic for each of the 10 pairs of data | interraterReliability <- data.frame(row.names = row.names(interraterData)) for (i in c(1:10)) { interraterReliability[i,1] <- cohen.kappa(cbind(t(interraterData[i ,c(1:55)]), t(interraterData[i ,c(56:110)])))$weighted.kappa } | Data Variable | https://osf.io/2j47e/ | Reliability.R |
360 | fill empty matrix with the counts significant (p < .05) per lag (rows) and per individual (column) | for (j in unique(dataset_imp$Participant)){ tempacf <- acf(dataset_imp[dataset_imp$Participant == j , -c(1,8:13)], lag.max = 60) acfmatrix[,paste0("participant", j)] <- 0 for(i in as.numeric(rownames(acfmatrix))){ tempmatrix <- tempacf$acf[i,,] tempvector <- tempmatrix[upper.tri(tempmatrix, diag = T)] acfmatrix[i,paste0("participant", j)] <- length(which(tempvector > 0.25 | tempvector < -0.25)) } } | Statistical Test | https://osf.io/tfbps/ | R_Script_Idiographic_network_analyses.R |
361 | Create list with partial correlation matrices per window | pcorlist <- list() for (d in seq_len(30)) { pcorlist[[d]] <- pcor(temp_data[temp_data$Time %in% d:(d+Window),c("Happy", "Worrying","Nervous","Act_later_regret","Act_without_thinking","Restless")])$estimate } pcorlist <- rapply(pcorlist,function(x) ifelse(x==0.00000000,0.00000001,x), how = "replace") # will be pruned | Data Variable | https://osf.io/tfbps/ | R_Script_Idiographic_network_analyses.R |
362 | Smooth with (bayesian) logistic regression | (mym<-mean(nus)) d<-list(nus=nus-mym,fur=prob.fur*10000) m<-quap(alist( fur~dbinom(10000,p), logit(p)<-a+b*nus, a~dnorm(0,1), b~dnorm(0,1) ),data=d) | Statistical Modeling | https://osf.io/pvyhe/ | Prob_between.R |
363 | For home (emotional) climate items, recode values of "99" to missing. | mutate_at(vars(contains("EDNh_Emotion")), ~ifelse(. == 99, NA, .)) %>% # (Not sure exactly how this code works, but it does) | Data Variable | https://osf.io/xhrw6/ | 1_create_composite_measures.R |
364 | figure < annotate_figure(figure, top text_grob(str_c(Q_text[1]), size 8, color"black")) figure | ggsave(str_c(ordinal_y[QN],"_random.pdf"),plot=figure,width=12,height=14) return(figure) } | Visualization | https://osf.io/nd9yr/ | ordinal_plot_functions.R |
365 | ordered_logistic stacked plot | N_cat <- max(d[,var_y],na.rm=T) grn <- 250 zLogM <- seq(-5,4,length.out=grn) P <- matrix(NA, nrow=grn, ncol=N_cat) for(i in 1:grn){ P[i,] <- ordered_logistic(fixef['b_X']*zLogM[i],cutpoints) } if(QN==1 | QN==4 | QN==5 | QN==8){ axis_labels <- c('fraction of responses','M-ratio') }else{ axis_labels <- c(' ',' ') } data.frame(P) -> P colnames(P) <- x_lab #str_c("p_",1:N_cat) P$zlogM <- zLogM P$logM <- P$zlogM * 2*sd(log(d$M_cov)) + mean(log(d$M_cov)) P$M <- exp(P$logM) P %>% pivot_longer(cols=x_lab, #starts_with("p_"), values_to="p", names_to="k") %>% mutate(k = as_factor(k), k = fct_rev(k)) %>% ggplot(aes(x=M, y=p, fill=k)) + scale_fill_viridis_d(name="",labels = wrap_format(20), option="rocket") + geom_area(alpha=0.8 , size=0.4, colour="black")+ themeXstack + labs(y=axis_labels[1],x=axis_labels[2])+ scale_y_continuous(breaks=seq(0,1,0.1))+ coord_cartesian(xlim=c(0.5,1.3),ylim=c(0+0.045,1-0.045))+ ggtitle(label=str_wrap(sel_Q_text,22)) -> pl_stack | Visualization | https://osf.io/nd9yr/ | ordinal_plot_functions.R |
366 | calculate threshold for lowest quartile | quantile(tau_squared_self)[2]] tau2_thres_publ <- dat[as_factor(primary_data) == "yes" & k_publ > k_thres, quantile(tau_squared_self_publ)[2]] | Data Variable | https://osf.io/dqc3y/ | analysis_MASTER.R |
367 | now we add up all corresponding answers to create one row per participant, as in a typical ANOVA design analysis | sdt.agg <- sdt.agg %>% group_by(Participant, type) %>% summarise(count = n()) %>% spread(type, count) sdt.agg #this is a new dataframe for the aggregate data, you can delete after. | Statistical Modeling | https://osf.io/abts4/ | DECEPTION-ProbitSDT-v1.R |
368 | function pcor2beta gives you data from a partial correlation/network input pcor a partial correlation matrix / network output a matrix of betas, each column corresponds to a dependent variable so that you can get predicted values by a matrix multiplication in the form betas %*% data | pcor2beta <- function(pcor) { require(psych) require(corpcor) diag(pcor) <- 1 p <- ncol(pcor) betas <- matrix(0, ncol = p, nrow = p) for(i in 1:p) betas[-i,i] <- matReg(y = i, x = seq(p)[-i], C = pcor2cor(pcor))$beta betas[abs(betas) < 1e-13] <- 0 betas } | Statistical Modeling | https://osf.io/ywm3r/ | predictability.R |
369 | extract posterior samples of omega | posterior.omega <- c(posterior.omega.check[, 1], posterior.omega.check[, 2]) posterior.omega.description.only <- c(posterior.omega.check[, 1], posterior.omega.check[, 2]) posterior.omega.description.plus.stats <- c(posterior.omega.check[, 1], posterior.omega.check[, 2]) | Statistical Modeling | https://osf.io/x72cy/ | AnalyzeDummyData.R |
370 | MEAN & SD FOR AMOUNT OF REM SLEEP (min) BETWEEN BASELINE AND ISOLATION | aggregate(REM~Place, data=REM_GNS, FUN=mean) aggregate(REM~Place, data=REM_GNS, FUN=sd) | Data Variable | https://osf.io/sx6yf/ | 2021-6-7_No_Man_Is_An_Island_analyses.R |
371 | calculating sociality bias ratio variable Converting the amount of dream interactions to same scale as the amount of wake time interactions was reported | IN$int_cat<-ifelse(IN$Interactions == 0, 1, ifelse(IN$Interactions >= 1 & IN$Interactions <= 5, 2, ifelse(IN$Interactions >= 6 & IN$Interactions <= 15, 3, ifelse(IN$Interactions >= 16 & IN$Interactions <= 25, 4,5)))) IN$dream_per_sos<-IN$int_cat/IN$sos_int_prev_day hist(IN$dream_per_sos) qqnorm(IN$dream_per_sos) #skewed hist(log(IN$dream_per_sos)) qqnorm(log(IN$dream_per_sos)) #looks more normally distributed after log-transformed | Data Variable | https://osf.io/sx6yf/ | 2021-6-7_No_Man_Is_An_Island_analyses.R |
372 | join predicted to test data | test_pred <- left_join(test,prediction,by="id") test_pred <- as.data.frame(test_pred) test_pred$class_var <- as.factor(test_pred$class_var) test_pred$class_var_pred <- as.factor(test_pred$class_var_pred) | Data Variable | https://osf.io/cqsr8/ | boosting_xgbDART.R |
373 | Computing SMD (g) and its variance | smd <- escalc(measure = "SMD", m1i = wm, m2i = mm, sd1i = wsd, sd2i = msd, n1i = wn, n2i = mn, data = smd.means, append = TRUE) smd #Two columns (yi and vi) have been added# | Statistical Modeling | https://osf.io/rbxzs/ | Script_R.R |
374 | Computing Fisher's z and its variance | zcor <- escalc(measure = "ZCOR", ri = cor, ni = sample, data = zcor.correlations, append = TRUE) zcor | Statistical Modeling | https://osf.io/rbxzs/ | Script_R.R |
375 | Obtaining the forest plot | forest(res) | Visualization | https://osf.io/rbxzs/ | Script_R.R |
376 | Analog to ANOVA: If we want to know the mean ES for each 'random' level: yes/no | res_r <- rma(yi = g, vi = var, mods = ~ factor(random)-1, data = dat) res_r | Statistical Test | https://osf.io/rbxzs/ | Script_R.R |
377 | Obtaining a funnel plot (model without moderators) | funnel(res, main = "Random-Effects Model") | Visualization | https://osf.io/rbxzs/ | Script_R.R |
378 | inspect potential multicollinearity using the variance inflation factor (VIF), for the example of the criterion variable outcome_sqd (see Fox, 2016 for a discussion of VIFs and their cutoffs) | lm_sqd <- lm(outcome_sqd ~ X + Y + X2 + XY + Y2, data=df) vif(lm_sqd) | Statistical Modeling | https://osf.io/yvw93/ | R_code_test_congruence_effects.R |
379 | Mixed effects logistic regression | logistic_model_1 <- glmer(instructions ~ distance + (1|ID) + (1|target) + (1|task), data = choices, family = binomial(link = "logit")) logistic_model_2 <- glmer(instructions ~ distance + (1 + distance|ID) + (1|target) + (1|task), data = choices, family = binomial(link = "logit")) logistic_model_3 <- glmer(instructions ~ distance + (1 + distance|ID) + (1|target) + (1 + distance|task), data = choices, family = binomial(link = "logit"), control = glmerControl(optimizer = "bobyqa", optCtrl = list(maxfun = 100000))) model_comparison <- anova(logistic_model_1, logistic_model_2, logistic_model_3) | Statistical Modeling | https://osf.io/hbju7/ | study-2_main-analysis-code.R |
380 | GLMMs results of models with year as continuous are in table 3 Model with year as continuous variable | mod1ADI<-lmer(ADImS~LAT+LONG+YEAR1+(1|STATE)+(1|ROUTE2)+(1|SITE)+(1|YEAR1),dat=datUS,REML=F) mod1ADI<-lmer(ADImS~LAT+LONG+YEAR1+(1|SITE)+(1|COUNTRY)+(1|YEAR1),dat=datEU,REML=F) | Statistical Modeling | https://osf.io/jyuxk/ | Analysis_and_source_code_table_3_and_figure_3.R |
381 | familiarity x female x BL check effect of Baseline on familiarity x gender (self) interaction | HR_test_BL = lmer(HR_EMA ~ SI_familiarity_cw * female * HR_BL_cb + female * SI_gender_partner + SIAS_cb + State_SI_Anxiety_cw + SI_count + SI_type_simple + SI_duration_cw + SI_caffeine + SI_nicotin + SI_alcohol + accel_EMA_cw + (1|Participant), data=df_interact) summary(HR_test_BL) Anova(HR_test_BL, type=3) anova(HR_A, HR_test_BL) # no difference RMSSD_test_BL = lmer(ln_RMSSD_EMA ~ SI_familiarity_cw * female * ln_RMSSD_BL_cb + female * SI_gender_partner + SIAS_cb + State_SI_Anxiety_cw + SI_count + SI_type_simple + SI_duration_cw + SI_caffeine + SI_nicotin + SI_alcohol + accel_EMA_cw + (1|Participant), data=df_interact) summary(RMSSD_test_BL) Anova(RMSSD_test_BL, type=3) anova(RMSSD_A, RMSSD_test_BL) # better | Statistical Modeling | https://osf.io/d3tg5/ | Manuscript_main analyses.R |
382 | let's try to create a boxplot for mpg on the of cylinders (cyl) | ggplot(mtcars, aes(factor(cyl), mpg)) + geom_boxplot() | Visualization | https://osf.io/6g4js/ | Graphics_Section_5.R |
383 | Likelihood Ratio Tests for nested model comparison | pair1_rand_anova <- anova(pair1_rand_full, pair1_rand2, pair1_rand3) # empty model = pair1_rand2 pair1_rand_anova_tidy <- tidy(pair1_rand_anova) pair2_rand_anova <- anova(pair2_rand_full, pair2_rand2, pair2_rand3) pair2_rand_anova_tidy <- tidy(pair2_rand_anova) # create tidy table of model parameters pair2_fixed_anova <- anova(pair2_full, pair2_fixed, pair2_fixed2, pair2_fixed3, pair2_rand2) pair2_fixed_anova_tidy <- tidy(pair2_fixed_anova) # create tidy table of model parameters pair2_fixed_lmer <- tidy(pair2_fixed2) # create tidy table of model parameters group1_rand_anova <- anova(group1_rand_full, group1_rand2, group1_rand3, group1_rand4) # a random intercept for each pair is significantly better than empty, otherwise all other random effects tested were not warranted group1_rand_anova_tidy <- tidy(group1_rand_anova) # create tidy table of model parameters group1_rand_lmer <- tidy(group1_rand3) # create tidy table of model parameters group2_rand_anova <- anova(group2_rand_full, group2_rand2, group2_rand3, group2_rand4, group2_rand5) group2_rand_anova_tidy <- tidy(group2_rand_anova) # create tidy table of model parameters group2_rand_lmer <- tidy(group2_rand2) # create tidy table of model parameters | Statistical Test | https://osf.io/67ncp/ | duque_etal_2019_rcode.R |
384 | Fills in missing values of x with the mean of x Args: x: a numeric vector Returns: x with missing values filled in | return(replace(x, is.na(x), mean(x, na.rm = T))) } mseOfMatchingColumns <- function(nm, mat, dt) { | Data Variable | https://osf.io/2phst/ | mse_values_latent_space_diffusion_slurm.R |
385 | **** 0.3.4) logisticPseudoR2s calculates Logistic pseudo Rs (from Field et al., 2013) input: glm object | logisticPseudoR2s <- function(LogModel) { dev <- LogModel$deviance nullDev <- LogModel$null.deviance modelN <- length(LogModel$fitted.values) R.l <- 1 - dev / nullDev R.cs <- 1- exp ( -(nullDev - dev) / modelN) R.n <- R.cs / ( 1 - ( exp (-(nullDev / modelN)))) outdat <- data.table(R.l = R.l, R.cs = R.cs, R.n = R.n) outdat[, r.sq.print := paste(round(R.l, 3), "/", round(R.cs, 3), "/", round(R.n, 3), sep = "")] return(outdat) } | Statistical Modeling | https://osf.io/dqc3y/ | prep_functions.R |
386 | for loop goes through all the files in myLists and applies addTagsTextEntry to each row in the file | for (k in 1:length(myLists)) { i <- paste("list", k, ".txt", sep = "") o <- paste("upload", k, ".txt", sep = "") f <- read.delim(i, header = FALSE, stringsAsFactors = FALSE) write("[[AdvancedFormat]]", o) apply(f, 1, addMultiChoiceSame, o) } rm(list=ls()) | Data Variable | https://osf.io/t2jka/ | multipleChoiceSame.R |
387 | compute mean LT per condition, group and accuracy | LT <- ddply(data, .(rctype,group,acc_lab), summarize, mean.rt = mean(rt), se.lower = mean.rt - se(rt), se.upper = mean.rt + se(rt)) | Data Variable | https://osf.io/kdjqz/ | Lissonetal2021-script.R |
388 | Fit uni.cfa and save output in uni.cfi.fit. Use fixed factor (std.lv TRUE), and FIML for missing data) | uni.cfa.fit = cfa(uni.cfa, data = SSSSdat, std.lv = TRUE, missing = "ML") | Statistical Modeling | https://osf.io/mbf32/ | SSSS-Latent Variable Analysis Made Easy (1.0) .R |
389 | Request summary output from model, including fit indexes, standardized estimates, and R^2/communalities | summary(uni.cfa.fit, fit.measures = TRUE, standardized = TRUE, rsquare=TRUE) summary(five.cfa.fit, fit.measures = TRUE, standardized = TRUE, rsquare=TRUE) summary(five.sem.parcel.corr.fit, fit.measures = TRUE, standardized = TRUE, rsquare=TRUE) summary(five.sem.parcel.reg.fit, fit.measures = TRUE, standardized = TRUE, rsquare=TRUE) | Statistical Modeling | https://osf.io/mbf32/ | SSSS-Latent Variable Analysis Made Easy (1.0) .R |
390 | We need to get an idea of how many factors are likely needed. Parallel analysis can help. Save output in object "parallel", using psych() fa.parallel function. Variables 125 (the BFI items) are to be analzyed, using maximum likelihood (ml) common factors (fa). Simulate 50 other samples of "garbage factors", using R^2s (SMC) as initial communality estimates and compare observed eigenvalues to 95th quantile of simulated "garbage factor" eigenvalues | parallel = fa.parallel(SSSSdat[1:25], fm = 'ml', fa = 'fa', n.iter = 50, SMC = TRUE, quant = .95) | Statistical Modeling | https://osf.io/mbf32/ | SSSS-Latent Variable Analysis Made Easy (1.0) .R |
391 | Fit measurement invariance models based on five.cfa model, distinguishing by group levels of "gender". Save output in invar.output object | invar.output = measurementInvariance(five.cfa, data = SSSSdat, group = "gender") | Statistical Modeling | https://osf.io/mbf32/ | SSSS-Latent Variable Analysis Made Easy (1.0) .R |
392 | Create function to calculate ICC from fitted model: ICC between family variance / total family variance | calc.icc <- function(y) { sumy <- summary(y) (sumy$varcor$famnumber[1]) / (sumy$varcor$famnumber[1] + sumy$sigma^2) } calc.icc <- function(y) { sumy <- summary(y) (sumy$varcor$famnumber[1]) / (sumy$varcor$famnumber[1] + sumy$sigma^2) } | Statistical Modeling | https://osf.io/9vn68/ | Syntax_Sibpaper1_final_2021-02-12.R |
393 | ** 5.2) Poisson regression **** 5.2.1) Full set model 1: summary effect (absolute value) | pred.nbias.1 <- glm(nmeth_bias ~ scale(abs(MA_ES_self)), data = dat[!is.na(nmeth_bias) & k_self > k_thres, ], family = poisson) summary(pred.nbias.1) rsq.pred.nbias.1 <- logisticPseudoR2s(pred.nbias.1) | Statistical Modeling | https://osf.io/dqc3y/ | analysis_mmreg.R |
394 | ANOVA dependent variable: drift rate independent variable:masking time condition letters task, pretest | cv_pre_drift = cogito %>% gather(key = "maskingtime", value = "drift", cvt1_v1,cvt1_v2,cvt1_v3,cvt1_v4) %>% convert_as_factor(obs, maskingtime) aov_cv_pre <- anova_test(data = cv_pre_drift , dv = drift, wid = obs, within = maskingtime, type=3, detailed=T) get_anova_table(aov_cv_pre, correction="none") | Data Variable | https://osf.io/5qx7e/ | Descriptives_Tables_1_2_S1_S2.R |
395 | subsample of the PG without patients with schizophrenia or other psychotic disorders (F20. or F23.) | subsample_PGwithoutF20_23 <- subsample_PG[subsample_PG$F20_23==0, ] | Data Variable | https://osf.io/73y8p/ | RAQ-R_reliability after exclusion.R |
396 | function returns raster of posterior probabilities for bivariate normal data x is the unknown tissue of interest, will have two values, one for each isotope m is a 2D vector, all the values in the raster for each isotope v is the same as m, but for variances r is a single number the covariance. Can be vector if estimated as nonstationary ras is a raster that will serve as a template for the final product | calcCellProb2D <- function(x,m,v,r,ras) { pd <- 1/(2*pi*sqrt(v[,1])*sqrt(v[,2])*sqrt(1-r^2))*exp(-(1/(2*(1-r^2)))* ((x[1]-m[,1])^2/v[,1]+(x[2]-m[,2])^2/v[,2]-(2*r*(x[1]-m[,1])* (x[2]-m[,2]))/(sqrt(v[,1])*sqrt(v[,2])))) pdras <- setValues(ras,pd) return(pdras) } | Statistical Modeling | https://osf.io/ynx3m/ | WoCP_publication_script.R |
397 | function returns raster of posterior probability distribution | calcPostProb <- function(x){ pp <- x/cellStats(x,sum) return(pp) } | Data Variable | https://osf.io/ynx3m/ | WoCP_publication_script.R |
398 | reproject the site coordinates to get the site to plot (thanks to P. Schauer) | myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords myproj <- proj4string(origins)#get the CRS string iso.data.sp <- iso.data #make a copy coordinates(iso.data.sp) <- ~ Long + Lat #specify the coordinates proj4string(iso.data.sp) <- CRS("+proj=longlat +datum=WGS84") #project first iso.data.sp <- spTransform(iso.data.sp, myproj) #then re-project using the projection from the base map wrld_simpl2 <- wrld_simpl #make a copy wrld_simpl2 <- spTransform(wrld_simpl2, myproj) #this is to add in country borders etc. if you want to as they have the same projection issues as the site coords | Visualization | https://osf.io/ynx3m/ | WoCP_publication_script.R |
399 | cutting dendrogram in 3 clusters | clus3 = cutree(hcOSrenamel, 3) Women_WOCP_cluster<-plot(as.phylo(hcOSrenamel), type = "fan", tip.color = cbbPalette[clus3]) Women_WOCP_cluster | Data Variable | https://osf.io/ynx3m/ | WoCP_publication_script.R |
400 | calculate intercorrelations between diamonds on the betweenperson level with 95% Bootstrapped CI | between.person.diamonds = diamonds %>% group_by(user_id) %>% summarise(across(where(is.numeric), ~ mean(.x))) between.person.diamonds = between.person.diamonds %>% dplyr::select(diamonds_duty, diamonds_intellect, diamonds_adversity, diamonds_mating, diamonds_positivity, diamonds_negativity, diamonds_deception, diamonds_sociality) cors.diamonds = round(cor(between.person.diamonds, method = "pearson"),2) cors.diamonds = as.data.frame(cors.diamonds) | Statistical Test | https://osf.io/b7krz/ | Descriptives_Selfreports.R |
Subsets and Splits