|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import sys |
|
import os |
|
import json |
|
import re |
|
|
|
sys.path.append(os.path.join(os.path.dirname(os.environ["LAB_DATASET_DIR"]), "scripts")) |
|
import llvm_helper |
|
from lab_env import Environment as Env |
|
from openai import OpenAI |
|
from openai import NOT_GIVEN |
|
|
|
token = os.environ["LAB_LLM_TOKEN"] |
|
url = os.environ.get("LAB_LLM_URL", "https://api.deepseek.com") |
|
model = os.environ.get("LAB_LLM_MODEL", "deepseek-reasoner") |
|
basemodel_cutoff = os.environ.get("LAB_LLM_BASEMODEL_CUTOFF", "2023-12-31Z") |
|
client = OpenAI(api_key=token, base_url=url) |
|
temperature = 0.0 |
|
max_input_tokens = int(os.environ.get("LAB_LLM_CONTEXT_WINDOW_SIZE", 65536)) |
|
|
|
enable_tooling = os.environ.get("LAB_LLM_ENABLE_TOOLING", "OFF") == "ON" |
|
enable_streaming = os.environ.get("LAB_LLM_ENABLE_STREAMING", "OFF") == "ON" |
|
max_log_size = int(os.environ.get("LAB_LLM_MAX_LOG_SIZE", 1000000000)) |
|
fix_dir = os.environ["LAB_FIX_DIR"] |
|
os.makedirs(fix_dir, exist_ok=True) |
|
|
|
tools = [] |
|
tool_get_source_prompt = "If you need to view the source code, please call the `get_source` function. It is very helpful to address compilation errors by inspecting the latest LLVM API." |
|
tool_get_source_desc = { |
|
"type": "function", |
|
"function": { |
|
"name": "get_source", |
|
"description": "Get the first 10 lines of the source code starting from the specified line number.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"file": { |
|
"type": "string", |
|
"description": "Relative path to the source file. Must start with 'llvm/'", |
|
}, |
|
"lineno": { |
|
"type": "number", |
|
"description": "The line number to start from. The first line is 1.", |
|
}, |
|
}, |
|
"required": ["file", "lineno"], |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def tool_get_source(env, args): |
|
file = args["file"] |
|
if not file.startswith("llvm/") or file.contains(".."): |
|
return "Invalid file path" |
|
lineno = int(args["lineno"]) |
|
path = os.path.join(llvm_helper.llvm_dir, file) |
|
env.reset() |
|
env.use_knowledge(f"source file: {file}:{lineno}", env.knowledge_cutoff) |
|
with open(path) as f: |
|
source = f.readlines() |
|
return "```cpp\n" + "".join(source[lineno - 1 : lineno + 9]) + "```\n" |
|
|
|
|
|
tools.append((tool_get_source_prompt, tool_get_source_desc, tool_get_source)) |
|
|
|
tool_get_instruction_docs_prompt = "If you need the definition of an LLVM instruction or an intrinsic, please call the `get_instruction_docs` function. It is useful to understand new poison-generating flags." |
|
tool_get_instruction_docs_desc = { |
|
"type": "function", |
|
"function": { |
|
"name": "get_instruction_docs", |
|
"description": "Get the documentation of an LLVM instruction or an intrinsic.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"inst": { |
|
"type": "string", |
|
"description": "The name of the instruction or intrinsic (e.g., 'add', 'llvm.ctpop'). Do not include the suffix for type mangling.", |
|
} |
|
}, |
|
"required": ["inst"], |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def tool_get_instruction_docs(env, args): |
|
inst = args["inst"] |
|
return env.get_langref_desc([inst])[inst] |
|
|
|
|
|
tools.append( |
|
( |
|
tool_get_instruction_docs_prompt, |
|
tool_get_instruction_docs_desc, |
|
tool_get_instruction_docs, |
|
) |
|
) |
|
|
|
|
|
tool_check_refinement_prompt = "If you want to check if an optimization is correct, please call the `check_refinement` function. If the optimization is incorrect, the function will provide a counterexample." |
|
tool_check_refinement_desc = { |
|
"type": "function", |
|
"function": { |
|
"name": "check_refinement", |
|
"description": "Check if an optimization is correct. If the optimization is incorrect, the function will provide a counterexample.", |
|
"parameters": { |
|
"type": "object", |
|
"properties": { |
|
"src": { |
|
"type": "string", |
|
"description": "The original LLVM function.", |
|
}, |
|
"tgt": { |
|
"type": "string", |
|
"description": "The optimized LLVM function. The name of target function should be the same as the original function.", |
|
}, |
|
}, |
|
"required": ["src", "tgt"], |
|
}, |
|
}, |
|
} |
|
|
|
|
|
def tool_check_refinement(env, args): |
|
src = args["src"] |
|
tgt = args["tgt"] |
|
env.use_knowledge(f"alive2", env.knowledge_cutoff) |
|
if "ptr" in src and "target datalayout" not in src: |
|
src = f'target datalayout = "p:8:8:8"\n{src}' |
|
if "ptr" in tgt and "target datalayout" not in tgt: |
|
tgt = f'target datalayout = "p:8:8:8"\n{tgt}' |
|
|
|
res, log = llvm_helper.alive2_check(src, tgt, "-src-unroll=8 -tgt-unroll=8") |
|
if res: |
|
return "The optimization is correct." |
|
return log |
|
|
|
|
|
tools.append( |
|
(tool_check_refinement_prompt, tool_check_refinement_desc, tool_check_refinement) |
|
) |
|
|
|
|
|
def get_tooling_prompt(): |
|
if not enable_tooling: |
|
return "" |
|
prompt = "You are allowed to use the following functions when fixing this bug:\n" |
|
for x in tools: |
|
prompt += x[0] + "\n" |
|
return prompt |
|
|
|
|
|
def get_available_tools(): |
|
if not enable_tooling: |
|
return NOT_GIVEN |
|
return [x[1] for x in tools] |
|
|
|
|
|
def dispatch_tool_call(env, name, args): |
|
assert enable_tooling |
|
|
|
try: |
|
args = json.loads(args) |
|
for tool in tools: |
|
if tool[1]["function"]["name"] == name: |
|
return tool[2](env, args) |
|
except Exception as e: |
|
return str(e) |
|
|
|
|
|
def estimate_input_tokens(messages): |
|
return sum(len(chat["content"]) for chat in messages) * 0.3 |
|
|
|
|
|
def append_message(messages, full_messages, message, dump=True): |
|
role = message["role"] |
|
content = message["content"] |
|
if dump: |
|
print(f"{role}: {content}") |
|
messages.append({"role": role, "content": content}) |
|
full_messages.append(message) |
|
|
|
|
|
def chat_with_tooling(env, messages, full_messages): |
|
reasoning_content = "" |
|
content = "" |
|
try: |
|
while True: |
|
response = ( |
|
client.chat.completions.create( |
|
model=model, |
|
messages=messages, |
|
timeout=300, |
|
temperature=temperature, |
|
tools=get_available_tools(), |
|
) |
|
.choices[0] |
|
.message |
|
) |
|
if response.tool_calls is None or len(response.tool_calls) == 0: |
|
break |
|
|
|
if hasattr(response, "reasoning_content"): |
|
reasoning_content += response.reasoning_content |
|
print("Thinking:") |
|
print(response.reasoning_content) |
|
|
|
messages.append(response) |
|
|
|
for tool_call in response.tool_calls: |
|
name = tool_call.function.name |
|
args = tool_call.function.arguments |
|
res = dispatch_tool_call(env, name, args) |
|
print(f"Call tool {name} with") |
|
print(args) |
|
print("Result: ", res) |
|
full_messages.append( |
|
{ |
|
"role": "assistant - funccall", |
|
"tool_name": name, |
|
"tool_args": args, |
|
"tool_res": res, |
|
} |
|
) |
|
messages.append( |
|
{ |
|
"role": "tool", |
|
"tool_call_id": tool_call.id, |
|
"content": str(res), |
|
} |
|
) |
|
|
|
print("assistant:") |
|
if hasattr(response, "reasoning_content"): |
|
reasoning_content += response.reasoning_content |
|
print("Thinking:") |
|
print(response.reasoning_content) |
|
content = response.content |
|
print("Answer:") |
|
print(content) |
|
except Exception as e: |
|
print(e) |
|
append_message( |
|
messages, |
|
full_messages, |
|
{"role": "assistant", "content": f"Exception: {e}"}, |
|
dump=False, |
|
) |
|
return "" |
|
answer = {"role": "assistant", "content": content} |
|
if len(reasoning_content) > 0: |
|
answer["reasoning_content"] = reasoning_content |
|
append_message(messages, full_messages, answer, dump=False) |
|
return content |
|
|
|
|
|
def chat_with_streaming(env, messages, full_messages): |
|
reasoning_content = "" |
|
content = "" |
|
try: |
|
completion = client.chat.completions.create( |
|
model=model, |
|
messages=messages, |
|
timeout=300, |
|
temperature=temperature, |
|
stream=True, |
|
) |
|
is_thinking = False |
|
is_answering = False |
|
for chunk in completion: |
|
delta = chunk.choices[0].delta |
|
if hasattr(delta, "reasoning_content") and delta.reasoning_content != None: |
|
if not is_thinking: |
|
print("Thinking:") |
|
is_thinking = True |
|
print(delta.reasoning_content, end="", flush=True) |
|
reasoning_content += delta.reasoning_content |
|
else: |
|
if delta.content != "" and is_answering is False: |
|
print("\nAnswer:") |
|
is_answering = True |
|
print(delta.content, end="", flush=True) |
|
content += delta.content |
|
|
|
except Exception as e: |
|
print(e) |
|
append_message( |
|
messages, |
|
full_messages, |
|
{"role": "assistant", "content": f"Exception: {e}"}, |
|
dump=False, |
|
) |
|
return "" |
|
answer = {"role": "assistant", "content": content} |
|
if len(reasoning_content) > 0: |
|
answer["reasoning_content"] = reasoning_content |
|
append_message(messages, full_messages, answer, dump=False) |
|
return content |
|
|
|
|
|
def chat(env, messages, full_messages): |
|
if enable_streaming: |
|
assert not enable_tooling |
|
return chat_with_streaming(env, messages, full_messages) |
|
return chat_with_tooling(env, messages, full_messages) |
|
|
|
|
|
format_requirement = """ |
|
Please answer with the code directly. Do not include any additional information in the output. |
|
Please answer with the complete code snippet (including the unmodified part) that replaces the original code. Do not answer with a diff. |
|
""" |
|
|
|
|
|
def get_system_prompt() -> str: |
|
return ( |
|
"""You are an LLVM maintainer. |
|
You are fixing a middle-end bug in the LLVM project.""" |
|
+ format_requirement |
|
+ get_tooling_prompt() |
|
) |
|
|
|
|
|
def get_hunk(env: Env) -> str: |
|
lineno = env.get_hint_line_level_bug_locations() |
|
bug_file = next(iter(lineno.keys())) |
|
bug_hunks = next(iter(lineno.values())) |
|
min_lineno = 1e9 |
|
max_lineno = 0 |
|
for range in bug_hunks: |
|
min_lineno = min(min_lineno, range[0]) |
|
max_lineno = max(max_lineno, range[1]) |
|
margin = 30 |
|
base_commit = env.get_base_commit() |
|
source_code = str( |
|
llvm_helper.git_execute(["show", f"{base_commit}:{bug_file}"]) |
|
).splitlines() |
|
min_lineno = max(min_lineno - margin, 1) |
|
max_lineno = min(max_lineno + margin, len(source_code)) |
|
hunk = "\n".join(source_code[min_lineno - 1 : max_lineno]) |
|
return bug_file, hunk |
|
|
|
|
|
def extract_code_from_reply(tgt: str): |
|
if tgt.startswith("```"): |
|
tgt = tgt.strip().removeprefix("```cpp").removeprefix("```").removesuffix("```") |
|
return tgt |
|
|
|
re1 = re.compile("```cpp([\s\S]+)```") |
|
matches = re.findall(re1, tgt) |
|
if len(matches) > 0: |
|
return matches[-1] |
|
re2 = re.compile("```([\s\S]+)```") |
|
matches = re.findall(re2, tgt) |
|
if len(matches) > 0: |
|
return matches[-1] |
|
return tgt |
|
|
|
|
|
def modify_inplace(file, src, tgt): |
|
tgt = extract_code_from_reply(tgt) |
|
path = os.path.join(llvm_helper.llvm_dir, file) |
|
with open(path) as f: |
|
code = f.read() |
|
code = code.replace(src, tgt) |
|
with open(path, "w") as f: |
|
f.write(code) |
|
|
|
|
|
def get_issue_desc(env: Env) -> str: |
|
issue = env.get_hint_issue() |
|
if issue is None: |
|
return "" |
|
title = issue["title"] |
|
body = issue["body"] |
|
return f"Issue title: {title}\nIssue body: {body}\n" |
|
|
|
|
|
def normalize_feedback(log) -> str: |
|
if not isinstance(log, list): |
|
if len(log) > max_log_size: |
|
return log[:max_log_size] + "\n<Truncated>..." |
|
return str(log) |
|
return json.dumps(llvm_helper.get_first_failed_test(log), indent=2) |
|
|
|
|
|
def issue_fixing_iter( |
|
env: Env, file, src, messages, full_messages, context_requirement |
|
): |
|
env.reset() |
|
tgt = chat(env, messages, full_messages) |
|
modify_inplace(file, src, tgt) |
|
res, log = env.check_full() |
|
if res: |
|
return True |
|
append_message( |
|
messages, |
|
full_messages, |
|
{ |
|
"role": "user", |
|
"content": "Feedback:\n" |
|
+ normalize_feedback(log) |
|
+ "\nPlease adjust code according to the feedback." |
|
+ format_requirement |
|
+ context_requirement, |
|
}, |
|
) |
|
return False |
|
|
|
|
|
def normalize_messages(messages): |
|
return {"model": model, "messages": messages} |
|
|
|
|
|
override = False |
|
|
|
|
|
def fix_issue(issue_id): |
|
fix_log_path = os.path.join(fix_dir, f"{issue_id}.json") |
|
if not override and os.path.exists(fix_log_path): |
|
print(f"Skip {issue_id}") |
|
return |
|
print(f"Fixing {issue_id}") |
|
env = Env(issue_id, basemodel_cutoff) |
|
bug_funcs = env.get_hint_bug_functions() |
|
if len(bug_funcs) != 1 or len(next(iter(bug_funcs.values()))) != 1: |
|
print("Multi-func bug is not supported") |
|
return |
|
messages = [] |
|
full_messages = [] |
|
append_message( |
|
messages, full_messages, {"role": "system", "content": get_system_prompt()} |
|
) |
|
bug_type = env.get_bug_type() |
|
bug_func_name = next(iter(bug_funcs.values()))[0] |
|
component = next(iter(env.get_hint_components())) |
|
desc = f"This is a {bug_type} bug in {component}.\n" |
|
desc += get_issue_desc(env) |
|
env.reset() |
|
res, log = env.check_fast() |
|
assert not res |
|
desc += "Detailed information:\n" |
|
desc += normalize_feedback(log) + "\n" |
|
file, hunk = get_hunk(env) |
|
desc += f"Please modify the following code in {file}:{bug_func_name} to fix the bug:\n```cpp\n{hunk}\n```\n" |
|
prefix = "\n".join(hunk.splitlines()[:5]) |
|
suffix = "\n".join(hunk.splitlines()[-5:]) |
|
context_requirement = f"Please make sure the answer includes the prefix:\n```cpp\n{prefix}\n```\nand the suffix:\n```cpp\n{suffix}\n```\n" |
|
desc += format_requirement + context_requirement |
|
append_message(messages, full_messages, {"role": "user", "content": desc}) |
|
for idx in range(4): |
|
print(f"Round {idx + 1}") |
|
if estimate_input_tokens(messages) > max_input_tokens: |
|
return |
|
if issue_fixing_iter( |
|
env, file, hunk, messages, full_messages, context_requirement |
|
): |
|
cert = env.dump(normalize_messages(full_messages)) |
|
print(cert) |
|
with open(fix_log_path, "w") as f: |
|
f.write(json.dumps(cert, indent=2)) |
|
return |
|
cert = env.dump(normalize_messages(full_messages)) |
|
with open(fix_log_path, "w") as f: |
|
f.write(json.dumps(cert, indent=2)) |
|
|
|
|
|
if len(sys.argv) == 1: |
|
task_list = sorted( |
|
map(lambda x: x.removesuffix(".json"), os.listdir(llvm_helper.dataset_dir)) |
|
) |
|
else: |
|
task_list = [sys.argv[1]] |
|
if len(sys.argv) == 3 and sys.argv[2] == "-f": |
|
override = True |
|
|
|
for task in task_list: |
|
try: |
|
fix_issue(task) |
|
except Exception as e: |
|
print(e) |
|
exit(-1) |
|
|