dataset_info:
features:
- name: image
dtype: image
- name: width
dtype: int64
- name: height
dtype: int64
- name: category
dtype: string
- name: label
dtype: int64
- name: bboxes
sequence:
sequence: int64
splits:
- name: train
num_bytes: 124686342
num_examples: 1200
- name: test
num_bytes: 47139142
num_examples: 439
download_size: 166410237
dataset_size: 171825484
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
license: other
task_categories:
- image-classification
- object-detection
size_categories:
- 1K<n<10K
Dataset Card for ICDAR2019-cTDaR-TRACKA
This dataset is a resized version of the original cndplab-founder/ICDAR2019_cTDaR.
You can easily and quickly load it:
dataset = load_dataset("dvgodoy/ICDAR2019_cTDaR_TRACKA_resized")
DatasetDict({
train: Dataset({
features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
num_rows: 1200
})
test: Dataset({
features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
num_rows: 439
})
})
Table of Contents
Dataset Description
- Homepage: ICDAR 2019 cTDaR Dataset
- Repository: GitHUb
- Paper:
- Leaderboard: Competition Results
- Point of Contact: [email protected]
Dataset Summary
From the original ICDAR2019 cTDaR dataset page:
The dataset consists of modern documents and archival ones with various formats, including document images and born-digital formats such as PDF. The annotated contents contain the table entities and cell entities in a document, while we do not deal with nested tables.
This "resized" version contains all the images from "Track A" (table detection) resized so that the largest dimension (either width or height) is 1000px. The annotations were converted from XML to JSON and boxes are represented in Pascal VOC format (xmin, ymin, xmax, ymax)
.
Dataset Structure
Data Instances
A sample from the training set is provided below :
{
'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=1000x729>,
'width': 1000,
'height': 729,
'category': 'historical',
'label': 0,
'bboxes': [[...]]
}
Data Fields
image
: APIL.Image.Image
object containing a document.width
: image's width.height
: image's height.category
: class label.label
: anint
classification label.bboxes
: list of box coordinates in(xmin, ymin, xmax, ymax)
format (Pascal VOC).
Class Label Mappings
{
"0": "historical",
"1": "modern"
}
Data Splits
train | test | |
---|---|---|
# of examples | 1200 | 439 |
Additional Information
Licensing Information
This dataset is a resized and reorganized version of ICDAR2019 cTDaR from the ICDAR 2019 Competition on Table Detection and Recognition.