dvgodoy's picture
Update README.md
dc7a84a verified
metadata
dataset_info:
  features:
    - name: image
      dtype: image
    - name: width
      dtype: int64
    - name: height
      dtype: int64
    - name: category
      dtype: string
    - name: label
      dtype: int64
    - name: bboxes
      sequence:
        sequence: int64
  splits:
    - name: train
      num_bytes: 124686342
      num_examples: 1200
    - name: test
      num_bytes: 47139142
      num_examples: 439
  download_size: 166410237
  dataset_size: 171825484
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: test
        path: data/test-*
license: other
task_categories:
  - image-classification
  - object-detection
size_categories:
  - 1K<n<10K

Dataset Card for ICDAR2019-cTDaR-TRACKA

This dataset is a resized version of the original cndplab-founder/ICDAR2019_cTDaR.

You can easily and quickly load it:

dataset = load_dataset("dvgodoy/ICDAR2019_cTDaR_TRACKA_resized")
DatasetDict({
    train: Dataset({
        features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
        num_rows: 1200
    })
    test: Dataset({
        features: ['image', 'width', 'height', 'category', 'label', 'bboxes'],
        num_rows: 439
    })
})

Table of Contents

Dataset Description

Dataset Summary

From the original ICDAR2019 cTDaR dataset page:

The dataset consists of modern documents and archival ones with various formats, including document images and born-digital formats such as PDF. The annotated contents contain the table entities and cell entities in a document, while we do not deal with nested tables.

This "resized" version contains all the images from "Track A" (table detection) resized so that the largest dimension (either width or height) is 1000px. The annotations were converted from XML to JSON and boxes are represented in Pascal VOC format (xmin, ymin, xmax, ymax).

Dataset Structure

Data Instances

A sample from the training set is provided below :

{
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=L size=1000x729>,
    'width': 1000,
    'height': 729,
    'category': 'historical',
    'label': 0,
    'bboxes': [[...]]
}

Data Fields

  • image: A PIL.Image.Image object containing a document.
  • width: image's width.
  • height: image's height.
  • category: class label.
  • label: an int classification label.
  • bboxes: list of box coordinates in (xmin, ymin, xmax, ymax) format (Pascal VOC).
Class Label Mappings
{
  "0": "historical",
  "1": "modern"
}

Data Splits

train test
# of examples 1200 439

Additional Information

Licensing Information

This dataset is a resized and reorganized version of ICDAR2019 cTDaR from the ICDAR 2019 Competition on Table Detection and Recognition.