title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
On In-network learning. A Comparative Study with Federated and Split Learning
In this paper, we consider a problem in which distributively extracted features are used for performing inference in wireless networks. We elaborate on our proposed architecture, which we herein refer to as "in-network learning", provide a suitable loss function and discuss its optimization using neural networks. We compare its performance with both Federated- and Split learning; and show that this architecture offers both better accuracy and bandwidth savings.
stat
Sparse and Smooth Signal Estimation: Convexification of L0 Formulations
Signal estimation problems with smoothness and sparsity priors can be naturally modeled as quadratic optimization with $\ell_0$-"norm" constraints. Since such problems are non-convex and hard-to-solve, the standard approach is, instead, to tackle their convex surrogates based on $\ell_1$-norm relaxations. In this paper, we propose a new iterative (convex) conic quadratic relaxations that exploit not only the $\ell_0$-"norm" terms, but also the fitness and smoothness functions. The iterative convexification approach substantially closes the gap between the $\ell_0$-"norm" and its $\ell_1$ surrogate. These stronger relaxations lead to significantly better estimators than $\ell_1$-norm approaches and also allow one to utilize affine sparsity priors. In addition, the parameters of the model and the resulting estimators are easily interpretable. Experiments with a tailored Lagrangian decomposition method indicate that the proposed iterative convex relaxations \rev{yield solutions within 1\% of the exact $\ell_0$ approach, and can tackle instances with up to 100,000 variables under one minute.
stat
Bayesian time-aligned factor analysis of paired multivariate time series
Many modern data sets require inference methods that can estimate the shared and individual-specific components of variability in collections of matrices that change over time. Promising methods have been developed to analyze these types of data in static cases, but very few approaches are available for dynamic settings. To address this gap, we consider novel models and inference methods for pairs of matrices in which the columns correspond to multivariate observations at different time points. In order to characterize common and individual features, we propose a Bayesian dynamic factor modeling framework called Time Aligned Common and Individual Factor Analysis (TACIFA) that includes uncertainty in time alignment through an unknown warping function. We provide theoretical support for the proposed model, showing identifiability and posterior concentration. The structure enables efficient computation through a Hamiltonian Monte Carlo (HMC) algorithm. We show excellent performance in simulations, and illustrate the method through application to a social synchrony experiment.
stat
Peer groups for organisational learning: clustering with practical constraints
Peer-grouping is used in many sectors for organisational learning, policy implementation, and benchmarking. Clustering provides a statistical, data-driven method for constructing meaningful peer groups, but peer groups must be compatible with business constraints such as size and stability considerations. Additionally, statistical peer groups are constructed from many different variables, and can be difficult to understand, especially for non-statistical audiences. We developed methodology to apply business constraints to clustering solutions and allow the decision-maker to choose the balance between statistical goodness-of-fit and conformity to business constraints. Several tools were utilised to identify complex distinguishing features in peer groups, and a number of visualisations are developed to explain high-dimensional clusters for non-statistical audiences. In a case study where peer group size was required to be small ($\leq 100$ members), we applied constrained clustering to a noisy high-dimensional data-set over two subsequent years, ensuring that the clusters were sufficiently stable between years. Our approach not only satisfied clustering constraints on the test data, but maintained an almost monotonic negative relationship between goodness-of-fit and stability between subsequent years. We demonstrated in the context of the case study how distinguishing features between clusters can be communicated clearly to different stakeholders with substantial and limited statistical knowledge.
stat
Introducing an Explicit Symplectic Integration Scheme for Riemannian Manifold Hamiltonian Monte Carlo
We introduce a recent symplectic integration scheme derived for solving physically motivated systems with non-separable Hamiltonians. We show its relevance to Riemannian manifold Hamiltonian Monte Carlo (RMHMC) and provide an alternative to the currently used generalised leapfrog symplectic integrator, which relies on solving multiple fixed point iterations to convergence. Via this approach, we are able to reduce the number of higher-order derivative calculations per leapfrog step. We explore the implications of this integrator and demonstrate its efficacy in reducing the computational burden of RMHMC. Our code is provided in a new open-source Python package, hamiltorch.
stat
f-SAEM: A fast Stochastic Approximation of the EM algorithm for nonlinear mixed effects models
The ability to generate samples of the random effects from their conditional distributions is fundamental for inference in mixed effects models. Random walk Metropolis is widely used to perform such sampling, but this method is known to converge slowly for medium dimensional problems, or when the joint structure of the distributions to sample is spatially heterogeneous. The main contribution consists of an independent Metropolis-Hastings (MH) algorithm based on a multidimensional Gaussian proposal that takes into account the joint conditional distribution of the random effects and does not require any tuning. Indeed, this distribution is automatically obtained thanks to a Laplace approximation of the incomplete data model. Such approximation is shown to be equivalent to linearizing the structural model in the case of continuous data. Numerical experiments based on simulated and real data illustrate the performance of the proposed methods. For fitting nonlinear mixed effects models, the suggested MH algorithm is efficiently combined with a stochastic approximation version of the EM algorithm for maximum likelihood estimation of the global parameters.
stat
Estimating Bayes factors from minimal ANOVA summaries for repeated-measures designs
In this paper, I develop a formula for estimating Bayes factors directly from minimal summary statistics produced in repeated measures analysis of variance designs. The formula, which requires knowing only the $F$-statistic, the number of subjects, and the number of repeated measurements per subject, is based on the BIC approximation of the Bayes factor, a common default method for Bayesian computation with linear models. In addition to providing computational examples, I report a simulation study in which I demonstrate that the formula compares favorably to a recently developed, more complex method that accounts for correlation between repeated measurements. The minimal BIC method provides a simple way for researchers to estimate Bayes factors from a minimal set of summary statistics, giving users a powerful index for estimating the evidential value of not only their own data, but also the data reported in published studies.
stat
Bayesian sparse convex clustering via global-local shrinkage priors
Sparse convex clustering is to cluster observations and conduct variable selection simultaneously in the framework of convex clustering. Although a weighted $L_1$ norm is usually employed for the regularization term in sparse convex clustering, its use increases the dependence on the data and reduces the estimation accuracy if the sample size is not sufficient. To tackle these problems, this paper proposes a Bayesian sparse convex clustering method based on the ideas of Bayesian lasso and global-local shrinkage priors. We introduce Gibbs sampling algorithms for our method using scale mixtures of normal distributions. The effectiveness of the proposed methods is shown in simulation studies and a real data analysis.
stat
An Unified Semiparametric Approach to Model Lifetime Data with Crossing Survival Curves
The proportional hazards (PH), proportional odds (PO) and accelerated failure time (AFT) models have been widely used in different applications of survival analysis. Despite their popularity, these models are not suitable to handle lifetime data with crossing survival curves. In 2005, Yang and Prentice proposed a semiparametric two-sample strategy (YP model), including the PH and PO frameworks as particular cases, to deal with this type of data. Assuming a general regression setting, the present paper proposes an unified approach to fit the YP model by employing Bernstein polynomials to manage the baseline hazard and odds under both the frequentist and Bayesian frameworks. The use of the Bernstein polynomials has some advantages: it allows for uniform approximation of the baseline distribution, it leads to closed-form expressions for all baseline functions, it simplifies the inference procedure, and the presence of a continuous survival function allows a more accurate estimation of the crossing survival time. Extensive simulation studies are carried out to evaluate the behavior of the models. The analysis of a clinical trial data set, related to non-small-cell lung cancer, is also developed as an illustration. Our findings indicate that assuming the usual PH model, ignoring the existing crossing survival feature in the real data, is a serious mistake with implications for those patients in the initial stage of treatment.
stat
Graphical models for circular variables
Graphical models are a key class of probabilistic models for studying the conditional independence structure of a set of random variables. Circular variables are special variables, characterized by periodicity, arising in several contexts and fields. However, models for studying the dependence/independence structure of circular variables are under-explored. This paper analyses three multivariate circular distributions, the von Mises, the Wrapped Normal and the Inverse Stereographic distributions, focusing on their properties concerning conditional independence. For each one of these distributions, we discuss the main properties related to conditional independence and introduce suitable classes of graphical models. The usefulness of the proposed models is shown by modelling the conditional independence among dihedral angles characterizing the three-dimensional structure of some proteins.
stat
Difference-in-Differences for Ordinal Outcomes: Application to the Effect of Mass Shootings on Attitudes toward Gun Control
The difference-in-differences (DID) design is widely used in observational studies to estimate the causal effect of a treatment when repeated observations over time are available. Yet, almost all existing methods assume linearity in the potential outcome (parallel trends assumption) and target the additive effect. In social science research, however, many outcomes of interest are measured on an ordinal scale. This makes the linearity assumption inappropriate because the difference between two ordinal potential outcomes is not well defined. In this paper, I propose a method to draw causal inferences for ordinal outcomes under the DID design. Unlike existing methods, the proposed method utilizes the latent variable framework to handle the non-numeric nature of the outcome, enabling identification and estimation of causal effects based on the assumption on the quantile of the latent continuous variable. The paper also proposes an equivalence-based test to assess the plausibility of the key identification assumption when additional pre-treatment periods are available. The proposed method is applied to a study estimating the causal effect of mass shootings on the public's support for gun control. I find little evidence for a uniform shift toward pro-gun control policies as found in the previous study, but find that the effect is concentrated on left-leaning respondents who experienced the shooting for the first time in more than a decade.
stat
Random Machines: A bagged-weighted support vector model with free kernel choice
Improvement of statistical learning models in order to increase efficiency in solving classification or regression problems is still a goal pursued by the scientific community. In this way, the support vector machine model is one of the most successful and powerful algorithms for those tasks. However, its performance depends directly from the choice of the kernel function and their hyperparameters. The traditional choice of them, actually, can be computationally expensive to do the kernel choice and the tuning processes. In this article, it is proposed a novel framework to deal with the kernel function selection called Random Machines. The results improved accuracy and reduced computational time. The data study was performed in simulated data and over 27 real benchmarking datasets.
stat
Stochastic Coordinate Minimization with Progressive Precision for Stochastic Convex Optimization
A framework based on iterative coordinate minimization (CM) is developed for stochastic convex optimization. Given that exact coordinate minimization is impossible due to the unknown stochastic nature of the objective function, the crux of the proposed optimization algorithm is an optimal control of the minimization precision in each iteration. We establish the optimal precision control and the resulting order-optimal regret performance for strongly convex and separably nonsmooth functions. An interesting finding is that the optimal progression of precision across iterations is independent of the low-dimensional CM routine employed, suggesting a general framework for extending low-dimensional optimization routines to high-dimensional problems. The proposed algorithm is amenable to online implementation and inherits the scalability and parallelizability properties of CM for large-scale optimization. Requiring only a sublinear order of message exchanges, it also lends itself well to distributed computing as compared with the alternative approach of coordinate gradient descent.
stat
Orthogonal Series Density Estimation for Complex Surveys
We propose an orthogonal series density estimator for complex surveys, where samples are neither independent nor identically distributed. The proposed estimator is proved to be design-unbiased and asymptotically design-consistent. The asymptotic normality is proved under both design and combined spaces. Two data driven estimators are proposed based on the proposed oracle estimator. We show the efficiency of the proposed estimators in simulation studies. A real survey data example is provided for an illustration.
stat
APIK: Active Physics-Informed Kriging Model with Partial Differential Equations
Kriging (or Gaussian process regression) is a popular machine learning method for its flexibility and closed-form prediction expressions. However, one of the key challenges in applying kriging to engineering systems is that the available measurement data is scarce due to the measurement limitations and high sensing costs. On the other hand, physical knowledge of the engineering system is often available and represented in the form of partial differential equations (PDEs). We present in this work a PDE Informed Kriging model (PIK), which introduces PDE information via a set of PDE points and conducts posterior prediction similar to the standard kriging method. The proposed PIK model can incorporate physical knowledge from both linear and nonlinear PDEs. To further improve learning performance, we propose an Active PIK framework (APIK) that designs PDE points to leverage the PDE information based on the PIK model and measurement data. The selected PDE points not only explore the whole input space but also exploit the locations where the PDE information is critical in reducing predictive uncertainty. Finally, an expectation-maximization algorithm is developed for parameter estimation. We demonstrate the effectiveness of APIK in two synthetic examples, a shock wave case study, and a laser heating case study.
stat
Beyond the Chinese Restaurant and Pitman-Yor processes: Statistical Models with Double Power-law Behavior
Bayesian nonparametric approaches, in particular the Pitman-Yor process and the associated two-parameter Chinese Restaurant process, have been successfully used in applications where the data exhibit a power-law behavior. Examples include natural language processing, natural images or networks. There is also growing empirical evidence that some datasets exhibit a two-regime power-law behavior: one regime for small frequencies, and a second regime, with a different exponent, for high frequencies. In this paper, we introduce a class of completely random measures which are doubly regularly-varying. Contrary to the Pitman-Yor process, we show that when completely random measures in this class are normalized to obtain random probability measures and associated random partitions, such partitions exhibit a double power-law behavior. We discuss in particular three models within this class: the beta prime process (Broderick et al. (2015, 2018), a novel process called generalized BFRY process, and a mixture construction. We derive efficient Markov chain Monte Carlo algorithms to estimate the parameters of these models. Finally, we show that the proposed models provide a better fit than the Pitman-Yor process on various datasets.
stat
spsurv: An R package for semi-parametric survival analysis
Software development innovations and advances in computing have enabled more complex and less costly computations in medical research (survival analysis), engineering studies (reliability analysis), and social sciences event analysis (historical analysis). As a result, many semi-parametric modeling efforts emerged when it comes to time-to-event data analysis. In this context, this work presents a flexible Bernstein polynomial (BP) based framework for survival data modeling. This innovative approach is applied to existing families of models such as proportional hazards (PH), proportional odds (PO), and accelerated failure time (AFT) models to estimate unknown baseline functions. Along with this contribution, this work also presents new automated routines in R, taking advantage of algorithms available in Stan. The proposed computation routines are tested and explored through simulation studies based on artificial datasets. The tools implemented to fit the proposed statistical models are combined and organized in an R package. Also, the BP based proportional hazards (BPPH), proportional odds (BPPO), and accelerated failure time (BPAFT) models are illustrated in real applications related to cancer trial data using maximum likelihood (ML) estimation and Markov chain Monte Carlo (MCMC) methods.
stat
Multiway clustering via tensor block models
We consider the problem of identifying multiway block structure from a large noisy tensor. Such problems arise frequently in applications such as genomics, recommendation system, topic modeling, and sensor network localization. We propose a tensor block model, develop a unified least-square estimation, and obtain the theoretical accuracy guarantees for multiway clustering. The statistical convergence of the estimator is established, and we show that the associated clustering procedure achieves partition consistency. A sparse regularization is further developed for identifying important blocks with elevated means. The proposal handles a broad range of data types, including binary, continuous, and hybrid observations. Through simulation and application to two real datasets, we demonstrate the outperformance of our approach over previous methods.
stat
Autoregressive Hidden Markov Models with partial knowledge on latent space applied to aero-engines prognostics
[This paper was initially published in PHME conference in 2016, selected for further publication in International Journal of Prognostics and Health Management.] This paper describes an Autoregressive Partially-hidden Markov model (ARPHMM) for fault detection and prognostics of equipments based on sensors' data. It is a particular dynamic Bayesian network that allows to represent the dynamics of a system by means of a Hidden Markov Model (HMM) and an autoregressive (AR) process. The Markov chain assumes that the system is switching back and forth between internal states while the AR process ensures a temporal coherence on sensor measurements. A sound learning procedure of standard ARHMM based on maximum likelihood allows to iteratively estimate all parameters simultaneously. This paper suggests a modification of the learning procedure considering that one may have prior knowledge about the structure which becomes partially hidden. The integration of the prior is based on the Theory of Weighted Distributions which is compatible with the Expectation-Maximization algorithm in the sense that the convergence properties are still satisfied. We show how to apply this model to estimate the remaining useful life based on health indicators. The autoregressive parameters can indeed be used for prediction while the latent structure can be used to get information about the degradation level. The interest of the proposed method for prognostics and health assessment is demonstrated on CMAPSS datasets.
stat
Measuring Causality: The Science of Cause and Effect
Determining and measuring cause-effect relationships is fundamental to most scientific studies of natural phenomena. The notion of causation is distinctly different from correlation which only looks at association of trends or patterns in measurements. In this article, we review different notions of causality and focus especially on measuring causality from time series data. Causality testing finds numerous applications in diverse disciplines such as neuroscience, econometrics, climatology, physics and artificial intelligence.
stat
Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion
The demand for a particular product or service is typically associated with different uncertainties that can make them volatile and challenging to predict. Demand unpredictability is one of the managers' concerns in the supply chain that can cause large forecasting errors, issues in the upstream supply chain and impose unnecessary costs. We investigate 843 real demand time series with different values of coefficient of variations (CoV) where promotion causes volatility over the entire demand series. In such a case, forecasting demand for different CoV require different models to capture the underlying behavior of demand series and pose significant challenges due to very different and diverse demand behavior. We decompose demand into baseline and promotional demand and propose a hybrid model to forecast demand. Our results indicate that our proposed hybrid model generates robust and accurate forecast across series with different levels of volatilities. We stress the necessity of decomposition for volatile demand series. We also model demand series with a number of well known statistical and machine learning (ML) models to investigate their performance empirically. We found that ARIMA with covariate (ARIMAX) works well to forecast volatile demand series, but exponential smoothing with covariate (ETSX) has a poor performance. Support vector regression (SVR) and dynamic linear regression (DLR) models generate robust forecasts across different categories of demands with different CoV values.
stat
A Formal Causal Interpretation of the Case-Crossover Design
The case-crossover design (Maclure, 1991) is widely used in epidemiology and other fields to study causal effects of transient treatments on acute outcomes. However, its validity and causal interpretation have only been justified under informal conditions. Here, we place the design in a formal counterfactual framework for the first time. Doing so helps to clarify its assumptions and interpretation. In particular, when the treatment effect is non-null, we identify a previously unnoticed bias arising from common causes of the outcome at different person-times. We analytically characterize the direction and size of this bias and demonstrate its potential importance with a simulation. We also use our derivation of the limit of the case-crossover estimator to analyze its sensitivity to treatment effect heterogeneity, a violation of one of the informal criteria for validity. The upshot of this work for practitioners is that, while the case-crossover design can be useful for testing the causal null hypothesis in the presence of baseline confounders, extra caution is warranted when using the case-crossover design for point estimation of causal effects.
stat
Adversarial Example Decomposition
Research has shown that widely used deep neural networks are vulnerable to carefully crafted adversarial perturbations. Moreover, these adversarial perturbations often transfer across models. We hypothesize that adversarial weakness is composed of three sources of bias: architecture, dataset, and random initialization. We show that one can decompose adversarial examples into an architecture-dependent component, data-dependent component, and noise-dependent component and that these components behave intuitively. For example, noise-dependent components transfer poorly to all other models, while architecture-dependent components transfer better to retrained models with the same architecture. In addition, we demonstrate that these components can be recombined to improve transferability without sacrificing efficacy on the original model.
stat
Towards a Better Understanding and Regularization of GAN Training Dynamics
Generative adversarial networks (GANs) are notoriously difficult to train and the reasons underlying their (non-)convergence behaviors are still not completely understood. By first considering a simple yet representative GAN example, we mathematically analyze its local convergence behavior in a non-asymptotic way. Furthermore, the analysis is extended to general GANs under certain assumptions. We find that in order to ensure a good convergence rate, two factors of the Jacobian in the GAN training dynamics should be simultaneously avoided, which are (i) the Phase Factor, i.e., the Jacobian has complex eigenvalues with a large imaginary-to-real ratio, and (ii) the Conditioning Factor, i.e., the Jacobian is ill-conditioned. Previous methods of regularizing the Jacobian can only alleviate one of these two factors, while making the other more severe. Thus we propose a new JAcobian REgularization (JARE) for GANs, which simultaneously addresses both factors by construction. Finally, we conduct experiments that confirm our theoretical analysis and demonstrate the advantages of JARE over previous methods in stabilizing GANs.
stat
Trade-offs in Large-Scale Distributed Tuplewise Estimation and Learning
The development of cluster computing frameworks has allowed practitioners to scale out various statistical estimation and machine learning algorithms with minimal programming effort. This is especially true for machine learning problems whose objective function is nicely separable across individual data points, such as classification and regression. In contrast, statistical learning tasks involving pairs (or more generally tuples) of data points - such as metric learning, clustering or ranking do not lend themselves as easily to data-parallelism and in-memory computing. In this paper, we investigate how to balance between statistical performance and computational efficiency in such distributed tuplewise statistical problems. We first propose a simple strategy based on occasionally repartitioning data across workers between parallel computation stages, where the number of repartitioning steps rules the trade-off between accuracy and runtime. We then present some theoretical results highlighting the benefits brought by the proposed method in terms of variance reduction, and extend our results to design distributed stochastic gradient descent algorithms for tuplewise empirical risk minimization. Our results are supported by numerical experiments in pairwise statistical estimation and learning on synthetic and real-world datasets.
stat
Classification Algorithm for High Dimensional Protein Markers in Time-course Data
Identification of biomarkers is an emerging area in Oncology. In this article, we develop an efficient statistical procedure for classification of protein markers according to their effect on cancer progression. A high-dimensional time-course dataset of protein markers for 80 patients motivates us for developing the model. We obtain the optimal threshold values for markers using Cox proportional hazard model. The optimal threshold value is defined as a level of a marker having maximum impact on cancer progression. The classification was validated by comparing random components using both proportional hazard and accelerated failure time frailty models. The study elucidates the application of two separate joint modeling techniques using auto regressive-type model and mixed effect model for time-course data and proportional hazard model for survival data with proper utilization of Bayesian methodology. Also, a prognostic score has been developed on the basis of few selected genes with application on patients. The complete analysis is performed by R programming code. This study facilitates to identify relevant biomarkers from a set of markers.
stat
Efficiently Sampling Functions from Gaussian Process Posteriors
Gaussian processes are the gold standard for many real-world modeling problems, especially in cases where a model's success hinges upon its ability to faithfully represent predictive uncertainty. These problems typically exist as parts of larger frameworks, wherein quantities of interest are ultimately defined by integrating over posterior distributions. These quantities are frequently intractable, motivating the use of Monte Carlo methods. Despite substantial progress in scaling up Gaussian processes to large training sets, methods for accurately generating draws from their posterior distributions still scale cubically in the number of test locations. We identify a decomposition of Gaussian processes that naturally lends itself to scalable sampling by separating out the prior from the data. Building off of this factorization, we propose an easy-to-use and general-purpose approach for fast posterior sampling, which seamlessly pairs with sparse approximations to afford scalability both during training and at test time. In a series of experiments designed to test competing sampling schemes' statistical properties and practical ramifications, we demonstrate how decoupled sample paths accurately represent Gaussian process posteriors at a fraction of the usual cost.
stat
Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors
We consider stochastic gradient descent and its averaging variant for binary classification problems in a reproducing kernel Hilbert space. In the traditional analysis using a consistency property of loss functions, it is known that the expected classification error converges more slowly than the expected risk even when assuming a low-noise condition on the conditional label probabilities. Consequently, the resulting rate is sublinear. Therefore, it is important to consider whether much faster convergence of the expected classification error can be achieved. In recent research, an exponential convergence rate for stochastic gradient descent was shown under a strong low-noise condition but provided theoretical analysis was limited to the squared loss function, which is somewhat inadequate for binary classification tasks. In this paper, we show an exponential convergence of the expected classification error in the final phase of the stochastic gradient descent for a wide class of differentiable convex loss functions under similar assumptions. As for the averaged stochastic gradient descent, we show that the same convergence rate holds from the early phase of training. In experiments, we verify our analyses on the $L_2$-regularized logistic regression.
stat
Dynamic models using score copula innovations
This paper introduces a new class of observation driven dynamic models. The time evolving parameters are driven by innovations of copula form. The resulting models can be made strictly stationary and the innovation term is typically chosen to be Gaussian. The innovations are formed by applying a copula approach for the conditional score function which has close connections the existing literature on GAS models. This new method provides a unified framework for observation-driven models allowing the likelihood to be explicitly computed using the prediction decomposition. The approach may be used for multiple lag structures and for multivariate models. Strict stationarity can be easily imposed upon the models making the invariant properties simple to ascertain. This property also has advantages for specifying the initial conditions needed for maximum likelihood estimation. One step and multi-period forecasting is straight-forward and the forecasting density is either in closed form or a simple mixture over a univariate component. The approach is very general and the illustrations focus on volatility models and duration models. We illustrate the performance of the modelling approach for both univariate and multivariate volatility models.
stat
High Dimensional Bayesian Network Classification with Network Global-Local Shrinkage Priors
This article proposes a novel Bayesian classification framework for networks with labeled nodes. While literature on statistical modeling of network data typically involves analysis of a single network, the recent emergence of complex data in several biological applications, including brain imaging studies, presents a need to devise a network classifier for subjects. This article considers an application from a brain connectome study, where the overarching goal is to classify subjects into two separate groups based on their brain network data, along with identifying influential regions of interest (ROIs) (referred to as nodes). Existing approaches either treat all edge weights as a long vector or summarize the network information with a few summary measures. Both these approaches ignore the full network structure, may lead to less desirable inference in small samples and are not designed to identify significant network nodes. We propose a novel binary logistic regression framework with the network as the predictor and a binary response, the network predictor coefficient being modeled using a novel class global-local shrinkage priors. The framework is able to accurately detect nodes and edges in the network influencing the classification. Our framework is implemented using an efficient Markov Chain Monte Carlo algorithm. Theoretically, we show asymptotically optimal classification for the proposed framework when the number of network edges grows faster than the sample size. The framework is empirically validated by extensive simulation studies and analysis of a brain connectome data.
stat
Estimating spatially varying health effects in app-based citizen science research
Wildland fire smoke exposures present an increasingly severe threat to public health, and thus there is a growing need for studying the effects of protective behaviors on improving health. Emerging smartphone applications provide unprecedented opportunities to study this important problem, but also pose novel challenges. Smoke Sense, a citizen science project, provides an interactive platform for participants to engage with a smartphone app that records air quality, health symptoms, and behaviors taken to reduce smoke exposures. We propose a new, doubly robust estimator of the structural nested mean model that accounts for spatially- and time-varying effects via a local estimating equation approach with geographical kernel weighting. Moreover, our analytical framework is flexible enough to handle informative missingness by inverse probability weighting of estimating functions. We evaluate the new method using extensive simulation studies and apply it to Smoke Sense survey data collected from smartphones for a better understanding of the relationship between smoke preventive measures and health effects. Our results estimate how the protective behaviors' effects vary over space and time and find that protective behaviors have more significant effects on reducing health symptoms in the Southwest than the Northwest region of the USA.
stat
On the consistency of supervised learning with missing values
In many application settings, the data have missing entries which make analysis challenging. An abundant literature addresses missing values in an inferential framework: estimating parameters and their variance from incomplete tables. Here, we consider supervised-learning settings: predicting a target when missing values appear in both training and testing data. We show the consistency of two approaches in prediction. A striking result is that the widely-used method of imputing with a constant, such as the mean prior to learning is consistent when missing values are not informative. This contrasts with inferential settings where mean imputation is pointed at for distorting the distribution of the data. That such a simple approach can be consistent is important in practice. We also show that a predictor suited for complete observations can predict optimally on incomplete data,through multiple imputation.Finally, to compare imputation with learning directly with a model that accounts for missing values, we analyze further decision trees. These can naturally tackle empirical risk minimization with missing values, due to their ability to handle the half-discrete nature of incomplete variables. After comparing theoretically and empirically different missing values strategies in trees, we recommend using the "missing incorporated in attribute" method as it can handle both non-informative and informative missing values.
stat
Ensemble Methods for Survival Data with Time-Varying Covariates
Survival data with time-varying covariates are common in practice. If relevant, such covariates can improve on the estimation of a survival function. However, the traditional survival forests - conditional inference forest, relative risk forest and random survival forest - have accommodated only time-invariant covariates. We generalize the conditional inference and relative risk forests to allow time-varying covariates. We compare their performance with that of the extended Cox model, a commonly used method, and the transformation forest method, designed to detect non-proportional hazards deviations and adapted here to accommodate time-varying covariates, through a comprehensive simulation study in which the Kaplan-Meier estimate serves as a benchmark and the integrated L2 difference between the true and estimated survival functions is used for evaluation. In general, the performance of the two proposed forests substantially improves over the Kaplan-Meier estimate. Under the proportional-hazard setting, the best method is always one of the two proposed forests, while under the non-proportional hazards setting, it is the adapted transformation forest. We use K-fold cross-validation to choose between the methods, which is shown to be an effective tool to provide guidance in practice. The performance of the proposed forest methods for time-invariant covariate data is broadly similar to that found for time-varying covariate data.
stat
Benchmarking the Neural Linear Model for Regression
The neural linear model is a simple adaptive Bayesian linear regression method that has recently been used in a number of problems ranging from Bayesian optimization to reinforcement learning. Despite its apparent successes in these settings, to the best of our knowledge there has been no systematic exploration of its capabilities on simple regression tasks. In this work we characterize these on the UCI datasets, a popular benchmark for Bayesian regression models, as well as on the recently introduced UCI "gap" datasets, which are better tests of out-of-distribution uncertainty. We demonstrate that the neural linear model is a simple method that shows generally good performance on these tasks, but at the cost of requiring good hyperparameter tuning.
stat
Scalable Bayesian neural networks by layer-wise input augmentation
We introduce implicit Bayesian neural networks, a simple and scalable approach for uncertainty representation in deep learning. Standard Bayesian approach to deep learning requires the impractical inference of the posterior distribution over millions of parameters. Instead, we propose to induce a distribution that captures the uncertainty over neural networks by augmenting each layer's inputs with latent variables. We present appropriate input distributions and demonstrate state-of-the-art performance in terms of calibration, robustness and uncertainty characterisation over large-scale, multi-million parameter image classification tasks.
stat
Causal inference with multiple versions of treatment and application to personalized medicine
The development of high-throughput sequencing and targeted therapies has led to the emergence of personalized medicine: a patient's molecular profile or the presence of a specific biomarker of drug response will correspond to a treatment recommendation made either by a physician or by a treatment assignment algorithm. The growing number of such algorithms raises the question of how to quantify their clinical impact knowing that a personalized medicine strategy will inherently include different versions of treatment. We thus specify an appropriate causal framework with multiple versions of treatment to define the causal effects of interest for precision medicine strategies and estimate them emulating clinical trials with observational data. Therefore, we determine whether the treatment assignment algorithm is more efficient than different control arms: gold standard treatment, observed treatments or random assignment of targeted treatments. Causal estimates of the precision medicine effects are first evaluated on simulated data and they demonstrate a lower biases and variances compared with naive estimation of the difference in expected outcome between treatment arms. The various simulations scenarios also point out the different bias sources depending on the clinical situation (heterogeneity of response, assignment of observed treatments etc.). A RShiny interactive application is also provided to further explore other user-defined scenarios. The method is then applied to data from patient-derived xenografts (PDX): each patient tumour is implanted in several immunodeficient cloned mice later treated with different drugs, thus providing access to all corresponding drug sensitivities for all patients. Access to these unique pre-clinical data emulating counterfactual outcomes allows to validate the reliability of causal estimates obtained with the proposed method.
stat
Non-Bayesian Social Learning with Gaussian Uncertain Models
Non-Bayesian social learning theory provides a framework for distributed inference of a group of agents interacting over a social network by sequentially communicating and updating beliefs about the unknown state of the world through likelihood updates from their observations. Typically, likelihood models are assumed known precisely. However, in many situations the models are generated from sparse training data due to lack of data availability, high cost of collection/calibration, limits within the communications network, and/or the high dynamics of the operational environment. Recently, social learning theory was extended to handle those model uncertainties for categorical models. In this paper, we introduce the theory of Gaussian uncertain models and study the properties of the beliefs generated by the network of agents. We show that even with finite amounts of training data, non-Bayesian social learning can be achieved and all agents in the network will converge to a consensus belief that provably identifies the best estimate for the state of the world given the set of prior information.
stat
A Poisson Kalman filter for disease surveillance
An optimal filter for Poisson observations is developed as a variant of the traditional Kalman filter. Poisson distributions are characteristic of infectious diseases, which model the number of patients recorded as presenting each day to a health care system. We develop both a linear and nonlinear (extended) filter. The methods are applied to a case study of neonatal sepsis and postinfectious hydrocephalus in Africa, using parameters estimated from publicly available data. Our approach is applicable to a broad range of disease dynamics, including both noncommunicable and the inherent nonlinearities of communicable infectious diseases and epidemics such as from COVID-19.
stat
Time Varying Markov Process with Partially Observed Aggregate Data; An Application to Coronavirus
A major difficulty in the analysis of propagation of the coronavirus is that many infected individuals show no symptoms of Covid-19. This implies a lack of information on the total counts of infected individuals and of recovered and immunized individuals. In this paper, we consider parametric time varying Markov processes of Coronavirus propagation and show how to estimate the model parameters and approximate the unobserved counts from daily numbers of infected and detected individuals and total daily death counts. This model-based approach is illustrated in an application to French data.
stat
Causal bounds for outcome-dependent sampling in observational studies
Outcome-dependent sampling designs are common in many different scientific fields including epidemiology, ecology, and economics. As with all observational studies, such designs often suffer from unmeasured confounding, which generally precludes the nonparametric identification of causal effects. Nonparametric bounds can provide a way to narrow the range of possible values for a nonidentifiable causal effect without making additional untestable assumptions. The nonparametric bounds literature has almost exclusively focused on settings with random sampling, and the bounds have often been derived with a particular linear programming method. We derive novel bounds for the causal risk difference, often referred to as the average treatment effect, in six settings with outcome-dependent sampling and unmeasured confounding for a binary outcome and exposure. Our derivations of the bounds illustrate two approaches that may be applicable in other settings where the bounding problem cannot be directly stated as a system of linear constraints. We illustrate our derived bounds in a real data example involving the effect of vitamin D concentration on mortality.
stat
Calibration for computer experiments with binary responses and application to cell adhesion study
Calibration refers to the estimation of unknown parameters which are present in computer experiments but not available in physical experiments. An accurate estimation of these parameters is important because it provides a scientific understanding of the underlying system which is not available in physical experiments. Most of the work in the literature is limited to the analysis of continuous responses. Motivated by a study of cell adhesion experiments, we propose a new calibration framework for binary responses. Its application to the T cell adhesion data provides insight into the unknown values of the kinetic parameters which are difficult to determine by physical experiments due to the limitation of the existing experimental techniques.
stat
Black-box sampling for weakly smooth Langevin Monte Carlo using p-generalized Gaussian smoothing
Discretization of continuous-time diffusion processes is a widely recognized method for sampling. However, the canonical Euler-Maruyama discretization of the Langevin diffusion process, also named as Langevin Monte Carlo (LMC), studied mostly in the context of smooth (gradient-Lipschitz) and strongly log-concave densities, a significant constraint for its deployment in many sciences, including computational statistics and statistical learning. In this paper, we establish several theoretical contributions to the literature on such sampling methods. Particularly, we generalize the Gaussian smoothing, approximate the gradient using p-generalized Gaussian smoothing and take advantage of it in the context of black-box sampling. We first present a non-strongly concave and weakly smooth black-box LMC algorithm, ideal for practical applicability of sampling challenges in a general setting.
stat
A posteriori stochastic correction of reduced models in delayed acceptance MCMC, with application to multiphase subsurface inverse problems
Sample-based Bayesian inference provides a route to uncertainty quantification in the geosciences, and inverse problems in general, though is very computationally demanding in the naive form that requires simulating an accurate computer model at each iteration. We present a new approach that constructs a stochastic correction to the error induced by a reduced model, with the correction improving as the algorithm proceeds. This enables sampling from the correct target distribution at reduced computational cost per iteration, as in existing delayed-acceptance schemes, while avoiding appreciable loss of statistical efficiency that necessarily occurs when using a reduced model. Use of the stochastic correction significantly reduces the computational cost of estimating quantities of interest within desired uncertainty bounds. In contrast, existing schemes that use a reduced model directly as a surrogate do not actually improve computational efficiency in our target applications. We build on recent simplified conditions for adaptive Markov chain Monte Carlo algorithms to give practical approximation schemes and algorithms with guaranteed convergence. The efficacy of this new approach is demonstrated in two computational examples, including calibration of a large-scale numerical model of a real geothermal reservoir, that show good computational and statistical efficiencies on both synthetic and measured data sets.
stat
Data-Driven Modeling Reveals the Impact of Stay-at-Home Orders on Human Mobility during the COVID-19 Pandemic in the U.S
One approach to delay the spread of the novel coronavirus (COVID-19) is to reduce human travel by imposing travel restriction policies. It is yet unclear how effective those policies are on suppressing the mobility trend due to the lack of ground truth and large-scale dataset describing human mobility during the pandemic. This study uses real-world location-based service data collected from anonymized mobile devices to uncover mobility changes during COVID-19 and under the 'Stay-at-home' state orders in the U.S. The study measures human mobility with two important metrics: daily average number of trips per person and daily average person-miles traveled. The data-driven analysis and modeling attribute less than 5% of the reduction in the number of trips and person-miles traveled to the effect of the policy. The models developed in the study exhibit high prediction accuracy and can be applied to inform epidemics modeling with empirically verified mobility trends and to support time-sensitive decision-making processes.
stat
Regularized deep learning with nonconvex penalties
Regularization methods are often employed in deep learning neural networks (DNNs) to prevent overfitting. For penalty based DNN regularization methods, convex penalties are typically considered because of their optimization guarantees. Recent theoretical work have shown that nonconvex penalties that satisfy certain regularity conditions are also guaranteed to perform well with standard optimization algorithms. In this paper, we examine new and currently existing nonconvex penalties for DNN regularization. We provide theoretical justifications for the new penalties and also assess the performance of all penalties with DNN analyses of seven datasets.
stat
Sparse representation for damage identification of structural systems
Identifying damage of structural systems is typically characterized as an inverse problem which might be ill-conditioned due to aleatory and epistemic uncertainties induced by measurement noise and modeling error. Sparse representation can be used to perform inverse analysis for the case of sparse damage. In this paper, we propose a novel two-stage sensitivity analysis-based framework for both model updating and sparse damage identification. Specifically, an $\ell_2$ Bayesian learning method is firstly developed for updating the intact model and uncertainty quantification so as to set forward a baseline for damage detection. A sparse representation pipeline built on a quasi-$\ell_0$ method, e.g., Sequential Threshold Least Squares (STLS) regression, is then presented for damage localization and quantification. Additionally, Bayesian optimization together with cross validation is developed to heuristically learn hyperparameters from data, which saves the computational cost of hyperparameter tuning and produces more reliable identification result. The proposed framework is verified by three examples, including a 10-story shear-type building, a complex truss structure, and a shake table test of an eight-story steel frame. Results show that the proposed approach is capable of both localizing and quantifying structural damage with high accuracy.
stat
An Introduction to Proximal Causal Learning
A standard assumption for causal inference from observational data is that one has measured a sufficiently rich set of covariates to ensure that within covariate strata, subjects are exchangeable across observed treatment values. Skepticism about the exchangeability assumption in observational studies is often warranted because it hinges on investigators' ability to accurately measure covariates capturing all potential sources of confounding. Realistically, confounding mechanisms can rarely if ever, be learned with certainty from measured covariates. One can therefore only ever hope that covariate measurements are at best proxies of true underlying confounding mechanisms operating in an observational study, thus invalidating causal claims made on basis of standard exchangeability conditions. Causal learning from proxies is a challenging inverse problem which has to date remained unresolved. In this paper, we introduce a formal potential outcome framework for proximal causal learning, which while explicitly acknowledging covariate measurements as imperfect proxies of confounding mechanisms, offers an opportunity to learn about causal effects in settings where exchangeability on the basis of measured covariates fails. Sufficient conditions for nonparametric identification are given, leading to the proximal g-formula and corresponding proximal g-computation algorithm for estimation. These may be viewed as generalizations of Robins' foundational g-formula and g-computation algorithm, which account explicitly for bias due to unmeasured confounding. Both point treatment and time-varying treatment settings are considered, and an application of proximal g-computation of causal effects is given for illustration.
stat
A Monte Carlo EM Algorithm for the Parameter Estimation of Aggregated Hawkes Processes
A key difficulty that arises from real event data is imprecision in the recording of event time-stamps. In many cases, retaining event times with a high precision is expensive due to the sheer volume of activity. Combined with practical limits on the accuracy of measurements, aggregated data is common. In order to use point processes to model such event data, tools for handling parameter estimation are essential. Here we consider parameter estimation of the Hawkes process, a type of self-exciting point process that has found application in the modeling of financial stock markets, earthquakes and social media cascades. We develop a novel optimization approach to parameter estimation of aggregated Hawkes processes using a Monte Carlo Expectation-Maximization (MC-EM) algorithm. Through a detailed simulation study, we demonstrate that existing methods are capable of producing severely biased and highly variable parameter estimates and that our novel MC-EM method significantly outperforms them in all studied circumstances. These results highlight the importance of correct handling of aggregated data.
stat
On the Sample Complexity of Privately Learning Unbounded High-Dimensional Gaussians
We provide sample complexity upper bounds for agnostically learning multivariate Gaussians under the constraint of approximate differential privacy. These are the first finite sample upper bounds for general Gaussians which do not impose restrictions on the parameters of the distribution. Our bounds are near-optimal in the case when the covariance is known to be the identity, and conjectured to be near-optimal in the general case. From a technical standpoint, we provide analytic tools for arguing the existence of global "locally small" covers from local covers of the space. These are exploited using modifications of recent techniques for differentially private hypothesis selection. Our techniques may prove useful for privately learning other distribution classes which do not possess a finite cover.
stat
BoMb-OT: On Batch of Mini-batches Optimal Transport
Mini-batch optimal transport (m-OT) has been successfully used in practical applications that involve probability measures with intractable density, or probability measures with a very high number of supports. The m-OT solves several sparser optimal transport problems and then returns the average of their costs and transportation plans. Despite its scalability advantage, m-OT is not a proper metric between probability measures since it does not satisfy the identity property. To address this problem, we propose a novel mini-batching scheme for optimal transport, named Batch of Mini-batches Optimal Transport (BoMb-OT), that can be formulated as a well-defined distance on the space of probability measures. Furthermore, we show that the m-OT is a limit of the entropic regularized version of the proposed BoMb-OT when the regularized parameter goes to infinity. We carry out extensive experiments to show that the new mini-batching scheme can estimate a better transportation plan between two original measures than m-OT. It leads to a favorable performance of BoMb-OT in the matching and color transfer tasks. Furthermore, we observe that BoMb-OT also provides a better objective loss than m-OT for doing approximate Bayesian computation, estimating parameters of interest in parametric generative models, and learning non-parametric generative models with gradient flow.
stat
Mat\'ern Gaussian Processes on Graphs
Gaussian processes are a versatile framework for learning unknown functions in a manner that permits one to utilize prior information about their properties. Although many different Gaussian process models are readily available when the input space is Euclidean, the choice is much more limited for Gaussian processes whose input space is an undirected graph. In this work, we leverage the stochastic partial differential equation characterization of Mat\'ern Gaussian processes - a widely-used model class in the Euclidean setting - to study their analog for undirected graphs. We show that the resulting Gaussian processes inherit various attractive properties of their Euclidean and Riemannian analogs and provide techniques that allow them to be trained using standard methods, such as inducing points. This enables graph Mat\'ern Gaussian processes to be employed in mini-batch and non-conjugate settings, thereby making them more accessible to practitioners and easier to deploy within larger learning frameworks.
stat
Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python
We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and scaled sparse linear regression) combined with efficient active set selection strategies. Besides, the library allows users to choose different sparsity-inducing regularizers, including the convex $\ell_1$, nonconvex MCP and SCAD regularizers. The library is coded in C++ and has user-friendly R and Python wrappers. Numerical experiments demonstrate that picasso can scale up to large problems efficiently.
stat
FuDGE: Functional Differential Graph Estimation with fully and discretely observed curves
We consider the problem of estimating the difference between two functional undirected graphical models with shared structures. In many applications, data are naturally regarded as high-dimensional random function vectors rather than multivariate scalars. For example, electroencephalography (EEG) data are more appropriately treated as functions of time. In these problems, not only can the number of functions measured per sample be large, but each function is itself an infinite dimensional object, making estimation of model parameters challenging. In practice, curves are usually discretely observed, which makes graph structure recovery even more challenging. We formally characterize when two functional graphical models are comparable and propose a method that directly estimates the functional differential graph, which we term FuDGE. FuDGE avoids separate estimation of each graph, which allows for estimation in problems where individual graphs are dense, but their difference is sparse. We show that FuDGE consistently estimates the functional differential graph in a high-dimensional setting for both discretely observed and fully observed function paths. We illustrate finite sample properties of our method through simulation studies. In order to demonstrate the benefits of our method, we propose Joint Functional Graphical Lasso as a competitor, which is a generalization of the Joint Graphical Lasso. Finally, we apply our method to EEG data to uncover differences in functional brain connectivity between alcoholics and control subjects.
stat
Efficient quantification of the impact of demand and weather uncertainty in power system models
This paper introduces a new approach to quantify the impact of forward propagated demand and weather uncertainty on power system planning and operation models. Recent studies indicate that such sampling uncertainty, originating from demand and weather time series inputs, should not be ignored. However, established uncertainty quantification approaches fail in this context due to the data and computing resources required for standard Monte Carlo analysis with disjoint samples. The method introduced here uses an m out of n bootstrap with shorter time series than the original, enhancing computational efficiency and avoiding the need for any additional data. It both quantifies output uncertainty and determines the sample length required for desired confidence levels. Simulations and validation exercises are performed on two capacity expansion planning models and one unit commitment and economic dispatch model. A diagnostic for the validity of estimated uncertainty bounds is discussed. The models, data and code are made available.
stat
Focused Bayesian Prediction
We propose a new method for conducting Bayesian prediction that delivers accurate predictions without correctly specifying the unknown true data generating process. A prior is defined over a class of plausible predictive models. After observing data, we update the prior to a posterior over these models, via a criterion that captures a user-specified measure of predictive accuracy. Under regularity, this update yields posterior concentration onto the element of the predictive class that maximizes the expectation of the accuracy measure. In a series of simulation experiments and empirical examples we find notable gains in predictive accuracy relative to conventional likelihood-based prediction.
stat
DECoVaC: Design of Experiments with Controlled Variability Components
Reproducible research in Machine Learning has seen a salutary abundance of progress lately: workflows, transparency, and statistical analysis of validation and test performance. We build on these efforts and take them further. We offer a principled experimental design methodology, based on linear mixed models, to study and separate the effects of multiple factors of variation in machine learning experiments. This approach allows to account for the effects of architecture, optimizer, hyper-parameters, intentional randomization, as well as unintended lack of determinism across reruns. We illustrate that methodology by analyzing Matching Networks, Prototypical Networks and TADAM on the miniImagenet dataset.
stat
Structure learning of Bayesian networks involving cyclic structures
Many biological networks include cyclic structures. In such cases, Bayesian networks (BNs), which must be acyclic, are not sound models for structure learning. Dynamic BNs can be used but require relatively large time series data. We discuss an alternative model that embeds cyclic structures within acyclic BNs, allowing us to still use the factorization property and informative priors on network structure. We present an implementation in the linear Gaussian case, where cyclic structures are treated as multivariate nodes. We use a Markov Chain Monte Carlo algorithm for inference, allowing us to work with posterior distribution on the space of graphs.
stat
Assortativity measures for weighted and directed networks
Assortativity measures the tendency of a vertex in a network being connected by other vertexes with respect to some vertex-specific features. Classical assortativity coefficients are defined for unweighted and undirected networks with respect to vertex degree. We propose a class of assortativity coefficients that capture the assortative characteristics and structure of weighted and directed networks more precisely. The vertex-to-vertex strength correlation is used as an example, but the proposed measure can be applied to any pair of vertex-specific features. The effectiveness of the proposed measure is assessed through extensive simulations based on prevalent random network models in comparison with existing assortativity measures. In application World Input-Ouput Networks,the new measures reveal interesting insights that would not be obtained by using existing ones. An implementation is publicly available in a R package "wdnet".
stat
Modeling Nonstationary and Asymmetric Multivariate Spatial Covariances via Deformations
Multivariate spatial-statistical models are often used when modeling environmental and socio-demographic processes. The most commonly used models for multivariate spatial covariances assume both stationarity and symmetry for the cross-covariances, but these assumptions are rarely tenable in practice. In this article we introduce a new and highly flexible class of nonstationary and asymmetric multivariate spatial covariance models that are constructed by modeling the simpler and more familiar stationary and symmetric multivariate covariances on a warped domain. Inspired by recent developments in the univariate case, we propose modeling the warping function as a composition of a number of simple injective warping functions in a deep-learning framework. Importantly, covariance-model validity is guaranteed by construction. We establish the types of warpings that allow for cross-covariance symmetry and asymmetry, and we use likelihood-based methods for inference that are computationally efficient. The utility of this new class of models is shown through two data illustrations: a simulation study on nonstationary data and an application on ocean temperatures at two different depths.
stat
Exponential random graph model parameter estimation for very large directed networks
Exponential random graph models (ERGMs) are widely used for modeling social networks observed at one point in time. However the computational difficulty of ERGM parameter estimation has limited the practical application of this class of models to relatively small networks, up to a few thousand nodes at most, with usually only a few hundred nodes or fewer. In the case of undirected networks, snowball sampling can be used to find ERGM parameter estimates of larger networks via network samples, and recently published improvements in ERGM network distribution sampling and ERGM estimation algorithms have allowed ERGM parameter estimates of undirected networks with over one hundred thousand nodes to be made. However the implementations of these algorithms to date have been limited in their scalability, and also restricted to undirected networks. Here we describe an implementation of the recently published Equilibrium Expectation (EE) algorithm for ERGM parameter estimation of large directed networks. We test it on some simulated networks, and demonstrate its application to an online social network with over 1.6 million nodes.
stat
The Fast Loaded Dice Roller: A Near-Optimal Exact Sampler for Discrete Probability Distributions
This paper introduces a new algorithm for the fundamental problem of generating a random integer from a discrete probability distribution using a source of independent and unbiased random coin flips. We prove that this algorithm, which we call the Fast Loaded Dice Roller (FLDR), is highly efficient in both space and time: (i) the size of the sampler is guaranteed to be linear in the number of bits needed to encode the input distribution; and (ii) the expected number of bits of entropy it consumes per sample is at most 6 bits more than the information-theoretically optimal rate. We present fast implementations of the linear-time preprocessing and near-optimal sampling algorithms using unsigned integer arithmetic. Empirical evaluations on a broad set of probability distributions establish that FLDR is 2x-10x faster in both preprocessing and sampling than multiple baseline algorithms, including the widely-used alias and interval samplers. It also uses up to 10000x less space than the information-theoretically optimal sampler, at the expense of less than 1.5x runtime overhead.
stat
Novel Compositional Data's Grey Model for Structurally Forecasting Arctic Crude Oil Import
The reserve of crude oil in the Arctic area is abundant. Ice melting is making it possible to have intermediate access to the Arctic crude oil and its transportation. A novel compositional data's grey model is proposed in this paper to structurally forecast Arctic crude oil import. Firstly, the general accumulative operation sequence of multivariate compositional data is defined according to Aitchison geometry, then obtaining the novel model with the form of the compositional data vectors. Secondly, this paper studies the least square parameter estimation of the model. The novel model is deduced and selected as the time-response expression of the solution. Thirdly, this paper infuses the novel model with traditional grey model to improve its robustness. Differential Evolution algorithm is introduced to determine the optimal value of the general matrix. Lastly, two validation examples are provided for confirming the effectiveness of the novel model by comparing it with other existing models, before being employed to forecast the crude oil import structure in China. The results show that the novel model provides better performance in all crude oil cases in short-term forecasting. Therefore, by using the new model, China's development parameter is 0.5214 and Determination Factor of the novel model is 0.5999, which means that the crude oil import structure of China is being changed. Specifically, the amount of crude oil imported from the Arctic area is obviously increasing in the next 6 years, showing sufficient proof of the edge owned by the Arctic area: abundant crude oil reserves and shortening transportation distance.
stat
MaxGap Bandit: Adaptive Algorithms for Approximate Ranking
This paper studies the problem of adaptively sampling from K distributions (arms) in order to identify the largest gap between any two adjacent means. We call this the MaxGap-bandit problem. This problem arises naturally in approximate ranking, noisy sorting, outlier detection, and top-arm identification in bandits. The key novelty of the MaxGap-bandit problem is that it aims to adaptively determine the natural partitioning of the distributions into a subset with larger means and a subset with smaller means, where the split is determined by the largest gap rather than a pre-specified rank or threshold. Estimating an arm's gap requires sampling its neighboring arms in addition to itself, and this dependence results in a novel hardness parameter that characterizes the sample complexity of the problem. We propose elimination and UCB-style algorithms and show that they are minimax optimal. Our experiments show that the UCB-style algorithms require 6-8x fewer samples than non-adaptive sampling to achieve the same error.
stat
Anchored Bayesian Gaussian Mixture Models
Finite mixtures are a flexible modeling tool for irregularly shaped densities and samples from heterogeneous populations. When modeling with mixtures using an exchangeable prior on the component features, the component labels are arbitrary and are indistinguishable in posterior analysis. This makes it impossible to attribute any meaningful interpretation to the marginal posterior distributions of the component features. We propose a model in which a small number of observations are assumed to arise from some of the labeled component densities. The resulting model is not exchangeable, allowing inference on the component features without post-processing. Our method assigns meaning to the component labels at the modeling stage and can be justified as a data-dependent informative prior on the labelings. We show that our method produces interpretable results, often (but not always) similar to those resulting from relabeling algorithms, with the added benefit that the marginal inferences originate directly from a well specified probability model rather than a post hoc manipulation. We provide asymptotic results leading to practical guidelines for model selection that are motivated by maximizing prior information about the class labels and demonstrate our method on real and simulated data.
stat
Robust convex clustering: How does fusion penalty enhance robustness?
Convex clustering has gained popularity recently due to its desirable performance in empirical studies. It involves solving a convex optimization problem with the cost function being a squared error loss plus a fusion penalty that encourages the estimated centroids for observations in the same cluster to be identical. However, when data are contaminated, convex clustering with a squared error loss will fail to identify correct cluster memberships even when there is only one arbitrary outlier. To address this challenge, we propose a robust convex clustering method. Theoretically, we show that the new estimator is resistant to arbitrary outliers: it does not break down until more than half of the observations are arbitrary outliers. In particular, we observe a new phenomenon that the fusion penalty can help enhance robustness. Numerical studies are performed to demonstrate the competitive performance of the proposed method.
stat
Cross-classified multilevel models
Cross-classified multilevel modelling is an extension of standard multilevel modelling for non-hierarchical data that have cross-classified structures. Traditional multilevel models involve hierarchical data structures whereby lower level units such as students are nested within higher level units such as schools and where these higher level units may in turn be nested within further groupings or clusters such as school districts, regions, and countries. With hierarchical data structures, there is an exact nesting of each lower level unit in one and only one higher level unit. For example, each student attends one school, each school is located within one school district, and so on. However, social reality is more complicated than this, and so social and behavioural data often do not follow pure or strict hierarchies. Two types of non-hierarchical data structures which often appear in practice are cross-classified and multiple membership structures. In this article, we describe cross-classified data structures and cross-classified hierarchical linear modelling which can be used to analyse them.
stat
On the Current State of Research in Explaining Ensemble Performance Using Margins
Empirical evidence shows that ensembles, such as bagging, boosting, random and rotation forests, generally perform better in terms of their generalization error than individual classifiers. To explain this performance, Schapire et al. (1998) developed an upper bound on the generalization error of an ensemble based on the margins of the training data, from which it was concluded that larger margins should lead to lower generalization error, everything else being equal. Many other researchers have backed this assumption and presented tighter bounds on the generalization error based on either the margins or functions of the margins. For instance, Shen and Li (2010) provide evidence suggesting that the generalization error of a voting classifier might be reduced by increasing the mean and decreasing the variance of the margins. In this article we propose several techniques and empirically test whether the current state of research in explaining ensemble performance holds. We evaluate the proposed methods through experiments with real and simulated data sets.
stat
Trajectory Functional Boxplots
With the development of data-monitoring techniques in various fields of science, multivariate functional data are often observed. Consequently, an increasing number of methods have appeared to extend the general summary statistics of multivariate functional data. However, trajectory functional data, as an important sub-type, have not been studied very well. This article proposes two informative exploratory tools, the trajectory functional boxplot, and the modified simplicial band depth (MSBD) versus Wiggliness of Directional Outlyingness (WO) plot, to visualize the centrality of trajectory functional data. The newly defined WO index effectively measures the shape variation of curves and hence serves as a detector for shape outliers; additionally, MSBD provides a center-outward ranking result and works as a detector for magnitude outliers. Using the two measures, the functional boxplot of the trajectory reveals center-outward patterns and potential outliers using the raw curves, whereas the MSBD-WO plot illustrates such patterns and outliers in a space spanned by MSBD and WO. The proposed methods are validated on hurricane path data and migration trace data recorded from two types of birds.
stat
A Primer on PAC-Bayesian Learning
Generalised Bayesian learning algorithms are increasingly popular in machine learning, due to their PAC generalisation properties and flexibility. The present paper aims at providing a self-contained survey on the resulting PAC-Bayes framework and some of its main theoretical and algorithmic developments.
stat
Calibration tests in multi-class classification: A unifying framework
In safety-critical applications a probabilistic model is usually required to be calibrated, i.e., to capture the uncertainty of its predictions accurately. In multi-class classification, calibration of the most confident predictions only is often not sufficient. We propose and study calibration measures for multi-class classification that generalize existing measures such as the expected calibration error, the maximum calibration error, and the maximum mean calibration error. We propose and evaluate empirically different consistent and unbiased estimators for a specific class of measures based on matrix-valued kernels. Importantly, these estimators can be interpreted as test statistics associated with well-defined bounds and approximations of the p-value under the null hypothesis that the model is calibrated, significantly improving the interpretability of calibration measures, which otherwise lack any meaningful unit or scale.
stat
Use of Cross-validation Bayes Factors to Test Equality of Two Densities
We propose a non-parametric, two-sample Bayesian test for checking whether or not two data sets share a common distribution. The test makes use of data splitting ideas and does not require priors for high-dimensional parameter vectors as do other nonparametric Bayesian procedures. We provide evidence that the new procedure provides more stable Bayes factors than do methods based on P\'olya trees. Somewhat surprisingly, the behavior of the proposed Bayes factors when the two distributions are the same is usually superior to that of P\'olya tree Bayes factors. We showcase the effectiveness of the test by proving its consistency, conducting a simulation study and applying the test to Higgs boson data.
stat
Reliable training and estimation of variance networks
We propose and investigate new complementary methodologies for estimating predictive variance networks in regression neural networks. We derive a locally aware mini-batching scheme that result in sparse robust gradients, and show how to make unbiased weight updates to a variance network. Further, we formulate a heuristic for robustly fitting both the mean and variance networks post hoc. Finally, we take inspiration from posterior Gaussian processes and propose a network architecture with similar extrapolation properties to Gaussian processes. The proposed methodologies are complementary, and improve upon baseline methods individually. Experimentally, we investigate the impact on predictive uncertainty on multiple datasets and tasks ranging from regression, active learning and generative modeling. Experiments consistently show significant improvements in predictive uncertainty estimation over state-of-the-art methods across tasks and datasets.
stat
Bayesian equation selection on sparse data for discovery of stochastic dynamical systems
Often the underlying system of differential equations driving a stochastic dynamical system is assumed to be known, with inference conditioned on this assumption. We present a Bayesian framework for discovering this system of differential equations under assumptions that align with real-life scenarios, including the availability of relatively sparse data. Further, we discuss computational strategies that are critical in teasing out the important details about the dynamical system and algorithmic innovations to solve for acute parameter interdependence in the absence of rich data. This gives a complete Bayesian pathway for model identification via a variable selection paradigm and parameter estimation of the corresponding model using only the observed data. We present detailed computations and analysis of the Lorenz-96, Lorenz-63, and the Orstein-Uhlenbeck system using the Bayesian framework we propose.
stat
Probability Link Models with Symmetric Information Divergence
This paper introduces link functions for transforming one probability distribution to another such that the Kullback-Leibler and R\'enyi divergences between the two distributions are symmetric. Two general classes of link models are proposed. The first model links two survival functions and is applicable to models such as the proportional odds and change point, which are used in survival analysis and reliability modeling. A prototype application involving the proportional odds model demonstrates advantages of symmetric divergence measures over asymmetric measures for assessing the efficacy of features and for model averaging purposes. The advantages include providing unique ranks for models and unique information weights for model averaging with one-half as much computation requirement of asymmetric divergences. The second model links two cumulative probability distribution functions. This model produces a generalized location model which are continuous counterparts of the binary probability models such as probit and logit models. Examples include the generalized probit and logit models which have appeared in the survival analysis literature, and a generalized Laplace model and a generalized Student-$t$ model, which are survival time models corresponding to the respective binary probability models. Lastly, extensions to symmetric divergence between survival functions and conditions for copula dependence information are presented.
stat
Capabilities and Limitations of Time-lagged Autoencoders for Slow Mode Discovery in Dynamical Systems
Time-lagged autoencoders (TAEs) have been proposed as a deep learning regression-based approach to the discovery of slow modes in dynamical systems. However, a rigorous analysis of nonlinear TAEs remains lacking. In this work, we discuss the capabilities and limitations of TAEs through both theoretical and numerical analyses. Theoretically, we derive bounds for nonlinear TAE performance in slow mode discovery and show that in general TAEs learn a mixture of slow and maximum variance modes. Numerically, we illustrate cases where TAEs can and cannot correctly identify the leading slowest mode in two example systems: a 2D "Washington beltway" potential and the alanine dipeptide molecule in explicit water. We also compare the TAE results with those obtained using state-free reversible VAMPnets (SRVs) as a variational-based neural network approach for slow modes discovery, and show that SRVs can correctly discover slow modes where TAEs fail.
stat
Estimation of Latent Network Flows in Bike-Sharing Systems
Estimation of latent network flows is a common problem in statistical network analysis. The typical setting is that we know the margins of the network, i.e. in- and outdegrees, but the flows are unobserved. In this paper, we develop a mixed regression model to estimate network flows in a bike-sharing network if only the hourly differences of in- and outdegrees at bike stations are known. We also include exogenous covariates such as weather conditions. Two different parameterizations of the model are considered to estimate 1) the whole network flow and 2) the network margins only. The estimation of the model parameters is proposed via an iterative penalized maximum likelihood approach. This is exemplified by modeling network flows in the Vienna Bike-Sharing Network. Furthermore, a simulation study is conducted to show the performance of the model. For practical purposes it is crucial to predict when and at which station there is a lack or an excess of bikes. For this application, our model shows to be well suited by providing quite accurate predictions.
stat
MML is not consistent for Neyman-Scott
Strict Minimum Message Length (SMML) is an information-theoretic statistical inference method widely cited (but only with informal arguments) as providing estimations that are consistent for general estimation problems. It is, however, almost invariably intractable to compute, for which reason only approximations of it (known as MML algorithms) are ever used in practice. Using novel techniques that allow for the first time direct, non-approximated analysis of SMML solutions, we investigate the Neyman-Scott estimation problem, an oft-cited showcase for the consistency of MML, and show that even with a natural choice of prior neither SMML nor its popular approximations are consistent for it, thereby providing a counterexample to the general claim. This is the first known explicit construction of an SMML solution for a natural, high-dimensional problem.
stat
SIMPCA: A framework for rotating and sparsifying principal components
We propose an algorithmic framework for computing sparse components from rotated principal components. This methodology, called SIMPCA, is useful to replace the unreliable practice of ignoring small coefficients of rotated components when interpreting them. The algorithm computes genuinely sparse components by projecting rotated principal components onto subsets of variables. The so simplified components are highly correlated with the corresponding components. By choosing different simplification strategies different sparse solutions can be obtained which can be used to compare alternative interpretations of the principal components. We give some examples of how effective simplified solutions can be achieved with SIMPCA using some publicly available data sets.
stat
Inference on Heterogeneous Quantile Treatment Effects via Rank-Score Balancing
Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $\ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers' education on infant birth weights.
stat
Conformal Prediction Intervals for Neural Networks Using Cross Validation
Neural networks are among the most powerful nonlinear models used to address supervised learning problems. Similar to most machine learning algorithms, neural networks produce point predictions and do not provide any prediction interval which includes an unobserved response value with a specified probability. In this paper, we proposed the $k$-fold prediction interval method to construct prediction intervals for neural networks based on $k$-fold cross validation. Simulation studies and analysis of 10 real datasets are used to compare the finite-sample properties of the prediction intervals produced by the proposed method and the split conformal (SC) method. The results suggest that the proposed method tends to produce narrower prediction intervals compared to the SC method while maintaining the same coverage probability. Our experimental results also reveal that the proposed $k$-fold prediction interval method produces effective prediction intervals and is especially advantageous relative to competing approaches when the number of training observations is limited.
stat
PANDA: AdaPtive Noisy Data Augmentation for Regularization of Undirected Graphical Models
We propose an AdaPtive Noise Augmentation (PANDA) technique to regularize the estimation and construction of undirected graphical models. PANDA iteratively optimizes the objective function given the noise augmented data until convergence to achieve regularization on model parameters. The augmented noises can be designed to achieve various regularization effects on graph estimation, such as the bridge (including lasso and ridge), elastic net, adaptive lasso, and SCAD penalization; it also realizes the group lasso and fused ridge. We examine the tail bound of the noise-augmented loss function and establish that the noise-augmented loss function and its minimizer converge almost surely to the expected penalized loss function and its minimizer, respectively. We derive the asymptotic distributions for the regularized parameters through PANDA in generalized linear models, based on which, inferences for the parameters can be obtained simultaneously with variable selection. We show the non-inferior performance of PANDA in constructing graphs of different types in simulation studies and apply PANDA to an autism spectrum disorder data to construct a mixed-node graph. We also show that the inferences based on the asymptotic distribution of regularized parameter estimates via PANDA achieve nominal or near-nominal coverage and are far more efficient, compared to some existing post-selection procedures. Computationally, PANDA can be easily programmed in software that implements (GLMs) without resorting to complicated optimization techniques.
stat
Testing for Outliers with Conformal p-values
This paper studies the construction of p-values for nonparametric outlier detection, taking a multiple-testing perspective. The goal is to test whether new independent samples belong to the same distribution as a reference data set or are outliers. We propose a solution based on conformal inference, a broadly applicable framework which yields p-values that are marginally valid but mutually dependent for different test points. We prove these p-values are positively dependent and enable exact false discovery rate control, although in a relatively weak marginal sense. We then introduce a new method to compute p-values that are both valid conditionally on the training data and independent of each other for different test points; this paves the way to stronger type-I error guarantees. Our results depart from classical conformal inference as we leverage concentration inequalities rather than combinatorial arguments to establish our finite-sample guarantees. Furthermore, our techniques also yield a uniform confidence bound for the false positive rate of any outlier detection algorithm, as a function of the threshold applied to its raw statistics. Finally, the relevance of our results is demonstrated by numerical experiments on real and simulated data.
stat
Bagged filters for partially observed interacting systems
Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte~Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter also performs well on this task, though the bagged filter respects smoothness and conservation laws that a block particle filter can violate.
stat
Three-dimensional Radial Visualization of High-dimensional Datasets with Mixed Features
We develop methodology for 3D radial visualization (RadViz) of high-dimensional datasets. Our display engine is called RadViz3D and extends the classical 2D RadViz that visualizes multivariate data in the 2D plane by mapping every record to a point inside the unit circle. We show that distributing anchor points at least approximately uniformly on the 3D unit sphere provides a better visualization with minimal artificial visual correlation for data with uncorrelated variables. Our RadViz3D methodology therefore places equi-spaced anchor points, one for every feature, exactly for the five Platonic solids, and approximately via a Fibonacci grid for the other cases. Our Max-Ratio Projection (MRP) method then utilizes the group information in high dimensions to provide distinctive lower-dimensional projections that are then displayed using Radviz3D. Our methodology is extended to datasets with discrete and continuous features where a Gaussianized distributional transform is used in conjunction with copula models before applying MRP and visualizing the result using RadViz3D. A R package radviz3d implementing our complete methodology is available.
stat
Comparing statistical methods to predict leptospirosis incidence using hydro-climatic covariables
Leptospiroris, the infectious disease caused by the spirochete bacteria Leptospira interrogans, constitutes an important public health problem all over the world. In Argentina, some regions present climate and geographic characteristics that favors the habitat of the bacteria Leptospira, whose survival strongly depends on climatic factors. For this reason, regional public health systems should include, as a main factor, the incidence of the disease in order to improve the prediction of potential outbreaks, helping to stop or delay the virus transmission. The classic methods used to perform this kind of predictions are based in autoregressive time series tools which, as it is well known, perform poorly when the data do not meet their requirements. Recently, several nonparametric methods have been introduced to deal with those problems. In this work, we compare a semiparametric method, called Semi-Functional Partial Linear Regression (SFPLR) with the classic ARIMA and a new alternative ARIMAX, in order to select the best predictive tool for the incidence of leptospirosis in the Argentinian Litoral region. In particular, SFPLR and ARIMAX are methods that allow the use of (hydrometeorological) covariables which could improve the prediction of outbreaks of leptospirosis.
stat
On Testing for Biases in Peer Review
We consider the issue of biases in scholarly research, specifically, in peer review. There is a long standing debate on whether exposing author identities to reviewers induces biases against certain groups, and our focus is on designing tests to detect the presence of such biases. Our starting point is a remarkable recent work by Tomkins, Zhang and Heavlin which conducted a controlled, large-scale experiment to investigate existence of biases in the peer reviewing of the WSDM conference. We present two sets of results in this paper. The first set of results is negative, and pertains to the statistical tests and the experimental setup used in the work of Tomkins et al. We show that the test employed therein does not guarantee control over false alarm probability and under correlations between relevant variables coupled with any of the following conditions, with high probability, can declare a presence of bias when it is in fact absent: (a) measurement error, (b) model mismatch, (c) reviewer calibration. Moreover, we show that the setup of their experiment may itself inflate false alarm probability if (d) bidding is performed in non-blind manner or (e) popular reviewer assignment procedure is employed. Our second set of results is positive and is built around a novel approach to testing for biases that we propose. We present a general framework for testing for biases in (single vs. double blind) peer review. We then design hypothesis tests that under minimal assumptions guarantee control over false alarm probability and non-trivial power even under conditions (a)--(c) as well as propose an alternative experimental setup which mitigates issues (d) and (e). Finally, we show that no statistical test can improve over the non-parametric tests we consider in terms of the assumptions required to control for the false alarm probability.
stat
Ensemble updating of binary state vectors by maximising the expected number of unchanged components
In recent years, several ensemble-based filtering methods have been proposed and studied. The main challenge in such procedures is the updating of a prior ensemble to a posterior ensemble at every step of the filtering recursions. In the famous ensemble Kalman filter, the assumption of a linear-Gaussian state space model is introduced in order to overcome this issue, and the prior ensemble is updated with a linear shift closely related to the traditional Kalman filter equations. In the current article, we consider how the ideas underlying the ensemble Kalman filter can be applied when the components of the state vectors are binary variables. While the ensemble Kalman filter relies on Gaussian approximations of the forecast and filtering distributions, we instead use first order Markov chains. To update the prior ensemble, we simulate samples from a distribution constructed such that the expected number of equal components in a prior and posterior state vector is maximised. We demonstrate the performance of our approach in a simulation example inspired by the movement of oil and water in a petroleum reservoir, where also a more na\"{i}ve updating approach is applied for comparison. Here, we observe that the Frobenius norm of the difference between the estimated and the true marginal filtering probabilities is reduced to the half with our method compared to the na\"{i}ve approach, indicating that our method is superior. Finally, we discuss how our methodology can be generalised from the binary setting to more complicated situations.
stat
Highly Scalable Bayesian Geostatistical Modeling via Meshed Gaussian Processes on Partitioned Domains
We introduce a class of scalable Bayesian hierarchical models for the analysis of massive geostatistical datasets. The underlying idea combines ideas on high-dimensional geostatistics by partitioning the spatial domain and modeling the regions in the partition using a sparsity-inducing directed acyclic graph (DAG). We extend the model over the DAG to a well-defined spatial process, which we call the Meshed Gaussian Process (MGP). A major contribution is the development of a MGPs on tessellated domains, accompanied by a Gibbs sampler for the efficient recovery of spatial random effects. In particular, the cubic MGP (Q-MGP) can harness high-performance computing resources by executing all large-scale operations in parallel within the Gibbs sampler, improving mixing and computing time compared to sequential updating schemes. Unlike some existing models for large spatial data, a Q-MGP facilitates massive caching of expensive matrix operations, making it particularly apt in dealing with spatiotemporal remote-sensing data. We compare Q-MGPs with large synthetic and real world data against state-of-the-art methods. We also illustrate using Normalized Difference Vegetation Index (NDVI) data from the Serengeti park region to recover latent multivariate spatiotemporal random effects at millions of locations. The source code is available at https://github.com/mkln/meshgp.
stat
Mehler's Formula, Branching Process, and Compositional Kernels of Deep Neural Networks
We utilize a connection between compositional kernels and branching processes via Mehler's formula to study deep neural networks. This new probabilistic insight provides us a novel perspective on the mathematical role of activation functions in compositional neural networks. We study the unscaled and rescaled limits of the compositional kernels and explore the different phases of the limiting behavior, as the compositional depth increases. We investigate the memorization capacity of the compositional kernels and neural networks by characterizing the interplay among compositional depth, sample size, dimensionality, and non-linearity of the activation. Explicit formulas on the eigenvalues of the compositional kernel are provided, which quantify the complexity of the corresponding reproducing kernel Hilbert space. On the methodological front, we propose a new random features algorithm, which compresses the compositional layers by devising a new activation function.
stat
Sketching for Two-Stage Least Squares Estimation
When there is so much data that they become a computation burden, it is not uncommon to compute quantities of interest using a sketch of data of size $m$ instead of the full sample of size $n$. This paper investigates the implications for two-stage least squares (2SLS) estimation when the sketches are obtained by a computationally efficient method known as CountSketch. We obtain three results. First, we establish conditions under which given the full sample, a sketched 2SLS estimate can be arbitrarily close to the full-sample 2SLS estimate with high probability. Second, we give conditions under which the sketched 2SLS estimator converges in probability to the true parameter at a rate of $m^{-1/2}$ and is asymptotically normal. Third, we show that the asymptotic variance can be consistently estimated using the sketched sample and suggest methods for determining an inference-conscious sketch size $m$. The sketched 2SLS estimator is used to estimate returns to education.
stat
BayesSUR: An R package for high-dimensional multivariate Bayesian variable and covariance selection in linear regression
In molecular biology, advances in high-throughput technologies have made it possible to study complex multivariate phenotypes and their simultaneous associations with high-dimensional genomic and other omics data, a problem that can be studied with high-dimensional multi-response regression, where the response variables are potentially highly correlated. To this purpose, we recently introduced several multivariate Bayesian variable and covariance selection models, e.g., Bayesian estimation methods for sparse seemingly unrelated regression for variable and covariance selection. Several variable selection priors have been implemented in this context, in particular the hotspot detection prior for latent variable inclusion indicators, which results in sparse variable selection for associations between predictors and multiple phenotypes. We also propose an alternative, which uses a Markov random field (MRF) prior for incorporating prior knowledge about the dependence structure of the inclusion indicators. Inference of Bayesian seemingly unrelated regression (SUR) by Markov chain Monte Carlo methods is made computationally feasible by factorisation of the covariance matrix amongst the response variables. In this paper we present BayesSUR, an R package, which allows the user to easily specify and run a range of different Bayesian SUR models, which have been implemented in C++ for computational efficiency. The R package allows the specification of the models in a modular way, where the user chooses the priors for variable selection and for covariance selection separately. We demonstrate the performance of sparse SUR models with the hotspot prior and spike-and-slab MRF prior on synthetic and real data sets representing eQTL or mQTL studies and in vitro anti-cancer drug screening studies as examples for typical applications.
stat
Prediction of Personal Protective Equipment Use in Hospitals During COVID-19
Demand for Personal Protective Equipment (PPE) such as surgical masks, gloves, and gowns has increased significantly since the onset of the COVID-19 pandemic. In hospital settings, both medical staff and patients are required to wear PPE. As these facilities resume regular operations, staff will be required to wear PPE at all times while additional PPE will be mandated during medical procedures. This will put increased pressure on hospitals which have had problems predicting PPE usage and sourcing its supply. To meet this challenge, we propose an approach to predict demand for PPE. Specifically, we model the admission of patients to a medical department using multiple independent queues. Each queue represents a class of patients with similar treatment plans and hospital length-of-stay. By estimating the total workload of each class, we derive closed-form estimates for the expected amount of PPE required over a specified time horizon using current PPE guidelines. We apply our approach to a data set of 22,039 patients admitted to the general internal medicine department at St. Michael's hospital in Toronto, Canada from April 2010 to November 2019. We find that gloves and surgical masks represent approximately 90% of predicted PPE usage. We also find that while demand for gloves is driven entirely by patient-practitioner interactions, 86% of the predicted demand for surgical masks can be attributed to the requirement that medical practitioners will need to wear them when not interacting with patients.
stat
Perturbative estimation of stochastic gradients
In this paper we introduce a family of stochastic gradient estimation techniques based of the perturbative expansion around the mean of the sampling distribution. We characterize the bias and variance of the resulting Taylor-corrected estimators using the Lagrange error formula. Furthermore, we introduce a family of variance reduction techniques that can be applied to other gradient estimators. Finally, we show that these new perturbative methods can be extended to discrete functions using analytic continuation. Using this technique, we derive a new gradient descent method for training stochastic networks with binary weights. In our experiments, we show that the perturbative correction improves the convergence of stochastic variational inference both in the continuous and in the discrete case.
stat
A goodness of fit test for two component two parameter Weibull mixtures
Fitting mixture distributions is needed in applications where data belongs to inhomogeneous populations comprising homogeneous sub-populations. The mixing proportions of the sub populations are in general unknown and need to be estimated as well. A goodness of fit test based on the empirical distribution function is proposed for assessing the goodness of fit in model fits comprising two components, each distributed as two parameter Weibull. The applicability of the proposed test procedure was empirically established using a Monte Carlo simulation study. The proposed test procedure can be easily altered to handle two component mixtures with different component distributions.
stat
fairmodels: A Flexible Tool For Bias Detection, Visualization, And Mitigation
Machine learning decision systems are getting omnipresent in our lives. From dating apps to rating loan seekers, algorithms affect both our well-being and future. Typically, however, these systems are not infallible. Moreover, complex predictive models are really eager to learn social biases present in historical data that can lead to increasing discrimination. If we want to create models responsibly then we need tools for in-depth validation of models also from the perspective of potential discrimination. This article introduces an R package fairmodels that helps to validate fairness and eliminate bias in classification models in an easy and flexible fashion. The fairmodels package offers a model-agnostic approach to bias detection, visualization and mitigation. The implemented set of functions and fairness metrics enables model fairness validation from different perspectives. The package includes a series of methods for bias mitigation that aim to diminish the discrimination in the model. The package is designed not only to examine a single model, but also to facilitate comparisons between multiple models.
stat
n-MeRCI: A new Metric to Evaluate the Correlation Between Predictive Uncertainty and True Error
As deep learning applications are becoming more and more pervasive in robotics, the question of evaluating the reliability of inferences becomes a central question in the robotics community. This domain, known as predictive uncertainty, has come under the scrutiny of research groups developing Bayesian approaches adapted to deep learning such as Monte Carlo Dropout. Unfortunately, for the time being, the real goal of predictive uncertainty has been swept under the rug. Indeed, these approaches are solely evaluated in terms of raw performance of the network prediction, while the quality of their estimated uncertainty is not assessed. Evaluating such uncertainty prediction quality is especially important in robotics, as actions shall depend on the confidence in perceived information. In this context, the main contribution of this article is to propose a novel metric that is adapted to the evaluation of relative uncertainty assessment and directly applicable to regression with deep neural networks. To experimentally validate this metric, we evaluate it on a toy dataset and then apply it to the task of monocular depth estimation.
stat
Multilevel Monte Carlo estimation of expected information gains
The expected information gain is an important quality criterion of Bayesian experimental designs, which measures how much the information entropy about uncertain quantity of interest $\theta$ is reduced on average by collecting relevant data $Y$. However, estimating the expected information gain has been considered computationally challenging since it is defined as a nested expectation with an outer expectation with respect to $Y$ and an inner expectation with respect to $\theta$. In fact, the standard, nested Monte Carlo method requires a total computational cost of $O(\varepsilon^{-3})$ to achieve a root-mean-square accuracy of $\varepsilon$. In this paper we develop an efficient algorithm to estimate the expected information gain by applying a multilevel Monte Carlo (MLMC) method. To be precise, we introduce an antithetic MLMC estimator for the expected information gain and provide a sufficient condition on the data model under which the antithetic property of the MLMC estimator is well exploited such that optimal complexity of $O(\varepsilon^{-2})$ is achieved. Furthermore, we discuss how to incorporate importance sampling techniques within the MLMC estimator to avoid arithmetic underflow. Numerical experiments show the considerable computational cost savings compared to the nested Monte Carlo method for a simple test case and a more realistic pharmacokinetic model.
stat
Model-free posterior inference on the area under the receiver operating characteristic curve
The area under the receiver operating characteristic curve (AUC) serves as a summary of a binary classifier's performance. Methods for estimating the AUC have been developed under a binormality assumption which restricts the distribution of the score produced by the classifier. However, this assumption introduces an infinite-dimensional nuisance parameter and can be inappropriate, especially in the context of machine learning. This motivates us to adopt a model-free Gibbs posterior distribution for the AUC. We present the asymptotic Gibbs posterior concentration rate, and a strategy for tuning the learning rate so that the corresponding credible intervals achieve the nominal frequentist coverage probability. Simulation experiments and a real data analysis demonstrate the Gibbs posterior's strong performance compared to existing methods based on a rank likelihood.
stat
Estimating Dynamic Conditional Spread Densities to Optimise Daily Storage Trading of Electricity
This paper formulates dynamic density functions, based upon skewed-t and similar representations, to model and forecast electricity price spreads between different hours of the day. This supports an optimal day ahead storage and discharge schedule, and thereby facilitates a bidding strategy for a merchant arbitrage facility into the day-ahead auctions for wholesale electricity. The four latent moments of the density functions are dynamic and conditional upon exogenous drivers, thereby permitting the mean, variance, skewness and kurtosis of the densities to respond hourly to such factors as weather and demand forecasts. The best specification for each spread is selected based on the Pinball Loss function, following the closed form analytical solutions of the cumulative density functions. Those analytical properties also allow the calculation of risk associated with the spread arbitrages. From these spread densities, the optimal daily operation of a battery storage facility is determined.
stat
Average causal effect estimation via instrumental variables: the no simultaneous heterogeneity assumption
Instrumental variables (IVs) can be used to provide evidence as to whether a treatment X has a causal effect on Y. Z is a valid instrument if it satisfies the three core IV assumptions of relevance, independence and the exclusion restriction. Even if the instrument satisfies these assumptions, further assumptions are required to estimate the average causal effect (ACE) of X on Y. Sufficient assumptions for this include: homogeneity in the causal effect of X on Y; homogeneity in the association of Z with X; and independence between X and the causal effect of X on Y. Other assumptions allow identification of other causal estimands. For example, the monotonicity assumption allows identifying the average causal effect among compliers. Here, we describe the NO Simultaneous Heterogeneity (NOSH) assumption, which requires the heterogeneity in the Z-X association and heterogeneity in the X-Y causal effect to be independent. We describe the necessary conditions for NOSH and show that, if NOSH holds, conventional IV methods are consistent for the ACE even if both homogeneity assumptions and NEM are violated. We illustrate these ideas using simulations and by re-examining selected published studies.
stat