title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A Systematic Comparison of Bayesian Deep Learning Robustness in Diabetic Retinopathy Tasks
Evaluation of Bayesian deep learning (BDL) methods is challenging. We often seek to evaluate the methods' robustness and scalability, assessing whether new tools give `better' uncertainty estimates than old ones. These evaluations are paramount for practitioners when choosing BDL tools on-top of which they build their applications. Current popular evaluations of BDL methods, such as the UCI experiments, are lacking: Methods that excel with these experiments often fail when used in application such as medical or automotive, suggesting a pertinent need for new benchmarks in the field. We propose a new BDL benchmark with a diverse set of tasks, inspired by a real-world medical imaging application on \emph{diabetic retinopathy diagnosis}. Visual inputs (512x512 RGB images of retinas) are considered, where model uncertainty is used for medical pre-screening---i.e. to refer patients to an expert when model diagnosis is uncertain. Methods are then ranked according to metrics derived from expert-domain to reflect real-world use of model uncertainty in automated diagnosis. We develop multiple tasks that fall under this application, including out-of-distribution detection and robustness to distribution shift. We then perform a systematic comparison of well-tuned BDL techniques on the various tasks. From our comparison we conclude that some current techniques which solve benchmarks such as UCI `overfit' their uncertainty to the dataset---when evaluated on our benchmark these underperform in comparison to simpler baselines. The code for the benchmark, its baselines, and a simple API for evaluating new BDL tools are made available at https://github.com/oatml/bdl-benchmarks.
stat
Manufacturing Process Optimization using Statistical Methodologies
Response Surface Methodology (RSM) introduced in the paper (Box & Wilson, 1951) explores the relationships between explanatory and response variables in complex settings and provides a framework to identify correct settings for the explanatory variables to yield the desired response. RSM involves setting up sequential experimental designs followed by application of elementary optimization methods to identify direction of improvement in response. In this paper, an application of RSM using a two-factor two-level Central Composite Design (CCD) is explained for a diesel engine nozzle manufacturing sub-process. The analysis shows that one of the factors has a significant influence in improving desired values of the response. The implementation of RSM is done using the DoE plug-in available in R software.
stat
Directed Acyclic Graphs and causal thinking in clinical risk prediction modeling
Background: In epidemiology, causal inference and prediction modeling methodologies have been historically distinct. Directed Acyclic Graphs (DAGs) are used to model a priori causal assumptions and inform variable selection strategies for causal questions. Although tools originally designed for prediction are finding applications in causal inference, the counterpart has remained largely unexplored. The aim of this theoretical and simulation-based study is to assess the potential benefit of using DAGs in clinical risk prediction modeling. Methods and Findings: We explore how incorporating knowledge about the underlying causal structure can provide insights about the transportability of diagnostic clinical risk prediction models to different settings. A single-predictor model in the causal direction is likely to have better transportability than one in the anticausal direction. We further probe whether causal knowledge can be used to improve predictor selection. We empirically show that the Markov Blanket, the set of variables including the parents, children, and parents of the children of the outcome node in a DAG, is the optimal set of predictors for that outcome. Conclusions: Our findings challenge the generally accepted notion that a change in the distribution of the predictors does not affect diagnostic clinical risk prediction model calibration if the predictors are properly included in the model. Furthermore, using DAGs to identify Markov Blanket variables may be a useful, efficient strategy to select predictors in clinical risk prediction models if strong knowledge of the underlying causal structure exists or can be learned.
stat
Heterogeneity Learning for SIRS model: an Application to the COVID-19
We propose a Bayesian Heterogeneity Learning approach for Susceptible-Infected-Removal-Susceptible (SIRS) model that allows underlying clustering patterns for transmission rate, recovery rate, and loss of immunity rate for the latest coronavirus (COVID-19) among different regions. Our proposed method provides simultaneously inference on parameter estimation and clustering information which contains both number of clusters and cluster configurations. Specifically, our key idea is to formulates the SIRS model into a hierarchical form and assign the Mixture of Finite mixtures priors for heterogeneity learning. The properties of the proposed models are examined and a Markov chain Monte Carlo sampling algorithm is used to sample from the posterior distribution. Extensive simulation studies are carried out to examine empirical performance of the proposed methods. We further apply the proposed methodology to analyze the state level COVID-19 data in U.S.
stat
A cautionary note on the Hanurav-Vijayan sampling algorithm
We consider the Hanurav-Vijayan sampling design, which is the default method programmed in the SURVEYSELECT procedure of the SAS software. We prove that it is equivalent to the Sunter procedure, but is capable of handling any set of inclusion probabilities. We prove that the Horvitz-Thompson estimator is not generally consistent under this sampling design. We propose a conditional Horvitz-Thompson estimator, and prove its consistency under a non-standard assumption on the first-order inclusion probabilities. Since this assumption seems difficult to control in practice, we recommend not to use the Hanurav-Vijayan sampling design.
stat
Ridge Regularized Estimation of VAR Models for Inference and Sieve Approximation
Developments in statistical learning have fueled the analysis of high-dimensional time series. However, even in low-dimensional contexts the issues arising from ill-conditioned regression problems are well-known. Because linear time series modeling is naturally prone to such issues, I propose to apply ridge regression to the estimation of dense VAR models. Theoretical non-asymptotic results concerning the addition of a ridge-type penalty to the least squares estimator are discussed, while standard asymptotic and inference techniques are proven to be valid under mild conditions on the regularizer. The proposed estimator is then applied to the problem of sieve approximation of VAR($\infty$) processes under moderately harsh sample sizes. Simulation evidence is used to discuss the small sample properties of the ridge estimator (RLS) when compared to least squares and local projection approaches: I use a Monte Carlo exercise to argue that RLS with a lag-adapted cross-validated regularizer achieve meaningfully better performance in recovering impulse response functions and asymptotic confidence intervals than other common approaches.
stat
LazyIter: A Fast Algorithm for Counting Markov Equivalent DAGs and Designing Experiments
The causal relationships among a set of random variables are commonly represented by a Directed Acyclic Graph (DAG), where there is a directed edge from variable $X$ to variable $Y$ if $X$ is a direct cause of $Y$. From the purely observational data, the true causal graph can be identified up to a Markov Equivalence Class (MEC), which is a set of DAGs with the same conditional independencies between the variables. The size of an MEC is a measure of complexity for recovering the true causal graph by performing interventions. We propose a method for efficient iteration over possible MECs given intervention results. We utilize the proposed method for computing MEC sizes and experiment design in active and passive learning settings. Compared to previous work for computing the size of MEC, our proposed algorithm reduces the time complexity by a factor of $O(n)$ for sparse graphs where $n$ is the number of variables in the system. Additionally, integrating our approach with dynamic programming, we design an optimal algorithm for passive experiment design. Experimental results show that our proposed algorithms for both computing the size of MEC and experiment design outperform the state of the art.
stat
Multi-Node EM Algorithm for Finite Mixture Models
Finite mixture models are powerful tools for modelling and analyzing heterogeneous data. Parameter estimation is typically carried out using maximum likelihood estimation via the Expectation-Maximization (EM) algorithm. Recently, the adoption of flexible distributions as component densities has become increasingly popular. Often, the EM algorithm for these models involves complicated expressions that are time-consuming to evaluate numerically. In this paper, we describe a parallel implementation of the EM-algorithm suitable for both single-threaded and multi-threaded processors and for both single machine and multiple-node systems. Numerical experiments are performed to demonstrate the potential performance gain n different settings. Comparison is also made across two commonly used platforms - R and MATLAB. For illustration, a fairly general mixture model is used in the comparison.
stat
Promise and Challenges of a Data-Driven Approach for Battery Lifetime Prognostics
Recent data-driven approaches have shown great potential in early prediction of battery cycle life by utilizing features from the discharge voltage curve. However, these studies caution that data-driven approaches must be combined with specific design of experiments in order to limit the range of aging conditions, since the expected life of Li-ion batteries is a complex function of various aging factors. In this work, we investigate the performance of the data-driven approach for battery lifetime prognostics with Li-ion batteries cycled under a variety of aging conditions, in order to determine when the data-driven approach can successfully be applied. Results show a correlation between the variance of the discharge capacity difference and the end-of-life for cells aged under a wide range of charge/discharge C-rates and operating temperatures. This holds despite the different conditions being used not only to cycle the batteries but also to obtain the features: the features are calculated directly from cycling data without separate slow characterization cycles at a controlled temperature. However, the correlation weakens considerably when the voltage data window for feature extraction is reduced, or when features from the charge voltage curve instead of discharge are used. As deep constant-current discharges rarely happen in practice, this imposes new challenges for applying this method in a real-world system.
stat
Estimation and inference in metabolomics with non-random missing data and latent factors
High throughput metabolomics data are fraught with both non-ignorable missing observations and unobserved factors that influence a metabolite's measured concentration, and it is well known that ignoring either of these complications can compromise estimators. However, current methods to analyze these data can only account for the missing data or unobserved factors, but not both. We therefore developed MetabMiss, a statistically rigorous method to account for both non-random missing data and latent factors in high throughput metabolomics data. Our methodology does not require the practitioner specify a probability model for the missing data, and makes investigating the relationship between the metabolome and tens, or even hundreds, of phenotypes computationally tractable. We demonstrate the fidelity of MetabMiss's estimates using both simulated and real metabolomics data. An R package that implements our method is available from https://github.com/chrismckennan/MetabMiss.
stat
Edge-promoting adaptive Bayesian experimental design for X-ray imaging
This work considers sequential edge-promoting Bayesian experimental design for (discretized) linear inverse problems, exemplified by X-ray tomography. The process of computing a total variation type reconstruction of the absorption inside the imaged body via lagged diffusivity iteration is interpreted in the Bayesian framework. Assuming a Gaussian additive noise model, this leads to an approximate Gaussian posterior with a covariance structure that contains information on the location of edges in the posterior mean. The next projection geometry is then chosen through A-optimal Bayesian design, which corresponds to minimizing the trace of the updated posterior covariance matrix that accounts for the new projection. Two and three-dimensional numerical examples based on simulated data demonstrate the functionality of the introduced approach.
stat
Dataset Inference: Ownership Resolution in Machine Learning
With increasingly more data and computation involved in their training, machine learning models constitute valuable intellectual property. This has spurred interest in model stealing, which is made more practical by advances in learning with partial, little, or no supervision. Existing defenses focus on inserting unique watermarks in a model's decision surface, but this is insufficient: the watermarks are not sampled from the training distribution and thus are not always preserved during model stealing. In this paper, we make the key observation that knowledge contained in the stolen model's training set is what is common to all stolen copies. The adversary's goal, irrespective of the attack employed, is always to extract this knowledge or its by-products. This gives the original model's owner a strong advantage over the adversary: model owners have access to the original training data. We thus introduce $dataset$ $inference$, the process of identifying whether a suspected model copy has private knowledge from the original model's dataset, as a defense against model stealing. We develop an approach for dataset inference that combines statistical testing with the ability to estimate the distance of multiple data points to the decision boundary. Our experiments on CIFAR10, SVHN, CIFAR100 and ImageNet show that model owners can claim with confidence greater than 99% that their model (or dataset as a matter of fact) was stolen, despite only exposing 50 of the stolen model's training points. Dataset inference defends against state-of-the-art attacks even when the adversary is adaptive. Unlike prior work, it does not require retraining or overfitting the defended model.
stat
Hypothesis Testing for Shapes using Vectorized Persistence Diagrams
Topological data analysis involves the statistical characterization of the shape of data. Persistent homology is a primary tool of topological data analysis, which can be used to analyze those topological features and perform statistical inference. In this paper, we present a two-stage hypothesis test for vectorized persistence diagrams. The first stage filters elements in the vectorized persistence diagrams to reduce false positives. The second stage consists of multiple hypothesis tests, with false positives controlled by false discovery rates. We demonstrate applications of the proposed procedure on simulated point clouds and three-dimensional rock image data. Our results show that the proposed hypothesis tests can provide flexible and informative inferences on the shape of data with lower computational cost compared to the permutation test.
stat
Inference for extreme values under threshold-based stopping rules
There is a propensity for an extreme value analyses to be conducted as a consequence of the occurrence of a large flooding event. This timing of the analysis introduces bias and poor coverage probabilities into the associated risk assessments and leads subsequently to inefficient flood protection schemes. We explore these problems through studying stochastic stopping criteria and propose new likelihood-based inferences that mitigate against these difficulties. Our methods are illustrated through the analysis of the river Lune, following it experiencing the UK's largest ever measured flow event in 2015. We show that without accounting for this stopping feature there would be substantial over-design in response to the event.
stat
Scalable Metropolis-Hastings for Exact Bayesian Inference with Large Datasets
Bayesian inference via standard Markov Chain Monte Carlo (MCMC) methods is too computationally intensive to handle large datasets, since the cost per step usually scales like $\Theta(n)$ in the number of data points $n$. We propose the Scalable Metropolis-Hastings (SMH) kernel that exploits Gaussian concentration of the posterior to require processing on average only $O(1)$ or even $O(1/\sqrt{n})$ data points per step. This scheme is based on a combination of factorized acceptance probabilities, procedures for fast simulation of Bernoulli processes, and control variate ideas. Contrary to many MCMC subsampling schemes such as fixed step-size Stochastic Gradient Langevin Dynamics, our approach is exact insofar as the invariant distribution is the true posterior and not an approximation to it. We characterise the performance of our algorithm theoretically, and give realistic and verifiable conditions under which it is geometrically ergodic. This theory is borne out by empirical results that demonstrate overall performance benefits over standard Metropolis-Hastings and various subsampling algorithms.
stat
On the Likelihood of Local Projection Models
A local projection model is defined by a set of linear regressions that account for the associations between exogenous variables and an endogenous variable observed at different time points. While it is standard practice to separately estimate individual regressions using the ordinary least squares estimator, some recent studies treat a local projection model as a multivariate regression with correlated errors, i.e., seemingly unrelated regressions, and propose Bayesian and non-Bayesian methods to improve the estimation accuracy. However, it is not clear how and when this way of treatment of local projection models is justified. The primary purpose of this paper is to fill this gap by showing that the likelihood of local projection models can be analytically derived from a stationary vector moving average process. By means of numerical experiments, we confirm that this treatment of local projections is tenable for finite samples.
stat
A Fast deflation Method for Sparse Principal Component Analysis via Subspace Projections
The implementation of conventional sparse principal component analysis (SPCA) on high-dimensional data sets has become a time consuming work. In this paper, a series of subspace projections are constructed efficiently by using Household QR factorization. With the aid of these subspace projections, a fast deflation method, called SPCA-SP, is developed for SPCA. This method keeps a good tradeoff between various criteria, including sparsity, orthogonality, explained variance, balance of sparsity, and computational cost. Comparative experiments on the benchmark data sets confirm the effectiveness of the proposed method.
stat
Large-scale inference of correlation among mixed-type biological traits with phylogenetic multivariate probit models
Inferring concerted changes among biological traits along an evolutionary history remains an important yet challenging problem. Besides adjusting for spurious correlation induced from the shared history, the task also requires sufficient flexibility and computational efficiency to incorporate multiple continuous and discrete traits as data size increases. To accomplish this, we jointly model mixed-type traits by assuming latent parameters for binary outcome dimensions at the tips of an unknown tree informed by molecular sequences. This gives rise to a phylogenetic multivariate probit model. With large sample sizes, posterior computation under this model is problematic, as it requires repeated sampling from a high-dimensional truncated normal distribution. Current best practices employ multiple-try rejection sampling that suffers from slow-mixing and a computational cost that scales quadratically in sample size. We develop a new inference approach that exploits 1) the bouncy particle sampler (BPS) based on piecewise deterministic Markov processes to simultaneously sample all truncated normal dimensions, and 2) novel dynamic programming that reduces the cost of likelihood and gradient evaluations for BPS to linear in sample size. In an application with 535 HIV viruses and 24 traits that necessitates sampling from a 12,840-dimensional truncated normal, our method makes it possible to estimate the across-trait correlation and detect factors that affect the pathogen's capacity to cause disease. This inference framework is also applicable to a broader class of covariance structures beyond comparative biology.
stat
anomaly : Detection of Anomalous Structure in Time Series Data
One of the contemporary challenges in anomaly detection is the ability to detect, and differentiate between, both point and collective anomalies within a data sequence or time series. The \pkg{anomaly} package has been developed to provide users with a choice of anomaly detection methods and, in particular, provides an implementation of the recently proposed CAPA family of anomaly detection algorithms. This article describes the methods implemented whilst also highlighting their application to simulated data as well as real data examples contained in the package.
stat
Variational Bayes under Model Misspecification
Variational Bayes (VB) is a scalable alternative to Markov chain Monte Carlo (MCMC) for Bayesian posterior inference. Though popular, VB comes with few theoretical guarantees, most of which focus on well-specified models. However, models are rarely well-specified in practice. In this work, we study VB under model misspecification. We prove the VB posterior is asymptotically normal and centers at the value that minimizes the Kullback-Leibler (KL) divergence to the true data-generating distribution. Moreover, the VB posterior mean centers at the same value and is also asymptotically normal. These results generalize the variational Bernstein--von Mises theorem [29] to misspecified models. As a consequence of these results, we find that the model misspecification error dominates the variational approximation error in VB posterior predictive distributions. It explains the widely observed phenomenon that VB achieves comparable predictive accuracy with MCMC even though VB uses an approximating family. As illustrations, we study VB under three forms of model misspecification, ranging from model over-/under-dispersion to latent dimensionality misspecification. We conduct two simulation studies that demonstrate the theoretical results.
stat
Approximate Bayesian inference for a "steps and turns" continuous-time random walk observed at regular time intervals
The study of animal movement is challenging because it is a process modulated by many factors acting at different spatial and temporal scales. Several models have been proposed which differ primarily in the temporal conceptualization, namely continuous and discrete time formulations. Naturally, animal movement occurs in continuous time but we tend to observe it at fixed time intervals. To account for the temporal mismatch between observations and movement decisions, we used a state-space model where movement decisions (steps and turns) are made in continuous time. The movement process is then observed at regular time intervals. As the likelihood function of this state-space model turned out to be complex to calculate yet simulating data is straightforward, we conduct inference using a few variations of Approximate Bayesian Computation (ABC). We explore the applicability of these methods as a function of the discrepancy between the temporal scale of the observations and that of the movement process in a simulation study. We demonstrate the application of this model to a real trajectory of a sheep that was reconstructed in high resolution using information from magnetometer and GPS devices. Our results suggest that accurate estimates can be obtained when the observations are less than 5 times the average time between changes in movement direction. The state-space model used here allowed us to connect the scales of the observations and movement decisions in an intuitive and easy to interpret way. Our findings underscore the idea that the time scale at which animal movement decisions are made needs to be considered when designing data collection protocols, and that sometimes high-frequency data may not be necessary to have good estimates of certain movement processes.
stat
Personalized Policy Learning using Longitudinal Mobile Health Data
We address the personalized policy learning problem using longitudinal mobile health application usage data. Personalized policy represents a paradigm shift from developing a single policy that may prescribe personalized decisions by tailoring. Specifically, we aim to develop the best policy, one per user, based on estimating random effects under generalized linear mixed model. With many random effects, we consider new estimation method and penalized objective to circumvent high-dimension integrals for marginal likelihood approximation. We establish consistency and optimality of our method with endogenous app usage. We apply our method to develop personalized push ("prompt") schedules in 294 app users, with a goal to maximize the prompt response rate given past app usage and other contextual factors. We found the best push schedule given the same covariates varied among the users, thus calling for personalized policies. Using the estimated personalized policies would have achieved a mean prompt response rate of 23% in these users at 16 weeks or later: this is a remarkable improvement on the observed rate (11%), while the literature suggests 3%-15% user engagement at 3 months after download. The proposed method compares favorably to existing estimation methods including using the R function "glmer" in a simulation study.
stat
Variational Inference and Sparsity in High-Dimensional Deep Gaussian Mixture Models
Gaussian mixture models are a popular tool for model-based clustering, and mixtures of factor analyzers are Gaussian mixture models having parsimonious factor covariance structure for mixture components. There are several recent extensions of mixture of factor analyzers to deep mixtures, where the Gaussian model for the latent factors is replaced by a mixture of factor analyzers. This construction can be iterated to obtain a model with many layers. These deep models are challenging to fit, and we consider Bayesian inference using sparsity priors to further regularize the estimation. A scalable natural gradient variational inference algorithm is developed for fitting the model, and we suggest computationally efficient approaches to the architecture choice using overfitted mixtures where unnecessary components drop out in the estimation. In a number of simulated and two real examples, we demonstrate the versatility of our approach for high-dimensional problems, and demonstrate that the use of sparsity inducing priors can be helpful for obtaining improved clustering results.
stat
Confidence Intervals for Selected Parameters
Practical or scientific considerations often lead to selecting a subset of parameters as ``important.'' Inferences about those parameters often are based on the same data used to select them in the first place. That can make the reported uncertainties deceptively optimistic: confidence intervals that ignore selection generally have less than their nominal coverage probability. Controlling the probability that one or more intervals for selected parameters do not cover---the ``simultaneous over the selected'' (SoS) error rate---is crucial in many scientific problems. Intervals that control the SoS error rate can be constructed in ways that take advantage of knowledge of the selection rule. We construct SoS-controlling confidence intervals for parameters deemed the most ``important'' $k$ of $m$ shift parameters because they are estimated (by independent estimators) to be the largest. The new intervals improve substantially over \v{S}id\'{a}k intervals when $k$ is small compared to $m$, and approach the standard Bonferroni-corrected intervals when $k \approx m$. Standard, unadjusted confidence intervals for location parameters have the correct coverage probability for $k=1$, $m=2$ if, when the true parameters are zero, the estimators are exchangeable and symmetric.
stat
Filtering and improved Uncertainty Quantification in the dynamic estimation of effective reproduction numbers
The effective reproduction number $R_t$ measures an infectious disease's transmissibility as the number of secondary infections in one reproduction time in a population having both susceptible and non-susceptible hosts. Current approaches do not quantify the uncertainty correctly in estimating $R_t$, as expected by the observed variability in contagion patterns. We elaborate on the Bayesian estimation of $R_t$ by improving on the Poisson sampling model of Cori et al. (2013). By adding an autoregressive latent process, we build a Dynamic Linear Model on the log of observed $R_t$s, resulting in a filtering type Bayesian inference. We use a conjugate analysis, and all calculations are explicit. Results show an improved uncertainty quantification on the estimation of $R_t$'s, with a reliable method that could safely be used by non-experts and within other forecasting systems. We illustrate our approach with recent data from the current COVID19 epidemic in Mexico.
stat
Kernel Hypothesis Testing with Set-valued Data
We present a general framework for hypothesis testing on distributions of sets of individual examples. Sets may represent many common data sources such as groups of observations in time series, collections of words in text or a batch of images of a given phenomenon. This observation pattern, however, differs from the common assumptions required for hypothesis testing: each set differs in size, may have differing levels of noise, and also may incorporate nuisance variability, irrelevant for the analysis of the phenomenon of interest; all features that bias test decisions if not accounted for. In this paper, we propose to interpret sets as independent samples from a collection of latent probability distributions, and introduce kernel two-sample and independence tests in this latent space of distributions. We prove the consistency of tests and observe them to outperform in a wide range of synthetic experiments. Finally, we showcase their use in practice with experiments of healthcare and climate data, where previously heuristics were needed for feature extraction and testing.
stat
A study on information behavior of scholars for article keywords selection
This project takes the factors of keyword selection behavior as the research object. Qualitative analysis methods such as interview and grounded theory were used to construct causal influence path model. Combined with computer simulation technology such as multi-agent simulation experiment method was used to study the factors of keyword selection from two dimensions of individual to group. The research was carried out according to the path of factor analysis at individual level macro situation simulation optimization of scientific research data management. Based on the aforementioned review of existing researches and explanations of keywords selection, this study adopts a qualitative research design to expand the explanation, and macro simulation based on the results of qualitative research. There are two steps in this study, one is do interview with authors and then design macro simulation according the deductive and qualitative content analysis results.
stat
The energy distance for ensemble and scenario reduction
Scenario reduction techniques are widely applied for solving sophisticated dynamic and stochastic programs, especially in energy and power systems, but also used in probabilistic forecasting, clustering and estimating generative adversarial networks (GANs). We propose a new method for ensemble and scenario reduction based on the energy distance which is a special case of the maximum mean discrepancy (MMD). We discuss the choice of energy distance in detail, especially in comparison to the popular Wasserstein distance which is dominating the scenario reduction literature. The energy distance is a metric between probability measures that allows for powerful tests for equality of arbitrary multivariate distributions or independence. Thanks to the latter, it is a suitable candidate for ensemble and scenario reduction problems. The theoretical properties and considered examples indicate clearly that the reduced scenario sets tend to exhibit better statistical properties for the energy distance than a corresponding reduction with respect to the Wasserstein distance. We show applications to a Bernoulli random walk and two real data based examples for electricity demand profiles and day-ahead electricity prices.
stat
First-order Adversarial Vulnerability of Neural Networks and Input Dimension
Over the past few years, neural networks were proven vulnerable to adversarial images: targeted but imperceptible image perturbations lead to drastically different predictions. We show that adversarial vulnerability increases with the gradients of the training objective when viewed as a function of the inputs. Surprisingly, vulnerability does not depend on network topology: for many standard network architectures, we prove that at initialization, the $\ell_1$-norm of these gradients grows as the square root of the input dimension, leaving the networks increasingly vulnerable with growing image size. We empirically show that this dimension dependence persists after either usual or robust training, but gets attenuated with higher regularization.
stat
A Negative Correlation Strategy for Bracketing in Difference-in-Differences
The method of difference-in-differences (DID) is widely used to study the causal effect of policy interventions in observational studies. DID employs a before and after comparison of the treated and control units to remove bias due to time-invariant unmeasured confounders under the parallel trends assumption. Estimates from DID, however, will be biased if the outcomes for the treated and control units evolve differently in the absence of treatment, namely if the parallel trends assumption is violated. We propose a general identification strategy that leverages two groups of control units whose outcomes relative to the treated units exhibit a negative correlation, and achieves partial identification of the average treatment effect for the treated. The identified set is of a union bounds form that involves the minimum and maximum operators, which makes the canonical bootstrap generally inconsistent and naive methods overly conservative. By utilizing the directional inconsistency of the bootstrap distribution, we develop a novel bootstrap method to construct uniformly valid confidence intervals for the identified set and parameter of interest when the identified set is of a union bounds form, and we establish the method's theoretical properties. We develop a simple falsification test and sensitivity analysis. We apply the proposed strategy for bracketing to study whether minimum wage laws affect employment levels.
stat
Minimizing post-shock forecasting error through aggregation of outside information
We develop a forecasting methodology for providing credible forecasts for time series that have recently undergone a shock. We achieve this by borrowing knowledge from other time series that have undergone similar shocks for which post-shock outcomes are observed. Three shock effect estimators are motivated with the aim of minimizing average forecast risk. We propose risk-reduction propositions that provide conditions that establish when our methodology works. Bootstrap and leave-one-out cross validation procedures are provided to prospectively assess the performance of our methodology. Several simulated data examples, and a real data example of forecasting Conoco Phillips stock price are provided for verification and illustration.
stat
Unlinked monotone regression
We consider so-called univariate unlinked (sometimes "decoupled," or "shuffled") regression when the unknown regression curve is monotone. In standard monotone regression, one observes a pair $(X,Y)$ where a response $Y$ is linked to a covariate $X$ through the model $Y= m_0(X) + \epsilon$, with $m_0$ the (unknown) monotone regression function and $\epsilon$ the unobserved error (assumed to be independent of $X$). In the unlinked regression setting one gets only to observe a vector of realizations from both the response $Y$ and from the covariate $X$ where now $Y \stackrel{d}{=} m_0(X) + \epsilon$. There is no (observed) pairing of $X$ and $Y$. Despite this, it is actually still possible to derive a consistent non-parametric estimator of $m_0$ under the assumption of monotonicity of $m_0$ and knowledge of the distribution of the noise $\epsilon$. In this paper, we establish an upper bound on the rate of convergence of such an estimator under minimal assumption on the distribution of the covariate $X$. We discuss extensions to the case in which the distribution of the noise is unknown. We develop a gradient-descent-based algorithm for its computation, and we demonstrate its use on synthetic data. Finally, we apply our method (in a fully data driven way, without knowledge of the error distribution) on longitudinal data from the US Consumer Expenditure Survey.
stat
Simulating Markov random fields with a conclique-based Gibbs sampler
For spatial and network data, we consider models formed from a Markov random field (MRF) structure and the specification of a conditional distribution for each observation. Fast simulation from such MRF models is often an important consideration, particularly when repeated generation of large numbers of data sets is required. However, a standard Gibbs strategy for simulating from MRF models involves single-site updates, performed with the conditional univariate distribution of each observation in a sequential manner, whereby a complete Gibbs iteration may become computationally involved even for moderate samples. As an alternative, we describe a general way to simulate from MRF models using Gibbs sampling with "concliques" (i.e., groups of non-neighboring observations). Compared to standard Gibbs sampling, this simulation scheme can be much faster by reducing Gibbs steps and independently updating all observations per conclique at once. The speed improvement depends on the number of concliques relative to the sample size for simulation, and order-of-magnitude speed increases are possible with many MRF models (e.g., having appropriately bounded neighborhoods). We detail the simulation method, establish its validity, and assess its computational performance through numerical studies, where speed advantages are shown for several spatial and network examples.
stat
Towards A Unified Analysis of Random Fourier Features
Random Fourier features is a widely used, simple, and effective technique for scaling up kernel methods. The existing theoretical analysis of the approach, however, remains focused on specific learning tasks and typically gives pessimistic bounds which are at odds with the empirical results. We tackle these problems and provide the first unified risk analysis of learning with random Fourier features using the squared error and Lipschitz continuous loss functions. In our bounds, the trade-off between the computational cost and the expected risk convergence rate is problem specific and expressed in terms of the regularization parameter and the \emph{number of effective degrees of freedom}. We study both the standard random Fourier features method for which we improve the existing bounds on the number of features required to guarantee the corresponding minimax risk convergence rate of kernel ridge regression, as well as a data-dependent modification which samples features proportional to \emph{ridge leverage scores} and further reduces the required number of features. As ridge leverage scores are expensive to compute, we devise a simple approximation scheme which provably reduces the computational cost without loss of statistical efficiency.
stat
Impact of internal migration on population redistribution in Europe: Urbanisation, counterurbanisation or spatial equilibrium?
The classical foundations of migration research date from the 1880s with Ravenstein's Laws of migration, which represent the first comparative analyses of internal migration. While his observations remain largely valid, the ensuing century has seen considerable progress in data collection practices and methods of analysis, which in turn has permitted theoretical advances in understanding the role of migration in population redistribution. Coupling the extensive range of migration data now available with these recent theoretical and methodological advances, we endeavour to advance beyond Ravenstein's understanding by examining the direction of population redistribution and comparing the impact of internal migration on patterns of human settlement in 27 European countries. Results show that the overall redistributive impact of internal migration is low in most European countries but the mechanisms differ across the continent. In Southern and Eastern Europe migration effectiveness is above average but is offset by low migration intensities, whereas in Northern and Western Europe high intensities are absorbed in reciprocal flows resulting in low migration effectiveness. About half the European countries are experiencing a process of concentration toward urbanised regions, particularly in Northern, Central and Eastern Europe, whereas countries in the West and South are undergoing a process of population deconcentration. These results suggest that population deconcentration is now more common than it was in the 1990s when counterurbanisation was limited to Western Europe. The results show that 130 years on, Ravenstein's law of migration streams and counter-streams remains a central facet of migration dynamics, while underlining the importance of simple yet robust indices for the spatial analysis of migration.
stat
orthoDr: Semiparametric Dimension Reduction via Orthogonality Constrained Optimization
orthoDr is a package in R that solves dimension reduction problems using orthogonality constrained optimization approach. The package serves as a unified framework for many regression and survival analysis dimension reduction models that utilize semiparametric estimating equations. The main computational machinery of orthoDr is a first-order algorithm developed by \cite{wen2013feasible} for optimization within the Stiefel manifold. We implement the algorithm through Rcpp and OpenMP for fast computation. In addition, we developed a general-purpose solver for such constrained problems with user-specified objective functions, which works as a drop-in version of optim(). The package also serves as a platform for future methodology developments along this line of work.
stat
A copula transformation in multivariate mixed discrete-continuous models
Copulas allow a flexible and simultaneous modeling of complicated dependence structures together with various marginal distributions. Especially if the density function can be represented as the product of the marginal density functions and the copula density function, this leads to both an intuitive interpretation of the conditional distribution and convenient estimation procedures. However, this is no longer the case for copula models with mixed discrete and continuous marginal distributions, because the corresponding density function cannot be decomposed so nicely. In this paper, we introduce a copula transformation method that allows to represent the density function of a distribution with mixed discrete and continuous marginals as the product of the marginal probability mass/density functions and the copula density function. With the proposed method, conditional distributions can be described analytically and the computational complexity in the estimation procedure can be reduced depending on the type of copula used.
stat
Reliability study of a coherent system with single general standby component
The properties of a coherent system with a single general standby component is investigated. Here three different switch over viz. perfect switching, imperfect switching and random worm up period of the standby component are considered with some numerical examples.
stat
PIntMF: Penalized Integrative Matrix Factorization Method for Multi-Omics Data
It is more and more common to explore the genome at diverse levels and not only at a single omic level. Through integrative statistical methods, omics data have the power to reveal new biological processes, potential biomarkers, and subgroups of a cohort. The matrix factorization (MF) is a unsupervised statistical method that allows giving a clustering of individuals, but also revealing relevant omic variables from the various blocks. Here, we present PIntMF (Penalized Integrative Matrix Factorization), a model of MF with sparsity, positivity and equality constraints.To induce sparsity in the model, we use a classical Lasso penalization on variable and individual matrices. For the matrix of samples, sparsity helps for the clustering, and normalization (matching an equality constraint) of inferred coefficients is added for a better interpretation. Besides, we add an automatic tuning of the sparsity parameters using the famous glmnet package. We also proposed three criteria to help the user to choose the number of latent variables. PIntMF was compared to other state-of-the-art integrative methods including feature selection techniques in both synthetic and real data. PIntMF succeeds in finding relevant clusters as well as variables in two types of simulated data (correlated and uncorrelated). Then, PIntMF was applied to two real datasets (Diet and cancer), and it reveals interpretable clusters linked to available clinical data. Our method outperforms the existing ones on two criteria (clustering and variable selection). We show that PIntMF is an easy, fast, and powerful tool to extract patterns and cluster samples from multi-omics data.
stat
Ranking and Selection with Covariates for Personalized Decision Making
We consider a problem of ranking and selection via simulation in the context of personalized decision making, where the best alternative is not universal but varies as a function of some observable covariates. The goal of ranking and selection with covariates (R&S-C) is to use simulation samples to obtain a selection policy that specifies the best alternative with certain statistical guarantee for subsequent individuals upon observing their covariates. A linear model is proposed to capture the relationship between the mean performance of an alternative and the covariates. Under the indifference-zone formulation, we develop two-stage procedures for both homoscedastic and heteroscedastic simulation errors, respectively, and prove their statistical validity in terms of average probability of correct selection. We also generalize the well-known slippage configuration, and prove that the generalized slippage configuration is the least favorable configuration for our procedures. Extensive numerical experiments are conducted to investigate the performance of the proposed procedures, the experimental design issue, and the robustness to the linearity assumption. Finally, we demonstrate the usefulness of R&S-C via a case study of selecting the best treatment regimen in the prevention of esophageal cancer. We find that by leveraging disease-related personal information, R&S-C can substantially improve patients' expected quality-adjusted life years by providing patient-specific treatment regimen.
stat
Modeling Multivariate Cyber Risks: Deep Learning Dating Extreme Value Theory
Modeling cyber risks has been an important but challenging task in the domain of cyber security. It is mainly because of the high dimensionality and heavy tails of risk patterns. Those obstacles have hindered the development of statistical modeling of the multivariate cyber risks. In this work, we propose a novel approach for modeling the multivariate cyber risks which relies on the deep learning and extreme value theory. The proposed model not only enjoys the high accurate point predictions via deep learning but also can provide the satisfactory high quantile prediction via extreme value theory. The simulation study shows that the proposed model can model the multivariate cyber risks very well and provide satisfactory prediction performances. The empirical evidence based on real honeypot attack data also shows that the proposed model has very satisfactory prediction performances.
stat
Minimax Quasi-Bayesian estimation in sparse canonical correlation analysis via a Rayleigh quotient function
Canonical correlation analysis (CCA) is a popular statistical technique for exploring the relationship between datasets. The estimation of sparse canonical correlation vectors has emerged in recent years as an important but challenging variation of the CCA problem, with widespread applications. Currently available rate-optimal estimators for sparse canonical correlation vectors are expensive to compute. We propose a quasi-Bayesian estimation procedure that achieves the minimax estimation rate, and yet is easy to compute by Markov Chain Monte Carlo (MCMC). The method builds on ([37]) and uses a re-scaled Rayleigh quotient function as a quasi-log-likelihood. However unlike these authors, we adopt a Bayesian framework that combines this quasi-log-likelihood with a spike-and-slab prior that serves to regularize the inference and promote sparsity. We investigated the empirical behavior of the proposed method on both continuous and truncated data, and we noted that it outperforms several state-of-the-art methods. As an application, we use the methodology to maximally correlate clinical variables and proteomic data for a better understanding of covid-19 disease.
stat
Confounder selection strategies targeting stable treatment effect estimators
Inferring the causal effect of a treatment on an outcome in an observational study requires adjusting for observed baseline confounders to avoid bias. However, adjusting for all observed baseline covariates, when only a subset are confounders of the effect of interest, is known to yield potentially inefficient and unstable estimators of the treatment effect. Furthermore, it raises the risk of finite-sample bias and bias due to model misspecification. For these stated reasons, confounder (or covariate) selection is commonly used to determine a subset of the available covariates that is sufficient for confounding adjustment. In this article, we propose a confounder selection strategy that focuses on stable estimation of the treatment effect. In particular, when the propensity score model already includes covariates that are sufficient to adjust for confounding, then the addition of covariates that are associated with either treatment or outcome alone, but not both, should not systematically change the effect estimator. The proposal, therefore, entails first prioritizing covariates for inclusion in the propensity score model, then using a change-in-estimate approach to select the smallest adjustment set that yields a stable effect estimate. The ability of the proposal to correctly select confounders, and to ensure valid inference of the treatment effect following data-driven covariate selection, is assessed empirically and compared with existing methods using simulation studies. We demonstrate the procedure using three different publicly available datasets commonly used for causal inference.
stat
Normalizing Constant Estimation with Gaussianized Bridge Sampling
Normalizing constant (also called partition function, Bayesian evidence, or marginal likelihood) is one of the central goals of Bayesian inference, yet most of the existing methods are both expensive and inaccurate. Here we develop a new approach, starting from posterior samples obtained with a standard Markov Chain Monte Carlo (MCMC). We apply a novel Normalizing Flow (NF) approach to obtain an analytic density estimator from these samples, followed by Optimal Bridge Sampling (OBS) to obtain the normalizing constant. We compare our method which we call Gaussianized Bridge Sampling (GBS) to existing methods such as Nested Sampling (NS) and Annealed Importance Sampling (AIS) on several examples, showing our method is both significantly faster and substantially more accurate than these methods, and comes with a reliable error estimation.
stat
Deep Machine Learning Approach to Develop a New Asphalt Pavement Condition Index
Automated pavement distress detection via road images is still a challenging issue among pavement researchers and computer-vision community. In recent years, advancement in deep learning has enabled researchers to develop robust tools for analyzing pavement images at unprecedented accuracies. Nevertheless, deep learning models necessitate a big ground truth dataset, which is often not readily accessible for pavement field. In this study, we reviewed our previous study, which a labeled pavement dataset was presented as the first step towards a more robust, easy-to-deploy pavement condition assessment system. In total, 7237 google street-view images were extracted, manually annotated for classification (nine categories of distress classes). Afterward, YOLO (you look only once) deep learning framework was implemented to train the model using the labeled dataset. In the current study, a U-net based model is developed to quantify the severity of the distresses, and finally, a hybrid model is developed by integrating the YOLO and U-net model to classify the distresses and quantify their severity simultaneously. Various pavement condition indices are developed by implementing various machine learning algorithms using the YOLO deep learning framework for distress classification and U-net for segmentation and distress densification. The output of the distress classification and segmentation models are used to develop a comprehensive pavement condition tool which rates each pavement image according to the type and severity of distress extracted.
stat
Robust Bayesian Cluster Enumeration Based on the $t$ Distribution
A major challenge in cluster analysis is that the number of data clusters is mostly unknown and it must be estimated prior to clustering the observed data. In real-world applications, the observed data is often subject to heavy tailed noise and outliers which obscure the true underlying structure of the data. Consequently, estimating the number of clusters becomes challenging. To this end, we derive a robust cluster enumeration criterion by formulating the problem of estimating the number of clusters as maximization of the posterior probability of multivariate $t_\nu$ distributed candidate models. We utilize Bayes' theorem and asymptotic approximations to come up with a robust criterion that possesses a closed-form expression. Further, we refine the derivation and provide a robust cluster enumeration criterion for data sets with finite sample size. The robust criteria require an estimate of cluster parameters for each candidate model as an input. Hence, we propose a two-step cluster enumeration algorithm that uses the expectation maximization algorithm to partition the data and estimate cluster parameters prior to the calculation of one of the robust criteria. The performance of the proposed algorithm is tested and compared to existing cluster enumeration methods using numerical and real data experiments.
stat
Composition of kernel and acquisition functions for High Dimensional Bayesian Optimization
Bayesian Optimization has become the reference method for the global optimization of black box, expensive and possibly noisy functions. Bayesian Op-timization learns a probabilistic model about the objective function, usually a Gaussian Process, and builds, depending on its mean and variance, an acquisition function whose optimizer yields the new evaluation point, leading to update the probabilistic surrogate model. Despite its sample efficiency, Bayesian Optimiza-tion does not scale well with the dimensions of the problem. The optimization of the acquisition function has received less attention because its computational cost is usually considered negligible compared to that of the evaluation of the objec-tive function. Its efficient optimization is often inhibited, particularly in high di-mensional problems, by multiple extrema. In this paper we leverage the addition-ality of the objective function into mapping both the kernel and the acquisition function of the Bayesian Optimization in lower dimensional subspaces. This ap-proach makes more efficient the learning/updating of the probabilistic surrogate model and allows an efficient optimization of the acquisition function. Experi-mental results are presented for real-life application, that is the control of pumps in urban water distribution systems.
stat
A Latent Variable Approach to Gaussian Process Modeling with Qualitative and Quantitative Factors
Computer simulations often involve both qualitative and numerical inputs. Existing Gaussian process (GP) methods for handling this mainly assume a different response surface for each combination of levels of the qualitative factors and relate them via a multiresponse cross-covariance matrix. We introduce a substantially different approach that maps each qualitative factor to an underlying numerical latent variable (LV), with the mapped value for each level estimated similarly to the correlation parameters. This provides a parsimonious GP parameterization that treats qualitative factors the same as numerical variables and views them as effecting the response via similar physical mechanisms. This has strong physical justification, as the effects of a qualitative factor in any physics-based simulation model must always be due to some underlying numerical variables. Even when the underlying variables are many, sufficient dimension reduction arguments imply that their effects can be represented by a low-dimensional LV. This conjecture is supported by the superior predictive performance observed across a variety of examples. Moreover, the mapped LVs provide substantial insight into the nature and effects of the qualitative factors.
stat
Assessing the global and local uncertainty in scientific evidence in the presence of model misspecification
Scientists need to compare the support for models based on observed phenomena. The main goal of the evidential paradigm is to quantify the strength of evidence in the data for a reference model relative to an alternative model. This is done via an evidence function, such as $\Delta SIC$, an estimator of the sample size scaled difference of divergences between the generating mechanism and the competing models. To use evidence, either for decision making or as a guide to the accumulation of knowledge, an understanding of the uncertainty in the evidence is needed. This uncertainty is well characterized by the standard statistical theory of estimation. Unfortunately, the standard theory breaks down if the models are misspecified, as it is normally the case in scientific studies. We develop non-parametric bootstrap methodologies for estimating the sampling distribution of the evidence estimator under model misspecification. This sampling distribution allows us to determine how secure we are in our evidential statement. We characterize this uncertainty in the strength of evidence with two different types of confidence intervals, which we term "global" and "local". We discuss how evidence uncertainty can be used to improve scientific inference and illustrate this with a reanalysis of the model identification problem in a prominent landscape ecology study (Grace and Keeley, 2006) using structural equations.
stat
The Minecraft Kernel: Modelling correlated Gaussian Processes in the Fourier domain
In the univariate setting, using the kernel spectral representation is an appealing approach for generating stationary covariance functions. However, performing the same task for multiple-output Gaussian processes is substantially more challenging. We demonstrate that current approaches to modelling cross-covariances with a spectral mixture kernel possess a critical blind spot. For a given pair of processes, the cross-covariance is not reproducible across the full range of permitted correlations, aside from the special case where their spectral densities are of identical shape. We present a solution to this issue by replacing the conventional Gaussian components of a spectral mixture with block components of finite bandwidth (i.e. rectangular step functions). The proposed family of kernel represents the first multi-output generalisation of the spectral mixture kernel that can approximate any stationary multi-output kernel to arbitrary precision.
stat
Variable selection with false discovery rate control in deep neural networks
Deep neural networks (DNNs) are famous for their high prediction accuracy, but they are also known for their black-box nature and poor interpretability. We consider the problem of variable selection, that is, selecting the input variables that have significant predictive power on the output, in DNNs. We propose a backward elimination procedure called SurvNet, which is based on a new measure of variable importance that applies to a wide variety of networks. More importantly, SurvNet is able to estimate and control the false discovery rate of selected variables, while no existing methods provide such a quality control. Further, SurvNet adaptively determines how many variables to eliminate at each step in order to maximize the selection efficiency. To study its validity, SurvNet is applied to image data and gene expression data, as well as various simulation datasets.
stat
Learning Beam Search Policies via Imitation Learning
Beam search is widely used for approximate decoding in structured prediction problems. Models often use a beam at test time but ignore its existence at train time, and therefore do not explicitly learn how to use the beam. We develop an unifying meta-algorithm for learning beam search policies using imitation learning. In our setting, the beam is part of the model, and not just an artifact of approximate decoding. Our meta-algorithm captures existing learning algorithms and suggests new ones. It also lets us show novel no-regret guarantees for learning beam search policies.
stat
UltraNest -- a robust, general purpose Bayesian inference engine
UltraNest is a general-purpose Bayesian inference package for parameter estimation and model comparison. It allows fitting arbitrary models specified as likelihood functions written in Python, C, C++, Fortran, Julia or R. With a focus on correctness and speed (in that order), UltraNest is especially useful for multi-modal or non-Gaussian parameter spaces, computational expensive models, in robust pipelines. Parallelisation to computing clusters and resuming incomplete runs is available.
stat
Semi-Unsupervised Learning: Clustering and Classifying using Ultra-Sparse Labels
In semi-supervised learning for classification, it is assumed that every ground truth class of data is present in the small labelled dataset. Many real-world sparsely-labelled datasets are plausibly not of this type. It could easily be the case that some classes of data are found only in the unlabelled dataset -- perhaps the labelling process was biased -- so we do not have any labelled examples to train on for some classes. We call this learning regime $\textit{semi-unsupervised learning}$, an extreme case of semi-supervised learning, where some classes have no labelled exemplars in the training set. First, we outline the pitfalls associated with trying to apply deep generative model (DGM)-based semi-supervised learning algorithms to datasets of this type. We then show how a combination of clustering and semi-supervised learning, using DGMs, can be brought to bear on this problem. We study several different datasets, showing how one can still learn effectively when half of the ground truth classes are entirely unlabelled and the other half are sparsely labelled.
stat
Quantile Multi-Armed Bandits: Optimal Best-Arm Identification and a Differentially Private Scheme
We study the best-arm identification problem in multi-armed bandits with stochastic, potentially private rewards, when the goal is to identify the arm with the highest quantile at a fixed, prescribed level. First, we propose a (non-private) successive elimination algorithm for strictly optimal best-arm identification, we show that our algorithm is $\delta$-PAC and we characterize its sample complexity. Further, we provide a lower bound on the expected number of pulls, showing that the proposed algorithm is essentially optimal up to logarithmic factors. Both upper and lower complexity bounds depend on a special definition of the associated suboptimality gap, designed in particular for the quantile bandit problem, as we show when the gap approaches zero, best-arm identification is impossible. Second, motivated by applications where the rewards are private, we provide a differentially private successive elimination algorithm whose sample complexity is finite even for distributions with infinite support-size, and we characterize its sample complexity. Our algorithms do not require prior knowledge of either the suboptimality gap or other statistical information related to the bandit problem at hand.
stat
Implicit Normalizing Flows
Normalizing flows define a probability distribution by an explicit invertible transformation $\boldsymbol{\mathbf{z}}=f(\boldsymbol{\mathbf{x}})$. In this work, we present implicit normalizing flows (ImpFlows), which generalize normalizing flows by allowing the mapping to be implicitly defined by the roots of an equation $F(\boldsymbol{\mathbf{z}}, \boldsymbol{\mathbf{x}})= \boldsymbol{\mathbf{0}}$. ImpFlows build on residual flows (ResFlows) with a proper balance between expressiveness and tractability. Through theoretical analysis, we show that the function space of ImpFlow is strictly richer than that of ResFlows. Furthermore, for any ResFlow with a fixed number of blocks, there exists some function that ResFlow has a non-negligible approximation error. However, the function is exactly representable by a single-block ImpFlow. We propose a scalable algorithm to train and draw samples from ImpFlows. Empirically, we evaluate ImpFlow on several classification and density modeling tasks, and ImpFlow outperforms ResFlow with a comparable amount of parameters on all the benchmarks.
stat
Robust Tensor Principal Component Analysis: Exact Recovery via Deterministic Model
Tensor, also known as multi-dimensional array, arises from many applications in signal processing, manufacturing processes, healthcare, among others. As one of the most popular methods in tensor literature, Robust tensor principal component analysis (RTPCA) is a very effective tool to extract the low rank and sparse components in tensors. In this paper, a new method to analyze RTPCA is proposed based on the recently developed tensor-tensor product and tensor singular value decomposition (t-SVD). Specifically, it aims to solve a convex optimization problem whose objective function is a weighted combination of the tensor nuclear norm and the l1-norm. In most of literature of RTPCA, the exact recovery is built on the tensor incoherence conditions and the assumption of a uniform model on the sparse support. Unlike this conventional way, in this paper, without any assumption of randomness, the exact recovery can be achieved in a completely deterministic fashion by characterizing the tensor rank-sparsity incoherence, which is an uncertainty principle between the low-rank tensor spaces and the pattern of sparse tensor.
stat
Modeling "Equitable and Sustainable Well-being" (BES) using Bayesian Networks: A Case Study of the Italian regions
Measurement of well-being has been a highly debated topic since the end of the last century. While some specific aspects are still open issues, a multidimensional approach as well as the construction of shared and well-rooted systems of indicators are now accepted as the main route to measure this complex phenomenon. A meaningful effort, in this direction, is that of the Italian "Equitable and Sustainable Well-being" (BES) system of indicators, developed by the Italian National Institute of Statistics (ISTAT) and the National Council for Economics and Labour (CNEL). The BES framework comprises a number of atomic indicators measured yearly at the regional level and reflecting the different domains of well-being (e.g. Health, Education, Work \& Life Balance, Environment,...). In this work we aim at dealing with the multidimensionality of the BES system of indicators and try to answer three main research questions: I) What is the structure of the relationships among the BES atomic indicators; II) What is the structure of the relationships among the BES domains; III) To what extent the structure of the relationships reflects the current BES theoretical framework. We address these questions by implementing Bayesian Networks (BNs), a widely accepted class of multivariate statistical models, particularly suitable for handling reasoning with uncertainty. Implementation of a BN results in a set of nodes and a set of conditional independence statements that provide an effective tool to explore associations in a system of variables. In this work, we also suggest two strategies for encoding prior knowledge in the BN estimating algorithm so that the BES theoretical framework can be represented into the network.
stat
Manifold GPLVMs for discovering non-Euclidean latent structure in neural data
A common problem in neuroscience is to elucidate the collective neural representations of behaviorally important variables such as head direction, spatial location, upcoming movements, or mental spatial transformations. Often, these latent variables are internal constructs not directly accessible to the experimenter. Here, we propose a new probabilistic latent variable model to simultaneously identify the latent state and the way each neuron contributes to its representation in an unsupervised way. In contrast to previous models which assume Euclidean latent spaces, we embrace the fact that latent states often belong to symmetric manifolds such as spheres, tori, or rotation groups of various dimensions. We therefore propose the manifold Gaussian process latent variable model (mGPLVM), where neural responses arise from (i) a shared latent variable living on a specific manifold, and (ii) a set of non-parametric tuning curves determining how each neuron contributes to the representation. Cross-validated comparisons of models with different topologies can be used to distinguish between candidate manifolds, and variational inference enables quantification of uncertainty. We demonstrate the validity of the approach on several synthetic datasets, as well as on calcium recordings from the ellipsoid body of Drosophila melanogaster and extracellular recordings from the mouse anterodorsal thalamic nucleus. These circuits are both known to encode head direction, and mGPLVM correctly recovers the ring topology expected from neural populations representing a single angular variable.
stat
Learning big Gaussian Bayesian networks: partition, estimation, and fusion
Structure learning of Bayesian networks has always been a challenging problem. Nowadays, massive-size networks with thousands or more of nodes but fewer samples frequently appear in many areas. We develop a divide-and-conquer framework, called partition-estimation-fusion (PEF), for structure learning of such big networks. The proposed method first partitions nodes into clusters, then learns a subgraph on each cluster of nodes, and finally fuses all learned subgraphs into one Bayesian network. The PEF method is designed in a flexible way so that any structure learning method may be used in the second step to learn a subgraph structure as either a DAG or a CPDAG. In the clustering step, we adapt the hierarchical clustering method to automatically choose a proper number of clusters. In the fusion step, we propose a novel hybrid method that sequentially add edges between subgraphs. Extensive numerical experiments demonstrate the competitive performance of our PEF method, in terms of both speed and accuracy compared to existing methods. Our method can improve the accuracy of structure learning by 20% or more, while reducing running time up to two orders-of-magnitude.
stat
Projected P\'olya Tree
One way of defining probability distributions for circular variables (directions in two dimensions) is to radially project probability distributions, originally defined on $\mathbb{R}^2$, to the unit circle. Projected distributions have proved to be useful in the study of circular and directional data. Although any bivariate distribution can be used to produce a projected circular model, these distributions are typically parametric. In this article we consider a bivariate P\'olya tree on $\mathbb{R}^2$ and project it to the unit circle to define a new Bayesian nonparametric model for circular data. We study the properties of the proposed model, obtain its posterior characterisation and show its performance with simulated and real datasets.
stat
Geostatistical Learning: Challenges and Opportunities
Statistical learning theory provides the foundation to applied machine learning, and its various successful applications in computer vision, natural language processing and other scientific domains. The theory, however, does not take into account the unique challenges of performing statistical learning in geospatial settings. For instance, it is well known that model errors cannot be assumed to be independent and identically distributed in geospatial (a.k.a. regionalized) variables due to spatial correlation; and trends caused by geophysical processes lead to covariate shifts between the domain where the model was trained and the domain where it will be applied, which in turn harm the use of classical learning methodologies that rely on random samples of the data. In this work, we introduce the geostatistical (transfer) learning problem, and illustrate the challenges of learning from geospatial data by assessing widely-used methods for estimating generalization error of learning models, under covariate shift and spatial correlation. Experiments with synthetic Gaussian process data as well as with real data from geophysical surveys in New Zealand indicate that none of the methods are adequate for model selection in a geospatial context. We provide general guidelines regarding the choice of these methods in practice while new methods are being actively researched.
stat
Uniform Deconvolution for Poisson Point Processes
We focus on the estimation of the intensity of a Poisson process in the presence of a uniform noise. We propose a kernel-based procedure fully calibrated in theory and practice. We show that our adaptive estimator is optimal from the oracle and minimax points of view, and provide new lower bounds when the intensity belongs to a Sobolev ball. By developing the Goldenshluger-Lepski methodology in the case of deconvolution for Poisson processes, we propose an optimal data-driven selection of the kernel's bandwidth, and we provide a heuristic framework to calibrate the estimator in practice. Our method is illustrated on the spatial repartition of replication origins along the human genome.
stat
Hamiltonian zigzag sampler got more momentum than its Markovian counterpart: Equivalence of two zigzags under a momentum refreshment limit
Zigzag and other piecewise deterministic Markov process samplers have attracted significant interest for their non-reversibility and other appealing properties for Bayesian posterior computation. Hamiltonian Monte Carlo is another state-of-the-art sampler, exploiting fictitious momentum to guide Markov chains through complex target distributions. In this article, we uncover a remarkable connection between the zigzag sampler and a variant of Hamiltonian Monte Carlo exploiting Laplace-distributed momentum. The position and velocity component of the corresponding Hamiltonian dynamics travels along a zigzag path paralleling the Markovian zigzag process; however, the dynamics is non-Markovian as the momentum component encodes non-immediate pasts. This information is partially lost during a momentum refreshment step, in which we preserve its direction but re-sample magnitude. In the limit of increasingly frequent momentum refreshments, we prove that this Hamiltonian zigzag converges to its Markovian counterpart. This theoretical insight suggests that, by retaining full momentum information, Hamiltonian zigzag can better explore target distributions with highly correlated parameters. We corroborate this intuition by comparing performance of the two zigzag cousins on high-dimensional truncated multivariate Gaussians, including a 11,235-dimensional target arising from a Bayesian phylogenetic multivariate probit model applied to HIV virus data.
stat
Sequential Bayesian Risk Set Inference for Robust Discrete Optimization via Simulation
Optimization via simulation (OvS) procedures that assume the simulation inputs are generated from the real-world distributions are subject to the risk of selecting a suboptimal solution when the distributions are substituted with input models estimated from finite real-world data -- known as input model risk. Focusing on discrete OvS, this paper proposes a new Bayesian framework for analyzing input model risk of implementing an arbitrary solution, $x$, where uncertainty about the input models is captured by a posterior distribution. We define the $\alpha$-level risk set of solution $x$ as the set of solutions whose expected performance is better than $x$ by a practically meaningful margin $(>\delta)$ given common input models with significant probability ($>\alpha$) under the posterior distribution. The user-specified parameters, $\delta$ and $\alpha$, control robustness of the procedure to the desired level as well as guards against unnecessary conservatism. An empty risk set implies that there is no practically better solution than $x$ with significant probability even though the real-world input distributions are unknown. For efficient estimation of the risk set, the conditional mean performance of a solution given a set of input distributions is modeled as a Gaussian process (GP) that takes the solution-distributions pair as an input. In particular, our GP model allows both parametric and nonparametric input models. We propose the sequential risk set inference procedure that estimates the risk set and selects the next solution-distributions pair to simulate using the posterior GP at each iteration. We show that simulating the pair expected to change the risk set estimate the most in the next iteration is the asymptotic one-step optimal sampling rule that minimizes the number of incorrectly classified solutions, if the procedure runs without stopping.
stat
Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
Modern deep learning models have achieved great success in predictive accuracy for many data modalities. However, their application to many real-world tasks is restricted by poor uncertainty estimates, such as overconfidence on out-of-distribution (OOD) data and ungraceful failing under distributional shift. Previous benchmarks have found that ensembles of neural networks (NNs) are typically the best calibrated models on OOD data. Inspired by this, we leverage recent theoretical advances that characterize the function-space prior of an ensemble of infinitely-wide NNs as a Gaussian process, termed the neural network Gaussian process (NNGP). We use the NNGP with a softmax link function to build a probabilistic model for multi-class classification and marginalize over the latent Gaussian outputs to sample from the posterior. This gives us a better understanding of the implicit prior NNs place on function space and allows a direct comparison of the calibration of the NNGP and its finite-width analogue. We also examine the calibration of previous approaches to classification with the NNGP, which treat classification problems as regression to the one-hot labels. In this case the Bayesian posterior is exact, and we compare several heuristics to generate a categorical distribution over classes. We find these methods are well calibrated under distributional shift. Finally, we consider an infinite-width final layer in conjunction with a pre-trained embedding. This replicates the important practical use case of transfer learning and allows scaling to significantly larger datasets. As well as achieving competitive predictive accuracy, this approach is better calibrated than its finite width analogue.
stat
The FMRIB Variational Bayesian Inference Tutorial II: Stochastic Variational Bayes
Bayesian methods have proved powerful in many applications for the inference of model parameters from data. These methods are based on Bayes' theorem, which itself is deceptively simple. However, in practice the computations required are intractable even for simple cases. Hence methods for Bayesian inference have historically either been significantly approximate, e.g., the Laplace approximation, or achieve samples from the exact solution at significant computational expense, e.g., Markov Chain Monte Carlo methods. Since around the year 2000 so-called Variational approaches to Bayesian inference have been increasingly deployed. In its most general form Variational Bayes (VB) involves approximating the true posterior probability distribution via another more 'manageable' distribution, the aim being to achieve as good an approximation as possible. In the original FMRIB Variational Bayes tutorial we documented an approach to VB based that took a 'mean field' approach to forming the approximate posterior, required the conjugacy of prior and likelihood, and exploited the Calculus of Variations, to derive an iterative series of update equations, akin to Expectation Maximisation. In this tutorial we revisit VB, but now take a stochastic approach to the problem that potentially circumvents some of the limitations imposed by the earlier methodology. This new approach bears a lot of similarity to, and has benefited from, computational methods applied to machine learning algorithms. Although, what we document here is still recognisably Bayesian inference in the classic sense, and not an attempt to use machine learning as a black-box to solve the inference problem.
stat
Fast Exact Computation of Expected HyperVolume Improvement
In multi-objective Bayesian optimization and surrogate-based evolutionary algorithms, Expected HyperVolume Improvement (EHVI) is widely used as the acquisition function to guide the search approaching the Pareto front. This paper focuses on the exact calculation of EHVI given a nondominated set, for which the existing exact algorithms are complex and can be inefficient for problems with more than three objectives. Integrating with different decomposition algorithms, we propose a new method for calculating the integral in each decomposed high-dimensional box in constant time. We develop three new exact EHVI calculation algorithms based on three region decomposition methods. The first grid-based algorithm has a complexity of $O(m\cdot n^m)$ with $n$ denoting the size of the nondominated set and $m$ the number of objectives. The Walking Fish Group (WFG)-based algorithm has a worst-case complexity of $O(m\cdot 2^n)$ but has a better average performance. These two can be applied for problems with any $m$. The third CLM-based algorithm is only for $m=3$ and asymptotically optimal with complexity $\Theta(n\log{n})$. Performance comparison results show that all our three algorithms are at least twice faster than the state-of-the-art algorithms with the same decomposition methods. When $m>3$, our WFG-based algorithm can be over $10^2$ faster than the corresponding existing algorithms. Our algorithm is demonstrated in an example involving efficient multi-objective material design with Bayesian optimization.
stat
Efficient estimation of optimal regimes under a no direct effect assumption
We derive new estimators of an optimal joint testing and treatment regime under the no direct effect (NDE) assumption that a given laboratory, diagnostic, or screening test has no effect on a patient's clinical outcomes except through the effect of the test results on the choice of treatment. We model the optimal joint strategy using an optimal regime structural nested mean model (opt-SNMM). The proposed estimators are more efficient than previous estimators of the parameters of an opt-SNMM because they efficiently leverage the `no direct effect (NDE) of testing' assumption. Our methods will be of importance to decision scientists who either perform cost-benefit analyses or are tasked with the estimation of the `value of information' supplied by an expensive diagnostic test (such as an MRI to screen for lung cancer).
stat
Sparse Reduced-Rank Regression for Simultaneous Rank and Variable Selection via Manifold Optimization
We consider the problem of constructing a reduced-rank regression model whose coefficient parameter is represented as a singular value decomposition with sparse singular vectors. The traditional estimation procedure for the coefficient parameter often fails when the true rank of the parameter is high. To overcome this issue, we develop an estimation algorithm with rank and variable selection via sparse regularization and manifold optimization, which enables us to obtain an accurate estimation of the coefficient parameter even if the true rank of the coefficient parameter is high. Using sparse regularization, we can also select an optimal value of the rank. We conduct Monte Carlo experiments and real data analysis to illustrate the effectiveness of our proposed method.
stat
Random Persistence Diagram Generation
Topological data analysis (TDA) studies the shape patterns of data. Persistent homology (PH) is a widely used method in TDA that summarizes homological features of data at multiple scales and stores this in persistence diagrams (PDs). As TDA is commonly used in the analysis of high dimensional data sets, a sufficiently large amount of PDs that allow performing statistical analysis is typically unavailable or requires inordinate computational resources. In this paper, we propose random persistence diagram generation (RPDG), a method that generates a sequence of random PDs from the ones produced by the data. RPDG is underpinned (i) by a parametric model based on pairwise interacting point processes for inference of persistence diagrams and (ii) by a reversible jump Markov chain Monte Carlo (RJ-MCMC) algorithm for generating samples of PDs. The parametric model combines a Dirichlet partition to capture spatial homogeneity of the location of points in a PD and a step function to capture the pairwise interaction between them. The RJ-MCMC algorithm incorporates trans-dimensional addition and removal of points and same-dimensional relocation of points across samples of PDs. The efficacy of RPDG is demonstrated via an example and a detailed comparison with other existing methods is presented.
stat
A New Distribution-Free Concept for Representing, Comparing, and Propagating Uncertainty in Dynamical Systems with Kernel Probabilistic Programming
This work presents the concept of kernel mean embedding and kernel probabilistic programming in the context of stochastic systems. We propose formulations to represent, compare, and propagate uncertainties for fairly general stochastic dynamics in a distribution-free manner. The new tools enjoy sound theory rooted in functional analysis and wide applicability as demonstrated in distinct numerical examples. The implication of this new concept is a new mode of thinking about the statistical nature of uncertainty in dynamical systems.
stat
Robust Inference for Mediated Effects in Partially Linear Models
We consider mediated effects of an exposure, X on an outcome, Y, via a mediator, M, under no unmeasured confounding assumptions in the setting where models for the conditional expectation of the mediator and outcome are partially linear. We propose G-estimators for the direct and indirect effect and demonstrate consistent asymptotic normality for indirect effects when models for the conditional means of M, or X and Y are correctly specified, and for direct effects, when models for the conditional means of Y, or X and M are correct. This marks an improvement, in this particular setting, over previous `triple' robust methods, which do not assume partially linear mean models. Testing of the no-mediation hypothesis is inherently problematic due to the composite nature of the test (either X has no effect on M or M no effect on Y), leading to low power when both effect sizes are small. We use Generalized Methods of Moments (GMM) results to construct a new score testing framework, which includes as special cases the no-mediation and the no-direct-effect hypotheses. The proposed tests rely on an orthogonal estimation strategy for estimating nuisance parameters. Simulations show that the GMM based tests perform better in terms of power and small sample performance compared with traditional tests in the partially linear setting, with drastic improvement under model misspecification. New methods are illustrated in a mediation analysis of data from the COPERS trial, a randomized trial investigating the effect of a non-pharmacological intervention of patients suffering from chronic pain. An accompanying R package implementing these methods can be found at github.com/ohines/plmed.
stat
The Spatially-Conscious Machine Learning Model
Successfully predicting gentrification could have many social and commercial applications; however, real estate sales are difficult to predict because they belong to a chaotic system comprised of intrinsic and extrinsic characteristics, perceived value, and market speculation. Using New York City real estate as our subject, we combine modern techniques of data science and machine learning with traditional spatial analysis to create robust real estate prediction models for both classification and regression tasks. We compare several cutting edge machine learning algorithms across spatial, semi-spatial and non-spatial feature engineering techniques, and we empirically show that spatially-conscious machine learning models outperform non-spatial models when married with advanced prediction techniques such as feed-forward artificial neural networks and gradient boosting machine models.
stat
Posterior Consistency of Semi-Supervised Regression on Graphs
Graph-based semi-supervised regression (SSR) is the problem of estimating the value of a function on a weighted graph from its values (labels) on a small subset of the vertices. This paper is concerned with the consistency of SSR in the context of classification, in the setting where the labels have small noise and the underlying graph weighting is consistent with well-clustered nodes. We present a Bayesian formulation of SSR in which the weighted graph defines a Gaussian prior, using a graph Laplacian, and the labeled data defines a likelihood. We analyze the rate of contraction of the posterior measure around the ground truth in terms of parameters that quantify the small label error and inherent clustering in the graph. We obtain bounds on the rates of contraction and illustrate their sharpness through numerical experiments. The analysis also gives insight into the choice of hyperparameters that enter the definition of the prior.
stat
On cointegration for modeling and forecasting wind power production
This study evaluates the performance of cointegrated vector autoregressive (VAR) models for very short- and short-term wind power forecasting. Preliminary results for a German data set comprising six wind power production time series indicate that taking into account potential cointegrating relations between the individual series can improve forecasts at short-term time horizons.
stat
Looking Deeper into Tabular LIME
Interpretability of machine learning algorithms is an urgent need. Numerous methods appeared in recent years, but do their explanations make sense? In this paper, we present a thorough theoretical analysis of one of these methods, LIME, in the case of tabular data. We prove that in the large sample limit, the interpretable coefficients provided by Tabular LIME can be computed in an explicit way as a function of the algorithm parameters and some expectation computations related to the black-box model. When the function to explain has some nice algebraic structure (linear, multiplicative, or sparsely depending on a subset of the coordinates), our analysis provides interesting insights into the explanations provided by LIME. These can be applied to a range of machine learning models including Gaussian kernels or CART random forests. As an example, for linear functions we show that LIME has the desirable property to provide explanations that are proportional to the coefficients of the function to explain and to ignore coordinates that are not used by the function to explain. For partition-based regressors, on the other side, we show that LIME produces undesired artifacts that may provide misleading explanations.
stat
Tutorial: Effective visual communication for the quantitative scientist
Effective visual communication is a core competency for pharmacometricians, statisticians, and more generally any quantitative scientist. It is essential in every step of a quantitative workflow, from scoping to execution and communicating results and conclusions. With this competency, we can better understand data and influence decisions towards appropriate actions. Without it, we can fool ourselves and others and pave the way to wrong conclusions and actions. The goal of this tutorial is to convey this competency. We posit three laws of effective visual communication for the quantitative scientist: have a clear purpose, show the data clearly, and make the message obvious. A concise "Cheat Sheet", available on https://graphicsprinciples.github.io, distills more granular recommendations for everyday practical use. Finally, these laws and recommendations are illustrated in four case studies.
stat
Model Bridging: Connection between Simulation Model and Neural Network
The interpretability of machine learning, particularly for deep neural networks, is crucial for decision making in real-world applications. One approach is replacing the un-interpretable machine learning model with a surrogate model, which has a simple structure for interpretation. Another approach is understanding the target system by using a simulation modeled by human knowledge with interpretable simulation parameters. Recently, simulator calibration has been developed based on kernel mean embedding to estimate the simulation parameters as posterior distributions. Our idea is to use a simulation model as an interpretable surrogate model. However, the computational cost of simulator calibration is high owing to the complexity of the simulation model. Thus, we propose a ''model-bridging'' framework to bridge machine learning models with simulation models by a series of kernel mean embeddings to address these difficulties. The proposed framework enables us to obtain predictions and interpretable simulation parameters simultaneously without the computationally expensive calculations of the simulations. In this study, we apply the proposed framework to essential simulations in the manufacturing industry, such as production simulation and fluid dynamics simulation.
stat
LOCUS: A Novel Decomposition Method for Brain Network Connectivity Matrices using Low-rank Structure with Uniform Sparsity
Network-oriented research has been increasingly popular in many scientific areas. In neuroscience research, imaging-based network connectivity measures have become the key for understanding brain organizations, potentially serving as individual neural fingerprints. There are major challenges in analyzing connectivity matrices including the high dimensionality of brain networks, unknown latent sources underlying the observed connectivity, and the large number of brain connections leading to spurious findings. In this paper, we propose a novel blind source separation method with low-rank structure and uniform sparsity (LOCUS) as a fully data-driven decomposition method for network measures. Compared with the existing method that vectorizes connectivity matrices ignoring brain network topology, LOCUS achieves more efficient and accurate source separation for connectivity matrices using low-rank structure. We propose a novel angle-based uniform sparsity regularization that demonstrates better performance than the existing sparsity controls for low-rank tensor methods. We propose a highly efficient iterative Node-Rotation algorithm that exploits the block multi-convexity of the objective function to solve the non-convex optimization problem for learning LOCUS. We illustrate the advantage of LOCUS through extensive simulation studies. Application of LOCUS to Philadelphia Neurodevelopmental Cohort neuroimaging study reveals biologically insightful connectivity traits which are not found using the existing method.
stat
Kernel Selection for Modal Linear Regression: Optimal Kernel and IRLS Algorithm
Modal linear regression (MLR) is a method for obtaining a conditional mode predictor as a linear model. We study kernel selection for MLR from two perspectives: "which kernel achieves smaller error?" and "which kernel is computationally efficient?". First, we show that a Biweight kernel is optimal in the sense of minimizing an asymptotic mean squared error of a resulting MLR parameter. This result is derived from our refined analysis of an asymptotic statistical behavior of MLR. Secondly, we provide a kernel class for which iteratively reweighted least-squares algorithm (IRLS) is guaranteed to converge, and especially prove that IRLS with an Epanechnikov kernel terminates in a finite number of iterations. Simulation studies empirically verified that using a Biweight kernel provides good estimation accuracy and that using an Epanechnikov kernel is computationally efficient. Our results improve MLR of which existing studies often stick to a Gaussian kernel and modal EM algorithm specialized for it, by providing guidelines of kernel selection.
stat
Approximating predictive probabilities of Gibbs-type priors
Gibbs-type random probability measures, or Gibbs-type priors, are arguably the most "natural" generalization of the celebrated Dirichlet prior. Among them the two parameter Poisson-Dirichlet prior certainly stands out for the mathematical tractability and interpretability of its predictive probabilities, which made it the natural candidate in several applications. Given a sample of size $n$, in this paper we show that the predictive probabilities of any Gibbs-type prior admit a large $n$ approximation, with an error term vanishing as $o(1/n)$, which maintains the same desirable features as the predictive probabilities of the two parameter Poisson-Dirichlet prior.
stat
Machine learning for total cloud cover prediction
Accurate and reliable forecasting of total cloud cover (TCC) is vital for many areas such as astronomy, energy demand and production, or agriculture. Most meteorological centres issue ensemble forecasts of TCC, however, these forecasts are often uncalibrated and exhibit worse forecast skill than ensemble forecasts of other weather variables. Hence, some form of post-processing is strongly required to improve predictive performance. As TCC observations are usually reported on a discrete scale taking just nine different values called oktas, statistical calibration of TCC ensemble forecasts can be considered a classification problem with outputs given by the probabilities of the oktas. This is a classical area where machine learning methods are applied. We investigate the performance of post-processing using multilayer perceptron (MLP) neural networks, gradient boosting machines (GBM) and random forest (RF) methods. Based on the European Centre for Medium-Range Weather Forecasts global TCC ensemble forecasts for 2002-2014 we compare these approaches with the proportional odds logistic regression (POLR) and multiclass logistic regression (MLR) models, as well as the raw TCC ensemble forecasts. We further assess whether improvements in forecast skill can be obtained by incorporating ensemble forecasts of precipitation as additional predictor. Compared to the raw ensemble, all calibration methods result in a significant improvement in forecast skill. RF models provide the smallest increase in predictive performance, while MLP, POLR and GBM approaches perform best. The use of precipitation forecast data leads to further improvements in forecast skill and except for very short lead times the extended MLP model shows the best overall performance.
stat
Contrastive Learning of Structured World Models
A structured understanding of our world in terms of objects, relations, and hierarchies is an important component of human cognition. Learning such a structured world model from raw sensory data remains a challenge. As a step towards this goal, we introduce Contrastively-trained Structured World Models (C-SWMs). C-SWMs utilize a contrastive approach for representation learning in environments with compositional structure. We structure each state embedding as a set of object representations and their relations, modeled by a graph neural network. This allows objects to be discovered from raw pixel observations without direct supervision as part of the learning process. We evaluate C-SWMs on compositional environments involving multiple interacting objects that can be manipulated independently by an agent, simple Atari games, and a multi-object physics simulation. Our experiments demonstrate that C-SWMs can overcome limitations of models based on pixel reconstruction and outperform typical representatives of this model class in highly structured environments, while learning interpretable object-based representations.
stat
Layer-wise Learning of Kernel Dependence Networks
Due to recent debate over the biological plausibility of backpropagation (BP), finding an alternative network optimization strategy has become an active area of interest. We design a new type of kernel network, that is solved greedily, to theoretically answer several questions of interest. First, if BP is difficult to simulate in the brain, are there instead "trivial network weights" (requiring minimum computation) that allow a greedily trained network to classify any pattern. Perhaps a simple repetition of some basic rule can yield a network equally powerful as ones trained by BP with Stochastic Gradient Descent (SGD). Second, can a greedily trained network converge to a kernel? What kernel will it converge to? Third, is this trivial solution optimal? How is the optimal solution related to generalization? Lastly, can we theoretically identify the network width and depth without a grid search? We prove that the kernel embedding is the trivial solution that compels the greedy procedure to converge to a kernel with Universal property. Yet, this trivial solution is not even optimal. By obtaining the optimal solution spectrally, it provides insight into the generalization of the network while informing us of the network width and depth.
stat
Statistical Modeling for Spatio-Temporal Data from Stochastic Convection-Diffusion Processes
This paper proposes a physical-statistical modeling approach for spatio-temporal data arising from a class of stochastic convection-diffusion processes. Such processes are widely found in scientific and engineering applications where fundamental physics imposes critical constraints on how data can be modeled and how models should be interpreted. The idea of spectrum decomposition is employed to approximate a physical spatio-temporal process by the linear combination of spatial basis functions and a multivariate random process of spectral coefficients. Unlike existing approaches assuming spatially- and temporally-invariant convection-diffusion, this paper considers a more general scenario with spatially-varying convection-diffusion and nonzero-mean source-sink. As a result, the temporal dynamics of spectral coefficients is coupled with each other, which can be interpreted as the non-linear energy redistribution across multiple scales from the perspective of physics. Because of the spatially-varying convection-diffusion, the space-time covariance is non-stationary in space. The theoretical results are integrated into a hierarchical dynamical spatio-temporal model. The connection is established between the proposed model and the existing models based on Integro-Difference Equations. Computational efficiency and scalability are also investigated to make the proposed approach practical. The advantages of the proposed methodology are demonstrated by numerical examples, a case study, and comprehensive comparison studies. Computer code is available on GitHub.
stat
Convergence of Sparse Variational Inference in Gaussian Processes Regression
Gaussian processes are distributions over functions that are versatile and mathematically convenient priors in Bayesian modelling. However, their use is often impeded for data with large numbers of observations, $N$, due to the cubic (in $N$) cost of matrix operations used in exact inference. Many solutions have been proposed that rely on $M \ll N$ inducing variables to form an approximation at a cost of $\mathcal{O}(NM^2)$. While the computational cost appears linear in $N$, the true complexity depends on how $M$ must scale with $N$ to ensure a certain quality of the approximation. In this work, we investigate upper and lower bounds on how $M$ needs to grow with $N$ to ensure high quality approximations. We show that we can make the KL-divergence between the approximate model and the exact posterior arbitrarily small for a Gaussian-noise regression model with $M\ll N$. Specifically, for the popular squared exponential kernel and $D$-dimensional Gaussian distributed covariates, $M=\mathcal{O}((\log N)^D)$ suffice and a method with an overall computational cost of $\mathcal{O}(N(\log N)^{2D}(\log\log N)^2)$ can be used to perform inference.
stat
Adversarial Self-Paced Learning for Mixture Models of Hawkes Processes
We propose a novel adversarial learning strategy for mixture models of Hawkes processes, leveraging data augmentation techniques of Hawkes process in the framework of self-paced learning. Instead of learning a mixture model directly from a set of event sequences drawn from different Hawkes processes, the proposed method learns the target model iteratively, which generates "easy" sequences and uses them in an adversarial and self-paced manner. In each iteration, we first generate a set of augmented sequences from original observed sequences. Based on the fact that an easy sample of the target model can be an adversarial sample of a misspecified model, we apply a maximum likelihood estimation with an adversarial self-paced mechanism. In this manner the target model is updated, and the augmented sequences that obey it are employed for the next learning iteration. Experimental results show that the proposed method outperforms traditional methods consistently.
stat
Good Initializations of Variational Bayes for Deep Models
Stochastic variational inference is an established way to carry out approximate Bayesian inference for deep models. While there have been effective proposals for good initializations for loss minimization in deep learning, far less attention has been devoted to the issue of initialization of stochastic variational inference. We address this by proposing a novel layer-wise initialization strategy based on Bayesian linear models. The proposed method is extensively validated on regression and classification tasks, including Bayesian DeepNets and ConvNets, showing faster and better convergence compared to alternatives inspired by the literature on initializations for loss minimization.
stat
XGBoostLSS -- An extension of XGBoost to probabilistic forecasting
We propose a new framework of XGBoost that predicts the entire conditional distribution of a univariate response variable. In particular, XGBoostLSS models all moments of a parametric distribution (i.e., mean, location, scale and shape [LSS]) instead of the conditional mean only. Choosing from a wide range of continuous, discrete and mixed discrete-continuous distribution, modelling and predicting the entire conditional distribution greatly enhances the flexibility of XGBoost, as it allows to gain additional insight into the data generating process, as well as to create probabilistic forecasts from which prediction intervals and quantiles of interest can be derived. We present both a simulation study and real world examples that demonstrate the virtues of our approach.
stat
Nearly Minimax-Optimal Regret for Linearly Parameterized Bandits
We study the linear contextual bandit problem with finite action sets. When the problem dimension is $d$, the time horizon is $T$, and there are $n \leq 2^{d/2}$ candidate actions per time period, we (1) show that the minimax expected regret is $\Omega(\sqrt{dT (\log T) (\log n)})$ for every algorithm, and (2) introduce a Variable-Confidence-Level (VCL) SupLinUCB algorithm whose regret matches the lower bound up to iterated logarithmic factors. Our algorithmic result saves two $\sqrt{\log T}$ factors from previous analysis, and our information-theoretical lower bound also improves previous results by one $\sqrt{\log T}$ factor, revealing a regret scaling quite different from classical multi-armed bandits in which no logarithmic $T$ term is present in minimax regret. Our proof techniques include variable confidence levels and a careful analysis of layer sizes of SupLinUCB on the upper bound side, and delicately constructed adversarial sequences showing the tightness of elliptical potential lemmas on the lower bound side.
stat
Estimating Mixed Memberships with Sharp Eigenvector Deviations
We consider the problem of estimating community memberships of nodes in a network, where every node is associated with a vector determining its degree of membership in each community. Existing provably consistent algorithms often require strong assumptions about the population, are computationally expensive, and only provide an overall error bound for the whole community membership matrix. This paper provides uniform rates of convergence for the inferred community membership vector of each node in a network generated from the Mixed Membership Stochastic Blockmodel (MMSB); to our knowledge, this is the first work to establish per-node rates for overlapping community detection in networks. We achieve this by establishing sharp row-wise eigenvector deviation bounds for MMSB. Based on the simplex structure inherent in the eigen-decomposition of the population matrix, we build on established corner-finding algorithms from the optimization community to infer the community membership vectors. Our results hold over a broad parameter regime where the average degree only grows poly-logarithmically with the number of nodes. Using experiments with simulated and real datasets, we show that our method achieves better error with lower variability over competing methods, and processes real world networks of up to 100,000 nodes within tens of seconds.
stat
Real-time prediction of severe influenza epidemics using Extreme Value Statistics
Each year, seasonal influenza epidemics cause hundreds of thousands of deaths worldwide and put high loads on health care systems. A main concern for resource planning is the risk of exceptionnally severe epidemics. Taking advantage of the weekly influenza cases reporting in France, we use recent results on multivariate GP models in Extreme Value Statistics to develop methods for real-time prediction of the risk that an ongoing epidemic will be exceptionally severe and for real-time detection of anomalous epidemics. Quality of predictions is assessed on observed and simulated data.
stat
Double-robust and efficient methods for estimating the causal effects of a binary treatment
We consider the problem of estimating the effects of a binary treatment on a continuous outcome of interest from observational data in the absence of confounding by unmeasured factors. We provide a new estimator of the population average treatment effect (ATE) based on the difference of novel double-robust (DR) estimators of the treatment-specific outcome means. We compare our new estimator with previously estimators both theoretically and via simulation. DR-difference estimators may have poor finite sample behavior when the estimated propensity scores in the treated and untreated do not overlap. We therefore propose an alternative approach, which can be used even in this unfavorable setting, based on locally efficient double-robust estimation of a semiparametric regression model for the modification on an additive scale of the magnitude of the treatment effect by the baseline covariates $X$. In contrast with existing methods, our approach simultaneously provides estimates of: i) the average treatment effect in the total study population, ii) the average treatment effect in the random subset of the population with overlapping estimated propensity scores, and iii) the treatment effect at each level of the baseline covariates $X$. When the covariate vector $X$ is high dimensional, one cannot be certain, owing to lack of power, that given models for the propensity score and for the regression of the outcome on treatment and $X$ used in constructing our DR estimators are nearly correct, even if they pass standard goodness of fit tests. Therefore to select among candidate models, we propose a novel approach to model selection that leverages the DR-nature of our treatment effect estimator and that outperforms cross-validation in a small simulation study.
stat
Hi3+3: A Model-Assisted Dose-Finding Design Borrowing Historical Data
Background -- In phase I clinical trials, historical data may be available through multi-regional programs, reformulation of the same drug, or previous trials for a drug under the same class. Statistical designs that borrow information from historical data can reduce cost, speed up drug development, and maintain safety. Purpose -- Based on a hybrid design that partly uses probability models and partly uses algorithmic rules for decision making, we aim to improve the efficiency of the dose-finding trials in the presence of historical data, maintain safety for patients, and achieve a level of simplicity for practical applications. Methods -- We propose the Hi3+3 design, in which the letter "H" represents "historical data". We apply the idea in power prior to borrow historical data and define the effective sample size (ESS) of the prior. Dose-finding decision rules follow the idea in the i3+3 design while incorporating the historical data via the power prior and ESS. The proposed Hi3+3 design pretabulates the dosing decisions before the trial starts, a desirable feature for ease of application in practice. Results -- The Hi3+3 design is superior than the i3+3 design due to information borrow from historical data. It is capable of maintaining a high level of safety for trial patients without sacrificing the ability to identify the correct MTD. Illustration of this feature are found in the simulation results. Conclusion -- With the demonstrated safety, efficiency, and simplicity, the Hi3+3 design could be a desirable choice for dose-finding trials borrowing historical data.
stat
On Racial Disparities in Recent Fatal Police Shootings
Fatal police shootings in the United States continue to be a polarizing social and political issue. Clear disagreement between racial proportions of victims and nationwide racial demographics together with graphic video footage has created fertile ground for controversy. However, simple population level summary statistics fail to take into account fundamental local characteristics such as county-level racial demography, local arrest demography, and law enforcement density. Utilizing data on fatal police shootings between January 2015 and July 2016, we implement a number of straightforward resampling procedures designed to carefully examine how unlikely the victim totals from each race are with respect to these local population characteristics if no racial bias were present in the decision to shoot by police. We present several approaches considering the shooting locations both as fixed and also as a random sample. In both cases, we find overwhelming evidence of a racial disparity in shooting victims with respect to local population demographics but substantially less disparity after accounting for local arrest demographics. We conclude our analyses by examining the effect of police-worn body cameras and find no evidence that the presence of such cameras impacts the racial distribution of victims.
stat
Global and Local Two-Sample Tests via Regression
Two-sample testing is a fundamental problem in statistics. Despite its long history, there has been renewed interest in this problem with the advent of high-dimensional and complex data. Specifically, in the machine learning literature, there have been recent methodological developments such as classification accuracy tests. The goal of this work is to present a regression approach to comparing multivariate distributions of complex data. Depending on the chosen regression model, our framework can efficiently handle different types of variables and various structures in the data, with competitive power under many practical scenarios. Whereas previous work has been largely limited to global tests which conceal much of the local information, our approach naturally leads to a local two-sample testing framework in which we identify local differences between multivariate distributions with statistical confidence. We demonstrate the efficacy of our approach both theoretically and empirically, under some well-known parametric and nonparametric regression methods. Our proposed methods are applied to simulated data as well as a challenging astronomy data set to assess their practical usefulness.
stat
On the relationship between a Gamma distributed precision parameter and the associated standard deviation in the context of Bayesian parameter inference
In Bayesian inference, an unknown measurement uncertainty is often quantified in terms of a Gamma distributed precision parameter, which is impractical when prior information on the standard deviation of the measurement uncertainty shall be utilised during inference. This paper thus introduces a method for transforming between a gamma distributed precision parameter and the distribution of the associated standard deviation. The proposed method is based on numerical optimisation and shows adequate results for a wide range of scenarios.
stat
Taking Advantage of Multitask Learning for Fair Classification
A central goal of algorithmic fairness is to reduce bias in automated decision making. An unavoidable tension exists between accuracy gains obtained by using sensitive information (e.g., gender or ethnic group) as part of a statistical model, and any commitment to protect these characteristics. Often, due to biases present in the data, using the sensitive information in the functional form of a classifier improves classification accuracy. In this paper we show how it is possible to get the best of both worlds: optimize model accuracy and fairness without explicitly using the sensitive feature in the functional form of the model, thereby treating different individuals equally. Our method is based on two key ideas. On the one hand, we propose to use Multitask Learning (MTL), enhanced with fairness constraints, to jointly learn group specific classifiers that leverage information between sensitive groups. On the other hand, since learning group specific models might not be permitted, we propose to first predict the sensitive features by any learning method and then to use the predicted sensitive feature to train MTL with fairness constraints. This enables us to tackle fairness with a three-pronged approach, that is, by increasing accuracy on each group, enforcing measures of fairness during training, and protecting sensitive information during testing. Experimental results on two real datasets support our proposal, showing substantial improvements in both accuracy and fairness.
stat
RADIOHEAD: Radiogenomic Analysis Incorporating Tumor Heterogeneity in Imaging Through Densities
Recent technological advancements have enabled detailed investigation of associations between the molecular architecture and tumor heterogeneity, through multi-source integration of radiological imaging and genomic (radiogenomic) data. In this paper, we integrate and harness radiogenomic data in patients with lower grade gliomas (LGG), a type of brain cancer, in order to develop a regression framework called RADIOHEAD (RADIOgenomic analysis incorporating tumor HEterogeneity in imAging through Densities) to identify radiogenomic associations. Imaging data is represented through voxel intensity probability density functions of tumor sub-regions obtained from multimodal magnetic resonance imaging, and genomic data through molecular signatures in the form of pathway enrichment scores corresponding to their gene expression profiles. Employing a Riemannian-geometric framework for principal component analysis on the set of probability densities functions, we map each probability density to a vector of principal component scores, which are then included as predictors in a Bayesian regression model with the pathway enrichment scores as the response. Variable selection compatible with the grouping structure amongst the predictors induced through the tumor sub-regions is carried out under a group spike-and-slab prior. A Bayesian false discovery rate mechanism is then used to infer significant associations based on the posterior distribution of the regression coefficients. Our analyses reveal several pathways relevant to LGG etiology (such as synaptic transmission, nerve impulse and neurotransmitter pathways), to have significant associations with the corresponding imaging-based predictors.
stat