title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
A simulation study of semiparametric estimation in copula models based on minimum Alpha-Divergence
The purpose of this paper is to introduce two semiparametric methods for the estimation of copula parameter. These methods are based on minimum Alpha-Divergence between a non-parametric estimation of copula density using local likelihood probit transformation method and a true copula density function. A Monte Carlo study is performed to measure the performance of these methods based on Hellinger distance and Neyman divergence as special cases of Alpha-Divergence. Simulation results are compared to the Maximum Pseudo-Likelihood (MPL) estimation as a conventional estimation method in well-known bivariate copula models. These results show that the proposed method based on Minimum Pseudo Hellinger Distance estimation has a good performance in small sample size and weak dependency situations. The parameter estimation methods are applied to a real data set in Hydrology.
stat
Optimally adaptive Bayesian spectral density estimation for stationary and nonstationary processes
This article improves on existing methods to estimate the spectral density of stationary and nonstationary time series assuming a Gaussian process prior. By optimising an appropriate eigendecomposition using a smoothing spline covariance structure, our method more appropriately models both smooth and rough data. We further justify the utility of this optimal eigendecomposition by investigating the performance of alternative covariance functions other than smoothing splines. We show that the optimal eigendecomposition provides a material improvement, while the other covariance functions under examination do not, all performing comparatively well as the smoothing spline. During our computational investigation, we introduce new validation metrics for the spectral density estimate, inspired from the physical sciences. We validate our models in an extensive simulation study and demonstrate superior performance with real data.
stat
Trajectory Optimization for Unknown Constrained Systems using Reinforcement Learning
In this paper, we propose a reinforcement learning-based algorithm for trajectory optimization for constrained dynamical systems. This problem is motivated by the fact that for most robotic systems, the dynamics may not always be known. Generating smooth, dynamically feasible trajectories could be difficult for such systems. Using sampling-based algorithms for motion planning may result in trajectories that are prone to undesirable control jumps. However, they can usually provide a good reference trajectory which a model-free reinforcement learning algorithm can then exploit by limiting the search domain and quickly finding a dynamically smooth trajectory. We use this idea to train a reinforcement learning agent to learn a dynamically smooth trajectory in a curriculum learning setting. Furthermore, for generalization, we parameterize the policies with goal locations, so that the agent can be trained for multiple goals simultaneously. We show result in both simulated environments as well as real experiments, for a $6$-DoF manipulator arm operated in position-controlled mode to validate the proposed idea. We compare the proposed ideas against a PID controller which is used to track a designed trajectory in configuration space. Our experiments show that our RL agent trained with a reference path outperformed a model-free PID controller of the type commonly used on many robotic platforms for trajectory tracking.
stat
Inverse Probability Weighted Estimators of Vaccine Effects Accommodating Partial Interference and Censoring
Estimating population-level effects of a vaccine is challenging because there may be interference, i.e., the outcome of one individual may depend on the vaccination status of another individual. Partial interference occurs when individuals can be partitioned into groups such that interference occurs only within groups. In the absence of interference, inverse probability weighted (IPW) estimators are commonly used to draw inference about causal effects of an exposure or treatment. Tchetgen Tchetgen and VanderWeele (2012) proposed a modified IPW estimator for causal effects in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the setting where the outcome is subject to right censoring using inverse probability of censoring weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The large sample properties of the IPCW estimators are derived, and simulation studies are presented demonstrating the estimators' performance in finite samples. The methods are then used to analyze data from the cholera vaccine study.
stat
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation Methods
We introduce a novel framework for the estimation of the posterior distribution over the weights of a neural network, based on a new probabilistic interpretation of adaptive optimisation algorithms such as AdaGrad and Adam. We demonstrate the effectiveness of our Bayesian Adam method, Badam, by experimentally showing that the learnt uncertainties correctly relate to the weights' predictive capabilities by weight pruning. We also demonstrate the quality of the derived uncertainty measures by comparing the performance of Badam to standard methods in a Thompson sampling setting for multi-armed bandits, where good uncertainty measures are required for an agent to balance exploration and exploitation.
stat
Exact Dimensionality Selection for Bayesian PCA
We present a Bayesian model selection approach to estimate the intrinsic dimensionality of a high-dimensional dataset. To this end, we introduce a novel formulation of the probabilisitic principal component analysis model based on a normal-gamma prior distribution. In this context, we exhibit a closed-form expression of the marginal likelihood which allows to infer an optimal number of components. We also propose a heuristic based on the expected shape of the marginal likelihood curve in order to choose the hyperparameters. In non-asymptotic frameworks, we show on simulated data that this exact dimensionality selection approach is competitive with both Bayesian and frequentist state-of-the-art methods.
stat
Variable Selection with Second-Generation P-Values
Many statistical methods have been proposed for variable selection in the past century, but few perform this task well. The current standard bearers for variable selection include smoothly clipped absolute deviation (SCAD), adaptive lasso (AL), and minimax concave penalty with penalized linear unbiased selection (MC+). In practice, however, these algorithms often struggle to balance support recovery and parameter estimation, despite well-established oracle behavior for variable selection in certain settings. Here we report on a novel application of second-generation p-values (SGPVs) for variable selection, which we call Penalized regression with SGPVs (ProSGPV). This approach has tangible advantages in balancing support recovery and parameter estimation. The ProSGPV approach captures the true model at the best rate achieved by the current standards, is easier to implement in practice, and yields parameter estimates with the smallest mean absolute error. Even with strong collinearity in the feature space, the ProSGPV approach can maintain its good performance by using a simple pre-screening step. Here we report on extensive simulations and two real-world applications comparing these approaches. Our ProSGPV algorithm is a fast and intuitive approach for variable selection that leverages the advantages of second-generation p-values.
stat
Deep Active Learning with Adaptive Acquisition
Model selection is treated as a standard performance boosting step in many machine learning applications. Once all other properties of a learning problem are fixed, the model is selected by grid search on a held-out validation set. This is strictly inapplicable to active learning. Within the standardized workflow, the acquisition function is chosen among available heuristics a priori, and its success is observed only after the labeling budget is already exhausted. More importantly, none of the earlier studies report a unique consistently successful acquisition heuristic to the extent to stand out as the unique best choice. We present a method to break this vicious circle by defining the acquisition function as a learning predictor and training it by reinforcement feedback collected from each labeling round. As active learning is a scarce data regime, we bootstrap from a well-known heuristic that filters the bulk of data points on which all heuristics would agree, and learn a policy to warp the top portion of this ranking in the most beneficial way for the character of a specific data distribution. Our system consists of a Bayesian neural net, the predictor, a bootstrap acquisition function, a probabilistic state definition, and another Bayesian policy network that can effectively incorporate this input distribution. We observe on three benchmark data sets that our method always manages to either invent a new superior acquisition function or to adapt itself to the a priori unknown best performing heuristic for each specific data set.
stat
Sparse online variational Bayesian regression
This work considers variational Bayesian inference as an inexpensive and scalable alternative to a fully Bayesian approach in the context of sparsity-promoting priors. In particular, the priors considered arise from scale mixtures of Normal distributions with a generalized inverse Gaussian mixing distribution. This includes the variational Bayesian LASSO as an inexpensive and scalable alternative to the Bayesian LASSO introduced in [56]. It also includes priors which more strongly promote sparsity. For linear models the method requires only the iterative solution of deterministic least squares problems. Furthermore, for $n\rightarrow \infty$ data points and p unknown covariates the method can be implemented exactly online with a cost of O(p$^3$) in computation and O(p$^2$) in memory. For large p an approximation is able to achieve promising results for a cost of O(p) in both computation and memory. Strategies for hyper-parameter tuning are also considered. The method is implemented for real and simulated data. It is shown that the performance in terms of variable selection and uncertainty quantification of the variational Bayesian LASSO can be comparable to the Bayesian LASSO for problems which are tractable with that method, and for a fraction of the cost. The present method comfortably handles n = p = 131,073 on a laptop in minutes, and n = 10$^5$, p = 10$^6$ overnight.
stat
Estimation and Inference for Moments of Ratios with Robustness against Large Trimming Bias
Empirical researchers often trim observations with small denominator A when they estimate moments of the form E[B/A]. Large trimming is a common practice to mitigate variance, but it incurs large trimming bias. This paper provides a novel method of correcting large trimming bias. If a researcher is willing to assume that the joint distribution between A and B is smooth, then a large trimming bias may be estimated well. With the bias correction, we also develop a valid and robust inference result for E[B/A].
stat
Bayesreef: A Bayesian inference framework for modelling reef growth in response to environmental change and biological dynamics
Estimating the impact of environmental processes on vertical reef development in geological time is a very challenging task. pyReef-Core is a deterministic carbonate stratigraphic forward model designed to simulate the key biological and environmental processes that determine vertical reef accretion and assemblage changes in fossil reef drill cores. We present a Bayesian framework called Bayesreef for the estimation and uncertainty quantification of parameters in pyReef-Core that represent environmental conditions affecting the growth of coral assemblages on geological timescales. We demonstrate the existence of multimodal posterior distributions and investigate the challenges of sampling using Markov chain Monte-Carlo (MCMC) methods, which includes parallel tempering MCMC. We use synthetic reef-core to investigate fundamental issues and then apply the methodology to a selected reef-core from the Great Barrier Reef in Australia. The results show that Bayesreef accurately estimates and provides uncertainty quantification of the selected parameters that represent the environment and ecological conditions in pyReef-Core. Bayesreef provides insights into the complex posterior distributions of parameters in pyReef-Core, which provides the groundwork for future research in this area.
stat
Concordance Rate of a Four-Quadrant Plot for Repeated Measurements
Before new clinical measurement methods are implemented in clinical practice, it must be confirmed whether their results are equivalent to those of existing methods. The agreement of the trend between these methods is evaluated using the four-quadrant plot, which describes the trend of change in each difference of the two measurement methods' values in sequential time points, and the plot's concordance rate, which is calculated using the sum of data points in the four-quadrant plot that agree with this trend divided by the number of all accepted data points. However, the conventional concordance rate does not consider the covariance between the data on individual subjects, which may affect its proper evaluation. Therefore, we proposed a new concordance rate calculated by each individual according to the number of agreement. Moreover, this proposed method can set a parameter that the minimum concordant number between two measurement techniques. The parameter can provide a more detailed interpretation of the degree of agreement. A numerical simulation conducted with several factors indicated that the proposed method resulted in a more accurate evaluation. We also showed a real data and compared the proposed method with the conventional approach. Then, we concluded the discussion with the implementation in clinical studies.
stat
The DURATIONS randomised trial design: estimation targets, analysis methods and operating characteristics
Background. Designing trials to reduce treatment duration is important in several therapeutic areas, including TB and antibiotics. We recently proposed a new randomised trial design to overcome some of the limitations of standard two-arm non-inferiority trials. This DURATIONS design involves randomising patients to a number of duration arms, and modelling the so-called duration-response curve. This article investigates the operating characteristics (type-1 and type-2 errors) of different statistical methods of drawing inference from the estimated curve. Methods. Our first estimation target is the shortest duration non-inferior to the control (maximum) duration within a specific risk difference margin. We compare different methods of estimating this quantity, including using model confidence bands, the delta method and bootstrap. We then explore the generalisability of results to estimation targets which focus on absolute event rates, risk ratio and gradient of the curve. Results. We show through simulations that, in most scenarios and for most of the estimation targets, using the bootstrap to estimate variability around the target duration leads to good results for DURATIONS design-appropriate quantities analogous to power and type-1 error. Using model confidence bands is not recommended, while the delta method leads to inflated type-1 error in some scenarios, particularly when the optimal duration is very close to one of the randomised durations. Conclusions. Using the bootstrap to estimate the optimal duration in a DURATIONS design has good operating characteristics in a wide range of scenarios, and can be used with confidence by researchers wishing to design a DURATIONS trial to reduce treatment duration. Uncertainty around several different targets can be estimated with this bootstrap approach.
stat
Protein Structure Parameterization via Mobius Distributions on the Torus
Proteins constitute a large group of macromolecules with a multitude of functions for all living organisms. Proteins achieve this by adopting distinct three-dimensional structures encoded by the sequence of their constituent amino acids in one or more polypeptides. In this paper, the statistical modelling of the protein backbone torsion angles is considered. Two new distributions are proposed for toroidal data by applying the M\"obius transformation to the bivariate von Mises distribution. Marginal and conditional distributions in addition to sine-skewed versions of the proposed models are also developed. Three big data sets consisting of bivariate information about protein domains are analysed to illustrate the strength of the flexible proposed models. Finally, a simulation study is done to evaluate the obtained maximum likelihood estimates and also to find the best method of generating samples from the proposed models to use as the proposal distributions in the Markov Chain Monte Carlo sampling method for predicting the 3D structure of proteins.
stat
Learning a high-dimensional classification rule using auxiliary outcomes
Correlated outcomes are common in many practical problems. Based on a decomposition of estimation bias into two types, within-subspace and against-subspace, we develop a robust approach to estimating the classification rule for the outcome of interest with the presence of auxiliary outcomes in high-dimensional settings. The proposed method includes a pooled estimation step using all outcomes to gain efficiency, and a subsequent calibration step using only the outcome of interest to correct both types of biases. We show that when the pooled estimator has a low estimation error and a sparse against-subspace bias, the calibrated estimator can achieve a lower estimation error than that when using only the single outcome of interest. An inference procedure for the calibrated estimator is also provided. Simulations and a real data analysis are conducted to justify the superiority of the proposed method.
stat
Learning formation energy of inorganic compounds using matrix variate deep Gaussian process
Future advancement of engineering applications is dependent on design of novel materials with desired properties. Enormous size of known chemical space necessitates use of automated high throughput screening to search the desired material. The high throughput screening uses quantum chemistry calculations to predict material properties, however, computational complexity of these calculations often imposes prohibitively high cost on the search for desired material. This critical bottleneck is resolved by using deep machine learning to emulate the quantum computations. However, the deep learning algorithms require a large training dataset to ensure an acceptable generalization, which is often unavailable a-priory. In this paper, we propose a deep Gaussian process based approach to develop an emulator for quantum calculations. We further propose a novel molecular descriptor that enables implementation of the proposed approach. As demonstrated in this paper, the proposed approach can be implemented using a small dataset. We demonstrate efficacy of our approach for prediction of formation energy of inorganic molecules.
stat
Learning Signal Subgraphs from Longitudinal Brain Networks with Symmetric Bilinear Logistic Regression
Modern neuroimaging technologies, combined with state-of-the-art data processing pipelines, have made it possible to collect longitudinal observations of an individual's brain connectome at different ages. It is of substantial scientific interest to study how brain connectivity varies over time in relation to human cognitive traits. In brain connectomics, the structural brain network for an individual corresponds to a set of interconnections among brain regions. We propose a symmetric bilinear logistic regression to learn a set of small subgraphs relevant to a binary outcome from longitudinal brain networks as well as estimating the time effects of the subgraphs. We enforce the extracted signal subgraphs to have clique structure which has appealing interpretations as they can be related to neurological circuits. The time effect of each signal subgraph reflects how its predictive effect on the outcome varies over time, which may improve our understanding of interactions between the aging of brain structure and neurological disorders. Application of this method on longitudinal brain connectomics and cognitive capacity data shows interesting discovery of relevant interconnections among a small set of brain regions in frontal and temporal lobes with better predictive performance than competitors.
stat
Bayesian Modeling of the Structural Connectome for Studying Alzheimer Disease
We study possible relations between the structure of the connectome, white matter connecting different regions of brain, and Alzheimer disease. Regression models in covariates including age, gender and disease status for the extent of white matter connecting each pair of regions of brain are proposed. Subject We study possible relations between the Alzheimer's disease progression and the structure of the connectome, white matter connecting different regions of brain. Regression models in covariates including age, gender and disease status for the extent of white matter connecting each pair of regions of brain are proposed. Subject inhomogeneity is also incorporated in the model through random effects with an unknown distribution. As there are large number of pairs of regions, we also adopt a dimension reduction technique through graphon (Lovasz and Szegedy (2006)) functions, which reduces functions of pairs of regions to functions of regions. The connecting graphon functions are considered unknown but assumed smoothness allows putting priors of low complexity on them. We pursue a nonparametric Bayesian approach by assigning a Dirichlet process scale mixture of zero mean normal prior on the distributions of the random effects and finite random series of tensor products of B-splines priors on the underlying graphon functions. Markov chain Monte Carlo techniques, for drawing samples for the posterior distributions are developed. The proposed Bayesian method overwhelmingly outperforms similar ANCOVA models in the simulation setup. The proposed Bayesian approach is applied on a dataset of 100 subjects and 83 brain regions and key regions implicated in the changing connectome are identified.
stat
Bayesian Topological Learning for Classifying the Structure of Biological Networks
Actin cytoskeleton networks generate local topological signatures due to the natural variations in the number, size, and shape of holes of the networks. Persistent homology is a method that explores these topological properties of data and summarizes them as persistence diagrams. In this work, we analyze and classify these filament networks by transforming them into persistence diagrams whose variability is quantified via a Bayesian framework on the space of persistence diagrams. The proposed generalized Bayesian framework adopts an independent and identically distributed cluster point process characterization of persistence diagrams and relies on a substitution likelihood argument. This framework provides the flexibility to estimate the posterior cardinality distribution of points in a persistence diagram and the posterior spatial distribution simultaneously. We present a closed form of the posteriors under the assumption of Gaussian mixtures and binomials for prior intensity and cardinality respectively. Using this posterior calculation, we implement a Bayes factor algorithm to classify the actin filament networks and benchmark it against several state-of-the-art classification methods.
stat
Accelerating Bayesian inference in hydrological modeling with a mechanistic emulator
As in many fields of dynamic modeling, the long runtime of hydrological models hinders Bayesian inference of model parameters from data. By replacing a model with an approximation of its output as a function of input and/or parameters, emulation allows us to complete this task by trading-off accuracy for speed. We combine (i) the use of a mechanistic emulator, (ii) low-discrepancy sampling of the parameter space, and (iii) iterative refinement of the design data set, to perform Bayesian inference with a very small design data set constructed with 128 model runs in a parameter space of up to eight dimensions. In our didactic example we use a model implemented with the hydrological simulator SWMM that allows us to compare our inference results against those derived with the full model. This comparison demonstrates that iterative improvements lead to reasonable results with a very small design data set.
stat
Accuracy and stability of solar variable selection comparison under complicated dependence structures
In this paper we focus on the empirical variable-selection peformance of subsample-ordered least angle regression (Solar) -- a novel ultrahigh dimensional redesign of lasso -- on the empirical data with complicated dependence structures and, hence, severe multicollinearity and grouping effect issues. Previous researches show that Solar largely alleviates several known high-dimensional issues with least-angle regression and $\mathcal{L}_1$ shrinkage. Also, With the same computation load, solar yields substantiali mprovements over two lasso solvers (least-angle regression for lasso and coordinate-descent) in terms of the sparsity (37-64\% reduction in the average number of selected variables), stability and accuracy of variable selection. Simulations also demonstrate that solar enhances the robustness of variable selection to different settings of the irrepresentable condition and to variations in the dependence structures assumed in regression analysis. To confirm that the improvements are also available for empirical researches, we choose the prostate cancer data and the Sydney house price data and apply two lasso solvers, elastic net and Solar on them for comparison. The results shows that (i) lasso is affected by the grouping effect and randomly drop variables with high correlations, resulting unreliable and uninterpretable results; (ii) elastic net is more robust to grouping effect; however, it completely lose variable-selection sparsity when the dependence structure of the data is complicated; (iii) solar demonstrates its superior robustness to complicated dependence structures and grouping effect, returning variable-selection results with better stability and sparsity. The code can be found at https://github.com/isaac2math/solar_application
stat
Bigger data, better questions, and a return to fourth down behavior: an introduction to a special issue on tracking data in the National football League
Most historical National Football League (NFL) analysis, both mainstream and academic, has relied on public, play-level data to generate team and player comparisons. Given the number of oft omitted variables that impact on-field results, such as play call, game situation, and opponent strength, findings tend to be more anecdotal than actionable. With the release of player tracking data, however, analysts can better ask and answer questions to isolate skill and strategy. In this article, we highlight the limitations of traditional analyses, and use a decades-old punching bag for analysts, fourth-down strategy, as a microcosm for why tracking data is needed. Specifically, we assert that, in absence of using the precise yardage needed for a first down, past findings supporting an aggressive fourth down strategy may have been overstated. Next, we synthesize recent work that comprises this special Journal of Quantitative Analysis in Sports issue into player tracking data in football. Finally, we conclude with some best practices and limitations regarding usage of this data. The release of player tracking data marks a transition for the league and its' analysts, and we hope this issue helps guide innovation in football analytics for years to come.
stat
Autoregressive Networks
We propose a first-order autoregressive model for dynamic network processes in which edges change over time while nodes remain unchanged. The model depicts the dynamic changes explicitly. It also facilitates simple and efficient statistical inference such as the maximum likelihood estimators which are proved to be (uniformly) consistent and asymptotically normal. The model diagnostic checking can be carried out easily using a permutation test. The proposed model can apply to any network processes with various underlying structures but with independent edges. As an illustration, an autoregressive stochastic block model has been investigated in depth, which characterizes the latent communities by the transition probabilities over time. This leads to a more effective spectral clustering algorithm for identifying the latent communities. Inference for a change point is incorporated into the autoregressive stochastic block model to cater for possible structure changes. The developed asymptotic theory as well as the simulation study affirms the performance of the proposed methods. Application with three real data sets illustrates both relevance and usefulness of the proposed models.
stat
A non-inferiority test for R-squared with random regressors
Determining the lack of association between an outcome variable and a number of different explanatory variables is frequently necessary in order to disregard a proposed model. This paper proposes a non-inferiority test for the coefficient of determination (or squared multiple correlation coefficient), R-squared, in a linear regression analysis with random predictors. The test is derived from inverting a one-sided confidence interval based on a scaled central F distribution.
stat
Probabilistic Forecasting of the Arctic Sea Ice Edge with Contour Modeling
Sea ice, or frozen ocean water, freezes and melts every year in the Arctic. Forecasts of where sea ice will be located weeks to months in advance have become more important as the amount of sea ice declines due to climate change, for maritime planning and other uses. Typical sea ice forecasts are made with ensemble models, physics-based models of sea ice and the surrounding ocean and atmosphere. This paper introduces Mixture Contour Forecasting, a method to forecast sea ice probabilistically using a mixture of two distributions, one based on post-processed output from ensembles and the other on observed sea ice patterns in recent years. At short lead times, these forecasts are better calibrated than unadjusted dynamic ensemble forecasts and other statistical reference forecasts. To produce these forecasts, a statistical technique is introduced that directly models the sea ice edge contour, the boundary around the region that is ice-covered. Mixture Contour Forecasting and reference methods are evaluated for monthly sea ice forecasts for 2008-2016 at lead times ranging from 0.5-6.5 months using one of the European Centre for Medium-Range Weather Forecasts ensembles.
stat
Using Bayesian latent Gaussian graphical models to infer symptom associations in verbal autopsies
Learning dependence relationships among variables of mixed types provides insights in a variety of scientific settings and is a well-studied problem in statistics. Existing methods, however, typically rely on copious, high quality data to accurately learn associations. In this paper, we develop a method for scientific settings where learning dependence structure is essential, but data are sparse and have a high fraction of missing values. Specifically, our work is motivated by survey-based cause of death assessments known as verbal autopsies (VAs). We propose a Bayesian approach to characterize dependence relationships using a latent Gaussian graphical model that incorporates informative priors on the marginal distributions of the variables. We demonstrate such information can improve estimation of the dependence structure, especially in settings with little training data. We show that our method can be integrated into existing probabilistic cause-of-death assignment algorithms and improves model performance while recovering dependence patterns between symptoms that can inform efficient questionnaire design in future data collection.
stat
Recurrent Deep Divergence-based Clustering for simultaneous feature learning and clustering of variable length time series
The task of clustering unlabeled time series and sequences entails a particular set of challenges, namely to adequately model temporal relations and variable sequence lengths. If these challenges are not properly handled, the resulting clusters might be of suboptimal quality. As a key solution, we present a joint clustering and feature learning framework for time series based on deep learning. For a given set of time series, we train a recurrent network to represent, or embed, each time series in a vector space such that a divergence-based clustering loss function can discover the underlying cluster structure in an end-to-end manner. Unlike previous approaches, our model inherently handles multivariate time series of variable lengths and does not require specification of a distance-measure in the input space. On a diverse set of benchmark datasets we illustrate that our proposed Recurrent Deep Divergence-based Clustering approach outperforms, or performs comparable to, previous approaches.
stat
TVOR: Finding Discrete Total Variation Outliers among Histograms
Pearson's chi-squared test can detect outliers in the data distribution of a given set of histograms. However, in fields such as demographics (for e.g. birth years), outliers may be more easily found in terms of the histogram smoothness where techniques such as Whipple's or Myers' indices handle successfully only specific anomalies. This paper proposes smoothness outliers detection among histograms by using the relation between their discrete total variations (DTV) and their respective sample sizes. This relation is mathematically derived to be applicable in all cases and simplified by an accurate linear model. The deviation of the histogram's DTV from the value predicted by the model is used as the outlier score and the proposed method is named Total Variation Outlier Recognizer (TVOR). TVOR requires no prior assumptions about the histograms' samples' distribution, it has no hyperparameters that require tuning, it is not limited to only specific patterns, and it is applicable to histograms with the same bins. Each bin can have an arbitrary interval that can also be unbounded. TVOR finds DTV outliers easier than Pearson's chi-squared test. In case of distribution outliers, the opposite holds. TVOR is tested on real census data and it successfully finds suspicious histograms. The source code is given at https://github.com/DiscreteTotalVariation/TVOR.
stat
Introducing the treatment hierarchy question in network meta-analysis
Background: Comparative effectiveness research using network meta-analysis can present a hierarchy of competing treatments, from the least to most preferable option. However, the research question associated with the hierarchy of multiple interventions is never clearly defined in published reviews. Methods and Results: We introduce the notion of a treatment hierarchy question that describes the criterion for choosing a specific treatment over one or more competing alternatives. For example, stakeholders might ask which treatment is most likely to improve mean survival by at least 2 years or which treatment is associated with the longest mean survival. The answers to these two questions are not necessarily the same. We discuss the most commonly used ranking metrics (quantities that describe or compare the estimated treatment-specific effects), how the metrics produce a treatment hierarchy and the type of treatment hierarchy question that each metric can answer. We show that the ranking metrics encompass the uncertainty in the estimation of the treatment effects in different ways, which results in different treatment hierarchies. Conclusions: Network meta-analyses that aim to rank treatments should state in the protocol the treatment hierarchy question they aim to address and employ the appropriate ranking metric to answer it.
stat
Prediction of the Subjective Impression of Passenger Car Roll Dynamics on the Driver Based on Frequency-Domain Characteristic Values
Characteristic values are essential for the design and assessment of driving dynamics during the early stages of the development process of passenger cars. Compared to other aspects of vehicle dynamics however, the relationship between measurable parameters and the subjective perception of vehicle roll dynamics has not been researched extensively. In this paper, a study is presented in which several variants of a vehicle with an electronically controlled suspension were rated by test subjects regarding its roll dynamics and measured in a standardized driving manoeuvre. The resulting subjective ratings and objective characteristic values are then used to derive models to predict the subjective liking of several roll dynamics aspects based on objective frequency-domain parameters. Finally, the resulting prediction models are validated using measurements of additional vehicles.
stat
Evaluating Ensemble Post-Processing for Wind Power Forecasts
Capturing the uncertainty in probabilistic wind power forecasts is challenging, especially when uncertain input variables, such as the weather play a role. Since ensemble weather predictions aim to capture this uncertainty in the weather system accurately, they can be used to propagate this uncertainty through to subsequent wind power forecasting models. However, as weather ensemble systems are known to be biased and underdispersed, meteorologists post-process the ensembles. This post-processing can successfully correct the biases in the weather variables but has not been evaluated thoroughly in the context of subsequent forecasts, such as wind power generation. The present paper evaluates multiple strategies for applying ensemble post-processing to probabilistic wind power forecasts. We use Ensemble Model Output Statistics (EMOS) as the post-processing method and evaluate four possible strategies: only using the raw ensembles without post-processing, a one-step strategy where only the weather ensembles are post-processed, a one-step strategy where we only post-process the power ensembles, and a two-step strategy where we post-process both the weather and power ensembles. Results show that post-processing improves the probabilistic forecasting accuracy and that the post-processing of the final power ensemble forecast is the crucial step.
stat
D2P-Fed: Differentially Private Federated Learning With Efficient Communication
In this paper, we propose the discrete Gaussian based differentially private federated learning (D2P-Fed), a unified scheme to achieve both differential privacy (DP) and communication efficiency in federated learning (FL). In particular, compared with the only prior work taking care of both aspects, D2P-Fed provides stronger privacy guarantee, better composability and smaller communication cost. The key idea is to apply the discrete Gaussian noise to the private data transmission. We provide complete analysis of the privacy guarantee, communication cost and convergence rate of D2P-Fed. We evaluated D2P-Fed on INFIMNIST and CIFAR10. The results show that D2P-Fed outperforms the-state-of-the-art by 4.7% to 13.0% in terms of model accuracy while saving one third of the communication cost.
stat
Dynamic principal component regression for forecasting functional time series in a group structure
When generating social policies and pricing annuity at national and subnational levels, it is essential both to forecast mortality accurately and ensure that forecasts at the subnational level add up to the forecasts at the national level. This has motivated recent developments in forecasting functional time series in a group structure, where static principal component analysis is used. In the presence of moderate to strong temporal dependence, static principal component analysis designed for independent and identically distributed functional data may be inadequate. Thus, through using the dynamic functional principal component analysis, we consider a functional time series forecasting method with static and dynamic principal component regression to forecast each series in a group structure. Through using the regional age-specific mortality rates in Japan obtained from the Japanese Mortality Database (2019), we investigate the point and interval forecast accuracies of our proposed extension, and subsequently make recommendations.
stat
Learning spatially-correlated temporal dictionaries for calcium imaging
Calcium imaging has become a fundamental neural imaging technique, aiming to recover the individual activity of hundreds of neurons in a cortical region. Current methods (mostly matrix factorization) are aimed at detecting neurons in the field-of-view and then inferring the corresponding time-traces. In this paper, we reverse the modeling and instead aim to minimize the spatial inference, while focusing on finding the set of temporal traces present in the data. We reframe the problem in a dictionary learning setting, where the dictionary contains the time-traces and the sparse coefficient are spatial maps. We adapt dictionary learning to calcium imaging by introducing constraints on the norms and correlations of the time-traces, and incorporating a hierarchical spatial filtering model that correlates the time-trace usage over the field-of-view. We demonstrate on synthetic and real data that our solution has advantages regarding initialization, implicitly inferring number of neurons and simultaneously detecting different neuronal types.
stat
A Priori Estimates of the Population Risk for Two-layer Neural Networks
New estimates for the population risk are established for two-layer neural networks. These estimates are nearly optimal in the sense that the error rates scale in the same way as the Monte Carlo error rates. They are equally effective in the over-parametrized regime when the network size is much larger than the size of the dataset. These new estimates are a priori in nature in the sense that the bounds depend only on some norms of the underlying functions to be fitted, not the parameters in the model, in contrast with most existing results which are a posteriori in nature. Using these a priori estimates, we provide a perspective for understanding why two-layer neural networks perform better than the related kernel methods.
stat
Elastic Coupled Co-clustering for Single-Cell Genomic Data
The recent advances in single-cell technologies have enabled us to profile genomic features at unprecedented resolution and datasets from multiple domains are available, including datasets that profile different types of genomic features and datasets that profile the same type of genomic features across different species. These datasets typically have different powers in identifying the unknown cell types through clustering, and data integration can potentially lead to a better performance of clustering algorithms. In this work, we formulate the problem in an unsupervised transfer learning framework, which utilizes knowledge learned from auxiliary dataset to improve the clustering performance of target dataset. The degree of shared information among the target and auxiliary datasets can vary, and their distributions can also be different. To address these challenges, we propose an elastic coupled co-clustering based transfer learning algorithm, by elastically propagating clustering knowledge obtained from the auxiliary dataset to the target dataset. Implementation on single-cell genomic datasets shows that our algorithm greatly improves clustering performance over the traditional learning algorithms. The source code and data sets are available at https://github.com/cuhklinlab/elasticC3.
stat
Drug-Drug Adverse Effect Prediction with Graph Co-Attention
Complex or co-existing diseases are commonly treated using drug combinations, which can lead to higher risk of adverse side effects. The detection of polypharmacy side effects is usually done in Phase IV clinical trials, but there are still plenty which remain undiscovered when the drugs are put on the market. Such accidents have been affecting an increasing proportion of the population (15% in the US now) and it is thus of high interest to be able to predict the potential side effects as early as possible. Systematic combinatorial screening of possible drug-drug interactions (DDI) is challenging and expensive. However, the recent significant increases in data availability from pharmaceutical research and development efforts offer a novel paradigm for recovering relevant insights for DDI prediction. Accordingly, several recent approaches focus on curating massive DDI datasets (with millions of examples) and training machine learning models on them. Here we propose a neural network architecture able to set state-of-the-art results on this task---using the type of the side-effect and the molecular structure of the drugs alone---by leveraging a co-attentional mechanism. In particular, we show the importance of integrating joint information from the drug pairs early on when learning each drug's representation.
stat
Causal Discovery of a River Network from its Extremes
Causal inference for extremes aims to discover cause and effect relations between large observed values of random variables. Over the last years, a number of methods have been proposed for solving the Hidden River Problem, with the Danube data set as benchmark. In this paper, we provide \QTree, a new and simple algorithm to solve the Hidden River Problem that outperforms existing methods. \QTree\ returns a directed graph and achieves almost perfect recovery on the Danube as well as on new data from the Lower Colorado River. It can handle missing data, has an automated parameter tuning procedure, and runs in time $O(n |V|^2)$, where $n$ is the number of observations and $|V|$ the number of nodes in the graph. \QTree\ relies on qualitative aspects of the max-linear Bayesian network model.
stat
Exact simulation of the Wright-Fisher diffusion
The Wright-Fisher family of diffusion processes is a widely used class of evolutionary models. However, simulation is difficult because there is no known closed-form formula for its transition function. In this article we demonstrate that it is in fact possible to simulate exactly from a broad class of Wright-Fisher diffusion processes and their bridges. For those diffusions corresponding to reversible, neutral evolution, our key idea is to exploit an eigenfunction expansion of the transition function; this approach even applies to its infinite-dimensional analogue, the Fleming-Viot process. We then develop an exact rejection algorithm for processes with more general drift functions, including those modelling natural selection, using ideas from retrospective simulation. Our approach also yields methods for exact simulation of the moment dual of the Wright-Fisher diffusion, the ancestral process of an infinite-leaf Kingman coalescent tree. We believe our new perspective on diffusion simulation holds promise for other models admitting a transition eigenfunction expansion.
stat
Tuning parameter calibration for prediction in personalized medicine
Personalized medicine has become an important part of medicine, for instance predicting individual drug responses based on genomic information. However, many current statistical methods are not tailored to this task, because they overlook the individual heterogeneity of patients. In this paper, we look at personalized medicine from a linear regression standpoint. We introduce an alternative version of the ridge estimator and target individuals by establishing a tuning parameter calibration scheme that minimizes prediction errors of individual patients. In stark contrast, classical schemes such as cross-validation minimize prediction errors only on average. We show that our pipeline is optimal in terms of oracle inequalities, fast, and highly effective both in simulations and on real data.
stat
Robust Sparse Bayesian Infinite Factor Models
Most of previous works and applications of Bayesian factor model have assumed the normal likelihood regardless of its validity. We propose a Bayesian factor model for heavy-tailed high-dimensional data based on multivariate Student-$t$ likelihood to obtain better covariance estimation. We use multiplicative gamma process shrinkage prior and factor number adaptation scheme proposed in Bhattacharya & Dunson [Biometrika (2011) 291-306]. Since a naive Gibbs sampler for the proposed model suffers from slow mixing, we propose a Markov Chain Monte Carlo algorithm where fast mixing of Hamiltonian Monte Carlo is exploited for some parameters in proposed model. Simulation results illustrate the gain in performance of covariance estimation for heavy-tailed high-dimensional data. We also provide a theoretical result that the posterior of the proposed model is weakly consistent under reasonable conditions. We conclude the paper with the application of proposed factor model on breast cancer metastasis prediction given DNA signature data of cancer cell.
stat
Lasso tuning through the flexible-weighted bootstrap
Regularized regression approaches such as the Lasso have been widely adopted for constructing sparse linear models in high-dimensional datasets. A complexity in fitting these models is the tuning of the parameters which control the level of introduced sparsity through penalization. The most common approach to select the penalty parameter is through $k$-fold cross-validation. While cross-validation is used to minimise the empirical prediction error, approaches such as the $m$-out-of-$n$ paired bootstrap which use smaller training datasets provide consistency in selecting the non-zero coefficients in the oracle model, performing well in an asymptotic setting but having limitations when $n$ is small. In fact, for models such as the Lasso there is a monotonic relationship between the size of training sets and the penalty parameter. We propose a generalization of these methods for selecting the regularization parameter based on a flexible-weighted bootstrap procedure that mimics the $m$-out-of-$n$ bootstrap and overcomes its challenges for all sample sizes. Through simulation studies we demonstrate that when selecting a penalty parameter, the choice of weights in the bootstrap procedure can be used to dictate the size of the penalty parameter and hence the sparsity of the fitted model. We empirically illustrate our weighted bootstrap procedure by applying the Lasso to integrate clinical and microRNA data in the modeling of Alzheimer's disease. In both the real and simulated data we find a narrow part of the parameter space to perform well, emulating an $m$-out-of-$n$ bootstrap, and that our procedure can be used to improve interpretation of other optimization heuristics.
stat
Bayesian Modeling of Spatial Molecular Profiling Data via Gaussian Process
The location, timing, and abundance of gene expression (both mRNA and proteins) within a tissue define the molecular mechanisms of cell functions. Recent technology breakthroughs in spatial molecular profiling, including imaging-based technologies and sequencing-based technologies, have enabled the comprehensive molecular characterization of single cells while preserving their spatial and morphological contexts. This new bioinformatics scenario calls for effective and robust computational methods to identify genes with spatial patterns. We represent a novel Bayesian hierarchical model to analyze spatial transcriptomics data, with several unique characteristics. It models the zero-inflated and over-dispersed counts by deploying a zero-inflated negative binomial model that greatly increases model stability and robustness. Besides, the Bayesian inference framework allows us to borrow strength in parameter estimation in a de novo fashion. As a result, the proposed model shows competitive performances in accuracy and robustness over existing methods in both simulation studies and two real data applications. The related R/C++ source code is available at https://github.com/Minzhe/BOOST-GP.
stat
Bias-Variance Trade-off and Overlearning in Dynamic Decision Problems
Modern Monte Carlo-type approaches to dynamic decision problems are reformulated as empirical loss minimization, allowing direct applications of classical results from statistical machine learning. These computational methods are then analyzed in this framework to demonstrate their effectiveness as well as their susceptibility to generalization error. Standard uses of classical results prove potential overlearning, thus bias-variance trade-off, by connecting over-trained networks to anticipating controls. On the other hand, non-asymptotic estimates based on Rademacher complexity show the convergence of these algorithms for sufficiently large training sets. A numerically studied stylized example illustrates these possibilities, including the importance of problem dimension in the degree of overlearning, and the effectiveness of this approach.
stat
Population pharmacokinetics of levobupivacaine during a transversus abdominis plane block in children
BACKGROUND:Levobupivacaine is commonly used during transversus abdominis plane block in pediatric patients. However, the dosing regimen is still empirical, and the pharmacokinetic properties of levobupivacaine are not considered. Here, the pharmacokinetics of levobupivacaine during an ultrasound-guided transversus abdominis plane block were evaluated to optimize dosing regimen, with regard to the between-subject variability and the volume of levobupivacaine injected.METHOD:The clinical trial (prospective, randomized, double-blind study protocol) was conducted in 40 children aged 1 to 5 years, who were scheduled for inguinal surgery. Each patient received 0.4 mg/kg of levobupivacaine with a volume of local anesthesia solution adjusted to 0.2 mL/kg of 0.2% or 0.4 mL/kg of 0.1% levobupivacaine. Blood samples were collected at 5, 15, 20, 25, 30, 45, 60, and 75 min following the block injection. The population pharmacokinetic analysis was performed using the NONMEM software.RESULTS:From the pharmacokinetic parameters obtained, median Cmax, tmax, and area under the concentration versus time curve were 0.315 mg/L, 17 min, and 41 mg/L. min, respectively. Between-subject variability (BSV) of clearance was explained by weight. At the dose regimen of 0.4 mg/kg, none of the infants showed signs of toxicity, but in 13 patients, transversus abdominis plane block failed. After analysis, BSV for absorption rate constant, distribution volume, and clearance were 81%, 47%, and 41%, respectively. Residual unexplained variability was estimated to be 14%.CONCLUSION:For improved efficiency in the pediatric population, the dose of levobupivacaine should be greater than 0.4 mg/kg. Children's weight should be considered to anticipate any risk of toxicity.
stat
Indirect Gaussian Graph Learning beyond Gaussianity
This paper studies how to capture dependency graph structures from real data which may not be Gaussian. Starting from marginal loss functions not necessarily derived from probability distributions, we utilize an additive over-parametrization with shrinkage to incorporate variable dependencies into the criterion. An iterative Gaussian graph learning algorithm is proposed with ease in implementation. Statistical analysis shows that the estimators achieve satisfactory accuracy with the error measured in terms of a proper Bregman divergence. Real-life examples in different settings are given to demonstrate the efficacy of the proposed methodology.
stat
The sceptical Bayes factor for the assessment of replication success
There is an urgent need to develop new methodology for the design and analysis of replication studies. Recently, a reverse-Bayes method called the sceptical $p$-value has been proposed for this purpose; the inversion of Bayes' theorem allows us to mathematically formalise the notion of scepticism, which in turn can be used to assess the agreement between the findings of an original study and its replication. However, despite its Bayesian nature, the method relies on tail probabilities as primary inference tools. Here, we present an extension that uses Bayes factors as an alternative means of quantifying evidence. This leads to a new measure for evaluating replication success, the sceptical Bayes factor: Conceptually, the sceptical Bayes factor provides a bound for the maximum level of evidence at which an advocate of the original finding can convince a sceptic who does not trust it, in light of the replication data. While the sceptical $p$-value can only quantify the conflict between the sceptical prior and the observed replication data, the sceptical Bayes factor also takes into account how likely the data are under the posterior distribution of the effect conditional on the original study, allowing for stronger statements about replication success. Moreover, the proposed method elegantly combines traditional notions of replication success; it ensures that both studies need to show evidence against the null, while at the same time penalising incompatibility of their effect estimates. Case studies from the Reproducibility Project: Cancer Biology and the Social Sciences Replication Project show the advantages of the method for the quantitative assessment of replicability.
stat
Scaling Bayesian inference of mixed multinomial logit models to very large datasets
Variational inference methods have been shown to lead to significant improvements in the computational efficiency of approximate Bayesian inference in mixed multinomial logit models when compared to standard Markov-chain Monte Carlo (MCMC) methods without compromising accuracy. However, despite their demonstrated efficiency gains, existing methods still suffer from important limitations that prevent them to scale to very large datasets, while providing the flexibility to allow for rich prior distributions and to capture complex posterior distributions. In this paper, we propose an Amortized Variational Inference approach that leverages stochastic backpropagation, automatic differentiation and GPU-accelerated computation, for effectively scaling Bayesian inference in Mixed Multinomial Logit models to very large datasets. Moreover, we show how normalizing flows can be used to increase the flexibility of the variational posterior approximations. Through an extensive simulation study, we empirically show that the proposed approach is able to achieve computational speedups of multiple orders of magnitude over traditional MSLE and MCMC approaches for large datasets without compromising estimation accuracy.
stat
A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime
The automated construction of coarse-grained models represents a pivotal component in computer simulation of physical systems and is a key enabler in various analysis and design tasks related to uncertainty quantification. Pertinent methods are severely inhibited by the high-dimension of the parametric input and the limited number of training input/output pairs that can be generated when computationally demanding forward models are considered. Such cases are frequently encountered in the modeling of random heterogeneous media where the scale of the microstructure necessitates the use of high-dimensional random vectors and very fine discretizations of the governing equations. The present paper proposes a probabilistic Machine Learning framework that is capable of operating in the presence of Small Data by exploiting aspects of the physical structure of the problem as well as contextual knowledge. As a result, it can perform comparably well under extrapolative conditions. It unifies the tasks of dimensionality and model-order reduction through an encoder-decoder scheme that simultaneously identifies a sparse set of salient lower-dimensional microstructural features and calibrates an inexpensive, coarse-grained model which is predictive of the output. Information loss is accounted for and quantified in the form of probabilistic predictive estimates. The learning engine is based on Stochastic Variational Inference. We demonstrate how the variational objectives can be used not only to train the coarse-grained model, but also to suggest refinements that lead to improved predictions.
stat
Functional Regularisation for Continual Learning with Gaussian Processes
We introduce a framework for Continual Learning (CL) based on Bayesian inference over the function space rather than the parameters of a deep neural network. This method, referred to as functional regularisation for Continual Learning, avoids forgetting a previous task by constructing and memorising an approximate posterior belief over the underlying task-specific function. To achieve this we rely on a Gaussian process obtained by treating the weights of the last layer of a neural network as random and Gaussian distributed. Then, the training algorithm sequentially encounters tasks and constructs posterior beliefs over the task-specific functions by using inducing point sparse Gaussian process methods. At each step a new task is first learnt and then a summary is constructed consisting of (i) inducing inputs -- a fixed-size subset of the task inputs selected such that it optimally represents the task -- and (ii) a posterior distribution over the function values at these inputs. This summary then regularises learning of future tasks, through Kullback-Leibler regularisation terms. Our method thus unites approaches focused on (pseudo-)rehearsal with those derived from a sequential Bayesian inference perspective in a principled way, leading to strong results on accepted benchmarks.
stat
Optimal $2^K$ Paired Comparison Designs for Third-Order Interactions
In psychological research often paired comparisons are used in which either full or partial profiles of the alternatives described by a common set of two-level attributes are presented. For this situation the problem of finding optimal designs is considered in the presence of third-order interactions.
stat
Convergence Guarantees for Adaptive Bayesian Quadrature Methods
Adaptive Bayesian quadrature (ABQ) is a powerful approach to numerical integration that empirically compares favorably with Monte Carlo integration on problems of medium dimensionality (where non-adaptive quadrature is not competitive). Its key ingredient is an acquisition function that changes as a function of previously collected values of the integrand. While this adaptivity appears to be empirically powerful, it complicates analysis. Consequently, there are no theoretical guarantees so far for this class of methods. In this work, for a broad class of adaptive Bayesian quadrature methods, we prove consistency, deriving non-tight but informative convergence rates. To do so we introduce a new concept we call weak adaptivity. Our results identify a large and flexible class of adaptive Bayesian quadrature rules as consistent, within which practitioners can develop empirically efficient methods.
stat
Robust Correction of Sampling Bias Using Cumulative Distribution Functions
Varying domains and biased datasets can lead to differences between the training and the target distributions, known as covariate shift. Current approaches for alleviating this often rely on estimating the ratio of training and target probability density functions. These techniques require parameter tuning and can be unstable across different datasets. We present a new method for handling covariate shift using the empirical cumulative distribution function estimates of the target distribution by a rigorous generalization of a recent idea proposed by Vapnik and Izmailov. Further, we show experimentally that our method is more robust in its predictions, is not reliant on parameter tuning and shows similar classification performance compared to the current state-of-the-art techniques on synthetic and real datasets.
stat
A simple correction for COVID-19 sampling bias
COVID-19 testing has become a standard approach for estimating prevalence which then assist in public health decision making to contain and mitigate the spread of the disease. The sampling designs used are often biased in that they do not reflect the true underlying populations. For instance, individuals with strong symptoms are more likely to be tested than those with no symptoms. This results in biased estimates of prevalence (too high). Typical post-sampling corrections are not always possible. Here we present a simple bias correction methodology derived and adapted from a correction for publication bias in meta analysis studies. The methodology is general enough to allow a wide variety of customization making it more useful in practice. Implementation is easily done using already collected information. Via a simulation and two real datasets, we show that the bias corrections can provide dramatic reductions in estimation error.
stat
Variance decompositions for extensive-form games
Quantitative measures of randomness in games are useful for game design and have implications for gambling law. We treat the outcome of a game as a random variable and derive a closed-form expression and estimator for the variance in the outcome attributable to a player of the game. We analyze poker hands to show that randomness in the cards dealt has little influence on the outcomes of each hand. A simple example is given to demonstrate how variance decompositions can be used to measure other interesting properties of games.
stat
Variable selection for transportability
Transportability provides a principled framework to address the problem of applying study results to new populations. Here, we consider the problem of selecting variables to include in transport estimators. We provide a brief overview of the transportability framework and illustrate that while selection diagrams are a vital first step in variable selection, these graphs alone identify a sufficient but not strictly necessary set of variables for generating an unbiased transport estimate. Next, we conduct a simulation experiment assessing the impact of including unnecessary variables on the performance of the parametric g-computation transport estimator. Our results highlight that the types of variables included can affect the bias, variance, and mean squared error of the estimates. We find that addition of variables that are not causes of the outcome but whose distributions differ between the source and target populations can increase the variance and mean squared error of the transported estimates. On the other hand, inclusion of variables that are causes of the outcome (regardless of whether they modify the causal contrast of interest or differ in distribution between the populations) reduces the variance of the estimates without increasing the bias. Finally, exclusion of variables that cause the outcome but do not modify the causal contrast of interest does not increase bias. These findings suggest that variable selection approaches for transport should prioritize identifying and including all causes of the outcome in the study population rather than focusing on variables whose distribution may differ between the study sample and target population.
stat
Multi-Decoder RNN Autoencoder Based on Variational Bayes Method
Clustering algorithms have wide applications and play an important role in data analysis fields including time series data analysis. However, in time series analysis, most of the algorithms used signal shape features or the initial value of hidden variable of a neural network. Little has been discussed on the methods based on the generative model of the time series. In this paper, we propose a new clustering algorithm focusing on the generative process of the signal with a recurrent neural network and the variational Bayes method. Our experiments show that the proposed algorithm not only has a robustness against for phase shift, amplitude and signal length variations but also provide a flexible clustering based on the property of the variational Bayes method.
stat
Machine Learning vs Statistical Methods for Time Series Forecasting: Size Matters
Time series forecasting is one of the most active research topics. Machine learning methods have been increasingly adopted to solve these predictive tasks. However, in a recent work, these were shown to systematically present a lower predictive performance relative to simple statistical methods. In this work, we counter these results. We show that these are only valid under an extremely low sample size. Using a learning curve method, our results suggest that machine learning methods improve their relative predictive performance as the sample size grows. The code to reproduce the experiments is available at https://github.com/vcerqueira/MLforForecasting.
stat
Analyzing CART
Decision trees with binary splits are popularly constructed using Classification and Regression Trees (CART) methodology. For binary classification and regression models, this approach recursively divides the data into two near-homogenous daughter nodes according to a split point that maximizes the reduction in sum of squares error (the impurity) along a particular variable. This paper aims to study the bias and adaptive properties of regression trees constructed with CART. In doing so, we derive an interesting connection between the bias and the mean decrease in impurity (MDI) measure of variable importance---a tool widely used for model interpretability---defined as the sum of impurity reductions over all non-terminal nodes in the tree. In particular, we show that the probability content of a terminal subnode for a variable is small when the MDI for that variable is large and that this relationship is exponential---confirming theoretically that decision trees with CART have small bias and are adaptive to signal strength and direction. Finally, we apply these individual tree bounds to tree ensembles and show consistency of Breiman's random forests. The context is surprisingly general and applies to a wide variety of multivariable data generating distributions and regression functions. The main technical tool is an exact characterization of the conditional probability content of the daughter nodes arising from an optimal split, in terms of the partial dependence function and reduction in impurity.
stat
Random Partitioning and Distribution-based Thresholding for Iterative Variable Screening in High Dimensions
In big data analysis, a simple task such as linear regression can become very challenging as the variable dimension $p$ grows. As a result, variable screening is inevitable in many scientific studies. In recent years, randomized algorithms have become a new trend and are playing an increasingly important role for large scale data analysis. In this article, we combine the ideas of variable screening and random partitioning to propose a new iterative variable screening method. For moderate sized $p$ of order $O(n^{2-\delta})$, we propose a basic algorithm that adopts a distribution-based thresholding rule. For very large $p$, we further propose a two-stage procedure. This two-stage procedure first performs a random partitioning to divide predictors into subsets of manageable size of order $O(n^{2-\delta})$ for variable screening, where $\delta >0$ can be an arbitrarily small positive number. Random partitioning is repeated a few times. Next, the final estimate of variable subset is obtained by integrating results obtained from multiple random partitions. Simulation studies show that our method works well and outperforms some renowned competitors. Real data applications are presented. Our algorithms are able to handle predictors in the size of millions.
stat
Time-Varying Coefficient Model Estimation Through Radial Basis Functions
In this paper we estimate the dynamic parameters of a time-varying coefficient model through radial kernel functions in the context of a longitudinal study. Our proposal is based on a linear combination of weighted kernel functions involving a bandwidth, centered around a given set of time points. In addition, we study different alternatives of estimation and inference including a Frequentist approach using weighted least squares along with bootstrap methods, and a Bayesian approach through both Markov chain Monte Carlo and variational methods. We compare the estimation strategies mention above with each other, and our radial kernel functions proposal with an expansion based on regression spline, by means of an extensive simulation study considering multiples scenarios in terms of sample size, number of repeated measurements, and subject-specific correlation. Our experiments show that the capabilities of our proposal based on radial kernel functions are indeed comparable with or even better than those obtained from regression splines. We illustrate our methodology by analyzing data from two AIDS clinical studies.
stat
Semiparametric Imputation Using Conditional Gaussian Mixture Models under Item Nonresponse
Imputation is a popular technique for handling item nonresponse in survey sampling. Parametric imputation is based on a parametric model for imputation and is less robust against the failure of the imputation model. Nonparametric imputation is fully robust but is not applicable when the dimension of covariates is large due to the curse of dimensionality. Semiparametric imputation is another robust imputation based on a flexible model where the number of model parameters can increase with the sample size. In this paper, we propose another semiparametric imputation based on a more flexible model assumption than the Gaussian mixture model. In the proposed mixture model, we assume a conditional Gaussian model for the study variable given the auxiliary variables, but the marginal distribution of the auxiliary variables is not necessarily Gaussian. We show that the proposed mixture model achieves a lower approximation error bound to any unknown target density than the Gaussian mixture model in terms of the Kullback-Leibler divergence. The proposed method is applicable to high dimensional covariate problem by including a penalty function in the conditional log-likelihood function. The proposed method is applied to 2017 Korean Household Income and Expenditure Survey conducted by Statistics Korea. Supplementary material is available online.
stat
A Comparison Study on Nonlinear Dimension Reduction Methods with Kernel Variations: Visualization, Optimization and Classification
Because of high dimensionality, correlation among covariates, and noise contained in data, dimension reduction (DR) techniques are often employed to the application of machine learning algorithms. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and their kernel variants (KPCA, KLDA) are among the most popular DR methods. Recently, Supervised Kernel Principal Component Analysis (SKPCA) has been shown as another successful alternative. In this paper, brief reviews of these popular techniques are presented first. We then conduct a comparative performance study based on three simulated datasets, after which the performance of the techniques are evaluated through application to a pattern recognition problem in face image analysis. The gender classification problem is considered on MORPH-II and FG-NET, two popular longitudinal face aging databases. Several feature extraction methods are used, including biologically-inspired features (BIF), local binary patterns (LBP), histogram of oriented gradients (HOG), and the Active Appearance Model (AAM). After applications of DR methods, a linear support vector machine (SVM) is deployed with gender classification accuracy rates exceeding 95% on MORPH-II, competitive with benchmark results. A parallel computational approach is also proposed, attaining faster processing speeds and similar recognition rates on MORPH-II. Our computational approach can be applied to practical gender classification systems and generalized to other face analysis tasks, such as race classification and age prediction.
stat
Learning Output Embeddings in Structured Prediction
A powerful and flexible approach to structured prediction consists in embedding the structured objects to be predicted into a feature space of possibly infinite dimension by means of output kernels, and then, solving a regression problem in this output space. A prediction in the original space is computed by solving a pre-image problem. In such an approach, the embedding, linked to the target loss, is defined prior to the learning phase. In this work, we propose to jointly learn a finite approximation of the output embedding and the regression function into the new feature space. For that purpose, we leverage a priori information on the outputs and also unexploited unsupervised output data, which are both often available in structured prediction problems. We prove that the resulting structured predictor is a consistent estimator, and derive an excess risk bound. Moreover, the novel structured prediction tool enjoys a significantly smaller computational complexity than former output kernel methods. The approach empirically tested on various structured prediction problems reveals to be versatile and able to handle large datasets.
stat
Iterative Statistical Linear Regression for Gaussian Smoothing in Continuous-Time Non-linear Stochastic Dynamic Systems
This paper considers approximate smoothing for discretely observed non-linear stochastic differential equations. The problem is tackled by developing methods for linearising stochastic differential equations with respect to an arbitrary Gaussian process. Two methods are developed based on 1) taking the limit of statistical linear regression of the discretised process and 2) minimising an upper bound to a cost functional. Their difference is manifested in the diffusion of the approximate processes. This in turn gives novel derivations of pre-existing Gaussian smoothers when Method 1 is used and a new class of Gaussian smoothers when Method 2 is used. Furthermore, based on the aforementioned development the iterative Gaussian smoothers in discrete-time are generalised to the continuous-time setting by iteratively re-linearising the stochastic differential equation with respect to the current Gaussian process approximation to the smoothed process. The method is verified in two challenging tracking problems, a reentry problem and a radar tracked coordinated turn model with state dependent diffusion. The results show that the method has better estimation accuracy than state-of-the-art smoothers.
stat
Exploration of heterogeneous treatment effects via concave fusion
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges to achieve this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment. To address this problem, we consider a heterogeneous regression model by assuming that the coefficient for treatment variables are subject-dependent and belong to different subgroups with unknown grouping information. We develop a concave fusion penalized method for automatically estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator with a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects based on the proposed method. We evaluate the performance of the proposed method by simulation studies and illustrate its application by analyzing the data from the AIDS Clinical Trials Group Study.
stat
An Imputation model by Dirichlet Process Mixture of Elliptical Copulas for Data of Mixed Type
Copula-based methods provide a flexible approach to build missing data imputation models of multivariate data of mixed types. However, the choice of copula function is an open question. We consider a Bayesian nonparametric approach by using an infinite mixture of elliptical copulas induced by a Dirichlet process mixture to build a flexible copula function. A slice sampling algorithm is used to sample from the infinite dimensional parameter space. We extend the work on prior parallel tempering used in finite mixture models to the Dirichlet process mixture model to overcome the mixing issue in multimodal distributions. Using simulations, we demonstrate that the infinite mixture copula model provides a better overall fit compared to their single component counterparts, and performs better at capturing tail dependence features of the data. Simulations further show that our proposed model achieves more accurate imputation especially for continuous variables and better inferential results in some analytic models. The proposed model is applied to a medical data set of acute stroke patients in Australia.
stat
Short Communication: Detecting Possibly Frequent Change-points: Wild Binary Segmentation 2
This article comments on the new version of wild binary segmentation 2. Wild Binary Segmentation 2 and Steepest-drop Model Selection has made improvements on changepoint analysis especially on reducing the computational cost. However, WBS2 tends to overestimate as WBS and the threshold does not work appropriately on short sequences without changepoints.
stat
Spectral Simulation of Functional Time Series
We develop methodology allowing to simulate a stationary functional time series defined by means of its spectral density operators. Our framework is general, in that it encompasses any such stationary functional time series, whether linear or not. The methodology manifests particularly significant computational gains if the spectral density operators are specified by means of their eigendecomposition or as a filtering of white noise. In the special case of linear processes, we determine the analytical expressions for the spectral density operators of functional autoregressive (fractionally integrated) moving average processes, and leverage these as part of our spectral approach, leading to substantial improvements over time-domain simulation methods in some cases. The methods are implemented as an R package (specsimfts) accompanied by several demo files that are easy to modify and can be easily used by researchers aiming to probe the finite-sample performance of their functional time series methodology by means of simulation.
stat
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
The point estimates of ReLU classification networks---arguably the most widely used neural network architecture---have been shown to yield arbitrarily high confidence far away from the training data. This architecture, in conjunction with a maximum a posteriori estimation scheme, is thus not calibrated nor robust. Approximate Bayesian inference has been empirically demonstrated to improve predictive uncertainty in neural networks, although the theoretical analysis of such Bayesian approximations is limited. We theoretically analyze approximate Gaussian distributions on the weights of ReLU networks and show that they fix the overconfidence problem. Furthermore, we show that even a simplistic, thus cheap, Bayesian approximation, also fixes these issues. This indicates that a sufficient condition for a calibrated uncertainty on a ReLU network is "to be a bit Bayesian". These theoretical results validate the usage of last-layer Bayesian approximation and motivate a range of a fidelity-cost trade-off. We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
stat
Probabilistic supervised learning
Predictive modelling and supervised learning are central to modern data science. With predictions from an ever-expanding number of supervised black-box strategies - e.g., kernel methods, random forests, deep learning aka neural networks - being employed as a basis for decision making processes, it is crucial to understand the statistical uncertainty associated with these predictions. As a general means to approach the issue, we present an overarching framework for black-box prediction strategies that not only predict the target but also their own predictions' uncertainty. Moreover, the framework allows for fair assessment and comparison of disparate prediction strategies. For this, we formally consider strategies capable of predicting full distributions from feature variables, so-called probabilistic supervised learning strategies. Our work draws from prior work including Bayesian statistics, information theory, and modern supervised machine learning, and in a novel synthesis leads to (a) new theoretical insights such as a probabilistic bias-variance decomposition and an entropic formulation of prediction, as well as to (b) new algorithms and meta-algorithms, such as composite prediction strategies, probabilistic boosting and bagging, and a probabilistic predictive independence test. Our black-box formulation also leads (c) to a new modular interface view on probabilistic supervised learning and a modelling workflow API design, which we have implemented in the newly released skpro machine learning toolbox, extending the familiar modelling interface and meta-modelling functionality of sklearn. The skpro package provides interfaces for construction, composition, and tuning of probabilistic supervised learning strategies, together with orchestration features for validation and comparison of any such strategy - be it frequentist, Bayesian, or other.
stat
Do NHL goalies get hot in the playoffs? A multilevel logistic regression analysis
The hot-hand theory posits that an athlete who has performed well in the recent past will perform better in the present. We use multilevel logistic regression to test this theory for National Hockey League playoff goaltenders, controlling for a variety of shot-related and game-related characteristics. Our data consists of 48,431 shots for 93 goaltenders in the 2008-2016 playoffs. Using a wide range of shot-based and time-based windows to quantify recent save performance, we consistently find that good recent save performance has a negative effect on the next-shot save probability, which contradicts the hot-hand theory.
stat
Global Trends and Predictors of Face Mask Usage During the COVID-19 Pandemic
Background: Guidelines and recommendations from public health authorities related to face masks have been essential in containing the COVID-19 pandemic. We assessed the prevalence and correlates of mask usage during the pandemic. Methods: We examined a total of 13,723,810 responses to a daily cross-sectional representative online survey in 38 countries who completed from April 23, 2020 to October 31, 2020 and reported having been in public at least once during the last seven days. The outcome was individual face mask usage in public settings, and the predictors were country fixed effects, country-level mask policy stringency, calendar time, individual sociodemographic factors, and health prevention behaviors. Associations were modelled using survey-weighted multivariable logistic regression. Findings: Mask-wearing varied over time and across the 38 countries. While some countries consistently showed high prevalence throughout, in other countries mask usage increased gradually, and a few other countries remained at low prevalence. Controlling for time and country fixed effects, sociodemographic factors (older age, female gender, education, urbanicity) and stricter mask-related policies were significantly associated with higher mask usage in public settings, while social behaviors considered risky in the context of the pandemic (going out to large events, restaurants, shopping centers, and socializing outside of the household) were associated with lower mask use. Interpretation: The decision to wear a face mask in public settings is significantly associated with sociodemographic factors, risky social behaviors, and mask policies. This has important implications for health prevention policies and messaging, including the potential need for more targeted policy and messaging design.
stat
On the Interplay Between Exposure Misclassification and Informative Cluster Size
In this paper we study the impact of exposure misclassification when cluster size is potentially informative (i.e., related to outcomes) and when misclassification is differential by cluster size. First, we show that misclassification in an exposure related to cluster size can induce informativeness when cluster size would otherwise be non-informative. Second, we show that misclassification that is differential by informative cluster size can not only attenuate estimates of exposure effects but even inflate or reverse the sign of estimates. To correct for bias in estimating marginal parameters, we propose two frameworks: (i) an observed likelihood approach for joint marginalized models of cluster size and outcomes and (ii) an expected estimating equations approach. Although we focus on estimating marginal parameters, a corollary is that the observed likelihood approach permits valid inference for conditional parameters as well. Using data from the Nurses Health Study II, we compare the results of the proposed correction methods when applied to motivating data on the multigenerational effect of in-utero diethylstilbestrol exposure on attention-deficit/hyperactivity disorder in 106,198 children of 47,450 nurses.
stat
A super scalable algorithm for short segment detection
In many applications such as copy number variant (CNV) detection, the goal is to identify short segments on which the observations have different means or medians from the background. Those segments are usually short and hidden in a long sequence, and hence are very challenging to find. We study a super scalable short segment (4S) detection algorithm in this paper. This nonparametric method clusters the locations where the observations exceed a threshold for segment detection. It is computationally efficient and does not rely on Gaussian noise assumption. Moreover, we develop a framework to assign significance levels for detected segments. We demonstrate the advantages of our proposed method by theoretical, simulation, and real data studies.
stat
Restricted Spatial Regression Methods: Implications for Inference
The issue of spatial confounding between the spatial random effect and the fixed effects in regression analyses has been identified as a concern in the statistical literature. Multiple authors have offered perspectives and potential solutions. In this paper, for the areal spatial data setting, we show that many of the methods designed to alleviate spatial confounding can be viewed as special cases of a general class of models. We refer to this class as Restricted Spatial Regression (RSR) models, extending terminology currently in use. We offer a mathematically based exploration of the impact that RSR methods have on inference for regression coefficients for the linear model. We then explore whether these results hold in the generalized linear model setting for count data using simulations. We show that the use of these methods have counterintuitive consequences which defy the general expectations in the literature. In particular, our results and the accompanying simulations suggest that RSR methods will typically perform worse than non-spatial methods. These results have important implications for dimension reduction strategies in spatial regression modeling. Specifically, we demonstrate that the problems with RSR models cannot be fixed with a selection of "better" spatial basis vectors or dimension reduction techniques.
stat
A posteriori Trading-inspired Model-free Time Series Segmentation
Within the context of multivariate time series segmentation this paper proposes a method inspired by a posteriori optimal trading. After a normalization step time series are treated channel-wise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Resulting trading signals as well as resulting trading signals obtained on the reversed time series are used for unsupervised labeling, before a consensus over channels is reached that determines segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models, and found to be consistently faster while producing more intuitive results.
stat
Variational Bayes method for ODE parameter estimation with application to time-varying SIR model for COVID-19 epidemic
Ordinary differential equation (ODE) is a mathematical model used in many application areas such as climatology, bioinformatics, and chemical engineering with its intuitive appeal to modeling. Despite ODE's wide usage in modeling, frequent absence of their analytic solutions makes it difficult to estimate ODE parameters from the data, especially when the model has lots of variables and parameters. This paper proposes a Bayesian ODE parameter estimating algorithm which is fast and accurate even for models with many parameters. The proposed method approximates an ODE model with a state-space model based on equations of a numeric solver. It allows fast estimation by avoiding computations of a whole numerical solution in the likelihood. The posterior is obtained by a variational Bayes method, more specifically, the approximate Riemannian conjugate gradient method (Honkela et al. 2010), which avoids samplings based on Markov chain Monte Carlo (MCMC). In simulation studies, we compared the speed and performance of the proposed method with existing methods. The proposed method showed the best performance in the reproduction of the true ODE curve with strong stability as well as the fastest computation, especially in a large model with more than 30 parameters. As a real-world data application, a SIR model with time-varying parameters was fitted to the COVID-19 data. Taking advantage of our proposed algorithm, 30 parameters were adequately fitted for each country.
stat
Firth's logistic regression with rare events: accurate effect estimates AND predictions?
Firth-type logistic regression has become a standard approach for the analysis of binary outcomes with small samples. Whereas it reduces the bias in maximum likelihood estimates of coefficients, bias towards 1/2 is introduced in the predicted probabilities. The stronger the imbalance of the outcome, the more severe is the bias in the predicted probabilities. We propose two simple modifications of Firth-type logistic regression resulting in unbiased predicted probabilities. The first corrects the predicted probabilities by a post-hoc adjustment of the intercept. The other is based on an alternative formulation of Firth-types estimation as an iterative data augmentation procedure. Our suggested modification consists in introducing an indicator variable which distinguishes between original and pseudo observations in the augmented data. In a comprehensive simulation study these approaches are compared to other attempts to improve predictions based on Firth-type penalization and to other published penalization strategies intended for routine use. For instance, we consider a recently suggested compromise between maximum likelihood and Firth-type logistic regression. Simulation results are scrutinized both with regard to prediction and regression coefficients. Finally, the methods considered are illustrated and compared for a study on arterial closure devices in minimally invasive cardiac surgery.
stat
Assume, Augment and Learn: Unsupervised Few-Shot Meta-Learning via Random Labels and Data Augmentation
The field of few-shot learning has been laboriously explored in the supervised setting, where per-class labels are available. On the other hand, the unsupervised few-shot learning setting, where no labels of any kind are required, has seen little investigation. We propose a method, named Assume, Augment and Learn or AAL, for generating few-shot tasks using unlabeled data. We randomly label a random subset of images from an unlabeled dataset to generate a support set. Then by applying data augmentation on the support set's images, and reusing the support set's labels, we obtain a target set. The resulting few-shot tasks can be used to train any standard meta-learning framework. Once trained, such a model, can be directly applied on small real-labeled datasets without any changes or fine-tuning required. In our experiments, the learned models achieve good generalization performance in a variety of established few-shot learning tasks on Omniglot and Mini-Imagenet.
stat
The convergence of the Stochastic Gradient Descent (SGD) : a self-contained proof
We give here a proof of the convergence of the Stochastic Gradient Descent (SGD) in a self-contained manner.
stat
A semiparametric spatiotemporal Bayesian model for the bulk and extremes of the Fosberg Fire Weather Index
Large wildfires pose a major environmental concern, and precise maps of fire risk can improve disaster relief planning. Fosberg Fire Weather Index (FFWI) is often used to measure wildfire risk; FFWI exhibits non-Gaussian marginal distributions as well as strong spatiotemporal extremal dependence and thus, modeling FFWI using geostatistical models like Gaussian processes is questionable. Extreme value theory (EVT)-driven models like max-stable processes are theoretically appealing but are computationally demanding and applicable only for threshold exceedances or block maxima. Disaster management policies often consider moderate-to-extreme quantiles of climate parameters and hence, joint modeling of the bulk and the tail of the data is required. In this paper, we consider a Dirichlet process mixture of spatial skew-t processes that can flexibly model the bulk as well as the tail. The proposed model has nonstationary mean and covariance structure, and also nonzero spatiotemporal extremal dependence. A simulation study demonstrates that the proposed model has better spatial prediction performance compared to some competing models. We develop spatial maps of FFWI medians and extremes, and discuss the wildfire risk throughout the Santa Ana region of California.
stat
Normalizing Flows: An Introduction and Review of Current Methods
Normalizing Flows are generative models which produce tractable distributions where both sampling and density evaluation can be efficient and exact. The goal of this survey article is to give a coherent and comprehensive review of the literature around the construction and use of Normalizing Flows for distribution learning. We aim to provide context and explanation of the models, review current state-of-the-art literature, and identify open questions and promising future directions.
stat
Uncovering the structure of clinical EEG signals with self-supervised learning
Objective. Supervised learning paradigms are often limited by the amount of labeled data that is available. This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG), where labeling can be costly in terms of specialized expertise and human processing time. Consequently, deep learning architectures designed to learn on EEG data have yielded relatively shallow models and performances at best similar to those of traditional feature-based approaches. However, in most situations, unlabeled data is available in abundance. By extracting information from this unlabeled data, it might be possible to reach competitive performance with deep neural networks despite limited access to labels. Approach. We investigated self-supervised learning (SSL), a promising technique for discovering structure in unlabeled data, to learn representations of EEG signals. Specifically, we explored two tasks based on temporal context prediction as well as contrastive predictive coding on two clinically-relevant problems: EEG-based sleep staging and pathology detection. We conducted experiments on two large public datasets with thousands of recordings and performed baseline comparisons with purely supervised and hand-engineered approaches. Main results. Linear classifiers trained on SSL-learned features consistently outperformed purely supervised deep neural networks in low-labeled data regimes while reaching competitive performance when all labels were available. Additionally, the embeddings learned with each method revealed clear latent structures related to physiological and clinical phenomena, such as age effects. Significance. We demonstrate the benefit of self-supervised learning approaches on EEG data. Our results suggest that SSL may pave the way to a wider use of deep learning models on EEG data.
stat
Improving VAEs' Robustness to Adversarial Attack
Variational autoencoders (VAEs) have recently been shown to be vulnerable to adversarial attacks, wherein they are fooled into reconstructing a chosen target image. However, how to defend against such attacks remains an open problem. We make significant advances in addressing this issue by introducing methods for producing adversarially robust VAEs. Namely, we first demonstrate that methods proposed to obtain disentangled latent representations produce VAEs that are more robust to these attacks. However, this robustness comes at the cost of reducing the quality of the reconstructions. We ameliorate this by applying disentangling methods to hierarchical VAEs. The resulting models produce high-fidelity autoencoders that are also adversarially robust. We confirm their capabilities on several different datasets and with current state-of-the-art VAE adversarial attacks, and also show that they increase the robustness of downstream tasks to attack.
stat
A Variational Inference Framework for Inverse Problems
We present a framework for fitting inverse problem models via variational Bayes approximations. This methodology guarantees flexibility to statistical model specification for a broad range of applications, good accuracy performances and reduced model fitting times, when compared with standard Markov chain Monte Carlo methods. The message passing and factor graph fragment approach to variational Bayes we describe facilitates streamlined implementation of approximate inference algorithms and forms the basis to software development. Such approach allows for supple inclusion of numerous response distributions and penalizations into the inverse problem model. Albeit our analysis is circumscribed to one- and two-dimensional response variables, we lay down an infrastructure where streamlining algorithmic steps based on nullifying weak interactions between variables are extendible to inverse problems in higher dimensions. Image processing applications motivated by biomedical and archaeological problems are included as illustrations.
stat
Multivariate goodness-of-Fit tests based on Wasserstein distance
Goodness-of-fit tests based on the empirical Wasserstein distance are proposed for simple and composite null hypotheses involving general multivariate distributions. For group families, the procedure is to be implemented after preliminary reduction of the data via invariance.This property allows for calculation of exact critical values and p-values at finite sample sizes. Applications include testing for location--scale families and testing for families arising from affine transformations, such as elliptical distributions with given standard radial density and unspecified location vector and scatter matrix. A novel test for multivariate normality with unspecified mean vector and covariance matrix arises as a special case. For more general parametric families, we propose a parametric bootstrap procedure to calculate critical values. The lack of asymptotic distribution theory for the empirical Wasserstein distance means that the validity of the parametric bootstrap under the null hypothesis remains a conjecture. Nevertheless, we show that the test is consistent against fixed alternatives. To this end, we prove a uniform law of large numbers for the empirical distribution in Wasserstein distance, where the uniformity is over any class of underlying distributions satisfying a uniform integrability condition but no additional moment assumptions. The calculation of test statistics boils down to solving the well-studied semi-discrete optimal transport problem. Extensive numerical experiments demonstrate the practical feasibility and the excellent performance of the proposed tests for the Wasserstein distance of order p = 1 and p = 2 and for dimensions at least up to d = 5. The simulations also lend support to the conjecture of the asymptotic validity of the parametric bootstrap.
stat
Flexible co-data learning for high-dimensional prediction
Clinical research often focuses on complex traits in which many variables play a role in mechanisms driving, or curing, diseases. Clinical prediction is hard when data is high-dimensional, but additional information, like domain knowledge and previously published studies, may be helpful to improve predictions. Such complementary data, or co-data, provide information on the covariates, such as genomic location or p-values from external studies. Our method enables exploiting multiple and various co-data sources to improve predictions. We use discrete or continuous co-data to define possibly overlapping or hierarchically structured groups of covariates. These are then used to estimate adaptive multi-group ridge penalties for generalised linear and Cox models. We combine empirical Bayes estimation of group penalty hyperparameters with an extra level of shrinkage. This renders a uniquely flexible framework as any type of shrinkage can be used on the group level. The hyperparameter shrinkage learns how relevant a specific co-data source is, counters overfitting of hyperparameters for many groups, and accounts for structured co-data. We describe various types of co-data and propose suitable forms of hypershrinkage. The method is very versatile, as it allows for integration and weighting of multiple co-data sets, inclusion of unpenalised covariates and posterior variable selection. We demonstrate it on two cancer genomics applications and show that it may improve the performance of other dense and parsimonious prognostic models substantially, and stabilises variable selection.
stat
Density-based Clustering with Best-scored Random Forest
Single-level density-based approach has long been widely acknowledged to be a conceptually and mathematically convincing clustering method. In this paper, we propose an algorithm called "best-scored clustering forest" that can obtain the optimal level and determine corresponding clusters. The terminology "best-scored" means to select one random tree with the best empirical performance out of a certain number of purely random tree candidates. From the theoretical perspective, we first show that consistency of our proposed algorithm can be guaranteed. Moreover, under certain mild restrictions on the underlying density functions and target clusters, even fast convergence rates can be achieved. Last but not least, comparisons with other state-of-the-art clustering methods in the numerical experiments demonstrate accuracy of our algorithm on both synthetic data and several benchmark real data sets.
stat
Probabilistic Forecasting of Temporal Trajectories of Regional Power Production - Part 1: Wind
Renewable energy sources provide a constantly increasing contribution to the total energy production worldwide. However, the power generation from these sources is highly variable due to their dependence on meteorological conditions. Accurate forecasts for the production at various temporal and spatial scales are thus needed for an efficiently operating electricity market. In this article - part 1 - we propose fully probabilistic prediction models for spatially aggregated wind power production at an hourly time scale with lead times up to several days using weather forecasts from numerical weather prediction systems as covariates. After an appropriate cubic transformation of the power production, we build up a multivariate Gaussian prediction model under a Bayesian inference framework which incorporates the temporal error correlation. In an application to predict wind production in Germany, the method provides calibrated and skillful forecasts. Comparison is made between several formulations of the correlation structure.
stat
Approximate Cross-Validation with Low-Rank Data in High Dimensions
Many recent advances in machine learning are driven by a challenging trifecta: large data size $N$; high dimensions; and expensive algorithms. In this setting, cross-validation (CV) serves as an important tool for model assessment. Recent advances in approximate cross validation (ACV) provide accurate approximations to CV with only a single model fit, avoiding traditional CV's requirement for repeated runs of expensive algorithms. Unfortunately, these ACV methods can lose both speed and accuracy in high dimensions -- unless sparsity structure is present in the data. Fortunately, there is an alternative type of simplifying structure that is present in most data: approximate low rank (ALR). Guided by this observation, we develop a new algorithm for ACV that is fast and accurate in the presence of ALR data. Our first key insight is that the Hessian matrix -- whose inverse forms the computational bottleneck of existing ACV methods -- is ALR. We show that, despite our use of the \emph{inverse} Hessian, a low-rank approximation using the largest (rather than the smallest) matrix eigenvalues enables fast, reliable ACV. Our second key insight is that, in the presence of ALR data, error in existing ACV methods roughly grows with the (approximate, low) rank rather than with the (full, high) dimension. These insights allow us to prove theoretical guarantees on the quality of our proposed algorithm -- along with fast-to-compute upper bounds on its error. We demonstrate the speed and accuracy of our method, as well as the usefulness of our bounds, on a range of real and simulated data sets.
stat
Flexible nonstationary spatio-temporal modeling of high-frequency monitoring data
Many physical datasets are generated by collections of instruments that make measurements at regular time intervals. For such regular monitoring data, we extend the framework of half-spectral covariance functions to the case of nonstationarity in space and time and demonstrate that this method provides a natural and tractable way to incorporate complex behaviors into a covariance model. Further, we use this method with fully time-domain computations to obtain bona fide maximum likelihood estimators---as opposed to using Whittle-type likelihood approximations, for example---that can still be computed efficiently. We apply this method to very high-frequency Doppler LIDAR vertical wind velocity measurements, demonstrating that the model can expressively capture the extreme nonstationarity of dynamics above and below the atmospheric boundary layer and, more importantly, the interaction of the process dynamics across it.
stat
Unsupervised Space-Time Clustering using Persistent Homology
This paper presents a new clustering algorithm for space-time data based on the concepts of topological data analysis and in particular, persistent homology. Employing persistent homology - a flexible mathematical tool from algebraic topology used to extract topological information from data - in unsupervised learning is an uncommon and a novel approach. A notable aspect of this methodology consists in analyzing data at multiple resolutions which allows to distinguish true features from noise based on the extent of their persistence. We evaluate the performance of our algorithm on synthetic data and compare it to other well-known clustering algorithms such as K-means, hierarchical clustering and DBSCAN. We illustrate its application in the context of a case study of water quality in the Chesapeake Bay.
stat
Classification Logit Two-sample Testing by Neural Networks
The recent success of generative adversarial networks and variational learning suggests training a classifier network may work well in addressing the classical two-sample problem. Network-based tests have the computational advantage that the algorithm scales to large samples. This paper proposes a two-sample statistic which is the difference of the logit function, provided by a trained classification neural network, evaluated on the testing set split of the two datasets. Theoretically, we prove the testing power to differentiate two sub-exponential densities given that the network is sufficiently parametrized. When the two densities lie on or near to low-dimensional manifolds embedded in possibly high-dimensional space, the needed network complexity is reduced to only scale with the intrinsic dimensionality. Both the approximation and estimation error analysis are based on a new result of near-manifold integral approximation. In experiments, the proposed method demonstrates better performance than previous network-based tests using classification accuracy as the two-sample statistic, and compares favorably to certain kernel maximum mean discrepancy tests on synthetic datasets and hand-written digit datasets.
stat
Computing Bayes: Bayesian Computation from 1763 to the 21st Century
The Bayesian statistical paradigm uses the language of probability to express uncertainty about the phenomena that generate observed data. Probability distributions thus characterize Bayesian analysis, with the rules of probability used to transform prior probability distributions for all unknowns - parameters, latent variables, models - into posterior distributions, subsequent to the observation of data. Conducting Bayesian analysis requires the evaluation of integrals in which these probability distributions appear. Bayesian computation is all about evaluating such integrals in the typical case where no analytical solution exists. This paper takes the reader on a chronological tour of Bayesian computation over the past two and a half centuries. Beginning with the one-dimensional integral first confronted by Bayes in 1763, through to recent problems in which the unknowns number in the millions, we place all computational problems into a common framework, and describe all computational methods using a common notation. The aim is to help new researchers in particular - and more generally those interested in adopting a Bayesian approach to empirical work - make sense of the plethora of computational techniques that are now on offer; understand when and why different methods are useful; and see the links that do exist, between them all.
stat
Foundations of Structural Causal Models with Cycles and Latent Variables
Structural causal models (SCMs), also known as (nonparametric) structural equation models (SEMs), are widely used for causal modeling purposes. In particular, acyclic SCMs, also known as recursive SEMs, form a well-studied subclass of SCMs that generalize causal Bayesian networks to allow for latent confounders. In this paper, we investigate SCMs in a more general setting, allowing for the presence of both latent confounders and cycles. We show that in the presence of cycles, many of the convenient properties of acyclic SCMs do not hold in general: they do not always have a solution; they do not always induce unique observational, interventional and counterfactual distributions; a marginalization does not always exist, and if it exists the marginal model does not always respect the latent projection; they do not always satisfy a Markov property; and their graphs are not always consistent with their causal semantics. We prove that for SCMs in general each of these properties does hold under certain solvability conditions. Our work generalizes results for SCMs with cycles that were only known for certain special cases so far. We introduce the class of simple SCMs that extends the class of acyclic SCMs to the cyclic setting, while preserving many of the convenient properties of acyclic SCMs. With this paper we aim to provide the foundations for a general theory of statistical causal modeling with SCMs.
stat
Bayesian epidemiological modeling over high-resolution network data
Mathematical epidemiological models have a broad use, including both qualitative and quantitative applications. With the increasing availability of data, large-scale quantitative disease spread models can nowadays be formulated. Such models have a great potential, e.g., in risk assessments in public health. Their main challenge is model parameterization given surveillance data, a problem which often limits their practical usage. We offer a solution to this problem by developing a Bayesian methodology suitable to epidemiological models driven by network data. The greatest difficulty in obtaining a concentrated parameter posterior is the quality of surveillance data; disease measurements are often scarce and carry little information about the parameters. The often overlooked problem of the model's identifiability therefore needs to be addressed, and we do so using a hierarchy of increasingly realistic known truth experiments. Our proposed Bayesian approach performs convincingly across all our synthetic tests. From pathogen measurements of shiga toxin-producing Escherichia coli O157 in Swedish cattle, we are able to produce an accurate statistical model of first-principles confronted with data. Within this model we explore the potential of a Bayesian public health framework by assessing the efficiency of disease detection and -intervention scenarios.
stat
FFORMPP: Feature-based forecast model performance prediction
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from the historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well-known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, in generating a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides provides comparable performances to other model selection/combination approaches but at lower computational cost and higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, how the meta-learners work and how the forecasting performances are affected by various factors.
stat
A Bayesian Finite Mixture Model with Variable Selection for Data with Mixed-type Variables
Finite mixture model is an important branch of clustering methods and can be applied on data sets with mixed types of variables. However, challenges exist in its applications. First, it typically relies on the EM algorithm which could be sensitive to the choice of initial values. Second, biomarkers subject to limits of detection (LOD) are common to encounter in clinical data, which brings censored variables into finite mixture model. Additionally, researchers are recently getting more interest in variable importance due to the increasing number of variables that become available for clustering. To address these challenges, we propose a Bayesian finite mixture model to simultaneously conduct variable selection, account for biomarker LOD and obtain clustering results. We took a Bayesian approach to obtain parameter estimates and the cluster membership to bypass the limitation of the EM algorithm. To account for LOD, we added one more step in Gibbs sampling to iteratively fill in biomarker values below or above LODs. In addition, we put a spike-and-slab type of prior on each variable to obtain variable importance. Simulations across various scenarios were conducted to examine the performance of this method. Real data application on electronic health records was also conducted.
stat
Cost-Effective Incentive Allocation via Structured Counterfactual Inference
We address a practical problem ubiquitous in modern marketing campaigns, in which a central agent tries to learn a policy for allocating strategic financial incentives to customers and observes only bandit feedback. In contrast to traditional policy optimization frameworks, we take into account the additional reward structure and budget constraints common in this setting, and develop a new two-step method for solving this constrained counterfactual policy optimization problem. Our method first casts the reward estimation problem as a domain adaptation problem with supplementary structure, and then subsequently uses the estimators for optimizing the policy with constraints. We also establish theoretical error bounds for our estimation procedure and we empirically show that the approach leads to significant improvement on both synthetic and real datasets.
stat