title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Exponential Weights on the Hypercube in Polynomial Time
We study a general online linear optimization problem(OLO). At each round, a subset of objects from a fixed universe of $n$ objects is chosen, and a linear cost associated with the chosen subset is incurred. To measure the performance of our algorithms, we use the notion of regret which is the difference between the total cost incurred over all iterations and the cost of the best fixed subset in hindsight. We consider Full Information and Bandit feedback for this problem. This problem is equivalent to OLO on the $\{0,1\}^n$ hypercube. The Exp2 algorithm and its bandit variant are commonly used strategies for this problem. It was previously unknown if it is possible to run Exp2 on the hypercube in polynomial time. In this paper, we present a polynomial time algorithm called PolyExp for OLO on the hypercube. We show that our algorithm is equivalent Exp2 on $\{0,1\}^n$, Online Mirror Descent(OMD), Follow The Regularized Leader(FTRL) and Follow The Perturbed Leader(FTPL) algorithms. We show PolyExp achieves expected regret bound that is a factor of $\sqrt{n}$ better than Exp2 in the full information setting under $L_\infty$ adversarial losses. Because of the equivalence of these algorithms, this implies an improvement on Exp2's regret bound in full information. We also show matching regret lower bounds. Finally, we show how to use PolyExp on the $\{-1,+1\}^n$ hypercube, solving an open problem in Bubeck et al (COLT 2012).
stat
A parameter-free population-dynamical approach to health workforce supply forecasting of EU countries
Many countries face challenges like impending retirement waves, negative population growth, or a suboptimal distribution of resources across medical sectors and fields in supplying their healthcare systems with adequate staffing. An increasing number of countries therefore employs quantitative approaches in health workforce supply forecasting. However, these models are often of limited usability as they either require extensive individual-level data or become too simplistic to capture key demographic or epidemiological factors. We propose a novel population-dynamical and stock-flow-consistent approach to health workforce supply forecasting complex enough to address dynamically changing behaviors while requiring only publicly available timeseries data for complete calibration. We apply the model to 21 European countries to forecast the supply of generalist and specialist physicians until 2040. Compared to staffing levels required to keep the physician density constant at 2016 levels, in many countries we find a significant trend toward decreasing density for generalist physicians at the expense of increasing densities for specialists. These trends are exacerbated in many Southern and Eastern European countries by expectations of negative population growth. For the example of Austria we generalize our approach to a multi-professional, multi-regional and multi-sectoral model and find a suboptimal distribution in the supply of contracted versus non-contracted physicians. It is of the utmost importance to devise tools for decision makers to influence the allocation and supply of physicians across fields and sectors to combat imbalances.
stat
Learning disentangled representations with the Wasserstein Autoencoder
Disentangled representation learning has undoubtedly benefited from objective function surgery. However, a delicate balancing act of tuning is still required in order to trade off reconstruction fidelity versus disentanglement. Building on previous successes of penalizing the total correlation in the latent variables, we propose TCWAE (Total Correlation Wasserstein Autoencoder). Working in the WAE paradigm naturally enables the separation of the total-correlation term, thus providing disentanglement control over the learned representation, while offering more flexibility in the choice of reconstruction cost. We propose two variants using different KL estimators and perform extensive quantitative comparisons on data sets with known generative factors, showing competitive results relative to state-of-the-art techniques. We further study the trade off between disentanglement and reconstruction on more-difficult data sets with unknown generative factors, where the flexibility of the WAE paradigm in the reconstruction term improves reconstructions.
stat
Continuous-time multi-state capture-recapture models
Multi-state capture-recapture data comprise individual-specific sighting histories together with information on individuals' states related, for example, to breeding status, infection level, or geographical location. Such data are often analysed using the Arnason-Schwarz model, where transitions between states are modelled using a discrete-time Markov chain, making the model most easily applicable to regular time series. When time intervals between capture occasions are not of equal length, more complex time-dependent constructions may be required, increasing the number of parameters to estimate, decreasing interpretability, and potentially leading to reduced precision. Here we develop a novel continuous-time multi-state model that can be regarded as an analogue of the Arnason-Schwarz model for irregularly sampled data. Statistical inference is carried out by regarding the capture-recapture data as realisations from a continuous-time hidden Markov model, which allows the associated efficient algorithms to be used for maximum likelihood estimation and state decoding. To illustrate the feasibility of the modelling framework, we use a long-term survey of bottlenose dolphins where capture occasion are not regularly spaced through time. Here we are particularly interested in seasonal effects on the movement rates of the dolphins along the Scottish east coast. The results reveal seasonal movement patterns between two core areas of their range, providing information that will inform conservation management.
stat
Product Partition Dynamic Generalized Linear Models
Detection and modeling of change-points in time-series can be considerably challenging. In this paper we approach this problem by incorporating the class of Dynamic Generalized Linear Models (DGLM) into the well know class of Product Partition Models (PPM). This new methodology, that we call DGLM-PPM, extends the PPM to distributions within the Exponential Family while also retaining the flexibility of the DGLM class. It also provides a framework for Bayesian multiple change-point detection in dynamic regression models. Inference on the DGLM-PPM follow the steps of evolution and updating of the DGLM class. A Gibbs Sampler scheme with an Adaptive Rejection Metropolis Sampling (ARMS) step appended is used to compute posterior estimates of the relevant quantities. A simulation study shows that the proposed model provides reasonable estimates of the dynamic parameters and also assigns high change-point probabilities to the breaks introduced in the artificial data generated for this work. We also present a real life data example that highlights the superiority of the DGLM-PPM over the conventional DGLM in both in-sample and out-of-sample goodness of fit measures.
stat
Integrated Continuous-time Hidden Markov Models
Motivated by applications in movement ecology, in this paper I propose a new class of integrated continuous-time hidden Markov models in which each observation depends on the underlying state of the process over the whole interval since the previous observation, not only on its current state. This class gives a new representation of a range of existing models, including some widely applied switching diffusion models. I show that under appropriate conditioning, a model in this class can be regarded as a conventional hidden Markov model, enabling use of the Forward Algorithm for efficient evaluation of its likelihood without sampling of its state sequence. This leads to an algorithm for inference which is more efficient, and scales better with the amount of data, than existing methods. This is demonstrated and quantified in some applications to animal movement data and some related simulation experiments.
stat
Identifying Gene-environment interactions with robust marginal Bayesian variable selection
In high-throughput genetics studies, an important aim is to identify gene-environment interactions associated with the clinical outcomes. Recently, multiple marginal penalization methods have been developed and shown to be effective in G$\times$E studies. However, within the Bayesian framework, marginal variable selection has not received much attention. In this study, we propose a novel marginal Bayesian variable selection method for G$\times$E studies. In particular, our marginal Bayesian method is robust to data contamination and outliers in the outcome variables. With the incorporation of spike-and-slab priors, we have implemented the Gibbs sampler based on MCMC. The proposed method outperforms a number of alternatives in extensive simulation studies. The utility of the marginal robust Bayesian variable selection method has been further demonstrated in the case studies using data from the Nurse Health Study (NHS). Some of the identified main and interaction effects from the real data analysis have important biological implications.
stat
OpenML Benchmarking Suites
Machine learning research depends on objectively interpretable, comparable, and reproducible algorithm benchmarks. Therefore, we advocate the use of curated, comprehensive suites of machine learning tasks to standardize the setup, execution, and reporting of benchmarks. We enable this through software tools that help to create and leverage these benchmarking suites. These are seamlessly integrated into the OpenML platform, and accessible through interfaces in Python, Java, and R. OpenML benchmarking suites are (a) easy to use through standardized data formats, APIs, and client libraries; (b) machine-readable, with extensive meta-information on the included datasets; and (c) allow benchmarks to be shared and reused in future studies. We also present a first, carefully curated and practical benchmarking suite for classification: the OpenML Curated Classification benchmarking suite 2018 (OpenML-CC18).
stat
Noisy Adaptive Group Testing using Bayesian Sequential Experimental Design
When the infection prevalence of a disease is low, Dorfman showed 80 years ago that testing groups of people can prove more efficient than testing people individually. Our goal in this paper is to propose new group testing algorithms that can operate in a noisy setting (tests can be mistaken) to decide adaptively (looking at past results) which groups to test next, with the goal to converge to a good detection, as quickly, and with as few tests as possible. We cast this problem as a Bayesian sequential experimental design problem. Using the posterior distribution of infection status vectors for $n$ patients, given observed tests carried out so far, we seek to form groups that have a maximal utility. We consider utilities such as mutual information, but also quantities that have a more direct relevance to testing, such as the AUC of the ROC curve of the test. Practically, the posterior distributions on $\{0,1\}^n$ are approximated by sequential Monte Carlo (SMC) samplers and the utility maximized by a greedy optimizer. Our procedures show in simulations significant improvements over both adaptive and non-adaptive baselines, and are far more efficient than individual tests when disease prevalence is low. Additionally, we show empirically that loopy belief propagation (LBP), widely regarded as the SoTA decoder to decide whether an individual is infected or not given previous tests, can be unreliable and exhibit oscillatory behavior. Our SMC decoder is more reliable, and can improve the performance of other group testing algorithms.
stat
The Randomized Elliptical Potential Lemma with an Application to Linear Thompson Sampling
In this note, we introduce a randomized version of the well-known elliptical potential lemma that is widely used in the analysis of algorithms in sequential learning and decision-making problems such as stochastic linear bandits. Our randomized elliptical potential lemma relaxes the Gaussian assumption on the observation noise and on the prior distribution of the problem parameters. We then use this generalization to prove an improved Bayesian regret bound for Thompson sampling for the linear stochastic bandits with changing action sets where prior and noise distributions are general. This bound is minimax optimal up to constants.
stat
From scenario-based seismic hazard to scenario-based landslide hazard: fast-forwarding to the future via statistical simulations
Ground motion scenarios exists for most of the seismically active areas around the globe. They essentially correspond to shaking level maps at given earthquake return times which are used as reference for the likely areas under threat from future ground displacements. Being landslides in seismically actively regions closely controlled by the ground motion, one would expect that landslide susceptibility maps should change as the ground motion patterns change in space and time. However, so far, statistically-based landslide susceptibility assessments have primarily been used as time-invariant.In other words, the vast majority of the statistical models does not include the temporal effect of the main trigger in future landslide scenarios. In this work, we present an approach aimed at filling this gap, bridging current practices in the seismological community to those in the geomorphological and statistical ones. More specifically, we select an earthquake-induced landslide inventory corresponding to the 1994 Northridge earthquake and build a Bayesian Generalized Additive Model of the binomial family, featuring common morphometric and thematic covariates as well as the Peak Ground Acceleration generated by the Northridge earthquake. Once each model component has been estimated, we have run 1000 simulations for each of the 217 possible ground motion scenarios for the study area. From each batch of 1000 simulations, we have estimated the mean and 95\% Credible Interval to represent the mean susceptibility pattern under a specific earthquake scenario, together with its uncertainty level. Because each earthquake scenario has a specific return time, our simulations allow to incorporate the temporal dimension into any susceptibility model, therefore driving the results toward the definition of landslide hazard.
stat
Power-Expected-Posterior Priors as Mixtures of g-Priors
One of the main approaches used to construct prior distributions for objective Bayes methods is the concept of random imaginary observations. Under this setup, the expected-posterior prior (EPP) offers several advantages, among which it has a nice and simple interpretation and provides an effective way to establish compatibility of priors among models. In this paper, we study the power-expected posterior prior as a generalization to the EPP in objective Bayesian model selection under normal linear models. We prove that it can be represented as a mixture of $g$-prior, like a wide range of prior distributions under normal linear models, and thus posterior distributions and Bayes factors are derived in closed form, keeping therefore computational tractability. Comparisons with other mixtures of $g$-prior are made and emphasis is given in the posterior distribution of g and its effect on Bayesian model selection and model averaging.
stat
Uncertainty representation for early phase clinical test evaluations: a case study
In early clinical test evaluations the potential benefits of the introduction of a new technology into the healthcare system are assessed in the challenging situation of limited available empirical data. The aim of these evaluations is to provide additional evidence for the decision maker, who is typically a funder or the company developing the test, to evaluate which technologies should progress to the next stage of evaluation. In this paper we consider the evaluation of a diagnostic test for patients suffering from Chronic Obstructive Pulmonary Disease (COPD). We describe the use of graphical models, prior elicitation and uncertainty analysis to provide the required evidence to allow the test to progress to the next stage of evaluation. We specifically discuss inferring an influence diagram from a care pathway and conducting an elicitation exercise to allow specification of prior distributions over all model parameters. We describe the uncertainty analysis, via Monte Carlo simulation, which allowed us to demonstrate that the potential value of the test was robust to uncertainties. This paper provides a case study illustrating how a careful Bayesian analysis can be used to enhance early clinical test evaluations.
stat
Complexity as Causal Information Integration
Complexity measures in the context of the Integrated Information Theory of consciousness try to quantify the strength of the causal connections between different neurons. This is done by minimizing the KL-divergence between a full system and one without causal connections. Various measures have been proposed and compared in this setting. We will discuss a class of information geometric measures that aim at assessing the intrinsic causal influences in a system. One promising candidate of these measures, denoted by $\Phi_{CIS}$, is based on conditional independence statements and does satisfy all of the properties that have been postulated as desirable. Unfortunately it does not have a graphical representation which makes it less intuitive and difficult to analyze. We propose an alternative approach using a latent variable which models a common exterior influence. This leads to a measure $\Phi_{CII}$, Causal Information Integration, that satisfies all of the required conditions. Our measure can be calculated using an iterative information geometric algorithm, the em-algorithm. Therefore we are able to compare its behavior to existing integrated information measures.
stat
Considerations for developing predictive models of crime and new methods for measuring their accuracy
Developing spatio-temporal crime prediction models, and to a lesser extent, developing measures of accuracy and operational efficiency for them, has been an active area of research for almost two decades. Despite calls for rigorous and independent evaluations of model performance, such studies have been few and far between. In this paper, we argue that studies should focus not on finding the one predictive model or the one measure that is the most appropriate at all times, but instead on careful consideration of several factors that affect the choice of the model and the choice of the measure, to find the best measure and the best model for the problem at hand. We argue that because each problem is unique, it is important to develop measures that empower the practitioner with the ability to input the choices and preferences that are most appropriate for the problem at hand. We develop a new measure called the penalized predictive accuracy index (PPAI) which imparts such flexibility. We also propose the use of the expected utility function to combine multiple measures in a way that is appropriate for a given problem in order to assess the models against multiple criteria. We further propose the use of the average logarithmic score (ALS) measure that is appropriate for many crime models and measures accuracy differently than existing measures. These measures can be used alongside existing measures to provide a more comprehensive means of assessing the accuracy and potential utility of spatio-temporal crime prediction models.
stat
Bayesian Functional Principal Components Analysis via Variational Message Passing
Functional principal components analysis is a popular tool for inference on functional data. Standard approaches rely on an eigendecomposition of a smoothed covariance surface in order to extract the orthonormal functions representing the major modes of variation. This approach can be a computationally intensive procedure, especially in the presence of large datasets with irregular observations. In this article, we develop a Bayesian approach, which aims to determine the Karhunen-Lo\`eve decomposition directly without the need to smooth and estimate a covariance surface. More specifically, we develop a variational Bayesian algorithm via message passing over a factor graph, which is more commonly referred to as variational message passing. Message passing algorithms are a powerful tool for compartmentalizing the algebra and coding required for inference in hierarchical statistical models. Recently, there has been much focus on formulating variational inference algorithms in the message passing framework because it removes the need for rederiving approximate posterior density functions if there is a change to the model. Instead, model changes are handled by changing specific computational units, known as fragments, within the factor graph. We extend the notion of variational message passing to functional principal components analysis. Indeed, this is the first article to address a functional data model via variational message passing. Our approach introduces two new fragments that are necessary for Bayesian functional principal components analysis. We present the computational details, a set of simulations for assessing accuracy and speed and an application to United States temperature data.
stat
Analyzing Brain Circuits in Population Neuroscience: A Case to Be a Bayesian
Functional connectivity fingerprints are among today's best choices to obtain a faithful sampling of an individual's brain and cognition in health and disease. Here we make a case for key advantages of analyzing such connectome profiles using Bayesian analysis strategies. They (i) afford full probability estimates of the studied neurocognitive phenomenon (ii) provide analytical machinery to separate methodological uncertainty and biological variability in a coherent manner (iii) usher towards avenues to go beyond classical null-hypothesis significance testing and (iv) enable estimates of credibility around all model parameters at play and thus enable predictions with uncertainty intervals for single subject. We pick research questions about autism spectrum disorder as a recurring theme to illustrate our methodological arguments.
stat
A new INARMA(1, 1) model with Poisson marginals
We suggest an INARMA(1, 1) model with Poisson marginals which extends the INAR(1) in a similar way as the INGARCH(1, 1) does for the INARCH(1) model. The new model is equivalent to a binomially thinned INAR(1) process. This allows us to obtain some of its stochastic properties and use inference methods for hidden Markov models. The model is compared to various other models in two case studies.
stat
An introduction to Bent Jorgensen's ideas
We briefly expose some key aspects of the theory and use of dispersion models, for which Bent Jorgensen played a crucial role as a driving force and an inspiration source. Starting with the general notion of dispersion models, built using minimalistic mathematical assumptions, we specialize in two classes of families of distributions with different statistical flavors: exponential dispersion and proper dispersion models. The construction of dispersion models involves the solution of integral equations that are, in general, untractable. These difficulties disappear when a more mathematical structure is assumed: it reduces to the calculation of a moment generating function or of a Riemann-Stieltjes integral for the exponential dispersion and the proper dispersion models, respectively. A new technique for constructing dispersion models based on characteristic functions is introduced turning the integral equations above into a tractable convolution equation and yielding examples of dispersion models that are neither proper dispersion nor exponential dispersion models. A corollary is that the cardinality of regular and non-regular dispersion models are both large. Some selected applications are discussed including exponential families non-linear models (for which generalized linear models are particular cases) and several models for clustered and dependent data based on a latent Levy process.
stat
Separable Layers Enable Structured Efficient Linear Substitutions
In response to the development of recent efficient dense layers, this paper shows that something as simple as replacing linear components in pointwise convolutions with structured linear decompositions also produces substantial gains in the efficiency/accuracy tradeoff. Pointwise convolutions are fully connected layers and are thus prepared for replacement by structured transforms. Networks using such layers are able to learn the same tasks as those using standard convolutions, and provide Pareto-optimal benefits in efficiency/accuracy, both in terms of computation (mult-adds) and parameter count (and hence memory). Code is available at https://github.com/BayesWatch/deficient-efficient.
stat
Random Partition Models for Microclustering Tasks
Traditional Bayesian random partition models assume that the size of each cluster grows linearly with the number of data points. While this is appealing for some applications, this assumption is not appropriate for other tasks such as entity resolution, modeling of sparse networks, and DNA sequencing tasks. Such applications require models that yield clusters whose sizes grow sublinearly with the total number of data points -- the microclustering property. Motivated by these issues, we propose a general class of random partition models that satisfy the microclustering property with well-characterized theoretical properties. Our proposed models overcome major limitations in the existing literature on microclustering models, namely a lack of interpretability, identifiability, and full characterization of model asymptotic properties. Crucially, we drop the classical assumption of having an exchangeable sequence of data points, and instead assume an exchangeable sequence of clusters. In addition, our framework provides flexibility in terms of the prior distribution of cluster sizes, computational tractability, and applicability to a large number of microclustering tasks. We establish theoretical properties of the resulting class of priors, where we characterize the asymptotic behavior of the number of clusters and of the proportion of clusters of a given size. Our framework allows a simple and efficient Markov chain Monte Carlo algorithm to perform statistical inference. We illustrate our proposed methodology on the microclustering task of entity resolution, where we provide a simulation study and real experiments on survey panel data.
stat
The Online Saddle Point Problem and Online Convex Optimization with Knapsacks
We study the online saddle point problem, an online learning problem where at each iteration a pair of actions need to be chosen without knowledge of the current and future (convex-concave) payoff functions. The objective is to minimize the gap between the cumulative payoffs and the saddle point value of the aggregate payoff function, which we measure using a metric called "SP-Regret". The problem generalizes the online convex optimization framework but here we must ensure both players incur cumulative payoffs close to that of the Nash equilibrium of the sum of the games. We propose an algorithm that achieves SP-Regret proportional to $\sqrt{\ln(T)T}$ in the general case, and $\log(T)$ SP-Regret for the strongly convex-concave case. We also consider the special case where the payoff functions are bilinear and the decision sets are the probability simplex. In this setting we are able to design algorithms that reduce the bounds on SP-Regret from a linear dependence in the dimension of the problem to a \textit{logarithmic} one. We also study the problem under bandit feedback and provide an algorithm that achieves sublinear SP-Regret. We then consider an online convex optimization with knapsacks problem motivated by a wide variety of applications such as: dynamic pricing, auctions, and crowdsourcing. We relate this problem to the online saddle point problem and establish $O(\sqrt{T})$ regret using a primal-dual algorithm.
stat
Model selection for count timeseries with applications in forecasting number of trips in bike-sharing systems and its volatility
Forecasting the number of trips in bike-sharing systems and its volatility over time is crucial for planning and optimizing such systems. This paper develops timeseries models to forecast hourly count timeseries data, and estimate its volatility. Such models need to take into account the complex patterns over various temporal scales including hourly, daily, weekly and annual as well as the temporal correlation. To capture this complex structure, a large number of parameters are needed. Here a structural model selection approach is utilized to choose the parameters. This method explores the parameter space for a group of covariates at each step. These groups of covariate are constructed to represent a particular structure in the model. The statistical models utilized are extensions of Generalized Linear Models to timeseries data. One challenge in using such models is the explosive behavior of the simulated values. To address this issue, we develop a technique which relies on damping the simulated value, if it falls outside of an admissible interval. The admissible interval is defined using measures of variability of the left and right tails. A new definition of outliers is proposed based on these variability measures. This new definition is shown to be useful in the context of asymmetric distributions.
stat
Classification using Ensemble Learning under Weighted Misclassification Loss
Binary classification rules based on covariates typically depend on simple loss functions such as zero-one misclassification. Some cases may require more complex loss functions. For example, individual-level monitoring of HIV-infected individuals on antiretroviral therapy (ART) requires periodic assessment of treatment failure, defined as having a viral load (VL) value above a certain threshold. In some resource limited settings, VL tests may be limited by cost or technology, and diagnoses are based on other clinical markers. Depending on scenario, higher premium may be placed on avoiding false-positives which brings greater cost and reduced treatment options. Here, the optimal rule is determined by minimizing a weighted misclassification loss/risk. We propose a method for finding and cross-validating optimal binary classification rules under weighted misclassification loss. We focus on rules comprising a prediction score and an associated threshold, where the score is derived using an ensemble learner. Simulations and examples show that our method, which derives the score and threshold jointly, more accurately estimates overall risk and has better operating characteristics compared with methods that derive the score first and the cutoff conditionally on the score especially for finite samples.
stat
Does mitigating ML's impact disparity require treatment disparity?
Following related work in law and policy, two notions of disparity have come to shape the study of fairness in algorithmic decision-making. Algorithms exhibit treatment disparity if they formally treat members of protected subgroups differently; algorithms exhibit impact disparity when outcomes differ across subgroups, even if the correlation arises unintentionally. Naturally, we can achieve impact parity through purposeful treatment disparity. In one thread of technical work, papers aim to reconcile the two forms of parity proposing disparate learning processes (DLPs). Here, the learning algorithm can see group membership during training but produce a classifier that is group-blind at test time. In this paper, we show theoretically that: (i) When other features correlate to group membership, DLPs will (indirectly) implement treatment disparity, undermining the policy desiderata they are designed to address; (ii) When group membership is partly revealed by other features, DLPs induce within-class discrimination; and (iii) In general, DLPs provide a suboptimal trade-off between accuracy and impact parity. Based on our technical analysis, we argue that transparent treatment disparity is preferable to occluded methods for achieving impact parity. Experimental results on several real-world datasets highlight the practical consequences of applying DLPs vs. per-group thresholds.
stat
Modelling and predicting the spatio-temporal spread of Coronavirus disease 2019 (COVID-19) in Italy
Official freely available data about the number of infected at the finest possible level of spatial areal aggregation (Italian provinces) are used to model the spatio-temporal distribution of COVID-19 infections at local level. Data time horizon ranges from 26 February 20020, which is the date when the first case not directly connected with China has been discovered in northern Italy, to 18 March 2020. An endemic-epidemic multivariate time-series mixed-effects generalized linear model for areal disease counts has been implemented to understand and predict spatio-temporal diffusion of the phenomenon. Previous literature has shown that these class of models provide reliable predictions of infectious diseases in time and space. Three subcomponents characterize the estimated model. The first is related to the evolution of the disease over time; the second is characterized by transmission of the illness among inhabitants of the same province; the third remarks the effects of spatial neighbourhood and try to capture the contagion effects of nearby areas. Focusing on the aggregated time-series of the daily counts in Italy, the contribution of any of the three subcomponents do not dominate on the others and our predictions are excellent for the whole country, with an error of 3 per thousand compared to the late available data. At local level, instead, interesting distinct patterns emerge. In particular, the provinces first concerned by containment measures are those that are not affected by the effects of spatial neighbours. On the other hand, for the provinces the are currently strongly affected by contagions, the component accounting for the spatial interaction with surrounding areas is prevalent. Moreover, the proposed model provides good forecasts of the number of infections at local level while controlling for delayed reporting.
stat
Adaptive Geo-Topological Independence Criterion
Testing two potentially multivariate variables for statistical dependence on the basis finite samples is a fundamental statistical challenge. Here we explore a family of tests that adapt to the complexity of the relationship between the variables, promising robust power across scenarios. Building on the distance correlation, we introduce a family of adaptive independence criteria based on nonlinear monotonic transformations of distances. We show that these criteria, like the distance correlation and RKHS-based criteria, provide dependence indicators. We propose a class of adaptive (multi-threshold) test statistics, which form the basis for permutation tests. These tests empirically outperform some of the established tests in average and worst-case statistical sensitivity across a range of univariate and multivariate relationships, offer useful insights to the data and may deserve further exploration.
stat
Massive parallelization boosts big Bayesian multidimensional scaling
Big Bayes is the computationally intensive co-application of big data and large, expressive Bayesian models for the analysis of complex phenomena in scientific inference and statistical learning. Standing as an example, Bayesian multidimensional scaling (MDS) can help scientists learn viral trajectories through space-time, but its computational burden prevents its wider use. Crucial MDS model calculations scale quadratically in the number of observations. We partially mitigate this limitation through massive parallelization using multi-core central processing units, instruction-level vectorization and graphics processing units (GPUs). Fitting the MDS model using Hamiltonian Monte Carlo, GPUs can deliver more than 100-fold speedups over serial calculations and thus extend Bayesian MDS to a big data setting. To illustrate, we employ Bayesian MDS to infer the rate at which different seasonal influenza virus subtypes use worldwide air traffic to spread around the globe. We examine 5392 viral sequences and their associated 14 million pairwise distances arising from the number of commercial airline seats per year between viral sampling locations. To adjust for shared evolutionary history of the viruses, we implement a phylogenetic extension to the MDS model and learn that subtype H3N2 spreads most effectively, consistent with its epidemic success relative to other seasonal influenza subtypes. Finally, we provide MassiveMDS, an open-source, stand-alone C++ library and rudimentary R package, and discuss program design and high-level implementation with an emphasis on important aspects of computing architecture that become relevant at scale.
stat
A Framework for Crop Price Forecasting in Emerging Economies by Analyzing the Quality of Time-series Data
Accuracy of crop price forecasting techniques is important because it enables the supply chain planners and government bodies to take appropriate actions by estimating market factors such as demand and supply. In emerging economies such as India, the crop prices at marketplaces are manually entered every day, which can be prone to human-induced errors like the entry of incorrect data or entry of no data for many days. In addition to such human prone errors, the fluctuations in the prices itself make the creation of stable and robust forecasting solution a challenging task. Considering such complexities in crop price forecasting, in this paper, we present techniques to build robust crop price prediction models considering various features such as (i) historical price and market arrival quantity of crops, (ii) historical weather data that influence crop production and transportation, (iii) data quality-related features obtained by performing statistical analysis. We additionally propose a framework for context-based model selection and retraining considering factors such as model stability, data quality metrics, and trend analysis of crop prices. To show the efficacy of the proposed approach, we show experimental results on two crops - Tomato and Maize for 14 marketplaces in India and demonstrate that the proposed approach not only improves accuracy metrics significantly when compared against the standard forecasting techniques but also provides robust models.
stat
Modal Principal Component Analysis
Principal component analysis (PCA) is a widely used method for data processing, such as for dimension reduction and visualization. Standard PCA is known to be sensitive to outliers, and thus, various robust PCA methods have been proposed. It has been shown that the robustness of many statistical methods can be improved using mode estimation instead of mean estimation, because mode estimation is not significantly affected by the presence of outliers. Thus, this study proposes a modal principal component analysis (MPCA), which is a robust PCA method based on mode estimation. The proposed method finds the minor component by estimating the mode of the projected data points. As theoretical contribution, probabilistic convergence property, influence function, finite-sample breakdown point and its lower bound for the proposed MPCA are derived. The experimental results show that the proposed method has advantages over the conventional methods.
stat
A note on the amount of information borrowed from external data in hybrid controlled trials with time-to-event outcomes
In situations where it is difficult to enroll patients in randomized controlled trials, external data can improve efficiency and feasibility. In such cases, adaptive trial designs could be used to decrease enrollment in the control arm of the trial by updating the randomization ratio at the interim analysis. Updating the randomization ratio requires an estimate of the amount of information effectively borrowed from external data, which is typically done with a linear approximation. However, this linear approximation is not always a reliable estimate, which could potentially lead to sub-optimal randomization ratio updates. In this note, we highlight this issue through simulations for exponential time-to-event outcomes, because in this simple setting there is an exact solution available for comparison. We also propose a potential generalization that could complement the linear approximation in more complex settings, discuss challenges for this generalization, and recommend best practices for computing and interpreting estimates of the effective number of events borrowed.
stat
Exploring Spatio-Temporal and Cross-Type Correlations for Crime Prediction
Crime prediction plays an impactful role in enhancing public security and sustainable development of urban. With recent advances in data collection and integration technologies, a large amount of urban data with rich crime-related information and fine-grained spatio-temporal logs has been recorded. Such helpful information can boost our understandings about the temporal evolution and spatial factors of urban crimes and can enhance accurate crime prediction. In this paper, we perform crime prediction exploiting the cross-type and spatio-temporal correlations of urban crimes. In particular, we verify the existence of correlations among different types of crime from temporal and spatial perspectives, and propose a coherent framework to mathematically model these correlations for crime prediction. The extensive experimental results on real-world data validate the effectiveness of the proposed framework. Further experiments have been conducted to understand the importance of different correlations in crime prediction.
stat
Learning Hierarchical Interactions at Scale: A Convex Optimization Approach
In many learning settings, it is beneficial to augment the main features with pairwise interactions. Such interaction models can be often enhanced by performing variable selection under the so-called strong hierarchy constraint: an interaction is non-zero only if its associated main features are non-zero. Existing convex optimization based algorithms face difficulties in handling problems where the number of main features $p \sim 10^3$ (with total number of features $\sim p^2$). In this paper, we study a convex relaxation which enforces strong hierarchy and develop a highly scalable algorithm based on proximal gradient descent. We introduce novel screening rules that allow for solving the complicated proximal problem in parallel. In addition, we introduce a specialized active-set strategy with gradient screening for avoiding costly gradient computations. The framework can handle problems having dense design matrices, with $p = 50,000$ ($\sim 10^9$ interactions)---instances that are much larger than current state of the art. Experiments on real and synthetic data suggest that our toolkit hierScale outperforms the state of the art in terms of prediction and variable selection and can achieve over a 4900x speed-up.
stat
Generalisation dynamics of online learning in over-parameterised neural networks
Deep neural networks achieve stellar generalisation on a variety of problems, despite often being large enough to easily fit all their training data. Here we study the generalisation dynamics of two-layer neural networks in a teacher-student setup, where one network, the student, is trained using stochastic gradient descent (SGD) on data generated by another network, called the teacher. We show how for this problem, the dynamics of SGD are captured by a set of differential equations. In particular, we demonstrate analytically that the generalisation error of the student increases linearly with the network size, with other relevant parameters held constant. Our results indicate that achieving good generalisation in neural networks depends on the interplay of at least the algorithm, its learning rate, the model architecture, and the data set.
stat
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Probabilistic neural networks are typically modeled with independent weight priors, which do not capture weight correlations in the prior and do not provide a parsimonious interface to express properties in function space. A desirable class of priors would represent weights compactly, capture correlations between weights, facilitate calibrated reasoning about uncertainty, and allow inclusion of prior knowledge about the function space such as periodicity or dependence on contexts such as inputs. To this end, this paper introduces two innovations: (i) a Gaussian process-based hierarchical model for network weights based on unit embeddings that can flexibly encode correlated weight structures, and (ii) input-dependent versions of these weight priors that can provide convenient ways to regularize the function space through the use of kernels defined on contextual inputs. We show these models provide desirable test-time uncertainty estimates on out-of-distribution data, demonstrate cases of modeling inductive biases for neural networks with kernels which help both interpolation and extrapolation from training data, and demonstrate competitive predictive performance on an active learning benchmark.
stat
Sparse Bayesian vector autoregressions in huge dimensions
We develop a Bayesian vector autoregressive (VAR) model with multivariate stochastic volatility that is capable of handling vast dimensional information sets. Three features are introduced to permit reliable estimation of the model. First, we assume that the reduced-form errors in the VAR feature a factor stochastic volatility structure, allowing for conditional equation-by-equation estimation. Second, we apply recently developed global-local shrinkage priors to the VAR coefficients to cure the curse of dimensionality. Third, we utilize recent innovations to efficiently sample from high-dimensional multivariate Gaussian distributions. This makes simulation-based fully Bayesian inference feasible when the dimensionality is large but the time series length is moderate. We demonstrate the merits of our approach in an extensive simulation study and apply the model to US macroeconomic data to evaluate its forecasting capabilities.
stat
Fast Gaussian Process Based Gradient Matching for Parameter Identification in Systems of Nonlinear ODEs
Parameter identification and comparison of dynamical systems is a challenging task in many fields. Bayesian approaches based on Gaussian process regression over time-series data have been successfully applied to infer the parameters of a dynamical system without explicitly solving it. While the benefits in computational cost are well established, a rigorous mathematical framework has been missing. We offer a novel interpretation which leads to a better understanding and improvements in state-of-the-art performance in terms of accuracy for nonlinear dynamical systems.
stat
Bayesian nonparametric dynamic hazard rates in evolutionary life tables
In the study of life tables the random variable of interest is usually assumed discrete since mortality rates are studied for integer ages. In dynamic life tables a time domain is included to account for the evolution effect of the hazard rates in time. In this article we follow a survival analysis approach and use a nonparametric description of the hazard rates. We construct a discrete time stochastic processes that reflects dependence across age as well as in time. This process is used as a bayesian nonparametric prior distribution for the hazard rates for the study of evolutionary life tables. Prior properties of the process are studied and posterior distributions are derived. We present a simulation study, with the inclusion of right censored observations, as well as a real data analysis to show the performance of our model.
stat
Parameter estimation in dynamical systems via Statistical Learning: a reinterpretation of Approximate Bayesian Computation applied to COVID-19 spread
We propose a robust parameter estimation method for dynamical systems based on Statistical Learning techniques which aims to estimate a set of parameters that well fit the dynamics in order to obtain robust evidences about the qualitative behaviour of its trajectory. The method is quite general and flexible, since it does not rely on any specific property of the dynamical system, and represents a reinterpretation of Approximate Bayesian Computation methods through the lens of Statistical Learning. The method is specially useful for estimating parameters in epidemiological compartmental models in order to obtain qualitative properties of a disease evolution. We apply it to simulated and real data about COVID-19 spread in the US in order to evaluate qualitatively its evolution over time, showing how one may assess the effectiveness of measures implemented to slow the spread and some qualitative features of the disease current and future evolution.
stat
Evaluating uncertainties in electrochemical impedance spectra of solid oxide fuel cells
Electrochemical impedance spectroscopy (EIS) is a widely used tool for characterization of fuel cells and other electrochemical conversion systems. When applied to the on-line monitoring in the context of in-field applications, the disturbances, drifts and sensor noise may cause severe distortions in the evaluated spectra, especially in the low-frequency part. Failure to ignore the random effects can result in misinterpreted spectra and, consequently, in misleading diagnostic reasoning. This fact has not been often addressed in the research so far. In this paper, we propose an approach to the quantification of the spectral uncertainty, which relies on evaluating the uncertainty of the equivalent circuit model (ECM). We apply the computationally efficient variational Bayes (VB) method and compare the quality of the results with those obtained with the Markov chain Monte Carlo (MCMC) algorithm. Namely, MCMC algorithm returns accurate distributions of the estimated model parameters, while VB approach provides the approximate distributions. By using simulated and real data we show that approximate results provided by VB approach, although slightly over-optimistic, are still close to the more realistic MCMC estimates. A great advantage of the VB method for online monitoring is low computational load, which is several orders of magnitude lower compared to MCMC. The performance of VB algorithm is demonstrated on a case of ECM parameters estimation in a 6 cell solid oxide fuel cell (SOFC) stack. The complete numerical implementation for recreating the results can be found at https://repo.ijs.si/lznidaric/variational-bayes-supplementary-material.
stat
Augmented Neural ODEs
We show that Neural Ordinary Differential Equations (ODEs) learn representations that preserve the topology of the input space and prove that this implies the existence of functions Neural ODEs cannot represent. To address these limitations, we introduce Augmented Neural ODEs which, in addition to being more expressive models, are empirically more stable, generalize better and have a lower computational cost than Neural ODEs.
stat
Time Fused Coefficient SIR Model with Application to COVID-19 Epidemic in the United States
In this paper, we propose a Susceptible-Infected-Removal (SIR) model with time fused coefficients. In particular, our proposed model discovers the underlying time homogeneity pattern for the SIR model's transmission rate and removal rate via Bayesian shrinkage priors. MCMC sampling for the proposed method is facilitated by the nimble package in R. Extensive simulation studies are carried out to examine the empirical performance of the proposed methods. We further apply the proposed methodology to analyze different levels of COVID-19 data in the United States.
stat
Combinatorial Bayesian Optimization using the Graph Cartesian Product
This paper focuses on Bayesian Optimization (BO) for objectives on combinatorial search spaces, including ordinal and categorical variables. Despite the abundance of potential applications of Combinatorial BO, including chipset configuration search and neural architecture search, only a handful of methods have been proposed. We introduce COMBO, a new Gaussian Process (GP) BO. COMBO quantifies "smoothness" of functions on combinatorial search spaces by utilizing a combinatorial graph. The vertex set of the combinatorial graph consists of all possible joint assignments of the variables, while edges are constructed using the graph Cartesian product of the sub-graphs that represent the individual variables. On this combinatorial graph, we propose an ARD diffusion kernel with which the GP is able to model high-order interactions between variables leading to better performance. Moreover, using the Horseshoe prior for the scale parameter in the ARD diffusion kernel results in an effective variable selection procedure, making COMBO suitable for high dimensional problems. Computationally, in COMBO the graph Cartesian product allows the Graph Fourier Transform calculation to scale linearly instead of exponentially. We validate COMBO in a wide array of realistic benchmarks, including weighted maximum satisfiability problems and neural architecture search. COMBO outperforms consistently the latest state-of-the-art while maintaining computational and statistical efficiency.
stat
Bayesian Paired-Comparison with the bpcs Package
This article introduces the bpcs R package (Bayesian Paired Comparison in Stan) and the statistical models implemented in the package. The goal of this package is to facilitate the use of Bayesian models for paired comparison data in behavioral research. Historically, studies on preferences have relied on Likert scale assessments and the frequentist approach to analyze the data. As an alternative, this article proposes the use of Bayesian models for forced choices assessments. The advantages of forced-choice assessments are that they minimize common bias that Likert scales are susceptible to, they can increase criterion validity, control for faking responses, and are quite useful to assess preferences in studies with children and non-humans primates. Bayesian data analyses are less sensitive to optional stopping, have better control of type I error, have stronger evidence towards the null hypothesis, allows propagation of uncertainties, includes prior information, and perform well when handling models with many parameters and latent variables. The bpcs package provides a consistent interface for R users and several functions to evaluate the posterior distribution of all parameters, to estimate the posterior distribution of any contest between items, and to obtain the posterior distribution of the ranks. Three reanalyses of recent studies that used the frequentist Bradley-Terry model are presented. These reanalyses are conducted with the Bayesian models of the bpcs package and all the code used to fit the models, generate the figures and the tables are available in the online appendix.
stat
Statistical Network Analysis with Bergm
Recent advances in computational methods for intractable models have made network data increasingly amenable to statistical analysis. Exponential random graph models (ERGMs) emerged as one of the main families of models capable of capturing the complex dependence structure of network data in a wide range of applied contexts. The Bergm package for R has become a popular package to carry out Bayesian parameter inference, missing data imputation, model selection and goodness-of-fit diagnostics for ERGMs. Over the last few years, the package has been considerably improved in terms of efficiency by adopting some of the state-of-the-art Bayesian computational methods for doubly-intractable distributions. Recently, version 5 of the package has been made available on CRAN having undergone a substantial makeover, which has made it more accessible and easy to use for practitioners. New functions include data augmentation procedures based on the approximate exchange algorithm for dealing with missing data, adjusted pseudo-likelihood and pseudo-posterior procedures, which allow for fast approximate inference of the ERGM parameter posterior and model evidence for networks on several thousands nodes.
stat
A local depth measure for general data
We introduce the Integrated Dual Local Depth which is a local depth measure for data in a Banach space based on the use of one-dimensional projections. The properties of a depth measure are analyzed under this setting and a proper definition of local symmetry is given. Moreover, strong consistency results for the local depth and also for the local depth regions are attained. Finally, applications to descriptive data analysis and classification are analyzed, making the special focus on multivariate functional data, where we obtain very promising results.
stat
A practical, effective calculation of gamma difference distributions with open data science tools
At present, there is still no officially accepted and extensively verified implementation of computing the gamma difference distribution allowing unequal shape parameters. We explore four computational ways of the gamma difference distribution with the different shape parameters resulting from time series kriging, a forecasting approach based on the best linear unbiased prediction, and linear mixed models. The results of our numerical study, with emphasis on using open data science tools, demonstrate that our open tool implemented in high-performance Python(with Numba) is exponentially fast, highly accurate, and very reliable. It combines numerical inversion of the characteristic function and the trapezoidal rule with the double exponential oscillatory transformation (DE quadrature). At the double 53-bit precision, our tool outperformed the speed of the analytical computation based on Tricomi's $U(a, b, z)$ function in CAS software (commercial Mathematica, open SageMath) by 1.5-2 orders. At the precision of scientific numerical computational tools, it exceeded open SciPy, NumPy, and commercial MATLAB 5-10 times. The potential future application of our tool for a mixture of characteristic functions could open new possibilities for fast data analysis based on exact probability distributions in areas like multidimensional statistics, measurement uncertainty analysis in metrology as well as in financial mathematics and risk analysis.
stat
Gaussian variational approximation for high-dimensional state space models
Our article considers a Gaussian variational approximation of the posterior density in a high-dimensional state space model. The variational parameters to be optimized are the mean vector and the covariance matrix of the approximation. The number of parameters in the covariance matrix grows as the square of the number of model parameters, so it is necessary to find simple yet effective parameterizations of the covariance structure when the number of model parameters is large. We approximate the joint posterior distribution over the high-dimensional state vectors by a dynamic factor model, having Markovian time dependence and a factor covariance structure for the states. This gives a reduced description of the dependence structure for the states, as well as a temporal conditional independence structure similar to that in the true posterior. The usefulness of the approach is illustrated for prediction in two high-dimensional applications that are challenging for Markov chain Monte Carlo sampling. The first is a spatio-temporal model for the spread of the Eurasian Collared-Dove across North America; the second is a Wishart-based multivariate stochastic volatility model for financial returns.
stat
Binary R Packages for Linux: Past, Present and Future
Pre-compiled binary packages provide a very convenient way of efficiently distributing software that has been adopted by most Linux package management systems. However, the heterogeneity of the Linux ecosystem, combined with the growing number of R extensions available, poses a scalability problem. As a result, efforts to bring binary R packages to Linux have been scattered, and lack a proper mechanism to fully integrate them with R's package manager. This work reviews past and present of binary distribution for Linux, and presents a path forward by showcasing the `cran2copr' project, an RPM-based proof-of-concept implementation of an automated scalable binary distribution system with the capability of building, maintaining and distributing thousands of packages, while providing a portable and extensible bridge to the system package manager.
stat
Fast computation of latent correlations
Latent Gaussian copula models provide a powerful means to perform multi-view data integration since these models can seamlessly express dependencies between mixed variable types (binary, continuous, zero-inflated) via latent Gaussian correlations. The estimation of these latent correlations, however, comes at considerable computational cost, having prevented the routine use of these models on high-dimensional data. Here, we propose a new computational approach for estimating latent correlations via a hybrid multi-linear interpolation and optimization scheme. Our approach speeds up the current state of the art computation by several orders of magnitude, thus allowing fast computation of latent Gaussian copula models even when the number of variables $p$ is large. We provide theoretical guarantees for the approximation error of our numerical scheme and support its excellent performance on simulated and real-world data. We illustrate the practical advantages of our method on high-dimensional sparse quantitative and relative abundance microbiome data as well as multi-view data from The Cancer Genome Atlas Project. Our method is implemented in the R package mixedCCA, available at https://github.com/irinagain/mixedCCA.
stat
Pricing service maintenance contracts using predictive analytics
As more manufacturers shift their focus from selling products to end solutions, full-service maintenance contracts gain traction in the business world. These contracts cover all maintenance related costs during a predetermined horizon in exchange for a fixed service fee and relieve customers from uncertain maintenance costs. To guarantee profitability, the service fees should at least cover the expected costs during the contract horizon. As these expected costs may depend on several machine-dependent characteristics, e.g. operational environment, the service fees should also be differentiated based on these characteristics. If not, customers that are less prone to high maintenance costs will not buy into or renege on the contract. The latter can lead to adverse selection and leave the service provider with a maintenance-heavy portfolio, which may be detrimental to the profitability of the service contracts. We contribute to the literature with a data-driven tariff plan based on the calibration of predictive models that take into account the different machine profiles. This conveys to the service provider which machine profiles should be attracted at which price. We demonstrate the advantage of a differentiated tariff plan and show how it better protects against adverse selection.
stat
Symbolic Computation of Tight Causal Bounds
Causal inference involves making a set of assumptions about the nature of things, defining a causal query, and attempting to find estimators of the query based on the distribution of observed variables. When causal queries are not identifiable from the observed data, it still may be possible to derive bounds for these quantities in terms of the distribution of observed variables. We develop and describe a general approach for computation of bounds, proving that if the problem can be stated as a linear program, then the true global extrema result in tight bounds. Building upon previous work in this area, we characterize a class of problems that can always be stated as a linear programming problem; we describe a general algorithm for constructing the linear objective and constraints based on the causal model and the causal query of interest. These problems therefore can be solved using a vertex enumeration algorithm. We develop an R package implementing this algorithm with a user friendly graphical interface using directed acyclic graphs, which only allows for problems within this class to be depicted. We have implemented additional features to help with interpreting and applying the bounds that we illustrate in examples.
stat
Validation of Association
Recognizing, quantifying and visualizing associations between two variables is increasingly important. This paper investigates how a new function-valued measure of dependence, the quantile dependence function, can be used to construct tests for independence and to provide an easily interpretable diagnostic plot of existing departures from the null model. The dependence function is designed to detect general dependence structure between variables in quantiles of the joint distribution. It gives an insight into how the dependence structures changes in different parts of the joint distribution. We define new estimators of the dependence function, discuss some of their properties, and apply them to construct new tests of independence. Numerical evidence is given on the test's benefits against three recognized independence tests introduced in the previous years. In real-data analysis, we illustrate the use of our tests and the graphical presentation of the underlying dependence structure.
stat
Sample Complexity Bounds for 1-bit Compressive Sensing and Binary Stable Embeddings with Generative Priors
The goal of standard 1-bit compressive sensing is to accurately recover an unknown sparse vector from binary-valued measurements, each indicating the sign of a linear function of the vector. Motivated by recent advances in compressive sensing with generative models, where a generative modeling assumption replaces the usual sparsity assumption, we study the problem of 1-bit compressive sensing with generative models. We first consider noiseless 1-bit measurements, and provide sample complexity bounds for approximate recovery under i.i.d.~Gaussian measurements and a Lipschitz continuous generative prior, as well as a near-matching algorithm-independent lower bound. Moreover, we demonstrate that the Binary $\epsilon$-Stable Embedding property, which characterizes the robustness of the reconstruction to measurement errors and noise, also holds for 1-bit compressive sensing with Lipschitz continuous generative models with sufficiently many Gaussian measurements. In addition, we apply our results to neural network generative models, and provide a proof-of-concept numerical experiment demonstrating significant improvements over sparsity-based approaches.
stat
The Zoltar forecast archive: a tool to facilitate standardization and storage of interdisciplinary prediction research
Forecasting has emerged as an important component of informed, data-driven decision-making in a wide array of fields. We introduce a new data model for probabilistic predictions that encompasses a wide range of forecasting settings. This framework clearly defines the constituent parts of a probabilistic forecast and proposes one approach for representing these data elements. The data model is implemented in Zoltar, a new software application that stores forecasts using the data model and provides standardized API access to the data. In one real-time case study, an instance of the Zoltar web application was used to store, provide access to, and evaluate real-time forecast data on the order of 10$^7$ rows, provided by over 20 international research teams from academia and industry making forecasts of the COVID-19 outbreak in the US. Tools and data infrastructure for probabilistic forecasts, such as those introduced here, will play an increasingly important role in ensuring that future forecasting research adheres to a strict set of rigorous and reproducible standards.
stat
Hospital Capacity Planning Using Discrete Event Simulation Under Special Consideration of the COVID-19 Pandemic
We present a resource-planning tool for hospitals under special consideration of the COVID-19 pandemic, called babsim.hospital. It provides many advantages for crisis teams, e.g., comparison with their own local planning, simulation of local events, simulation of several scenarios (worst / best case). There are benefits for medical professionals, e.g, analysis of the pandemic at local, regional, state and federal level, the consideration of special risk groups, tools for validating the length of stays and transition probabilities. Finally, there are potential advantages for administration, management, e.g., assessment of the situation of individual hospitals taking local events into account, consideration of relevant resources such as beds, ventilators, rooms, protective clothing, and personnel planning, e.g., medical and nursing staff. babsim.hospital combines simulation, optimization, statistics, and artificial intelligence processes in a very efficient way. The core is a discrete, event-based simulation model.
stat
Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective
Many research domains use data elicited from "citizen scientists" when a direct measure of a process is expensive or infeasible. However, participants may report incorrect estimates or classifications due to their lack of skill. We demonstrate how Bayesian hierarchical models can be used to learn about latent variables of interest, while accounting for the participants' abilities. The model is described in the context of an ecological application that involves crowdsourced classifications of georeferenced coral-reef images from the Great Barrier Reef, Australia. The latent variable of interest is the proportion of coral cover, which is a common indicator of coral reef health. The participants' abilities are expressed in terms of sensitivity and specificity of a correctly classified set of points on the images. The model also incorporates a spatial component, which allows prediction of the latent variable in locations that have not been surveyed. We show that the model outperforms traditional weighted-regression approaches used to account for uncertainty in citizen science data. Our approach produces more accurate regression coefficients and provides a better characterization of the latent process of interest. This new method is implemented in the probabilistic programming language Stan and can be applied to a wide number of problems that rely on uncertain citizen science data.
stat
On estimating the size of overcoverage with the latent class model. A critique of the paper "Population Size Estimation Using Multiple Incomplete Lists with Overcoverage" by di Cecco, di Zio, Filipponi and Rocchetti (2018, JOS 34 557-572)
We read with interest the article by di Cecco et al. (2018), but have reservations about the usefulness of the latent class model specifically for estimating overcoverage. In particular, we question the interpretation of the parameters of the fitted latent class model.
stat
Transmission Matrix Inference via Pseudolikelihood Decimation
One of the biggest challenges in the field of biomedical imaging is the comprehension and the exploitation of the photon scattering through disordered media. Many studies have pursued the solution to this puzzle, achieving light-focusing control or reconstructing images in complex media. In the present work, we investigate how statistical inference helps the calculation of the transmission matrix in a complex scrambling environment, enabling its usage like a normal optical element. We convert a linear input-output transmission problem into a statistical formulation based on pseudolikelihood maximization, learning the coupling matrix via random sampling of intensity realizations. Our aim is to uncover insights from the scattering problem, encouraging the development of novel imaging techniques for better medical investigations, borrowing a number of statistical tools from spin-glass theory.
stat
MLSolv-A: A Novel Machine Learning-Based Prediction of Solvation Free Energies from Pairwise Atomistic Interactions
Recent advances in machine learning and their applications have lead to the development of diverse structure-property relationship models for crucial chemical properties, and the solvation free energy is one of them. Here, we introduce a novel ML-based solvation model, which calculates the solvation energy from pairwise atomistic interactions. The novelty of the proposed model consists of a simple architecture: two encoding functions extract atomic feature vectors from the given chemical structure, while the inner product between two atomistic features calculates their interactions. The results on 6,493 experimental measurements achieve outstanding performance and transferability for enlarging training data due to its solvent-non-specific nature. Analysis of the interaction map shows there is a great potential that our model reproduces group contributions on the solvation energy, which makes us believe that the model not only provides the predicted target property but also gives us more detailed physicochemical insights.
stat
Upper Trust Bound Feasibility Criterion for Mixed Constrained Bayesian Optimization with Application to Aircraft Design
Bayesian optimization methods have been successfully applied to black box optimization problems that are expensive to evaluate. In this paper, we adapt the so-called super effcient global optimization algorithm to solve more accurately mixed constrained problems. The proposed approach handles constraints by means of upper trust bound, the latter encourages exploration of the feasible domain by combining the mean prediction and the associated uncertainty function given by the Gaussian processes. On top of that, a refinement procedure, based on a learning rate criterion, is introduced to enhance the exploitation and exploration trade-off. We show the good potential of the approach on a set of numerical experiments. Finally, we present an application to conceptual aircraft configuration upon which we show the superiority of the proposed approach compared to a set of the state-of-the-art black box optimization solvers. Keywords: Global Optimization, Mixed Constrained Optimization, Black box optimization, Bayesian Optimization, Gaussian Process.
stat
The role of intrinsic dimension in high-resolution player tracking data -- Insights in basketball
A new range of statistical analysis has emerged in sports after the introduction of the high-resolution player tracking technology, specifically in basketball. However, this high dimensional data is often challenging for statistical inference and decision making. In this article, we employ Hidalgo, a state-of-the-art Bayesian mixture model that allows the estimation of heterogeneous intrinsic dimensions (ID) within a dataset and propose some theoretical enhancements. ID results can be interpreted as indicators of variability and complexity of basketball plays and games. This technique allows classification and clustering of NBA basketball player's movement and shot charts data. Analyzing movement data, Hidalgo identifies key stages of offensive actions such as creating space for passing, preparation/shooting and following through. We found that the ID value spikes reaching a peak between 4 and 8 seconds in the offensive part of the court after which it declines. In shot charts, we obtained groups of shots that produce substantially higher and lower successes. Overall, game-winners tend to have a larger intrinsic dimension which is an indication of more unpredictability and unique shot placements. Similarly, we found higher ID values in plays when the score margin is small compared to large margin ones. These outcomes could be exploited by coaches to obtain better offensive/defensive results.
stat
CRAD: Clustering with Robust Autocuts and Depth
We develop a new density-based clustering algorithm named CRAD which is based on a new neighbor searching function with a robust data depth as the dissimilarity measure. Our experiments prove that the new CRAD is highly competitive at detecting clusters with varying densities, compared with the existing algorithms such as DBSCAN, OPTICS and DBCA. Furthermore, a new effective parameter selection procedure is developed to select the optimal underlying parameter in the real-world clustering, when the ground truth is unknown. Lastly, we suggest a new clustering framework that extends CRAD from spatial data clustering to time series clustering without a-priori knowledge of the true number of clusters. The performance of CRAD is evaluated through extensive experimental studies.
stat
Causal Discovery with Unobserved Confounding and non-Gaussian Data
We consider the problem of recovering causal structure from multivariate observational data. We assume that the data arise from a linear structural equation model (SEM) in which the idiosyncratic errors are allowed to be dependent in order to capture possible latent confounding. Each SEM can be represented by a graph where vertices represent observed variables, directed edges represent direct causal effects, and bidirected edges represent dependence among error terms. Specifically, we assume that the true model corresponds to a bow-free acyclic path diagram, i.e., a graph that has at most one edge between any pair of nodes and is acyclic in the directed part. We show that when the errors are non-Gaussian, the exact causal structure encoded by such a graph, and not merely an equivalence class, can be consistently recovered from observational data. The Bow-free Acylic Non-Gaussian (BANG) method we propose for this purpose uses estimates of suitable moments, but, in contrast to previous results, does not require specifying the number of latent variables a priori. We illustrate the effectiveness of BANG in simulations and an application to an ecology data set.
stat
Online detection of cascading change-points
We propose an online detection procedure for cascading failures in the network from sequential data, which can be modeled as multiple correlated change-points happening during a short period. We consider a temporal diffusion network model to capture the temporal dynamic structure of multiple change-points and develop a sequential Shewhart procedure based on the generalized likelihood ratio statistics based on the diffusion network model assuming unknown post-change distribution parameters. We also tackle the computational complexity posed by the unknown propagation. Numerical experiments demonstrate the good performance for detecting cascade failures.
stat
How have German University Tuition Fees Affected Enrollment Rates: Robust Model Selection and Design-based Inference in High-Dimensions
We use official data for all 16 federal German states to study the causal effect of a flat 1000 Euro state-dependent university tuition fee on the enrollment behavior of students during the years 2006-2014. In particular, we show how the variation in the introduction scheme across states and times can be exploited to identify the federal average causal effect of tuition fees by controlling for a large amount of potentially influencing attributes for state heterogeneity. We suggest a stability post-double selection methodology to robustly determine the causal effect across types in the transparently modeled unknown response components. The proposed stability resampling scheme in the two LASSO selection steps efficiently mitigates the risk of model underspecification and thus biased effects when the tuition fee policy decision also depends on relevant variables for the state enrollment rates. Correct inference for the full cross-section state population in the sample requires adequate design -- rather than sampling-based standard errors. With the data-driven model selection and explicit control for spatial cross-effects we detect that tuition fees induce substantial migration effects where the mobility occurs both from fee but also from non-fee states suggesting also a general movement for quality. Overall, we find a significant negative impact of up to 4.5 percentage points of fees on student enrollment. This is in contrast to plain one-step LASSO or previous empirical studies with full fixed effects linear panel regressions which generally underestimate the size and get an only insignificant effect.
stat
Ambiguity in Sequential Data: Predicting Uncertain Futures with Recurrent Models
Ambiguity is inherently present in many machine learning tasks, but especially for sequential models seldom accounted for, as most only output a single prediction. In this work we propose an extension of the Multiple Hypothesis Prediction (MHP) model to handle ambiguous predictions with sequential data, which is of special importance, as often multiple futures are equally likely. Our approach can be applied to the most common recurrent architectures and can be used with any loss function. Additionally, we introduce a novel metric for ambiguous problems, which is better suited to account for uncertainties and coincides with our intuitive understanding of correctness in the presence of multiple labels. We test our method on several experiments and across diverse tasks dealing with time series data, such as trajectory forecasting and maneuver prediction, achieving promising results.
stat
Personalized Treatment for Coronary Artery Disease Patients: A Machine Learning Approach
Current clinical practice guidelines for managing Coronary Artery Disease (CAD) account for general cardiovascular risk factors. However, they do not present a framework that considers personalized patient-specific characteristics. Using the electronic health records of 21,460 patients, we created data-driven models for personalized CAD management that significantly improve health outcomes relative to the standard of care. We develop binary classifiers to detect whether a patient will experience an adverse event due to CAD within a 10-year time frame. Combining the patients' medical history and clinical examination results, we achieve 81.5% AUC. For each treatment, we also create a series of regression models that are based on different supervised machine learning algorithms. We are able to estimate with average R squared = 0.801 the time from diagnosis to a potential adverse event (TAE) and gain accurate approximations of the counterfactual treatment effects. Leveraging combinations of these models, we present ML4CAD, a novel personalized prescriptive algorithm. Considering the recommendations of multiple predictive models at once, ML4CAD identifies for every patient the therapy with the best expected outcome using a voting mechanism. We evaluate its performance by measuring the prescription effectiveness and robustness under alternative ground truths. We show that our methodology improves the expected TAE upon the current baseline by 24.11%, increasing it from 4.56 to 5.66 years. The algorithm performs particularly well for the male (24.3% improvement) and Hispanic (58.41% improvement) subpopulations. Finally, we create an interactive interface, providing physicians with an intuitive, accurate, readily implementable, and effective tool.
stat
Augmented pseudo-marginal Metropolis-Hastings for partially observed diffusion processes
We consider the problem of inference for nonlinear, multivariate diffusion processes, satisfying It\^o stochastic differential equations (SDEs), using data at discrete times that may be incomplete and subject to measurement error. Our starting point is a state-of-the-art correlated pseudo-marginal Metropolis-Hastings scheme, that uses correlated particle filters to induce strong and positive correlation between successive marginal likelihood estimates. However, unless the measurement error or the dimension of the SDE is small, correlation can be eroded by the resampling steps in the particle filter. We therefore propose a novel augmentation scheme, that allows for conditioning on values of the latent process at the observation times, completely avoiding the need for resampling steps. We integrate over the uncertainty at the observation times with an additional Gibbs step. Connections between the resulting pseudo-marginal scheme and existing inference schemes for diffusion processes are made. The methodology is applied in three examples of increasing complexity. We find that our approach offers substantial increases in overall efficiency, compared to competing methods.
stat
A Nonparametric Approach to High-dimensional k-sample Comparison Problems
High-dimensional k-sample comparison is a common applied problem. We construct a class of easy-to-implement nonparametric distribution-free tests based on new tools and unexplored connections with spectral graph theory. The test is shown to possess various desirable properties along with a characteristic exploratory flavor that has practical consequences. The numerical examples show that our method works surprisingly well under a broad range of realistic situations.
stat
Estimating heterogeneous treatment effects in nonstationary time series with state-space models
Randomized trials and observational studies, more often than not, run over a certain period of time. The treatment effect evolves during this period which provides crucial insights into the treatment response and the long-term effects. Many conventional methods for estimating treatment effects are limited to the i.i.d. setting and are not suited for inferring the time dynamics of the treatment effect. The time series encountered in these settings are highly informative but often nonstationary due to the changing effects of treatment. This increases the difficulty, since stationarity, a common assumption in time series analysis, cannot be reasonably assumed. Another challenge is the heterogeneity of the treatment effect when the treatment affects units differently. The task of estimating heterogeneous treatment effects from nonstationary and, in particular, interventional time series is highly relevant but has remained unexplored yet. We propose Causal Transfer, a method which combines regression to adjust for confounding with time series modelling to learn the effect of the treatment and how it evolves over time. Causal Transfer does not assume the data to be stationary and can be applied to randomized trials and observational studies in which treatment is confounded. Causal Transfer adjusts the effect for possible confounders and transfers the learned effect to other time series and, thereby, estimates various forms of treatment effects, such as the average treatment effect (ATE) or the conditional average treatment effect (CATE). By learning the time dynamics of the effect, Causal Transfer can also predict the treatment effect for unobserved future time points and determine the long-term consequences of treatment.
stat
Multi-level Monte Carlo Variational Inference
We propose a variance reduction framework for variational inference using the multi-level Monte Carlo (MLMC) method. The proposed framework "recycles" parameters obtained from past update history in optimization and can be compatible with reparameterized gradient estimators. Our framework provides a novel optimization algorithm based on the stochastic gradient method and adaptively estimates the sample size for stochastic gradient estimation per level according to the ratio of the variance and computation cost in each iteration. We also analyze the convergence of the gradient norm in the stochastic gradient method, the scale of the gradient estimator's variance, and the estimator's quality in each optimization step on the basis of the \textit{signal-to-noise} ratio. Finally, we experimentally evaluate the proposed method by comparing it with baseline methods on several benchmark data sets. The results confirm that the proposed method achieves faster convergence and reduces the variance of the gradient estimator compared with the other methods.
stat
Robustness to Adversarial Perturbations in Learning from Incomplete Data
What is the role of unlabeled data in an inference problem, when the presumed underlying distribution is adversarially perturbed? To provide a concrete answer to this question, this paper unifies two major learning frameworks: Semi-Supervised Learning (SSL) and Distributionally Robust Learning (DRL). We develop a generalization theory for our framework based on a number of novel complexity measures, such as an adversarial extension of Rademacher complexity and its semi-supervised analogue. Moreover, our analysis is able to quantify the role of unlabeled data in the generalization under a more general condition compared to the existing theoretical works in SSL. Based on our framework, we also present a hybrid of DRL and EM algorithms that has a guaranteed convergence rate. When implemented with deep neural networks, our method shows a comparable performance to those of the state-of-the-art on a number of real-world benchmark datasets.
stat
Permutation inference in factorial survival designs with the CASANOVA
We propose inference procedures for general nonparametric factorial survival designs with possibly right-censored data. Similar to additive Aalen models, null hypotheses are formulated in terms of cumulative hazards. Thereby, deviations are measured in terms of quadratic forms in Nelson-Aalen-type integrals. Different to existing approaches this allows to work without restrictive model assumptions as proportional hazards. In particular, crossing survival or hazard curves can be detected without a significant loss of power. For a distribution-free application of the method, a permutation strategy is suggested. The resulting procedures' asymptotic validity as well as their consistency are proven and their small sample performances are analyzed in extensive simulations. Their applicability is finally illustrated by analyzing an oncology data set.
stat
A slice tour for finding hollowness in high-dimensional data
Taking projections of high-dimensional data is a common analytical and visualisation technique in statistics for working with high-dimensional problems. Sectioning, or slicing, through high dimensions is less common, but can be useful for visualising data with concavities, or non-linear structure. It is associated with conditional distributions in statistics, and also linked brushing between plots in interactive data visualisation. This short technical note describes a simple approach for slicing in the orthogonal space of projections obtained when running a tour, thus presenting the viewer with an interpolated sequence of sliced projections. The method has been implemented in R as an extension to the tourr package, and can be used to explore for concave and non-linear structures in multivariate distributions.
stat
Comparing distributions: $\ell_1$ geometry improves kernel two-sample testing
Are two sets of observations drawn from the same distribution? This problem is a two-sample test. Kernel methods lead to many appealing properties. Indeed state-of-the-art approaches use the $L^2$ distance between kernel-based distribution representatives to derive their test statistics. Here, we show that $L^p$ distances (with $p\geq 1$) between these distribution representatives give metrics on the space of distributions that are well-behaved to detect differences between distributions as they metrize the weak convergence. Moreover, for analytic kernels, we show that the $L^1$ geometry gives improved testing power for scalable computational procedures. Specifically, we derive a finite dimensional approximation of the metric given as the $\ell_1$ norm of a vector which captures differences of expectations of analytic functions evaluated at spatial locations or frequencies (i.e, features). The features can be chosen to maximize the differences of the distributions and give interpretable indications of how they differs. Using an $\ell_1$ norm gives better detection because differences between representatives are dense as we use analytic kernels (non-zero almost everywhere). The tests are consistent, while much faster than state-of-the-art quadratic-time kernel-based tests. Experiments on artificial and real-world problems demonstrate improved power/time tradeoff than the state of the art, based on $\ell_2$ norms, and in some cases, better outright power than even the most expensive quadratic-time tests.
stat
Assurance for sample size determination in reliability demonstration testing
Manufacturers are required to demonstrate products meet reliability targets. A typical way to achieve this is with reliability demonstration tests (RDTs), in which a number of products are put on test and the test is passed if a target reliability is achieved. There are various methods for determining the sample size for RDTs, typically based on the power of a hypothesis test following the RDT or risk criteria. Bayesian risk criteria approaches can conflate the choice of sample size and the analysis to be undertaken once the test has been conducted and rely on the specification of somewhat artificial acceptable and rejectable reliability levels. In this paper we offer an alternative approach to sample size determination based on the idea of assurance. This approach chooses the sample size to answer provide a certain probability that the RDT will result in a successful outcome. It separates the design and analysis of the RDT, allowing different priors for each. We develop the assurance approach for sample size calculations in RDTs for binomial and Weibull likelihoods and propose appropriate prior distributions for the design and analysis of the test. In each case, we illustrate the approach with an example based on real data.
stat
Optimization of Distribution Network Configuration for Pediatric Vaccines using Chance Constraint Programming
Millions of young people are not immunized in low- and middle-income (LMI) countries because of low vaccine availability resulting from inefficiencies in cold supply chains. We create supply chain network design and distribution models to address the unique characteristics and challenges facing vaccine supply chains in LMI countries. The models capture the uncertainties of demand for vaccinations and the resulting impacts on immunization, the unique challenges of vaccine administration (such as open vial wastage), the interactions between technological improvements of vaccines and immunizations, and the trade-offs between immunization coverage rates and available resources. The objective is to maximize both the percentage of fully immunized children and the vaccine availability in clinics. Our research examines how these two metrics are affected by three factors: number of tiers in the supply chain, vaccine vial size, and new vaccine technologies. We tested the model using Niger's Expanded Program on Immunization, which is sponsored by the World Health Organization. We make many observations and recommendations to help LMI countries increase their immunization coverage.
stat
Fast Spatial Autocorrelation
Physical or geographic location proves to be an important feature in many data science models, because many diverse natural and social phenomenon have a spatial component. Spatial autocorrelation measures the extent to which locally adjacent observations of the same phenomenon are correlated. Although statistics like Moran's $I$ and Geary's $C$ are widely used to measure spatial autocorrelation, they are slow: all popular methods run in $\Omega(n^2)$ time, rendering them unusable for large data sets, or long time-courses with moderate numbers of points. We propose a new $S_A$ statistic based on the notion that the variance observed when merging pairs of nearby clusters should increase slowly for spatially autocorrelated variables. We give a linear-time algorithm to calculate $S_A$ for a variable with an input agglomeration order (available at https://github.com/aamgalan/spatial_autocorrelation). For a typical dataset of $n \approx 63,000$ points, our $S_A$ autocorrelation measure can be computed in 1 second, versus 2 hours or more for Moran's $I$ and Geary's $C$. Through simulation studies, we demonstrate that $S_A$ identifies spatial correlations in variables generated with spatially-dependent model half an order of magnitude earlier than either Moran's $I$ or Geary's $C$. Finally, we prove several theoretical properties of $S_A$: namely that it behaves as a true correlation statistic, and is invariant under addition or multiplication by a constant.
stat
Machine learning for subgroup discovery under treatment effect
In many practical tasks it is needed to estimate an effect of treatment on individual level. For example, in medicine it is essential to determine the patients that would benefit from a certain medicament. In marketing, knowing the persons that are likely to buy a new product would reduce the amount of spam. In this chapter, we review the methods to estimate an individual treatment effect from a randomized trial, i.e., an experiment when a part of individuals receives a new treatment, while the others do not. Finally, it is shown that new efficient methods are needed in this domain.
stat
Modularity maximisation for graphons
Networks are a widely-used tool to investigate the large-scale connectivity structure in complex systems and graphons have been proposed as an infinite size limit of dense networks. The detection of communities or other meso-scale structures is a prominent topic in network science as it allows the identification of functional building blocks in complex systems. When such building blocks may be present in graphons is an open question. In this paper, we define a graphon-modularity and demonstrate that it can be maximised to detect communities in graphons. We then investigate specific synthetic graphons and show that they may show a wide range of different community structures. We also reformulate the graphon-modularity maximisation as a continuous optimisation problem and so prove the optimal community structure or lack thereof for some graphons, something that is usually not possible for networks. Furthermore, we demonstrate that estimating a graphon from network data as an intermediate step can improve the detection of communities, in comparison with exclusively maximising the modularity of the network. While the choice of graphon-estimator may strongly influence the accord between the community structure of a network and its estimated graphon, we find that there is a substantial overlap if an appropriate estimator is used. Our study demonstrates that community detection for graphons is possible and may serve as a privacy-preserving way to cluster network data.
stat
The hidden waves in the ECG uncovered: a sound automated interpretation method
A novel approach for analysing cardiac rhythm data is presented in this paper. Heartbeats are decomposed into the five fundamental $P$, $Q$, $R$, $S$ and $T$ waves plus an error term to account for artefacts in the data which provides a meaningful, physical interpretation of the heart's electric system. The morphology of each wave is concisely described using four parameters that allow to all the different patterns in heartbeats be characterized and thus differentiated This multi-purpose approach solves such questions as the extraction of interpretable features, the detection of the fiducial marks of the fundamental waves, or the generation of synthetic data and the denoising of signals. Yet, the greatest benefit from this new discovery will be the automatic diagnosis of heart anomalies as well as other clinical uses with great advantages compared to the rigid, vulnerable and black box machine learning procedures, widely used in medical devices. The paper shows the enormous potential of the method in practice; specifically, the capability to discriminate subjects, characterize morphologies and detect the fiducial marks (reference points) are validated numerically using simulated and real data, thus proving that it outperforms its competitors.
stat
Beyond Binomial and Negative Binomial: Adaptation in Bernoulli Parameter Estimation
Estimating the parameter of a Bernoulli process arises in many applications, including photon-efficient active imaging where each illumination period is regarded as a single Bernoulli trial. Motivated by acquisition efficiency when multiple Bernoulli processes are of interest, we formulate the allocation of trials under a constraint on the mean as an optimal resource allocation problem. An oracle-aided trial allocation demonstrates that there can be a significant advantage from varying the allocation for different processes and inspires a simple trial allocation gain quantity. Motivated by realizing this gain without an oracle, we present a trellis-based framework for representing and optimizing stopping rules. Considering the convenient case of Beta priors, three implementable stopping rules with similar performances are explored, and the simplest of these is shown to asymptotically achieve the oracle-aided trial allocation. These approaches are further extended to estimating functions of a Bernoulli parameter. In simulations inspired by realistic active imaging scenarios, we demonstrate significant mean-squared error improvements: up to 4.36 dB for the estimation of p and up to 1.80 dB for the estimation of log p.
stat
Discovering Multiple Phases of Dynamics by Dissecting Multivariate Time Series
We proposed a data-driven approach to dissect multivariate time series in order to discover multiple phases underlying dynamics of complex systems. This computing approach is developed as a multiple-dimension version of Hierarchical Factor Segmentation(HFS) technique. This expanded approach proposes a systematic protocol of choosing various extreme events in multi-dimensional space. Upon each chosen event, an empirical distribution of event-recurrence, or waiting time between the excursions, is fitted by a geometric distribution with time-varying parameters. Iterative fittings are performed across all chosen events. We then collect and summarize the local recurrent patterns into a global dynamic mechanism. Clustering is applied for partitioning the whole time period into alternating segments, in which variables are identically distributed. Feature weighting techniques are also considered to compensate for some drawbacks of clustering. Our simulation results show that this expanded approach can even detect systematic differences when the joint distribution varies. In real data experiments, we analyze the relationship from returns, trading volume, and transaction number of a single, as well as of multiple stocks in S&P500. We can successfully not only map out volatile periods but also provide potential associative links between stocks.
stat
Explicit Regularisation in Gaussian Noise Injections
We study the regularisation induced in neural networks by Gaussian noise injections (GNIs). Though such injections have been extensively studied when applied to data, there have been few studies on understanding the regularising effect they induce when applied to network activations. Here we derive the explicit regulariser of GNIs, obtained by marginalising out the injected noise, and show that it penalises functions with high-frequency components in the Fourier domain; particularly in layers closer to a neural network's output. We show analytically and empirically that such regularisation produces calibrated classifiers with large classification margins.
stat
Selecting time-series hyperparameters with the artificial jackknife
This article proposes a generalisation of the delete-$d$ jackknife to solve hyperparameter selection problems for time series. This novel technique is compatible with dependent data since it substitutes the jackknife removal step with a fictitious deletion, wherein observed datapoints are replaced with artificial missing values. In order to emphasise this point, I called this methodology artificial delete-$d$ jackknife. As an illustration, it is used to regulate vector autoregressions with an elastic-net penalty on the coefficients. A software implementation, ElasticNetVAR.jl, is available on GitHub.
stat
Bayesian cumulative shrinkage for infinite factorizations
There is a wide variety of models in which the dimension of the parameter space is unknown. For example, in factor analysis the number of latent factors is typically not known and has to be inferred from the observed data. Although classical shrinkage priors are useful in these contexts, increasing shrinkage priors can provide a more effective option, which progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, named the cumulative shrinkage process, for the parameters controlling the dimension in over-complete formulations. Our construction has broad applicability, simple interpretation, and is based on a sequence of spike and slab distributions which assign increasing mass to the spike as model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages over current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the methods are evaluated in simulation studies and applied to personality traits data.
stat
General Fair Empirical Risk Minimization
We tackle the problem of algorithmic fairness, where the goal is to avoid the unfairly influence of sensitive information, in the general context of regression with possible continuous sensitive attributes. We extend the framework of fair empirical risk minimization to this general scenario, covering in this way the whole standard supervised learning setting. Our generalized fairness measure reduces to well known notions of fairness available in literature. We derive learning guarantees for our method, that imply in particular its statistical consistency, both in terms of the risk and the fairness measure. We then specialize our approach to kernel methods and propose a convex fair estimator in that setting. We test the estimator on a commonly used benchmark dataset (Communities and Crime) and on a new dataset collected at the University of Genova, containing the information of the academic career of five thousand students. The latter dataset provides a challenging real case scenario of unfair behaviour of standard regression methods that benefits from our methodology. The experimental results show that our estimator is effective at mitigating the trade-off between accuracy and fairness requirements.
stat
An Easy-to-Implement Hierarchical Standardization for Variable Selection Under Strong Heredity Constraint
For many practical problems, the regression models follow the strong heredity property (also known as the marginality), which means they include parent main effects when a second-order effect is present. Existing methods rely mostly on special penalty functions or algorithms to enforce the strong heredity in variable selection. We propose a novel hierarchical standardization procedure to maintain strong heredity in variable selection. Our method is effortless to implement and is applicable to any variable selection method for any type of regression. The performance of the hierarchical standardization is comparable to that of the regular standardization. We also provide robustness checks and real data analysis to illustrate the merits of our method.
stat
Matrix Linear Discriminant Analysis
We propose a novel linear discriminant analysis approach for the classification of high-dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the equivalence of the conventional linear discriminant analysis and the ordinary least squares, we consider an efficient nuclear norm penalized regression that encourages a low-rank structure. Theoretical properties including a non-asymptotic risk bound and a rank consistency result are established. Simulation studies and an application to electroencephalography data show the superior performance of the proposed method over the existing approaches.
stat
Integrative Learning for Population of Dynamic Networks with Covariates
Although there is a rapidly growing literature on dynamic connectivity methods, the primary focus has been on separate network estimation for each individual, which fails to leverage common patterns of information. We propose novel graph-theoretic approaches for estimating a population of dynamic networks that are able to borrow information across multiple heterogeneous samples in an unsupervised manner and guided by covariate information. Specifically, we develop a Bayesian product mixture model that imposes independent mixture priors at each time scan and uses covariates to model the mixture weights, which results in time-varying clusters of samples designed to pool information. The computation is carried out using an efficient Expectation-Maximization algorithm. Extensive simulation studies illustrate sharp gains in recovering the true dynamic network over existing dynamic connectivity methods. An analysis of fMRI block task data with behavioral interventions reveal sub-groups of individuals having similar dynamic connectivity, and identifies intervention-related dynamic network changes that are concentrated in biologically interpretable brain regions. In contrast, existing dynamic connectivity approaches are able to detect minimal or no changes in connectivity over time, which seems biologically unrealistic and highlights the challenges resulting from the inability to systematically borrow information across samples.
stat
Revisiting the Gelman-Rubin Diagnostic
Gelman and Rubin's (1992) convergence diagnostic is one of the most popular methods for terminating a Markov chain Monte Carlo (MCMC) sampler. Since the seminal paper, researchers have developed sophisticated methods for estimating variance of Monte Carlo averages. We show that these estimators find immediate use in the Gelman-Rubin statistic, a connection not previously established in the literature. We incorporate these estimators to upgrade both the univariate and multivariate Gelman-Rubin statistics, leading to improved stability in MCMC termination time. An immediate advantage is that our new Gelman-Rubin statistic can be calculated for a single chain. In addition, we establish a one-to-one relationship between the Gelman-Rubin statistic and effective sample size. Leveraging this relationship, we develop a principled termination criterion for the Gelman-Rubin statistic. Finally, we demonstrate the utility of our improved diagnostic via examples.
stat
Present criteria for prophylactic ICD implantation: Insights from the EU-CERT-ICD (Comparative Effectiveness Research to Assess the Use of Primary ProphylacTic Implantable Cardioverter Defibrillators in EUrope) project
BACKGROUND. The clinical effectiveness of primary prevention implantable cardioverter defibrillator (ICD) therapy is under debate. It is urgently needed to better identify patients who benefit from prophylactic ICD therapy. The EUropean Comparative Effectiveness Research to Assess the Use of Primary ProphylacTic Implantable Cardioverter Defibrillators (EU-CERT-ICD) completed in 2019 will assess this issue. SUMMARY. The EU-CERT-ICD is a prospective investigator-initiated non-randomized, controlled, multicenter observational cohort study done in 44 centers across 15 European countries. A total of 2327 patients with heart failure due to ischemic heart disease or dilated cardiomyopathy indicated for primary prophylactic ICD implantation were recruited between 2014 and 2018 (>1500 patients at first ICD implantation, >750 patients non-randomized non-ICD control group). The primary endpoint was all-cause mortality, first appropriate shock was co-primary endpoint. At baseline, all patients underwent 12-lead ECG and Holter-ECG analysis using multiple advanced methods for risk stratification as well as documentation of clinical characteristics and laboratory values. The EU-CERT-ICD data will provide much needed information on the survival benefit of preventive ICD therapy and expand on previous prospective risk stratification studies which showed very good applicability of clinical parameters and advanced risk stratifiers in order to define patient subgroups with above or below average ICD benefit. CONCLUSION. The EU-CERT-ICD study will provide new and current data about effectiveness of primary prophylactic ICD implantation. The study also aims for improved risk stratification and patient selection using clinical risk markers in general, and advanced ECG risk markers in particular.
stat
Minimal sample size in balanced ANOVA models of crossed, nested and mixed classifications
We consider balanced one-, two- and three-way ANOVA models to test the hypothesis that the fixed factor A has no effect. The other factors are fixed or random. We determine the noncentrality parameter for the exact F-test, describe its minimal value by a sharp lower bound, and thus we can guarantee the worst case power for the F-test. These results allow us to compute the minimal sample size. We also provide a structural result for the minimum sample size, proving a conjecture on the optimal experimental design.
stat
Evaluating distributional regression strategies for modelling self-reported sexual age-mixing
The age dynamics of sexual partnership formation determine patterns of sexually transmitted disease transmission and have long been a focus of researchers studying human immunodeficiency virus. Data on self-reported sexual partner age distributions are available from a variety of sources. We sought to explore statistical models that accurately predict the distribution of sexual partner ages over age and sex. We identified which probability distributions and outcome specifications best captured variation in partner age and quantified the benefits of modelling these data using distributional regression. We found that distributional regression with a sinh-arcsinh distribution replicated observed partner age distributions most accurately across three geographically diverse data sets. This framework can be extended with well-known hierarchical modelling tools and can help improve estimates of sexual age-mixing dynamics.
stat
Predicting the Generalization Gap in Deep Networks with Margin Distributions
As shown in recent research, deep neural networks can perfectly fit randomly labeled data, but with very poor accuracy on held out data. This phenomenon indicates that loss functions such as cross-entropy are not a reliable indicator of generalization. This leads to the crucial question of how generalization gap should be predicted from the training data and network parameters. In this paper, we propose such a measure, and conduct extensive empirical studies on how well it can predict the generalization gap. Our measure is based on the concept of margin distribution, which are the distances of training points to the decision boundary. We find that it is necessary to use margin distributions at multiple layers of a deep network. On the CIFAR-10 and the CIFAR-100 datasets, our proposed measure correlates very strongly with the generalization gap. In addition, we find the following other factors to be of importance: normalizing margin values for scale independence, using characterizations of margin distribution rather than just the margin (closest distance to decision boundary), and working in log space instead of linear space (effectively using a product of margins rather than a sum). Our measure can be easily applied to feedforward deep networks with any architecture and may point towards new training loss functions that could enable better generalization.
stat
Component-wise approximate Bayesian computation via Gibbs-like steps
Approximate Bayesian computation methods are useful for generative models with intractable likelihoods. These methods are however sensitive to the dimension of the parameter space, requiring exponentially increasing resources as this dimension grows. To tackle this difficulty, we explore a Gibbs version of the ABC approach that runs component-wise approximate Bayesian computation steps aimed at the corresponding conditional posterior distributions, and based on summary statistics of reduced dimensions. While lacking the standard justifications for the Gibbs sampler, the resulting Markov chain is shown to converge in distribution under some partial independence conditions. The associated stationary distribution can further be shown to be close to the true posterior distribution and some hierarchical versions of the proposed mechanism enjoy a closed form limiting distribution. Experiments also demonstrate the gain in efficiency brought by the Gibbs version over the standard solution.
stat
An Optimal Private Stochastic-MAB Algorithm Based on an Optimal Private Stopping Rule
We present a provably optimal differentially private algorithm for the stochastic multi-arm bandit problem, as opposed to the private analogue of the UCB-algorithm [Mishra and Thakurta, 2015; Tossou and Dimitrakakis, 2016] which doesn't meet the recently discovered lower-bound of $\Omega \left(\frac{K\log(T)}{\epsilon} \right)$ [Shariff and Sheffet, 2018]. Our construction is based on a different algorithm, Successive Elimination [Even-Dar et al. 2002], that repeatedly pulls all remaining arms until an arm is found to be suboptimal and is then eliminated. In order to devise a private analogue of Successive Elimination we visit the problem of private stopping rule, that takes as input a stream of i.i.d samples from an unknown distribution and returns a multiplicative $(1 \pm \alpha)$-approximation of the distribution's mean, and prove the optimality of our private stopping rule. We then present the private Successive Elimination algorithm which meets both the non-private lower bound [Lai and Robbins, 1985] and the above-mentioned private lower bound. We also compare empirically the performance of our algorithm with the private UCB algorithm.
stat
Understanding and monitoring the evolution of the Covid-19 epidemic from medical emergency calls: the example of the Paris area
We portray the evolution of the Covid-19 epidemic during the crisis of March-April 2020 in the Paris area, by analyzing the medical emergency calls received by the EMS of the four central departments of this area (Centre 15 of SAMU 75, 92, 93 and 94). Our study reveals strong dissimilarities between these departments. We show that the logarithm of each epidemic observable can be approximated by a piecewise linear function of time. This allows us to distinguish the different phases of the epidemic, and to identify the delay between sanitary measures and their influence on the load of EMS. This also leads to an algorithm, allowing one to detect epidemic resurgences. We rely on a transport PDE epidemiological model, and we use methods from Perron-Frobenius theory and tropical geometry.
stat
Detecting Anomalous Time Series by GAMLSS-Akaike-Weights-Scoring
An extensible statistical framework for detecting anomalous time series including those with heavy-tailed distributions and non-stationarity in higher-order moments is introduced based on penalized likelihood distributional regression. Specifically, generalized additive models for location, scale, and shape are used to infer sample path representations defined by a parametric distribution with parameters comprised of basis functions. Akaike weights are then applied to each model and time series, yielding a probability measure that can be effectively used to classify and rank anomalous time series. A mathematical exposition is also given to justify the proposed Akaike weight scoring under a suitable model embedding as a way to asymptotically identify anomalous time series. Studies evaluating the methodology on both multiple simulations and real-world datasets also confirm that high accuracy can be obtained detecting many different and complex types of shape anomalies. Both code implementing GAWS for running on a local machine and the datasets referenced in this paper are available online.
stat