title
stringlengths
6
244
abstract
stringlengths
19
5.09k
label
stringclasses
10 values
Measurement Dependence Inducing Latent Causal Models
We consider the task of causal structure learning over measurement dependence inducing latent (MeDIL) causal models. We show that this task can be framed in terms of the graph theoretic problem of finding edge clique covers,resulting in an algorithm for returning minimal MeDIL causal models (minMCMs). This algorithm is non-parametric, requiring no assumptions about linearity or Gaussianity. Furthermore, despite rather weak assumptions aboutthe class of MeDIL causal models, we show that minimality in minMCMs implies some rather specific and interesting properties. By establishing MeDIL causal models as a semantics for edge clique covers, we also provide a starting point for future work further connecting causal structure learning to developments in graph theory and network science.
stat
Mini-batch learning of exponential family finite mixture models
Mini-batch algorithms have become increasingly popular due to the requirement for solving optimization problems, based on large-scale data sets. Using an existing online expectation-{}-maximization (EM) algorithm framework, we demonstrate how mini-batch (MB) algorithms may be constructed, and propose a scheme for the stochastic stabilization of the constructed mini-batch algorithms. Theoretical results regarding the convergence of the mini-batch EM algorithms are presented. We then demonstrate how the mini-batch framework may be applied to conduct maximum likelihood (ML) estimation of mixtures of exponential family distributions, with emphasis on ML estimation for mixtures of normal distributions. Via a simulation study, we demonstrate that the mini-batch algorithm for mixtures of normal distributions can outperform the standard EM algorithm. Further evidence of the performance of the mini-batch framework is provided via an application to the famous MNIST data set.
stat
A Copula-based Fully Bayesian Nonparametric Evaluation of Cardiovascular Risk Markers in the Mexico City Diabetes Study
Cardiovascular disease lead the cause of death world wide and several studies have been carried out to understand and explore cardiovascular risk markers in normoglycemic and diabetic populations. In this work, we explore the association structure between hyperglycemic markers and cardiovascular risk markers controlled by triglycerides, body mass index, age and gender, for the normoglycemic population in The Mexico City Diabetes Study. Understanding the association structure could contribute to the assessment of additional cardiovascular risk markers in this low income urban population with a high prevalence of classic cardiovascular risk biomarkers. The association structure is measured by conditional Kendall's tau, defined through conditional copula functions. The latter are in turn modeled under a fully Bayesian nonparametric approach, which allows the complete shape of the copula function to vary for different values of the controlled covariates.
stat
Statistical Analysis of Nearest Neighbor Methods for Anomaly Detection
Nearest-neighbor (NN) procedures are well studied and widely used in both supervised and unsupervised learning problems. In this paper we are concerned with investigating the performance of NN-based methods for anomaly detection. We first show through extensive simulations that NN methods compare favorably to some of the other state-of-the-art algorithms for anomaly detection based on a set of benchmark synthetic datasets. We further consider the performance of NN methods on real datasets, and relate it to the dimensionality of the problem. Next, we analyze the theoretical properties of NN-methods for anomaly detection by studying a more general quantity called distance-to-measure (DTM), originally developed in the literature on robust geometric and topological inference. We provide finite-sample uniform guarantees for the empirical DTM and use them to derive misclassification rates for anomalous observations under various settings. In our analysis we rely on Huber's contamination model and formulate mild geometric regularity assumptions on the underlying distribution of the data.
stat
A Multiclass Multiple Instance Learning Method with Exact Likelihood
We study a multiclass multiple instance learning (MIL) problem where the labels only suggest whether any instance of a class exists or does not exist in a training sample or example. No further information, e.g., the number of instances of each class, relative locations or orders of all instances in a training sample, is exploited. Such a weak supervision learning problem can be exactly solved by maximizing the model likelihood fitting given observations, and finds applications to tasks like multiple object detection and localization for image understanding. We discuss its relationship to the classic classification problem, the traditional MIL, and connectionist temporal classification (CTC). We use image recognition as the example task to develop our method, although it is applicable to data with higher or lower dimensions without much modification. Experimental results show that our method can be used to learn all convolutional neural networks for solving real-world multiple object detection and localization tasks with weak annotations, e.g., transcribing house number sequences from the Google street view imagery dataset.
stat
Experimental Designs for Accelerated Degradation Tests Based on Gamma Process Models
Accelerated degradation tests (ADTs) are used to provide an accurate estimation of lifetime properties of highly reliable products within a relatively short testing time. In this regard, data from particular tests at high levels of stress (e.g., temperature, voltage, or vibration) are extrapolated, through a physically reasonable statistical model, to obtain estimates of lifetime quantiles at normal stress levels. The gamma process is a natural model for estimating the degradation increments over the degradation path, which exhibit a monotone and strictly increasing degradation pattern. In this work, we derive optimal experimental designs for repeated measures ADTs with single and multiple failure modes where the observational times are assumed to be known and fixed. The primary degradation path is assumed to follow a Gamma process where a generalized linear model (GLM) is derived in order to represent the observational data and facilitate obtaining an optimal design. The optimal design is obtained by minimizing the asymptotic variance of the estimator of the p-th quantile of the failure time distribution at the normal use conditions In order to avoid components damages and further experimental costs that depends on high stress levels, a penalty function is used to derive a penalized locally optimal design.
stat
Semi Conditional Variational Auto-Encoder for Flow Reconstruction and Uncertainty Quantification from Limited Observations
We present a new data-driven model to reconstruct nonlinear flow from spatially sparse observations. The model is a version of a conditional variational auto-encoder (CVAE), which allows for probabilistic reconstruction and thus uncertainty quantification of the prediction. We show that in our model, conditioning on the measurements from the complete flow data leads to a CVAE where only the decoder depends on the measurements. For this reason we call the model as Semi-Conditional Variational Autoencoder (SCVAE). The method, reconstructions and associated uncertainty estimates are illustrated on the velocity data from simulations of 2D flow around a cylinder and bottom currents from the Bergen Ocean Model. The reconstruction errors are compared to those of the Gappy Proper Orthogonal Decomposition (GPOD) method.
stat
Evaluation of Causal Structure Learning Algorithms via Risk Estimation
Recent years have seen many advances in methods for causal structure learning from data. The empirical assessment of such methods, however, is much less developed. Motivated by this gap, we pose the following question: how can one assess, in a given problem setting, the practical efficacy of one or more causal structure learning methods? We formalize the problem in a decision-theoretic framework, via a notion of expected loss or risk for the causal setting. We introduce a theoretical notion of causal risk as well as sample quantities that can be computed from data, and study the relationship between the two, both theoretically and through an extensive simulation study. Our results provide an assumptions-light framework for assessing causal structure learning methods that can be applied in a range of practical use-cases.
stat
An efficient penalized estimation approach for a semi-parametric linear transformation model with interval-censored data
We consider efficient estimation of flexible transformation models with interval-censored data. To reduce the dimension of semi-parametric models, the unknown monotone transformation function is approximated via monotone splines. A penalization technique is used to provide more computationally efficient estimation of all parameters. To accomplish model fitting, a computationally efficient nested iterative expectation-maximization (EM) based algorithm is developed for estimation, and an easily implemented variance-covariance approach is proposed for inference on regression parameters. Theoretically, we show that the estimator of the transformation function achieves the optimal rate of convergence and the estimators of regression parameters are asymptotically normal and efficient. The penalized procedure is assessed through extensive numerical experiments and further illustrated via two real applications.
stat
Differential equations as models of deep neural networks
In this work we systematically analyze general properties of differential equations used as machine learning models. We demonstrate that the gradient of the loss function with respect to to the hidden state can be considered as a generalized momentum conjugate to the hidden state, allowing application of the tools of classical mechanics. In addition, we show that not only residual networks, but also feedforward neural networks with small nonlinearities and the weights matrices deviating only slightly from identity matrices can be related to the differential equations. We propose a differential equation describing such networks and investigate its properties.
stat
Spatiotemporal analysis of urban heatwaves using Tukey g-and-h random field models
The statistical quantification of temperature processes for the analysis of urban heat island (UHI) effects and local heat-waves is an increasingly important application domain in smart city dynamic modelling. This leads to the increased importance of real-time heatwave risk management on a fine-grained spatial resolution. This study attempts to analyze and develop new methods for modelling the spatio-temporal behavior of ground temperatures. The developed models consider higher-order stochastic spatial properties such as skewness and kurtosis, which are key components for understanding and describing local temperature fluctuations and UHI's. The developed models are applied to the greater Tokyo metropolitan area for a detailed real-world data case study. The analysis also demonstrates how to statistically incorporate a variety of real data sets. This includes remotely sensed imagery and a variety of ground-based monitoring site data to build models linking city and urban covariates to air temperature. The air temperature models are then used to capture high-resolution spatial emulator outputs for ground surface temperature modelling. The main class of processes studied includes the Tukey g-and-h processes for capturing spatial and temporal aspects of heat processes in urban environments.
stat
Lower Bounds on the Generalization Error of Nonlinear Learning Models
We study in this paper lower bounds for the generalization error of models derived from multi-layer neural networks, in the regime where the size of the layers is commensurate with the number of samples in the training data. We show that unbiased estimators have unacceptable performance for such nonlinear networks in this regime. We derive explicit generalization lower bounds for general biased estimators, in the cases of linear regression and of two-layered networks. In the linear case the bound is asymptotically tight. In the nonlinear case, we provide a comparison of our bounds with an empirical study of the stochastic gradient descent algorithm. The analysis uses elements from the theory of large random matrices.
stat
The multivariate tail-inflated normal distribution and its application in finance
This paper introduces the multivariate tail-inflated normal (MTIN) distribution, an elliptical heavy-tails generalization of the multivariate normal (MN). The MTIN belongs to the family of MN scale mixtures by choosing a convenient continuous uniform as mixing distribution. Moreover, it has a closed-form for the probability density function characterized by only one additional ``inflation'' parameter, with respect to the nested MN, governing the tail-weight. The first four moments are also computed; interestingly, they always exist and the excess kurtosis can assume any positive value. The method of moments and maximum likelihood (ML) are considered for estimation. As concerns the latter, a direct approach, as well as a variant of the EM algorithm, are illustrated. The existence of the ML estimates is also evaluated. Since the inflation parameter is estimated from the data, robust estimates of the mean vector and covariance matrix of the nested MN distribution are automatically obtained by down-weighting. Simulations are performed to compare the estimation methods/algorithms and to investigate the ability of AIC and BIC to select among a set of candidate elliptical models. For illustrative purposes, the MTIN distribution is finally fitted to multivariate financial data where its usefulness is also shown in comparison with other well-established multivariate elliptical distributions.
stat
High-dimensional Interactions Detection with Sparse Principal Hessian Matrix
In statistical learning framework with regressions, interactions are the contributions to the response variable from the products of the explanatory variables. In high-dimensional problems, detecting interactions is challenging due to combinatorial complexity and limited data information. We consider detecting interactions by exploring their connections with the principal Hessian matrix. Specifically, we propose a one-step synthetic approach for estimating the principal Hessian matrix by a penalized M-estimator. An alternating direction method of multipliers (ADMM) is proposed to efficiently solve the encountered regularized optimization problem. Based on the sparse estimator, we detect the interactions by identifying its nonzero components. Our method directly targets at the interactions, and it requires no structural assumption on the hierarchy of the interaction effects. We show that our estimator is theoretically valid, computationally efficient, and practically useful for detecting the interactions in a broad spectrum of scenarios.
stat
Sensor selection on graphs via data-driven node sub-sampling in network time series
This paper is concerned by the problem of selecting an optimal sampling set of sensors over a network of time series for the purpose of signal recovery at non-observed sensors with a minimal reconstruction error. The problem is motivated by applications where time-dependent graph signals are collected over redundant networks. In this setting, one may wish to only use a subset of sensors to predict data streams over the whole collection of nodes in the underlying graph. A typical application is the possibility to reduce the power consumption in a network of sensors that may have limited battery supplies. We propose and compare various data-driven strategies to turn off a fixed number of sensors or equivalently to select a sampling set of nodes. We also relate our approach to the existing literature on sensor selection from multivariate data with a (possibly) underlying graph structure. Our methodology combines tools from multivariate time series analysis, graph signal processing, statistical learning in high-dimension and deep learning. To illustrate the performances of our approach, we report numerical experiments on the analysis of real data from bike sharing networks in different cities.
stat
Domain Agnostic Learning for Unbiased Authentication
Authentication is the task of confirming the matching relationship between a data instance and a given identity. Typical examples of authentication problems include face recognition and person re-identification. Data-driven authentication could be affected by undesired biases, i.e., the models are often trained in one domain (e.g., for people wearing spring outfits) while applied in other domains (e.g., they change the clothes to summer outfits). Previous works have made efforts to eliminate domain-difference. They typically assume domain annotations are provided, and all the domains share classes. However, for authentication, there could be a large number of domains shared by different identities/classes, and it is impossible to annotate these domains exhaustively. It could make domain-difference challenging to model and eliminate. In this paper, we propose a domain-agnostic method that eliminates domain-difference without domain labels. We alternately perform latent domain discovery and domain-difference elimination until our model no longer detects domain-difference. In our approach, the latent domains are discovered by learning the heterogeneous predictive relationships between inputs and outputs. Then domain-difference is eliminated in both class-dependent and class-independent spaces to improve robustness of elimination. We further extend our method to a meta-learning framework to pursue more thorough domain-difference elimination. Comprehensive empirical evaluation results are provided to demonstrate the effectiveness and superiority of our proposed method.
stat
Exact Bayesian inference for discretely observed Markov Jump Processes using finite rate matrices
We present new methodologies for Bayesian inference on the rate parameters of a discretely observed continuous-time Markov jump processes with a countably infinite state space. The usual method of choice for inference, particle Markov chain Monte Carlo (particle MCMC), struggles when the observation noise is small. We consider the most challenging regime of exact observations and provide two new methodologies for inference in this case: the minimal extended state space algorithm (MESA) and the nearly minimal extended state space algorithm (nMESA). By extending the Markov chain Monte Carlo state space, both MESA and nMESA use the exponentiation of finite rate matrices to perform exact Bayesian inference on the Markov jump process even though its state space is countably infinite. Numerical experiments show improvements over particle MCMC of between a factor of three and several orders of magnitude.
stat
A generalized kernel machine approach to identify higher-order composite effects in multi-view datasets
In recent years, a comprehensive study of multi-view datasets (e.g., multi-omics and imaging scans) has been a focus and forefront in biomedical research. State-of-the-art biomedical technologies are enabling us to collect multi-view biomedical datasets for the study of complex diseases. While all the views of data tend to explore complementary information of a disease, multi-view data analysis with complex interactions is challenging for a deeper and holistic understanding of biological systems. In this paper, we propose a novel generalized kernel machine approach to identify higher-order composite effects in multi-view biomedical datasets. This generalized semi-parametric (a mixed-effect linear model) approach includes the marginal and joint Hadamard product of features from different views of data. The proposed kernel machine approach considers multi-view data as predictor variables to allow more thorough and comprehensive modeling of a complex trait. The proposed method can be applied to the study of any disease model, where multi-view datasets are available. We applied our approach to both synthesized datasets and real multi-view datasets from adolescence brain development and osteoporosis study, including an imaging scan dataset and five omics datasets. Our experiments demonstrate that the proposed method can effectively identify higher-order composite effects and suggest that corresponding features (genes, region of interests, and chemical taxonomies) function in a concerted effort. We show that the proposed method is more generalizable than existing ones.
stat
A Robust Bayesian Copas Selection Model for Quantifying and Correcting Publication Bias
The validity of conclusions from meta-analysis is potentially threatened by publication bias. Most existing procedures for correcting publication bias assume normality of the study-specific effects that account for between-study heterogeneity. However, this assumption may not be valid, and the performance of these bias correction procedures can be highly sensitive to departures from normality. Further, there exist few measures to quantify the magnitude of publication bias based on selection models. In this paper, we address both of these issues. First, we explore the use of heavy-tailed distributions for the study-specific effects within a Bayesian hierarchical framework. The deviance information criterion (DIC) is used to determine the appropriate distribution to use for conducting the final analysis. Second, we develop a new measure to quantify the magnitude of publication bias based on Hellinger distance. Our measure is easy to interpret and takes advantage of the estimation uncertainty afforded naturally by the posterior distribution. We illustrate our proposed approach through simulation studies and meta-analyses on lung cancer and antidepressants. To assess the prevalence of publication bias, we apply our method to 1500 meta-analyses of dichotomous outcomes in the Cochrane Database of Systematic Reviews. Our methods are implemented in the publicly available R package RobustBayesianCopas.
stat
Modelling dependence within and across run-off triangles for claims reserving
We propose a stochastic model for claims reserving that captures dependence along development years within a single triangle. This dependence is of autoregressive form of order $p$ and is achieved through the use of latent variables. We carry out bayesian inference on model parameters and borrow strength across several triangles, coming from different lines of businesses or companies, through the use of hierarchical priors.
stat
The Promises of Parallel Outcomes
Unobserved confounding presents a major threat to the validity of causal inference from observational studies. In this paper, we introduce a novel framework that leverages the information in multiple parallel outcomes for identification and estimation of causal effects. Under a conditional independence structure among multiple parallel outcomes, we achieve nonparametric identification with at least three parallel outcomes. We further show that under a set of linear structural equation models, causal inference is possible with two parallel outcomes. We develop accompanying estimating procedures and evaluate their finite sample performance through simulation studies and a data application studying the causal effect of the tau protein level on various types of behavioral deficits.
stat
Propensity Process: a Balancing Functional
In observational clinic registries, time to treatment is often of interest, but treatment can be given at any time during follow-up and there is no structure or intervention to ensure regular clinic visits for data collection. To address these challenges, we introduce the time-dependent propensity process as a generalization of the propensity score. We show that the propensity process balances the entire time-varying covariate history which cannot be achieved by existing propensity score methods and that treatment assignment is strongly ignorable conditional on the propensity process. We develop methods for estimating the propensity process using observed data and for matching based on the propensity process. We illustrate the propensity process method using the Emory Amyotrophic Lateral Sclerosis (ALS) Registry data.
stat
Scalable Algorithms for the Sparse Ridge Regression
Sparse regression and variable selection for large-scale data have been rapidly developed in the past decades. This work focuses on sparse ridge regression, which enforces the sparsity by use of the L0 norm. We first prove that the continuous relaxation of the mixed integer second order conic (MISOC) reformulation using perspective formulation is equivalent to that of the convex integer formulation proposed in recent work. We also show that the convex hull of the constraint system of MISOC formulation is equal to its continuous relaxation. Based upon these two formulations (i.e., the MISOC formulation and convex integer formulation), we analyze two scalable algorithms, the greedy and randomized algorithms, for sparse ridge regression with desirable theoretical properties. The proposed algorithms are proved to yield near-optimal solutions under mild conditions. We further propose to integrate the greedy algorithm with the randomized algorithm, which can greedily search the features from the nonzero subset identified by the continuous relaxation of the MISOC formulation. The merits of the proposed methods are illustrated through numerical examples in comparison with several existing ones.
stat
A Kernel Two-sample Test for Dynamical Systems
Evaluating whether data streams were generated by the same distribution is at the heart of many machine learning problems, e.g. to detect changes. This is particularly relevant for data generated by dynamical systems since they are essential for many real-world processes in biomedical, economic, or engineering systems. While kernel two-sample tests are powerful for comparing independent and identically distributed random variables, no established method exists for comparing dynamical systems. The key problem is the critical independence assumption, which is inherently violated in dynamical systems. We propose a novel two-sample test for dynamical systems by addressing three core challenges: we (i) introduce a novel notion of mixing that captures autocorrelations in a relevant metric, (ii) propose an efficient way to estimate the speed of mixing purely from data, and (iii) integrate these into established kernel-two sample tests. The result is a data-driven method for comparison of dynamical systems that is easy to use in practice and comes with sound theoretical guarantees. In an example application to anomaly detection from human walking data, we show that the test readily applies without the need for feature engineering, heuristics, and human expert knowledge.
stat
Federated Learning with Randomized Douglas-Rachford Splitting Methods
In this paper, we develop two new algorithms, called, \textbf{FedDR} and \textbf{asyncFedDR}, for solving a fundamental nonconvex optimization problem in federated learning. Our algorithms rely on a novel combination between a nonconvex Douglas-Rachford splitting method, randomized block-coordinate strategies, and asynchronous implementation. Unlike recent methods in the literature, e.g., FedSplit and FedPD, our algorithms update only a subset of users at each communication round, and possibly in an asynchronous mode, making them more practical. These new algorithms also achieve communication efficiency and more importantly can handle statistical and system heterogeneity, which are the two main challenges in federated learning. Our convergence analysis shows that the new algorithms match the communication complexity lower bound up to a constant factor under standard assumptions. Our numerical experiments illustrate the advantages of the proposed methods compared to existing ones using both synthetic and real datasets.
stat
Gradient Boosting for Linear Mixed Models
Gradient boosting from the field of statistical learning is widely known as a powerful framework for estimation and selection of predictor effects in various regression models by adapting concepts from classification theory. Current boosting approaches also offer methods accounting for random effects and thus enable prediction of mixed models for longitudinal and clustered data. However, these approaches include several flaws resulting in unbalanced effect selection with falsely induced shrinkage and a low convergence rate on the one hand and biased estimates of the random effects on the other hand. We therefore propose a new boosting algorithm which explicitly accounts for the random structure by excluding it from the selection procedure, properly correcting the random effects estimates and in addition providing likelihood-based estimation of the random effects variance structure. The new algorithm offers an organic and unbiased fitting approach, which is shown via simulations and data examples.
stat
On constraining projections of future climate using observations and simulations from multiple climate models
Numerical climate models are used to project future climate change due to both anthropogenic and natural causes. Differences between projections from different climate models are a major source of uncertainty about future climate. Emergent relationships shared by multiple climate models have the potential to constrain our uncertainty when combined with historical observations. We combine projections from 13 climate models with observational data to quantify the impact of emergent relationships on projections of future warming in the Arctic at the end of the 21st century. We propose a hierarchical Bayesian framework based on a coexchangeable representation of the relationship between climate models and the Earth system. We show how emergent constraints fit into the coexchangeable representation, and extend it to account for internal variability simulated by the models and natural variability in the Earth system. Our analysis shows that projected warming in some regions of the Arctic may be more than 2C lower and our uncertainty reduced by up to 30% when constrained by historical observations. A detailed theoretical comparison with existing multi-model projection frameworks is also provided. In particular, we show that projections may be biased if we do not account for internal variability in climate model predictions.
stat
Kaggle forecasting competitions: An overlooked learning opportunity
Competitions play an invaluable role in the field of forecasting, as exemplified through the recent M4 competition. The competition received attention from both academics and practitioners and sparked discussions around the representativeness of the data for business forecasting. Several competitions featuring real-life business forecasting tasks on the Kaggle platform has, however, been largely ignored by the academic community. We believe the learnings from these competitions have much to offer to the forecasting community and provide a review of the results from six Kaggle competitions. We find that most of the Kaggle datasets are characterized by higher intermittence and entropy than the M-competitions and that global ensemble models tend to outperform local single models. Furthermore, we find the strong performance of gradient boosted decision trees, increasing success of neural networks for forecasting, and a variety of techniques for adapting machine learning models to the forecasting task.
stat
$V$-statistics and Variance Estimation
This paper develops a general framework for analyzing asymptotics of $V$-statistics. Previous literature on limiting distribution mainly focuses on the cases when $n \to \infty$ with fixed kernel size $k$. Under some regularity conditions, we demonstrate asymptotic normality when $k$ grows with $n$ by utilizing existing results for $U$-statistics. The key in our approach lies in a mathematical reduction to $U$-statistics by designing an equivalent kernel for $V$-statistics. We also provide a unified treatment on variance estimation for both $U$- and $V$-statistics by observing connections to existing methods and proposing an empirically more accurate estimator. Ensemble methods such as random forests, where multiple base learners are trained and aggregated for prediction purposes, serve as a running example throughout the paper because they are a natural and flexible application of $V$-statistics.
stat
Diagnostic-Driven Nonstationary Emulators Using Kernel Mixtures
Weakly stationary Gaussian processes (GPs) are the principal tool in the statistical approaches to the design and analysis of computer experiments (or Uncertainty Quantification). Such processes are fitted to computer model output using a set of training runs to learn the parameters of the process covariance kernel. The stationarity assumption is often adequate, yet can lead to poor predictive performance when the model response exhibits nonstationarity, for example, if its smoothness varies across the input space. In this paper, we introduce a diagnostic-led approach to fitting nonstationary GP emulators by specifying finite mixtures of region-specific covariance kernels. Our method first fits a stationary GP and, if traditional diagnostics exhibit nonstationarity, those diagnostics are used to fit appropriate mixing functions for a covariance kernel mixture designed to capture the nonstationarity, ensuring an emulator that is continuous in parameter space and readily interpretable. We compare our approach to the principal nonstationary GP models in the literature and illustrate its performance on a number of idealised test cases and in an application to modelling the cloud parameterization of the French climate model.
stat
Nonparametric Estimation of Functional Dynamic Factor Model
For many phenomena, data are collected on a large scale, resulting in high-dimensional and high-frequency data. In this context, functional data analysis (FDA) is attracting interest. FDA deals with data that are defined on an intrinsically infinite-dimensional space. These data are called functional data. However, the infinite-dimensional data might be driven by a small number of latent variables. Hence, factor models are relevant for functional data. In this paper, we study functional factor models for time-dependent functional data. We propose nonparametric estimators under stationary and nonstationary processes. We obtain estimators that consider the time-dependence property. Specifically, we use the information contained on the covariances at different lags. We show that the proposed estimators are consistent. Through Monte Carlo simulations, we find that our methodology outperforms the common estimators based on functional principal components. We also apply our methodology to monthly yield curves. In general, the suitable integration of time-dependent information improves the estimation of the latent factors.
stat
Estimation of the size of informal employment based on administrative records with non-ignorable selection mechanism
In this study we used company level administrative data from the National Labour Inspectorate and The Polish Social Insurance Institution in order to estimate the prevalence of informal employment in Poland. Since the selection mechanism is non-ignorable we employed a generalization of Heckman's sample selection model assuming non-Gaussian correlation of errors and clustering by incorporation of random effects. We found that 5.7% (4.6%, 7.1%; 95% CI) of registered enterprises in Poland, to some extent, take advantage of the informal labour force. Our study exemplifies a new approach to measuring informal employment, which can be implemented in other countries. It also contributes to the existing literature by providing, to the best of our knowledge, the first estimates of informal employment at the level of companies based solely on administrative data.
stat
Rejection-Cascade of Gaussians: Real-time adaptive background subtraction framework
Background-Foreground classification is a well-studied problem in computer vision. Due to the pixel-wise nature of modeling and processing in the algorithm, it is usually difficult to satisfy real-time constraints. There is a trade-off between the speed (because of model complexity) and accuracy. Inspired by the rejection cascade of Viola-Jones classifier, we decompose the Gaussian Mixture Model (GMM) into an adaptive cascade of Gaussians(CoG). We achieve a good improvement in speed without compromising the accuracy with respect to the baseline GMM model. We demonstrate a speed-up factor of 4-5x and 17 percent average improvement in accuracy over Wallflowers surveillance datasets. The CoG is then demonstrated to over the latent space representation of images of a convolutional variational autoencoder(VAE). We provide initial results over CDW-2014 dataset, which could speed up background subtraction for deep architectures.
stat
Bayesian Reliability Analysis of the Power Law Process with Respect to the Higgins-Tsokos Loss Function for Modeling Software Failure Times
The Power Law Process, also known as Non-Homogeneous Poisson Process, has been used in various aspects, one of which is the software reliability assessment. Specifically, by using its intensity function to compute the rate of change of a software reliability as time-varying function. Justification of Bayesian analysis applicability to the Power Law Process was shown using real data. The probability distribution that best characterizes the behavior of the key parameter of the intensity function was first identified, then the likelihood-based Bayesian reliability estimate of the Power Law Process under the Higgins-Tsokos loss function was obtained. As a result of a simulation study and using real data, the Bayesian estimate shows an outstanding performance compared to the maximum likelihood estimate using different sample sizes. In addition, a sensitivity analysis was performed, resulting in the Bayesian estimate being sensitive to the prior selection; whether parametric or non-parametric.
stat
Optimal Combination of Arctic Sea Ice Extent Measures: A Dynamic Factor Modeling Approach
The diminishing extent of Arctic sea ice is a key indicator of climate change as well as an accelerant for future global warming. Since 1978, Arctic sea ice has been measured using satellite-based microwave sensing; however, different measures of Arctic sea ice extent have been made available based on differing algorithmic transformations of the raw satellite data. We propose and estimate a dynamic factor model that combines four of these measures in an optimal way that accounts for their differing volatility and cross-correlations. We then use the Kalman smoother to extract an optimal combined measure of Arctic sea ice extent. It turns out that almost all weight is put on the NSIDC Sea Ice Index, confirming and enhancing confidence in the Sea Ice Index and the NASA Team algorithm on which it is based.
stat
Continual Density Ratio Estimation in an Online Setting
In online applications with streaming data, awareness of how far the training or test set has shifted away from the original dataset can be crucial to the performance of the model. However, we may not have access to historical samples in the data stream. To cope with such situations, we propose a novel method, Continual Density Ratio Estimation (CDRE), for estimating density ratios between the initial and current distributions ($p/q_t$) of a data stream in an iterative fashion without the need of storing past samples, where $q_t$ is shifting away from $p$ over time $t$. We demonstrate that CDRE can be more accurate than standard DRE in terms of estimating divergences between distributions, despite not requiring samples from the original distribution. CDRE can be applied in scenarios of online learning, such as importance weighted covariate shift, tracing dataset changes for better decision making. In addition, (CDRE) enables the evaluation of generative models under the setting of continual learning. To the best of our knowledge, there is no existing method that can evaluate generative models in continual learning without storing samples from the original distribution.
stat
On the penalized maximum likelihood estimation of high-dimensional approximate factor model
In this paper, we mainly focus on the penalized maximum likelihood estimation (MLE) of the high-dimensional approximate factor model. Since the current estimation procedure can not guarantee the positive definiteness of the error covariance matrix, by reformulating the estimation of error covariance matrix and based on the lagrangian duality, we propose an accelerated proximal gradient (APG) algorithm to give a positive definite estimate of the error covariance matrix. Combined the APG algorithm with EM method, a new estimation procedure is proposed to estimate the high-dimensional approximate factor model. The new method not only gives positive definite estimate of error covariance matrix but also improves the efficiency of estimation for the high-dimensional approximate factor model. Although the proposed algorithm can not guarantee a global unique solution, it enjoys a desirable non-increasing property. The efficiency of the new algorithm on estimation and forecasting is also investigated via simulation and real data analysis.
stat
Surrogate modeling based on resampled polynomial chaos expansions
In surrogate modeling, polynomial chaos expansion (PCE) is popularly utilized to represent the random model responses, which are computationally expensive and usually obtained by deterministic numerical modeling approaches including finite element and finite-difference time-domain methods. Recently, efforts have been made on improving the prediction performance of the PCE-based model and building efficiency by only selecting the influential basis polynomials (e.g., via the approach of least angle regression). This paper proposes an approach, named as resampled PCE (rPCE), to further optimize the selection by making use of the knowledge that the true model is fixed despite the statistical uncertainty inherent to sampling in the training. By simulating data variation via resampling ($k$-fold division utilized here) and collecting the selected polynomials with respect to all resamples, polynomials are ranked mainly according to the selection frequency. The resampling scheme (the value of $k$ here) matters much and various configurations are considered and compared. The proposed resampled PCE is implemented with two popular selection techniques, namely least angle regression and orthogonal matching pursuit, and a combination thereof. The performance of the proposed algorithm is demonstrated on two analytical examples, a benchmark problem in structural mechanics, as well as a realistic case study in computational dosimetry.
stat
Regularized estimation for highly multivariate log Gaussian Cox processes
Statistical inference for highly multivariate point pattern data is challenging due to complex models with large numbers of parameters. In this paper, we develop numerically stable and efficient parameter estimation and model selection algorithms for a class of multivariate log Gaussian Cox processes. The methodology is applied to a highly multivariate point pattern data set from tropical rain forest ecology.
stat
Robust Estimation of Heterogeneous Treatment Effects using Electronic Health Record Data
Estimation of heterogeneous treatment effects is an essential component of precision medicine. Model and algorithm-based methods have been developed within the causal inference framework to achieve valid estimation and inference. Existing methods such as the A-learner, R-learner, modified covariates method (with and without efficiency augmentation), inverse propensity score weighting, and augmented inverse propensity score weighting have been proposed mostly under the square error loss function. The performance of these methods in the presence of data irregularity and high dimensionality, such as that encountered in electronic health record (EHR) data analysis, has been less studied. In this research, we describe a general formulation that unifies many of the existing learners through a common score function. The new formulation allows the incorporation of least absolute deviation (LAD) regression and dimension reduction techniques to counter the challenges in EHR data analysis. We show that under a set of mild regularity conditions, the resultant estimator has an asymptotic normal distribution. Within this framework, we proposed two specific estimators for EHR analysis based on weighted LAD with penalties for sparsity and smoothness simultaneously. Our simulation studies show that the proposed methods are more robust to outliers under various circumstances. We use these methods to assess the blood pressure-lowering effects of two commonly used antihypertensive therapies.
stat
Robust Covariance Estimation for High-dimensional Compositional Data with Application to Microbial Communities Analysis
Microbial communities analysis is drawing growing attention due to the rapid development of high-throughput sequencing techniques nowadays. The observed data has the following typical characteristics: it is high-dimensional, compositional (lying in a simplex) and even would be leptokurtic and highly skewed due to the existence of overly abundant taxa, which makes the conventional correlation analysis infeasible to study the co-occurrence and co-exclusion relationship between microbial taxa. In this article, we address the challenges of covariance estimation for this kind of data. Assuming the basis covariance matrix lying in a well-recognized class of sparse covariance matrices, we adopt a proxy matrix known as centered log-ratio covariance matrix in the literature, which is approximately indistinguishable from the real basis covariance matrix as the dimensionality tends to infinity. We construct a Median-of-Means (MOM) estimator for the centered log-ratio covariance matrix and propose a thresholding procedure that is adaptive to the variability of individual entries. By imposing a much weaker finite fourth moment condition compared with the sub-Gaussianity condition in the literature, we derive the optimal rate of convergence under the spectral norm. In addition, we also provide theoretical guarantee on support recovery. The adaptive thresholding procedure of the MOM estimator is easy to implement and gains robustness when outliers or heavy-tailedness exist. Thorough simulation studies are conducted to show the advantages of the proposed procedure over some state-of-the-arts methods. At last, we apply the proposed method to analyze a microbiome dataset in human gut. The R script for implementing the method is available at https://github.com/heyongstat/RCEC.
stat
Improved Consistency Regularization for GANs
Recent work has increased the performance of Generative Adversarial Networks (GANs) by enforcing a consistency cost on the discriminator. We improve on this technique in several ways. We first show that consistency regularization can introduce artifacts into the GAN samples and explain how to fix this issue. We then propose several modifications to the consistency regularization procedure designed to improve its performance. We carry out extensive experiments quantifying the benefit of our improvements. For unconditional image synthesis on CIFAR-10 and CelebA, our modifications yield the best known FID scores on various GAN architectures. For conditional image synthesis on CIFAR-10, we improve the state-of-the-art FID score from 11.48 to 9.21. Finally, on ImageNet-2012, we apply our technique to the original BigGAN model and improve the FID from 6.66 to 5.38, which is the best score at that model size.
stat
A calibrated sensitivity analysis for matched observational studies with application to the effect of second-hand smoke exposure on blood lead levels in U.S. children
Matched observational studies are commonly used to study treatment effects in non-randomized data. After matching for observed confounders, there could remain bias from unobserved confounders. A standard way to address this problem is to do a sensitivity analysis. A sensitivity analysis asks how sensitive the result is to a hypothesized unmeasured confounder U. One method, known as simultaneous sensitivity analysis, has two sensitivity parameters: one relating U to treatment assignment and the other to response. This method assumes that in each matched set, U is distributed to make the bias worst. This approach has two concerning features. First, this worst case distribution of U in each matched set does not correspond to a realistic distribution of U in the population. Second, sensitivity parameters are in absolute scales which are hard to compare to observed covariates. We address these concerns by introducing a method that endows U with a probability distribution in the population and calibrates the unmeasured confounder to the observed covariates. We compare our method to simultaneous sensitivity analysis in simulations and in a study of the effect of second-hand smoke exposure on blood lead levels in U.S. children.
stat
A Nonconvex Framework for Structured Dynamic Covariance Recovery
We propose a flexible yet interpretable model for high-dimensional data with time-varying second order statistics, motivated and applied to functional neuroimaging data. Motivated by the neuroscience literature, we factorize the covariances into sparse spatial and smooth temporal components. While this factorization results in both parsimony and domain interpretability, the resulting estimation problem is nonconvex. To this end, we design a two-stage optimization scheme with a carefully tailored spectral initialization, combined with iteratively refined alternating projected gradient descent. We prove a linear convergence rate up to a nontrivial statistical error for the proposed descent scheme and establish sample complexity guarantees for the estimator. We further quantify the statistical error for the multivariate Gaussian case. Empirical results using simulated and real brain imaging data illustrate that our approach outperforms existing baselines.
stat
The layer-wise L1 Loss Landscape of Neural Nets is more complex around local minima
For fixed training data and network parameters in the other layers the L1 loss of a ReLU neural network as a function of the first layer's parameters is a piece-wise affine function. We use the Deep ReLU Simplex algorithm to iteratively minimize the loss monotonically on adjacent vertices and analyze the trajectory of these vertex positions. We empirically observe that in a neighbourhood around a local minimum, the iterations behave differently such that conclusions on loss level and proximity of the local minimum can be made before it has been found: Firstly the loss seems to decay exponentially slow at iterated adjacent vertices such that the loss level at the local minimum can be estimated from the loss levels of subsequently iterated vertices, and secondly we observe a strong increase of the vertex density around local minima. This could have far-reaching consequences for the design of new gradient-descent algorithms that might improve convergence rate by exploiting these facts.
stat
Uncovering and Displaying the Coherent Groups of Rank Data by Exploratory Riffle Shuffling
Let n respondents rank order d items, and suppose that d << n. Our main task is to uncover and display the structure of the observed rank data by an exploratory riffle shuffling procedure which sequentially decomposes the n voters into a finite number of coherent groups plus a noisy group : where the noisy group represents the outlier voters and each coherent group is composed of a finite number of coherent clusters. We consider exploratory riffle shuffling of a set of items to be equivalent to optimal two blocks seriation of the items with crossing of some scores between the two blocks. A riffle shuffled coherent cluster of voters within its coherent group is essentially characterized by the following facts : a) Voters have identical first TCA factor score, where TCA designates taxicab correspondence analysis, an L1 variant of correspondence analysis ; b) Any preference is easily interpreted as riffle shuffling of its items ; c) The nature of different riffle shuffling of items can be seen in the structure of the contingency table of the first-order marginals constructed from the Borda scorings of the voters ; d) The first TCA factor scores of the items of a coherent cluster are interpreted as Borda scale of the items. We also introduce a crossing index, which measures the extent of crossing of scores of voters between the two blocks seriation of the items. The novel approach is explained on the benchmarking SUSHI data set, where we show that this data set has a very simple structure, which can also be communicated in a tabular form.
stat
Statistical Inference of Auto-correlated Eigenvalues with Applications to Diffusion Tensor Imaging
Diffusion tensor imaging (DTI) is a prevalent neuroimaging tool in analyzing the anatomical structure. The distinguishing feature of DTI is that the voxel-wise variable is a 3x3 positive definite matrix other than a scalar, describing the diffusion process at the voxel. Recently, several statistical methods have been proposed to analyze the DTI data. This paper focuses on the statistical inference of eigenvalues of DTI because it provides more transparent clinical interpretations. However, the statistical inference of eigenvalues is statistically challenging because few treat these responses as random eigenvalues. In our paper, we rely on the distribution of the Wishart matrix's eigenvalues to model the random eigenvalues. A hierarchical model which captures the eigenvalues' randomness and spatial auto-correlation is proposed to infer the local covariate effects. The Monte-Carlo Expectation-Maximization algorithm is implemented for parameter estimation. Both simulation studies and application to IXI data-set are used to demonstrate our proposal. The results show that our proposal is more proper in analyzing auto-correlated random eigenvalues compared to alternatives.
stat
Dimensionality Reduction and (Bucket) Ranking: a Mass Transportation Approach
Whereas most dimensionality reduction techniques (e.g. PCA, ICA, NMF) for multivariate data essentially rely on linear algebra to a certain extent, summarizing ranking data, viewed as realizations of a random permutation $\Sigma$ on a set of items indexed by $i\in \{1,\ldots,\; n\}$, is a great statistical challenge, due to the absence of vector space structure for the set of permutations $\mathfrak{S}_n$. It is the goal of this article to develop an original framework for possibly reducing the number of parameters required to describe the distribution of a statistical population composed of rankings/permutations, on the premise that the collection of items under study can be partitioned into subsets/buckets, such that, with high probability, items in a certain bucket are either all ranked higher or else all ranked lower than items in another bucket. In this context, $\Sigma$'s distribution can be hopefully represented in a sparse manner by a bucket distribution, i.e. a bucket ordering plus the ranking distributions within each bucket. More precisely, we introduce a dedicated distortion measure, based on a mass transportation metric, in order to quantify the accuracy of such representations. The performance of buckets minimizing an empirical version of the distortion is investigated through a rate bound analysis. Complexity penalization techniques are also considered to select the shape of a bucket order with minimum expected distortion. Beyond theoretical concepts and results, numerical experiments on real ranking data are displayed in order to provide empirical evidence of the relevance of the approach promoted.
stat
Non-compliance and missing data in health economic evaluation
Health economic evaluations face the issues of non-compliance and missing data. Here, non-compliance is defined as non-adherence to a specific treatment, and occurs within randomised controlled trials (RCTs) when participants depart from their random assignment. Missing data arises if, for example, there is loss to follow-up, survey non-response, or the information available from routine data sources is incomplete. Appropriate statistical methods for handling non-compliance and missing data have been developed, but they have rarely been applied in health economics studies. Here, we illustrate the issues and outline some of the appropriate methods to handle these with an application to a health economic evaluation that uses data from an RCT. In an RCT the random assignment can be used as an instrument for treatment receipt, to obtain consistent estimates of the complier average causal effect, provided the underlying assumptions are met. Instrumental variable methods can accommodate essential features of the health economic context such as the correlation between individuals' costs and outcomes in cost-effectiveness studies. Methodological guidance for handling missing data encourages approaches such as multiple imputation or inverse probability weighting, that assume the data are Missing At Random, but also sensitivity analyses that recognise the data may be missing according to the true, unobserved values, that is, Missing Not at Random. Future studies should subject the assumptions behind methods for handling non-compliance and missing data to thorough sensitivity analyses. Modern machine learning methods can help reduce reliance on correct model specification. Further research is required to develop flexible methods for handling more complex forms of non-compliance and missing data.
stat
Diagnostics for Stochastic Gaussian Process Emulators
Computer models, also known as simulators, can be computationally expensive to run, and for this reason statistical surrogates, known as emulators, are often used. Any statistical model, including an emulator, should be validated before being used, otherwise resulting decisions can be misguided. We discuss how current methods for validating Gaussian process emulators of deterministic models are insufficient for emulators of stochastic computer models and develop a framework for diagnosing problems in stochastic emulators. These diagnostics are based on independently validating the mean and variance predictions using out-of-sample, replicated, simulator runs. We then also use a building performance simulator as a case study example.
stat
Optimal Transport for Multi-source Domain Adaptation under Target Shift
In this paper, we propose to tackle the problem of reducing discrepancies between multiple domains referred to as multi-source domain adaptation and consider it under the target shift assumption: in all domains we aim to solve a classification problem with the same output classes, but with labels' proportions differing across them. This problem, generally ignored in the vast majority papers on domain adaptation papers, is nevertheless critical in real-world applications, and we theoretically show its impact on the adaptation success. To address this issue, we design a method based on optimal transport, a theory that has been successfully used to tackle adaptation problems in machine learning. Our method performs multi-source adaptation and target shift correction simultaneously by learning the class probabilities of the unlabeled target sample and the coupling allowing to align two (or more) probability distributions. Experiments on both synthetic and real-world data related to satellite image segmentation task show the superiority of the proposed method over the state-of-the-art.
stat
Optimal Clustering from Noisy Binary Feedback
We consider the problem of solving large-scale labeling tasks with minimal effort put on the users. Examples of such tasks include those in some of the recent CAPTCHA systems, where users clicks (binary answers) constitute the only data available to label images. Specifically, we study the generic problem of clustering a set of items from binary user feedback. Items are grouped into initially unknown non-overlapping clusters. To recover these clusters, the learner sequentially presents to users a finite list of items together with a question with a binary answer selected from a fixed finite set. For each of these items, the user provides a noisy answer whose expectation is determined by the item cluster and the question and by an item-specific parameter characterizing the {\it hardness} of classifying the item. The objective is to devise an algorithm with a minimal cluster recovery error rate. We derive problem-specific information-theoretical lower bounds on the error rate satisfied by any algorithm, for both uniform and adaptive (list, question) selection strategies. For uniform selection, we present a simple algorithm built upon the K-means algorithm and whose performance almost matches the fundamental limits. For adaptive selection, we develop an adaptive algorithm that is inspired by the derivation of the information-theoretical error lower bounds, and in turn allocates the budget in an efficient way. The algorithm learns to select items hard to cluster and relevant questions more often. We compare the performance of our algorithms with or without the adaptive selection strategy numerically and illustrate the gain achieved by being adaptive.
stat
Modeling Univariate and Multivariate Stochastic Volatility in R with stochvol and factorstochvol
Stochastic volatility (SV) models are nonlinear state-space models that enjoy increasing popularity for fitting and predicting heteroskedastic time series. However, due to the large number of latent quantities, their efficient estimation is non-trivial and software that allows to easily fit SV models to data is rare. We aim to alleviate this issue by presenting novel implementations of four SV models delivered in two R packages. Several unique features are included and documented. As opposed to previous versions, stochvol is now capable of handling linear mean models, heavy-tailed SV, and SV with leverage. Moreover, we newly introduce factorstochvol which caters for multivariate SV. Both packages offer a user-friendly interface through the conventional R generics and a range of tailor-made methods. Computational efficiency is achieved via interfacing R to C++ and doing the heavy work in the latter. In the paper at hand, we provide a detailed discussion on Bayesian SV estimation and showcase the use of the new software through various examples.
stat
Generalized Residual Ratio Thresholding
Simultaneous orthogonal matching pursuit (SOMP) and block OMP (BOMP) are two widely used techniques for sparse support recovery in multiple measurement vector (MMV) and block sparse (BS) models respectively. For optimal performance, both SOMP and BOMP require \textit{a priori} knowledge of signal sparsity or noise variance. However, sparsity and noise variance are unavailable in most practical applications. This letter presents a novel technique called generalized residual ratio thresholding (GRRT) for operating SOMP and BOMP without the \textit{a priori} knowledge of signal sparsity and noise variance and derive finite sample and finite signal to noise ratio (SNR) guarantees for exact support recovery. Numerical simulations indicate that GRRT performs similar to BOMP and SOMP with \textit{a priori} knowledge of signal and noise statistics.
stat
Integrated Principal Components Analysis
Data integration, or the strategic analysis of multiple sources of data simultaneously, can often lead to discoveries that may be hidden in individualistic analyses of a single data source. We develop a new unsupervised data integration method named Integrated Principal Components Analysis (iPCA), which is a model-based generalization of PCA and serves as a practical tool to find and visualize common patterns that occur in multiple data sets. The key idea driving iPCA is the matrix-variate normal model, whose Kronecker product covariance structure captures both individual patterns within each data set and joint patterns shared by multiple data sets. Building upon this model, we develop several penalized (sparse and non-sparse) covariance estimators for iPCA, and using geodesic convexity, we prove that our non-sparse iPCA estimator converges to the global solution of a non-convex problem. We also demonstrate the practical advantages of iPCA through extensive simulations and a case study application to integrative genomics for Alzheimer's disease. In particular, we show that the joint patterns extracted via iPCA are highly predictive of a patient's cognition and Alzheimer's diagnosis.
stat
A copula-based multivariate hidden Markov model for modelling momentum in football
We investigate the potential occurrence of change points - commonly referred to as "momentum shifts" - in the dynamics of football matches. For that purpose, we model minute-by-minute in-game statistics of Bundesliga matches using hidden Markov models (HMMs). To allow for within-state correlation of the variables considered, we formulate multivariate state-dependent distributions using copulas. For the Bundesliga data considered, we find that the fitted HMMs comprise states which can be interpreted as a team showing different levels of control over a match. Our modelling framework enables inference related to causes of momentum shifts and team tactics, which is of much interest to managers, bookmakers, and sports fans.
stat
Hybridizing two-step growth mixture model and exploratory factor analysis to examine heterogeneity in nonlinear trajectories
Empirical researchers are usually interested in investigating the impacts of baseline covariates have when uncovering sample heterogeneity and separating samples into more homogeneous groups. However, a considerable number of studies in the structural equation modeling (SEM) framework usually start with vague hypotheses in terms of heterogeneity and possible reasons. It suggests that (1) the determination and specification of a proper model with covariates is not straightforward, and (2) the exploration process may be computational intensive given that a model in the SEM framework is usually complicated and the pool of candidate covariates is usually huge in the psychological and educational domain where the SEM framework is widely employed. Following \citet{Bakk2017two}, this article presents a two-step growth mixture model (GMM) that examines the relationship between latent classes of nonlinear trajectories and baseline characteristics. Our simulation studies demonstrate that the proposed model is capable of clustering the nonlinear change patterns, and estimating the parameters of interest unbiasedly, precisely, as well as exhibiting appropriate confidence interval coverage. Considering the pool of candidate covariates is usually huge and highly correlated, this study also proposes implementing exploratory factor analysis (EFA) to reduce the dimension of covariate space. We illustrate how to use the hybrid method, the two-step GMM and EFA, to efficiently explore the heterogeneity of nonlinear trajectories of longitudinal mathematics achievement data.
stat
Causal Discovery Toolbox: Uncover causal relationships in Python
This paper presents a new open source Python framework for causal discovery from observational data and domain background knowledge, aimed at causal graph and causal mechanism modeling. The 'cdt' package implements the end-to-end approach, recovering the direct dependencies (the skeleton of the causal graph) and the causal relationships between variables. It includes algorithms from the 'Bnlearn' and 'Pcalg' packages, together with algorithms for pairwise causal discovery such as ANM. 'cdt' is available under the MIT License at https://github.com/Diviyan-Kalainathan/CausalDiscoveryToolbox.
stat
Efficient random graph matching via degree profiles
Random graph matching refers to recovering the underlying vertex correspondence between two random graphs with correlated edges; a prominent example is when the two random graphs are given by Erd\H{o}s-R\'{e}nyi graphs $G(n,\frac{d}{n})$. This can be viewed as an average-case and noisy version of the graph isomorphism problem. Under this model, the maximum likelihood estimator is equivalent to solving the intractable quadratic assignment problem. This work develops an $\tilde{O}(n d^2+n^2)$-time algorithm which perfectly recovers the true vertex correspondence with high probability, provided that the average degree is at least $d = \Omega(\log^2 n)$ and the two graphs differ by at most $\delta = O( \log^{-2}(n) )$ fraction of edges. For dense graphs and sparse graphs, this can be improved to $\delta = O( \log^{-2/3}(n) )$ and $\delta = O( \log^{-2}(d) )$ respectively, both in polynomial time. The methodology is based on appropriately chosen distance statistics of the degree profiles (empirical distribution of the degrees of neighbors). Before this work, the best known result achieves $\delta=O(1)$ and $n^{o(1)} \leq d \leq n^c$ for some constant $c$ with an $n^{O(\log n)}$-time algorithm \cite{barak2018nearly} and $\delta=\tilde O((d/n)^4)$ and $d = \tilde{\Omega}(n^{4/5})$ with a polynomial-time algorithm \cite{dai2018performance}.
stat
Stratification and Optimal Resampling for Sequential Monte Carlo
Sequential Monte Carlo (SMC), also known as particle filters, has been widely accepted as a powerful computational tool for making inference with dynamical systems. A key step in SMC is resampling, which plays the role of steering the algorithm towards the future dynamics. Several strategies have been proposed and used in practice, including multinomial resampling, residual resampling (Liu and Chen 1998), optimal resampling (Fearnhead and Clifford 2003), stratified resampling (Kitagawa 1996), and optimal transport resampling (Reich 2013). We show that, in the one dimensional case, optimal transport resampling is equivalent to stratified resampling on the sorted particles, and they both minimize the resampling variance as well as the expected squared energy distance between the original and resampled empirical distributions; in the multidimensional case, the variance of stratified resampling after sorting particles using Hilbert curve (Gerber et al. 2019) in $\mathbb{R}^d$ is $O(m^{-(1+2/d)})$, an improved rate compared to the original $O(m^{-(1+1/d)})$, where $m$ is the number of resampled particles. This improved rate is the lowest for ordered stratified resampling schemes, as conjectured in Gerber et al. (2019). We also present an almost sure bound on the Wasserstein distance between the original and Hilbert-curve-resampled empirical distributions. In light of these theoretical results, we propose the stratified multiple-descendant growth (SMG) algorithm, which allows us to explore the sample space more efficiently compared to the standard i.i.d. multiple-descendant sampling-resampling approach as measured by the Wasserstein metric. Numerical evidence is provided to demonstrate the effectiveness of our proposed method.
stat
Generalizing causal inferences from individuals in randomized trials to all trial-eligible individuals
We consider methods for causal inference in randomized trials nested within cohorts of trial-eligible individuals, including those who are not randomized. We show how baseline covariate data from the entire cohort, and treatment and outcome data only from randomized individuals, can be used to identify potential (counterfactual) outcome means and average treatment effects in the target population of all eligible individuals. We review identifiability conditions, propose estimators, and assess the estimators' finite-sample performance in simulation studies. As an illustration, we apply the estimators in a trial nested within a cohort of trial-eligible individuals to compare coronary artery bypass grafting surgery plus medical therapy vs. medical therapy alone for chronic coronary artery disease.
stat
Stochastic Optimization of Sorting Networks via Continuous Relaxations
Sorting input objects is an important step in many machine learning pipelines. However, the sorting operator is non-differentiable with respect to its inputs, which prohibits end-to-end gradient-based optimization. In this work, we propose NeuralSort, a general-purpose continuous relaxation of the output of the sorting operator from permutation matrices to the set of unimodal row-stochastic matrices, where every row sums to one and has a distinct arg max. This relaxation permits straight-through optimization of any computational graph involve a sorting operation. Further, we use this relaxation to enable gradient-based stochastic optimization over the combinatorially large space of permutations by deriving a reparameterized gradient estimator for the Plackett-Luce family of distributions over permutations. We demonstrate the usefulness of our framework on three tasks that require learning semantic orderings of high-dimensional objects, including a fully differentiable, parameterized extension of the k-nearest neighbors algorithm.
stat
Time Series Methods and Ensemble Models to Nowcast Dengue at the State Level in Brazil
Predicting an infectious disease can help reduce its impact by advising public health interventions and personal preventive measures. Novel data streams, such as Internet and social media data, have recently been reported to benefit infectious disease prediction. As a case study of dengue in Brazil, we have combined multiple traditional and non-traditional, heterogeneous data streams (satellite imagery, Internet, weather, and clinical surveillance data) across its 27 states on a weekly basis over seven years. For each state, we nowcast dengue based on several time series models, which vary in complexity and inclusion of exogenous data. The top-performing model varies by state, motivating our consideration of ensemble approaches to automatically combine these models for better outcomes at the state level. Model comparisons suggest that predictions often improve with the addition of exogenous data, although similar performance can be attained by including only one exogenous data stream (either weather data or the novel satellite data) rather than combining all of them. Our results demonstrate that Brazil can be nowcasted at the state level with high accuracy and confidence, inform the utility of each individual data stream, and reveal potential geographic contributors to predictive performance. Our work can be extended to other spatial levels of Brazil, vector-borne diseases, and countries, so that the spread of infectious disease can be more effectively curbed.
stat
Expressive Priors in Bayesian Neural Networks: Kernel Combinations and Periodic Functions
A simple, flexible approach to creating expressive priors in Gaussian process (GP) models makes new kernels from a combination of basic kernels, e.g. summing a periodic and linear kernel can capture seasonal variation with a long term trend. Despite a well-studied link between GPs and Bayesian neural networks (BNNs), the BNN analogue of this has not yet been explored. This paper derives BNN architectures mirroring such kernel combinations. Furthermore, it shows how BNNs can produce periodic kernels, which are often useful in this context. These ideas provide a principled approach to designing BNNs that incorporate prior knowledge about a function. We showcase the practical value of these ideas with illustrative experiments in supervised and reinforcement learning settings.
stat
Subsampling Sequential Monte Carlo for Static Bayesian Models
We show how to speed up Sequential Monte Carlo (SMC) for Bayesian inference in large data problems by data subsampling. SMC sequentially updates a cloud of particles through a sequence of distributions, beginning with a distribution that is easy to sample from such as the prior and ending with the posterior distribution. Each update of the particle cloud consists of three steps: reweighting, resampling, and moving. In the move step, each particle is moved using a Markov kernel; this is typically the most computationally expensive part, particularly when the dataset is large. It is crucial to have an efficient move step to ensure particle diversity. Our article makes two important contributions. First, in order to speed up the SMC computation, we use an approximately unbiased and efficient annealed likelihood estimator based on data subsampling. The subsampling approach is more memory efficient than the corresponding full data SMC, which is an advantage for parallel computation. Second, we use a Metropolis within Gibbs kernel with two conditional updates. A Hamiltonian Monte Carlo update makes distant moves for the model parameters, and a block pseudo-marginal proposal is used for the particles corresponding to the auxiliary variables for the data subsampling. We demonstrate both the usefulness and limitations of the methodology for estimating four generalized linear models and a generalized additive model with large datasets.
stat
On the definition of a concentration function relevant to the ROC curve
This is a reader's reaction to a recent paper by E. Schechtman and G. Schechtman (Metron, 2019) about the correct definition of a concentration function for the diagnostic, i.e. supervised classification, problem. We propose and motivate a different definition and refer to the relevant literature.
stat
Factor-augmented Bayesian treatment effects models for panel outcomes
We propose a new, flexible model for inference of the effect of a binary treatment on a continuous outcome observed over subsequent time periods. The model allows to seperate association due to endogeneity of treatment selection from additional longitudinal association of the outcomes and hence unbiased estimation of dynamic treatment effects. We investigate the performance of the proposed method on simulated data and employ it to reanalyse data on the longitudinal effects of a long maternity leave on mothers' earnings after their return to the labour market.
stat
Investigating Under and Overfitting in Wasserstein Generative Adversarial Networks
We investigate under and overfitting in Generative Adversarial Networks (GANs), using discriminators unseen by the generator to measure generalization. We find that the model capacity of the discriminator has a significant effect on the generator's model quality, and that the generator's poor performance coincides with the discriminator underfitting. Contrary to our expectations, we find that generators with large model capacities relative to the discriminator do not show evidence of overfitting on CIFAR10, CIFAR100, and CelebA.
stat
Causal Inference with Two Versions of Treatment
Causal effects are commonly defined as comparisons of the potential outcomes under treatment and control, but this definition is threatened by the possibility that the treatment or control condition is not well-defined, existing instead in more than one version. A simple, widely applicable analysis is proposed to address the possibility that the treatment or control condition exists in two versions with two different treatment effects. This analysis loses no power in the main comparison of treatment and control, provides additional information about version effects, and controls the family-wise error rate in several comparisons. The method is motivated and illustrated using an on-going study of the possibility that repeated head trauma in high school football causes an increase in risk of early on-set dementia.
stat
A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic Data Imputation
Sparsity and missing data problems are very common in spatiotemporal traffic data collected from various sensing systems. Making accurate imputation is critical to many applications in intelligent transportation systems. In this paper, we formulate the missing data imputation problem in spatiotemporal traffic data in a low-rank tensor completion (LRTC) framework and define a novel truncated nuclear norm (TNN) on traffic tensors of location$\times$day$\times$time of day. In particular, we introduce an universal rate parameter to control the degree of truncation on all tensor modes in the proposed LRTC-TNN model, and this allows us to better characterize the hidden patterns in spatiotemporal traffic data. Based on the framework of the Alternating Direction Method of Multipliers (ADMM), we present an efficient algorithm to obtain the optimal solution for each variable. We conduct numerical experiments on four spatiotemporal traffic data sets, and our results show that the proposed LRTC-TNN model outperforms many state-of-the-art imputation models with missing rates/patterns. Moreover, the proposed model also outperforms other baseline models in extreme missing scenarios.
stat
Rank-One Measurements of Low-Rank PSD Matrices Have Small Feasible Sets
We study the role of the constraint set in determining the solution to low-rank, positive semidefinite (PSD) matrix sensing problems. The setting we consider involves rank-one sensing matrices: In particular, given a set of rank-one projections of an approximately low-rank PSD matrix, we characterize the radius of the set of PSD matrices that satisfy the measurements. This result yields a sampling rate to guarantee singleton solution sets when the true matrix is exactly low-rank, such that the choice of the objective function or the algorithm to be used is inconsequential in its recovery. We discuss applications of this contribution and compare it to recent literature regarding implicit regularization for similar problems. We demonstrate practical implications of this result by applying conic projection methods for PSD matrix recovery without incorporating low-rank regularization.
stat
A Non-Iterative Quantile Change Detection Method in Mixture Model with Heavy-Tailed Components
Estimating parameters of mixture model has wide applications ranging from classification problems to estimating of complex distributions. Most of the current literature on estimating the parameters of the mixture densities are based on iterative Expectation Maximization (EM) type algorithms which require the use of either taking expectations over the latent label variables or generating samples from the conditional distribution of such latent labels using the Bayes rule. Moreover, when the number of components is unknown, the problem becomes computationally more demanding due to well-known label switching issues \cite{richardson1997bayesian}. In this paper, we propose a robust and quick approach based on change-point methods to determine the number of mixture components that works for almost any location-scale families even when the components are heavy tailed (e.g., Cauchy). We present several numerical illustrations by comparing our method with some of popular methods available in the literature using simulated data and real case studies. The proposed method is shown be as much as 500 times faster than some of the competing methods and are also shown to be more accurate in estimating the mixture distributions by goodness-of-fit tests.
stat
Context-dependent self-exciting point processes: models, methods, and risk bounds in high dimensions
High-dimensional autoregressive point processes model how current events trigger or inhibit future events, such as activity by one member of a social network can affect the future activity of his or her neighbors. While past work has focused on estimating the underlying network structure based solely on the times at which events occur on each node of the network, this paper examines the more nuanced problem of estimating context-dependent networks that reflect how features associated with an event (such as the content of a social media post) modulate the strength of influences among nodes. Specifically, we leverage ideas from compositional time series and regularization methods in machine learning to conduct network estimation for high-dimensional marked point processes. Two models and corresponding estimators are considered in detail: an autoregressive multinomial model suited to categorical marks and a logistic-normal model suited to marks with mixed membership in different categories. Importantly, the logistic-normal model leads to a convex negative log-likelihood objective and captures dependence across categories. We provide theoretical guarantees for both estimators, which we validate by simulations and a synthetic data-generating model. We further validate our methods through two real data examples and demonstrate the advantages and disadvantages of both approaches.
stat
Estimating the Causal Effects of Cruise Traffic on Air Pollution using Randomization-Based Inference
Local environmental organizations and media have recently expressed concerns over air pollution induced by maritime traffic and its potential adverse health effects on the population of Mediterranean port cities. We explore this issue with unique high-frequency data from Marseille, France's largest port for cruise ships, over the 2008-2018 period. Using a new pair-matching algorithm designed for time series data, we create hypothetical randomized experiments and estimate the variation in air pollutant concentrations caused by a short-term increase in cruise vessel traffic. We carry out a randomization-based approach to compute 95% Fisherian intervals (FI) for constant treatment effects consistent with the matched data and the hypothetical intervention. At the hourly level, cruise vessels' arrivals increase concentrations of nitrogen dioxide (NO$_{2}$) by 4.7 $\mu g/m^3$ (95% FI: [1.4, 8.0]), of sulfur dioxide (SO$_{2}$) by 1.2 $\mu g/m^3$ (95% FI: [-0.1, 2.5]), and of particulate matter (PM$_{10}$) by 4.6 $\mu g/m^3$ (95% FI: [0.9, 8.3]). At the daily level, cruise traffic increases concentrations of NO$_{2}$ by 1.2 $\mu g/m^3$ (95% FI: [-0.5, 3.0]) and of PM$_{10}$ by 1.3 $\mu g/m^3$ (95% FI: [-0.3, 3.0]). Our results suggest that well-designed hypothetical randomized experiments provide a principled approach to better understand the negative externalities of maritime traffic.
stat
Pairwise Fairness for Ordinal Regression
We initiate the study of fairness for ordinal regression, or ordinal classification. We adapt two fairness notions previously considered in fair ranking and propose a strategy for training a predictor that is approximately fair according to either notion. Our predictor consists of a threshold model, composed of a scoring function and a set of thresholds, and our strategy is based on a reduction to fair binary classification for learning the scoring function and local search for choosing the thresholds. We can control the extent to which we care about the accuracy vs the fairness of the predictor via a parameter. In extensive experiments we show that our strategy allows us to effectively explore the accuracy-vs-fairness trade-off and that it often compares favorably to "unfair" state-of-the-art methods for ordinal regression in that it yields predictors that are only slightly less accurate, but significantly more fair.
stat
Sine-skewed toroidal distributions and their application in protein bioinformatics
In the bioinformatics field, there has been a growing interest in modelling dihedral angles of amino acids by viewing them as data on the torus. This has motivated, over the past years, new proposals of distributions on the bivariate torus. The main drawback of most of these models is that the related densities are (pointwise) symmetric, despite the fact that the data usually present asymmetric patterns. This motivates the need to find a new way of constructing asymmetric toroidal distributions starting from a symmetric distribution. We tackle this problem in this paper by introducing the sine-skewed toroidal distributions. The general properties of the new models are derived. Based on the initial symmetric model, explicit expressions for the shape parameters are obtained, a simple algorithm for generating random numbers is provided, and asymptotic results for the maximum likelihood estimators are established. An important feature of our construction is that no normalizing constant needs to be calculated, leading to more flexible distributions without increasing the complexity of the models. The benefit of employing these new sine-skewed distributions is shown on the basis of protein data, where, in general, the new models outperform their symmetric antecedents.
stat
Model-based ROC (mROC) curve: examining the effect of case-mix and model calibration on the ROC plot
The performance of risk prediction models is often characterized in terms of discrimination and calibration. The Receiver Operating Characteristic (ROC) curve is widely used for evaluating model discrimination. When evaluating the performance of a risk prediction model in a new sample, the shape of the ROC curve is affected by both case-mix and the postulated model. Further, compared to discrimination, evaluating calibration has not received the same level of attention. Commonly used methods for model calibration involve subjective specification of smoothing or grouping. Leveraging the familiar ROC framework, we introduce the model-based ROC (mROC) curve to assess the calibration of a pre-specified model in a new sample. mROC curve is the ROC curve that should be observed if a pre-specified model is calibrated in the sample. We show the empirical ROC and mROC curves for a sample converge asymptotically if the model is calibrated in that sample. As a consequence, the mROC curve can be used to assess visually the effect of case-mix and model mis-calibration. Further, we propose a novel statistical test for calibration that does not require any smoothing or grouping. Simulations support the adequacy of the test. A case study puts these developments in a practical context. We conclude that mROC can easily be constructed and used to evaluate the effect of case-mix and model calibration on the ROC plot, thus adding to the utility of ROC curve analysis in the evaluation of risk prediction models. R code for the proposed methodology is provided (https://github.com/msadatsafavi/mROC/).
stat
Kernel-estimated Nonparametric Overlap-Based Syncytial Clustering
Commonly-used clustering algorithms usually find ellipsoidal, spherical or other regular-structured clusters, but are more challenged when the underlying groups lack formal structure or definition. Syncytial clustering is the name that we introduce for methods that merge groups obtained from standard clustering algorithms in order to reveal complex group structure in the data. Here, we develop a distribution-free fully-automated syncytial clustering algorithm that can be used with $k$-means and other algorithms. Our approach estimates the cumulative distribution function of the normed residuals from an appropriately fit $k$-groups model and calculates the estimated nonparametric overlap between each pair of clusters. Groups with high pairwise overlap are merged as long as the estimated generalized overlap decreases. Our methodology is always a top performer in identifying groups with regular and irregular structures in several datasets and can be applied to datasets with scatter or incomplete records. The approach is also used to identify the distinct kinds of gamma ray bursts in the Burst and Transient Source Experiment 4Br catalog and the distinct kinds of activation in a functional Magnetic Resonance Imaging study.
stat
Measuring Diffusion over a Large Network
This paper introduces a measure of diffusion of binary outcomes over a large, sparse network. The measure captures the aggregated spillover effect of the outcomes in the first period on their neighboring outcomes in the second period. We associate the network with a set of conditional independence restrictions, and show that when there is an observed proxy network that satisfies these conditional independence restrictions, the measure of diffusion is identified as a spatio-temporal dependence measure of observed outcomes. When the proxy network does not satisfy the restrictions but the spillover effect is nonnegative, the spatio-temporal dependence measure serves as a lower bound for the diffusion. Using this, we propose a confidence lower bound for diffusion and establish its asymptotic validity. Our Monte Carlo simulation studies demonstrate the finite sample stability of the inference across a range of network configurations. We apply the method to Indian village data to measure the diffusion of microfinancing decisions over social networks of households and find that the diffusion parameter is significantly different from zero at 1% level.
stat
An automatic robust Bayesian approach to principal component regression
Principal component regression uses principal components as regressors. It is particularly useful in prediction settings with high-dimensional covariates. The existing literature treating of Bayesian approaches is relatively sparse. We introduce a Bayesian approach that is robust to outliers in both the dependent variable and the covariates. Outliers can be thought of as observations that are not in line with the general trend. The proposed approach automatically penalises these observations so that their impact on the posterior gradually vanishes as they move further and further away from the general trend, corresponding to a concept in Bayesian statistics called whole robustness. The predictions produced are thus consistent with the bulk of the data. The approach also exploits the geometry of principal components to efficiently identify those that are significant. Individual predictions obtained from the resulting models are consolidated according to model-averaging mechanisms to account for model uncertainty. The approach is evaluated on real data and compared to its nonrobust Bayesian counterpart, the traditional frequentist approach, and a commonly employed robust frequentist method. Detailed guidelines to automate the entire statistical procedure are provided. All required code is made available, see ArXiv:1711.06341.
stat
Sharp Composition Bounds for Gaussian Differential Privacy via Edgeworth Expansion
Datasets containing sensitive information are often sequentially analyzed by many algorithms. This raises a fundamental question in differential privacy regarding how the overall privacy bound degrades under composition. To address this question, we introduce a family of analytical and sharp privacy bounds under composition using the Edgeworth expansion in the framework of the recently proposed f-differential privacy. In contrast to the existing composition theorems using the central limit theorem, our new privacy bounds under composition gain improved tightness by leveraging the refined approximation accuracy of the Edgeworth expansion. Our approach is easy to implement and computationally efficient for any number of compositions. The superiority of these new bounds is confirmed by an asymptotic error analysis and an application to quantifying the overall privacy guarantees of noisy stochastic gradient descent used in training private deep neural networks.
stat
Hierarchical community detection by recursive partitioning
The problem of community detection in networks is usually formulated as finding a single partition of the network into some "correct" number of communities. We argue that it is more interpretable and in some regimes more accurate to construct a hierarchical tree of communities instead. This can be done with a simple top-down recursive partitioning algorithm, starting with a single community and separating the nodes into two communities by spectral clustering repeatedly, until a stopping rule suggests there are no further communities. This class of algorithms is model-free, computationally efficient, and requires no tuning other than selecting a stopping rule. We show that there are regimes where this approach outperforms K-way spectral clustering, and propose a natural framework for analyzing the algorithm's theoretical performance, the binary tree stochastic block model. Under this model, we prove that the algorithm correctly recovers the entire community tree under relatively mild assumptions. We apply the algorithm to a gene network based on gene co-occurrence in 1580 research papers on anemia, and identify six clusters of genes in a meaningful hierarchy. We also illustrate the algorithm on a dataset of statistics papers.
stat
Adjusted Empirical Likelihood Method for the Tail Index of A Heavy-Tailed Distribution
Empirical likelihood is a well-known nonparametric method in statistics and has been widely applied in statistical inference. The method has been employed by Lu and Peng (2002) to constructing confidence intervals for the tail index of a heavy-tailed distribution. It is demonstrated in Lu and Peng (2002) that the empirical likelihood-based confidence intervals performs better than confidence intervals based on normal approximation in terms of the coverage probability. In general, the empirical likelihood method can be hindered by its imprecision in the coverage probability when the sample size is small. This may cause a serious undercoverage issue when we apply the empirical likelihood to the tail index as only a very small portion of observations can be used in the estimation of the tail index. In this paper, we employ an adjusted empirical likelihood method, developed by Chen et al. (2008) and Liu and Chen (2010), to constructing confidence intervals of the tail index so as to achieve a better accuracy. We conduct a simulation study to compare the performance of the adjusted empirical likelihood method and the normal approximation method. Our simulation results indicate that the adjusted empirical likelihood method outperforms other methods in terms of the coverage probability and length of confidence intervals. We also apply the adjusted empirical likelihood method to a real data set.
stat
Aligning Hyperbolic Representations: an Optimal Transport-based approach
Hyperbolic-spaces are better suited to represent data with underlying hierarchical relationships, e.g., tree-like data. However, it is often necessary to incorporate, through alignment, different but related representations meaningfully. This aligning is an important class of machine learning problems, with applications as ontology matching and cross-lingual alignment. Optimal transport (OT)-based approaches are a natural choice to tackle the alignment problem as they aim to find a transformation of the source dataset to match a target dataset, subject to some distribution constraints. This work proposes a novel approach based on OT of embeddings on the Poincar\'e model of hyperbolic spaces. Our method relies on the gyrobarycenter mapping on M\"obius gyrovector spaces. As a result of this formalism, we derive extensions to some existing Euclidean methods of OT-based domain adaptation to their hyperbolic counterparts. Empirically, we show that both Euclidean and hyperbolic methods have similar performances in the context of retrieval.
stat
Kernel-based Approximate Bayesian Inference for Exponential Family Random Graph Models
Bayesian inference for exponential family random graph models (ERGMs) is a doubly-intractable problem because of the intractability of both the likelihood and posterior normalizing factor. Auxiliary variable based Markov Chain Monte Carlo (MCMC) methods for this problem are asymptotically exact but computationally demanding, and are difficult to extend to modified ERGM families. In this work, we propose a kernel-based approximate Bayesian computation algorithm for fitting ERGMs. By employing an adaptive importance sampling technique, we greatly improve the efficiency of the sampling step. Though approximate, our easily parallelizable approach is yields comparable accuracy to state-of-the-art methods with substantial improvements in compute time on multi-core hardware. Our approach also flexibly accommodates both algorithmic enhancements (including improved learning algorithms for estimating conditional expectations) and extensions to non-standard cases such as inference from non-sufficient statistics. We demonstrate the performance of this approach on two well-known network data sets, comparing its accuracy and efficiency with results obtained using the approximate exchange algorithm. Our tests show a wallclock time advantage of up to 50% with five cores, and the ability to fit models in 1/5th the time at 30 cores; further speed enhancements are possible when more cores are available.
stat
Relaxing the I.I.D. Assumption: Adaptively Minimax Optimal Regret via Root-Entropic Regularization
We consider sequential prediction with expert advice when data are generated from distributions varying arbitrarily within an unknown constraint set. We quantify relaxations of the classical i.i.d. assumption in terms of these constraint sets, with i.i.d. sequences at one extreme and adversarial mechanisms at the other. The Hedge algorithm, long known to be minimax optimal in the adversarial regime, was recently shown to be minimax optimal for i.i.d. data. We show that Hedge with deterministic learning rates is suboptimal between these extremes, and present a new algorithm that adaptively achieves the minimax optimal rate of regret with respect to our relaxations of the i.i.d. assumption, and does so without knowledge of the underlying constraint set. We analyze our algorithm using the follow-the-regularized-leader framework, and prove it corresponds to Hedge with an adaptive learning rate that implicitly scales as the square root of the entropy of the current predictive distribution, rather than the entropy of the initial predictive distribution.
stat
Empirical study to explore the influence of salesperson's customer orientation on customer loyalty
This study tries to examine the influence of salesperson's customer orientation on customer loyalty. Customer orientation is the approach taken by a salesperson to improve customer relationship and increase sales. Many organizations prefer sales orientation as a strategic approach towards increasing sales. Though successful in its objective, sales orientation fails to attract repetitive purchase. It has become a necessity to train frontline employees to better understand the customer needs, keeping in mind the firm's ultimate objective. This study examines the improvements customer orientation can bring to increase repurchases thus leading to customer loyalty. The findings suggest that product assortment, long lines of customers, customers' annual income, and the listening skills of salesperson were the significant antecedents of customer loyalty.
stat
Robust approximate linear regression without correspondence
We propose methods for estimating correspondence between two point sets under the presence of outliers in both the source and target sets. The proposed algorithms expand upon the theory of the regression without correspondence problem to estimate transformation coefficients using unordered multisets of covariates and responses. Previous theoretical analysis of the problem has been done in a setting where the responses are a complete permutation of the regressed covariates. This paper expands the problem setting by analyzing the cases where only a subset of the responses is a permutation of the regressed covariates in addition to some covariates being outliers. We term this problem \textit{robust regression without correspondence} and provide several algorithms based on random sample consensus for exact and approximate recovery in a noiseless and noisy one-dimensional setting as well as an approximation algorithm for multiple dimensions. The theoretical guarantees of the algorithms are verified in simulated data. We demonstrate an important computational neuroscience application of the proposed framework by demonstrating its effectiveness in a \textit{Caenorhabditis elegans} neuron matching problem where the presence of outliers in both the source and target nematodes is a natural tendency.
stat
A fast algorithm for maximal propensity score matching
We present a new algorithm which detects the maximal possible number of matched disjoint pairs satisfying a given caliper when a bipartite matching is done with respect to a scalar index (e.g., propensity score), and constructs a corresponding matching. Variable width calipers are compatible with the technique, provided that the width of the caliper is a Lipschitz function of the index. If the observations are ordered with respect to the index then the matching needs $O(N)$ operations, where $N$ is the total number of subjects to be matched. The case of 1-to-$n$ matching is also considered. We offer also a new fast algorithm for optimal complete one-to-one matching on a scalar index when the treatment and control groups are of the same size. This allows us to improve greedy nearest neighbor matching on a scalar index. Keywords: propensity score matching, nearest neighbor matching, matching with caliper, variable width caliper.
stat
Sensitivity analysis via the proportion of unmeasured confounding
In observational studies, identification of ATEs is generally achieved by assuming that the correct set of confounders has been measured and properly included in the relevant models. Because this assumption is both strong and untestable, a sensitivity analysis should be performed. Common approaches include modeling the bias directly or varying the propensity scores to probe the effects of a potential unmeasured confounder. In this paper, we take a novel approach whereby the sensitivity parameter is the "proportion of unmeasured confounding:" the proportion of units for whom the treatment is not as good as randomized even after conditioning on the observed covariates. We consider different assumptions on the probability of a unit being unconfounded. In each case, we derive sharp bounds on the average treatment effect as a function of the sensitivity parameter and propose nonparametric estimators that allow flexible covariate adjustment. We also introduce a one-number summary of a study's robustness to the number of confounded units. Finally, we explore finite-sample properties via simulation, and apply the methods to an observational database used to assess the effects of right heart catheterization.
stat
Spike and slab Bayesian sparse principal component analysis
Sparse principal component analysis (PCA) is a popular tool for dimensional reduction of high-dimensional data. Despite its massive popularity, there is still a lack of theoretically justifiable Bayesian sparse PCA that is computationally scalable. A major challenge is choosing a suitable prior for the loadings matrix, as principal components are mutually orthogonal. We propose a spike and slab prior that meets this orthogonality constraint and show that the posterior enjoys both theoretical and computational advantages. Two computational algorithms, the PX-CAVI and the PX-EM algorithms, are developed. Both algorithms use parameter expansion to deal with the orthogonality constraint and to accelerate their convergence speeds. We found that the PX-CAVI algorithm has superior empirical performance than the PX-EM algorithm and two other penalty methods for sparse PCA. The PX-CAVI algorithm is then applied to study a lung cancer gene expression dataset. $\mathsf{R}$ package $\mathsf{VBsparsePCA}$ with an implementation of the algorithm is available on The Comprehensive R Archive Network.
stat
Stein Neural Sampler
We propose two novel samplers to generate high-quality samples from a given (un-normalized) probability density. Motivated by the success of generative adversarial networks, we construct our samplers using deep neural networks that transform a reference distribution to the target distribution. Training schemes are developed to minimize two variations of the Stein discrepancy, which is designed to work with un-normalized densities. Once trained, our samplers are able to generate samples instantaneously. We show that the proposed methods are theoretically sound and experience fewer convergence issues compared with traditional sampling approaches according to our empirical studies.
stat
An Independence Test Based on Recurrence Rates. An empirical study and applications to real data
In this paper we propose several variants to perform the independence test between two random elements based on recurrence rates. We will show how to calculate the test statistic in each one of these cases. From simulations we obtain that in high dimension, our test clearly outperforms, in almost all cases, the other widely used competitors. The test was performed on two data sets including small and large sample sizes and we show that in both ases the application of the test allows us to obtain interesting conclusions.
stat
Econometric Inference on Large Bayesian Games with Heterogeneous Beliefs
Econometric models of strategic interactions among people or firms have received a great deal of attention in the literature. Less attention has been paid to the role of the underlying assumptions about the way agents form beliefs about other agents. This paper focuses on a single large Bayesian game and develops a bootstrap inference method that relaxes the assumption of rational expectations and allows for the players to form beliefs differently from each other. By drawing on the main intuition of Kalai(2004), we introduce the notion of a hindsight regret, which measures each player's ex post value of other players' type information, and obtain its belief-free bound. Using this bound, we derive testable implications and develop a bootstrap inference procedure for the structural parameters. We demonstrate the finite sample performance of the method through Monte Carlo simulations.
stat
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Test-time data augmentation$-$averaging the predictions of a machine learning model across multiple augmented samples of data$-$is a widely used technique that improves the predictive performance. While many advanced learnable data augmentation techniques have emerged in recent years, they are focused on the training phase. Such techniques are not necessarily optimal for test-time augmentation and can be outperformed by a policy consisting of simple crops and flips. The primary goal of this paper is to demonstrate that test-time augmentation policies can be successfully learned too. We introduce greedy policy search (GPS), a simple but high-performing method for learning a policy of test-time augmentation. We demonstrate that augmentation policies learned with GPS achieve superior predictive performance on image classification problems, provide better in-domain uncertainty estimation, and improve the robustness to domain shift.
stat
Modeling the occurrence of events subject to a reporting delay via an EM algorithm
A delay between the occurrence and the reporting of events often has practical implications such as for the amount of capital to hold for insurance companies, or for taking preventive actions in case of infectious diseases. The accurate estimation of the number of incurred but not (yet) reported events forms an essential part of properly dealing with this phenomenon. We review the current practice for analysing such data and we present a flexible regression framework to jointly estimate the occurrence and reporting of events. By linking this setting to an incomplete data problem, estimation is performed by the expectation-maximization algorithm. The resulting method is elegant, easy to understand and implement, and provides refined insights in the nowcasts. The proposed methodology is applied to a European general liability portfolio in insurance.
stat
Estimation of Causal Effects of Multiple Treatments in Observational Studies with a Binary Outcome
There is a dearth of robust methods to estimate the causal effects of multiple treatments when the outcome is binary. This paper uses two unique sets of simulations to propose and evaluate the use of Bayesian Additive Regression Trees (BART) in such settings. First, we compare BART to several approaches that have been proposed for continuous outcomes, including inverse probability of treatment weighting (IPTW), targeted maximum likelihood estimator (TMLE), vector matching and regression adjustment. Results suggest that under conditions of non-linearity and non-additivity of both the treatment assignment and outcome generating mechanisms, BART, TMLE and IPTW using generalized boosted models (GBM) provide better bias reduction and smaller root mean squared error. BART and TMLE provide more consistent 95 per cent CI coverage and better large-sample convergence property. Second, we supply BART with a strategy to identify a common support region for retaining inferential units and for avoiding extrapolating over areas of the covariate space where common support does not exist. BART retains more inferential units than the generalized propensity score based strategy, and shows lower bias, compared to TMLE or GBM, in a variety of scenarios differing by the degree of covariate overlap. A case study examining the effects of three surgical approaches for non-small cell lung cancer demonstrates the methods.
stat
An efficient manifold density estimator for all recommendation systems
Many unsupervised representation learning methods belong to the class of similarity learning models. While various modality-specific approaches exist for different types of data, a core property of many methods is that representations of similar inputs are close under some similarity function. We propose EMDE (Efficient Manifold Density Estimator) - a framework utilizing arbitrary vector representations with the property of local similarity to succinctly represent smooth probability densities on Riemannian manifolds. Our approximate representation has the desirable properties of being fixed-size and having simple additive compositionality, thus being especially amenable to treatment with neural networks - both as input and output format, producing efficient conditional estimators. We generalize and reformulate the problem of multi-modal recommendations as conditional, weighted density estimation on manifolds. Our approach allows for trivial inclusion of multiple interaction types, modalities of data as well as interaction strengths for any recommendation setting. Applying EMDE to both top-k and session-based recommendation settings, we establish new state-of-the-art results on multiple open datasets in both uni-modal and multi-modal settings.
stat
Sequential changepoint detection for label shift in classification
Classifier predictions often rely on the assumption that new observations come from the same distribution as training data. When the underlying distribution changes, so does the optimal classifier rule, and predictions may no longer be valid. We consider the problem of detecting a change to the overall fraction of positive cases, known as label shift, in sequentially-observed binary classification data. We reduce this problem to the problem of detecting a change in the one-dimensional classifier scores, which allows us to develop simple nonparametric sequential changepoint detection procedures. Our procedures leverage classifier training data to estimate the detection statistic, and converge to their parametric counterparts in the size of the training data. In simulations, we show that our method compares favorably to other detection procedures in the label shift setting.
stat
Heterogeneous Idealization of Ion Channel Recordings -- Open Channel Noise
We propose a new model-free segmentation method for idealizing ion channel recordings. This method is designed to deal with heterogeneity of measurement errors. This in particular applies to open channel noise which, in general, is particularly difficult to cope with for model-free approaches. Our methodology is able to deal with lowpass filtered data which provides a further computational challenge. To this end we propose a multiresolution testing approach, combined with local deconvolution to resolve the lowpass filter. Simulations and statistical theory confirm that the proposed idealization recovers the underlying signal very accurately at presence of heterogeneous noise, even when events are shorter than the filter length. The method is compared to existing approaches in computer experiments and on real data. We find that it is the only one which allows to identify openings of the PorB porine at two different temporal scales. An implementation is available as an R package.
stat