File size: 11,985 Bytes
f9db576
a1ba7c8
 
 
 
 
 
 
 
 
 
 
 
 
0805619
a1ba7c8
 
ef13563
 
a1ba7c8
 
 
 
dc55e3c
 
 
 
 
 
 
 
 
 
f9db576
a1ba7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
151284d
a1ba7c8
 
 
 
 
9d7a396
 
 
 
151284d
a1ba7c8
 
 
 
 
 
 
 
 
 
 
 
9d7a396
4a15be1
 
 
9d7a396
 
4a15be1
 
a1ba7c8
 
9d7a396
4a15be1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7a396
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a15be1
 
a1ba7c8
 
 
4a15be1
 
 
 
a1ba7c8
9d7a396
151284d
a1ba7c8
 
 
 
9d7a396
a1ba7c8
 
 
 
 
9d7a396
a1ba7c8
9d7a396
 
 
a1ba7c8
 
 
9d7a396
a1ba7c8
 
 
9d7a396
a1ba7c8
9d7a396
a1ba7c8
9d7a396
a1ba7c8
9d7a396
a1ba7c8
 
 
9d7a396
a1ba7c8
9d7a396
a1ba7c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d7a396
a1ba7c8
 
 
 
 
 
 
 
e5b07dd
 
b2c4935
 
 
 
 
 
e5b07dd
151284d
e5b07dd
151284d
a1ba7c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- de
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: dataset-of-legal-documents
pretty_name: German Named Entity Recognition in Legal Documents
size_categories:
- 1M<n<10M
source_datasets:
- original
tags:
- ner, named entity recognition, legal ner, legal texts, label classification
task_categories:
- token-classification
task_ids:
- named-entity-recognition
train-eval-index:
- config: conll2003
  task: token-classification
  task_id: entity_extraction
  splits:
    train_split: train
    eval_split: test
  col_mapping:
    tokens: tokens
    ner_tags: tags
---

# Dataset Card for "German LER"

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [https://github.com/elenanereiss/Legal-Entity-Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition)
- **Paper:** [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf)
- **Point of Contact:** [[email protected]]([email protected])

### Dataset Summary

A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities. NER tags use the `BIO` tagging scheme. 

The dataset includes two different versions of annotations, one with a set of 19 fine-grained semantic classes (`ner_tags`) and another one with a set of 7 coarse-grained classes (`ner_coarse_tags`). There are 53,632 annotated entities in total, the majority of which (74.34 %) are legal entities, the others are person, location and organization (25.66 %).

![](https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/docs/Distribution.png)

For more details see [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf).

### Supported Tasks and Leaderboards

- **Tasks:** Named Entity Recognition
- **Leaderboards:**

### Languages

German

## Dataset Structure
### Data Instances
```python
{
 'id': '1',
 'tokens': ['Eine', 'solchermaßen', 'verzögerte', 'oder', 'bewusst', 'eingesetzte', 'Verkettung', 'sachgrundloser', 'Befristungen', 'schließt', '§', '14', 'Abs.', '2', 'Satz', '2', 'TzBfG', 'aus', '.'],
 'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 38, 38],
 'ner_coarse_tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 9, 9, 9, 9, 9, 9, 14, 14]
}
```
### Data Fields

```python
{
 'id': Value(dtype='string', id=None),
 'tokens': Sequence(feature=Value(dtype='string', id=None), 
                    length=-1, id=None),
 'ner_tags': Sequence(feature=ClassLabel(num_classes=39, 
                                         names=['B-AN', 
                                                'B-EUN', 
                                                'B-GRT', 
                                                'B-GS', 
                                                'B-INN', 
                                                'B-LD', 
                                                'B-LDS', 
                                                'B-LIT', 
                                                'B-MRK', 
                                                'B-ORG', 
                                                'B-PER', 
                                                'B-RR', 
                                                'B-RS', 
                                                'B-ST', 
                                                'B-STR', 
                                                'B-UN', 
                                                'B-VO', 
                                                'B-VS', 
                                                'B-VT', 
                                                'I-AN', 
                                                'I-EUN', 
                                                'I-GRT', 
                                                'I-GS', 
                                                'I-INN', 
                                                'I-LD', 
                                                'I-LDS', 
                                                'I-LIT', 
                                                'I-MRK', 
                                                'I-ORG', 
                                                'I-PER', 
                                                'I-RR', 
                                                'I-RS', 
                                                'I-ST', 
                                                'I-STR', 
                                                'I-UN', 
                                                'I-VO', 
                                                'I-VS', 
                                                'I-VT', 
                                                'O'], 
                                         id=None), 
                      length=-1, 
                      id=None),
 'ner_coarse_tags': Sequence(feature=ClassLabel(num_classes=15, 
                                                names=['B-LIT', 
                                                       'B-LOC', 
                                                       'B-NRM', 
                                                       'B-ORG', 
                                                       'B-PER', 
                                                       'B-REG', 
                                                       'B-RS', 
                                                       'I-LIT', 
                                                       'I-LOC', 
                                                       'I-NRM', 
                                                       'I-ORG', 
                                                       'I-PER', 
                                                       'I-REG', 
                                                       'I-RS', 
                                                       'O'], 
                                                 id=None), 
                              length=-1, 
                              id=None)
}
```

### Data Splits

|                         | train | validation | test |
|-------------------------|------:|-----------:|-----:|
| Input Sentences         | 53384 |    6666    | 6673 |




## Dataset Creation

### Curation Rationale

Documents in the legal domain contain multiple references to named entities, especially domain-specific named entities, i. e., jurisdictions, legal institutions, etc. Legal documents are unique and differ greatly from newspaper texts. On the one hand, the occurrence of general-domain named entities is relatively rare. On the other hand, in concrete applications, crucial domain-specific entities need to be identified in a reliable way, such as designations of legal norms and references to other legal documents (laws, ordinances, regulations, decisions, etc.). Most NER solutions operate in the general or news domain, which makes them inapplicable to the analysis of legal documents. Accordingly, there is a great need for an NER-annotated dataset consisting of legal documents, including the corresponding development of a typology of semantic concepts and uniform annotation guidelines.

### Source Data

Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG). 

#### Initial Data Collection and Normalization

From the table of [contents](http://www.rechtsprechung-im-internet.de/rii-toc.xml), 107 documents from each court were selected (see Table 1). The data was collected from the XML documents, i. e., it was extracted from the XML elements `Mitwirkung, Titelzeile, Leitsatz, Tenor, Tatbestand, Entscheidungsgründe, Gründen, abweichende Meinung, and sonstiger Titel`. The metadata at the beginning of the documents (name of court, date of decision, file number, European Case Law Identifier, document type, laws) and those that belonged to previous legal proceedings was deleted. Paragraph numbers were removed. 

The extracted data was split into sentences, tokenised using [SoMaJo](https://github.com/tsproisl/SoMaJo) and manually annotated in [WebAnno](https://webanno.github.io/webanno/).

#### Who are the source language producers?

The Federal Ministry of Justice and the Federal Office of Justice provide selected decisions. Court decisions were produced by humans.

### Annotations

#### Annotation process

For more details see [annotation guidelines](https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf) (in German).

<!-- #### Who are the annotators?

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)--> 

### Personal and Sensitive Information

A fundamental characteristic of the published decisions is that all personal information have been anonymised for privacy reasons. This affects the classes person, location and organization. 

<!-- ## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Discussion of Biases

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

### Other Known Limitations

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)

## Additional Information

### Dataset Curators

[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)--> 

### Licensing Information

[CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)

### Citation Information

```
@misc{https://doi.org/10.48550/arxiv.2003.13016,
  doi = {10.48550/ARXIV.2003.13016},
  url = {https://arxiv.org/abs/2003.13016},  
  author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},  
  keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},  
  title = {A Dataset of German Legal Documents for Named Entity Recognition},  
  publisher = {arXiv},  
  year = {2020},  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

```

### Contributions