Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
German
Size:
1M<n<10M
ArXiv:
DOI:
License:
File size: 11,985 Bytes
f9db576 a1ba7c8 0805619 a1ba7c8 ef13563 a1ba7c8 dc55e3c f9db576 a1ba7c8 151284d a1ba7c8 9d7a396 151284d a1ba7c8 9d7a396 4a15be1 9d7a396 4a15be1 a1ba7c8 9d7a396 4a15be1 9d7a396 4a15be1 a1ba7c8 4a15be1 a1ba7c8 9d7a396 151284d a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 9d7a396 a1ba7c8 e5b07dd b2c4935 e5b07dd 151284d e5b07dd 151284d a1ba7c8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- de
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: dataset-of-legal-documents
pretty_name: German Named Entity Recognition in Legal Documents
size_categories:
- 1M<n<10M
source_datasets:
- original
tags:
- ner, named entity recognition, legal ner, legal texts, label classification
task_categories:
- token-classification
task_ids:
- named-entity-recognition
train-eval-index:
- config: conll2003
task: token-classification
task_id: entity_extraction
splits:
train_split: train
eval_split: test
col_mapping:
tokens: tokens
ner_tags: tags
---
# Dataset Card for "German LER"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://github.com/elenanereiss/Legal-Entity-Recognition](https://github.com/elenanereiss/Legal-Entity-Recognition)
- **Paper:** [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf)
- **Point of Contact:** [[email protected]]([email protected])
### Dataset Summary
A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities. NER tags use the `BIO` tagging scheme.
The dataset includes two different versions of annotations, one with a set of 19 fine-grained semantic classes (`ner_tags`) and another one with a set of 7 coarse-grained classes (`ner_coarse_tags`). There are 53,632 annotated entities in total, the majority of which (74.34 %) are legal entities, the others are person, location and organization (25.66 %).
![](https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/docs/Distribution.png)
For more details see [https://arxiv.org/pdf/2003.13016v1.pdf](https://arxiv.org/pdf/2003.13016v1.pdf).
### Supported Tasks and Leaderboards
- **Tasks:** Named Entity Recognition
- **Leaderboards:**
### Languages
German
## Dataset Structure
### Data Instances
```python
{
'id': '1',
'tokens': ['Eine', 'solchermaßen', 'verzögerte', 'oder', 'bewusst', 'eingesetzte', 'Verkettung', 'sachgrundloser', 'Befristungen', 'schließt', '§', '14', 'Abs.', '2', 'Satz', '2', 'TzBfG', 'aus', '.'],
'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 38, 38],
'ner_coarse_tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 9, 9, 9, 9, 9, 9, 14, 14]
}
```
### Data Fields
```python
{
'id': Value(dtype='string', id=None),
'tokens': Sequence(feature=Value(dtype='string', id=None),
length=-1, id=None),
'ner_tags': Sequence(feature=ClassLabel(num_classes=39,
names=['B-AN',
'B-EUN',
'B-GRT',
'B-GS',
'B-INN',
'B-LD',
'B-LDS',
'B-LIT',
'B-MRK',
'B-ORG',
'B-PER',
'B-RR',
'B-RS',
'B-ST',
'B-STR',
'B-UN',
'B-VO',
'B-VS',
'B-VT',
'I-AN',
'I-EUN',
'I-GRT',
'I-GS',
'I-INN',
'I-LD',
'I-LDS',
'I-LIT',
'I-MRK',
'I-ORG',
'I-PER',
'I-RR',
'I-RS',
'I-ST',
'I-STR',
'I-UN',
'I-VO',
'I-VS',
'I-VT',
'O'],
id=None),
length=-1,
id=None),
'ner_coarse_tags': Sequence(feature=ClassLabel(num_classes=15,
names=['B-LIT',
'B-LOC',
'B-NRM',
'B-ORG',
'B-PER',
'B-REG',
'B-RS',
'I-LIT',
'I-LOC',
'I-NRM',
'I-ORG',
'I-PER',
'I-REG',
'I-RS',
'O'],
id=None),
length=-1,
id=None)
}
```
### Data Splits
| | train | validation | test |
|-------------------------|------:|-----------:|-----:|
| Input Sentences | 53384 | 6666 | 6673 |
## Dataset Creation
### Curation Rationale
Documents in the legal domain contain multiple references to named entities, especially domain-specific named entities, i. e., jurisdictions, legal institutions, etc. Legal documents are unique and differ greatly from newspaper texts. On the one hand, the occurrence of general-domain named entities is relatively rare. On the other hand, in concrete applications, crucial domain-specific entities need to be identified in a reliable way, such as designations of legal norms and references to other legal documents (laws, ordinances, regulations, decisions, etc.). Most NER solutions operate in the general or news domain, which makes them inapplicable to the analysis of legal documents. Accordingly, there is a great need for an NER-annotated dataset consisting of legal documents, including the corresponding development of a typology of semantic concepts and uniform annotation guidelines.
### Source Data
Court decisions from 2017 and 2018 were selected for the dataset, published online by the [Federal Ministry of Justice and Consumer Protection](http://www.rechtsprechung-im-internet.de). The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG).
#### Initial Data Collection and Normalization
From the table of [contents](http://www.rechtsprechung-im-internet.de/rii-toc.xml), 107 documents from each court were selected (see Table 1). The data was collected from the XML documents, i. e., it was extracted from the XML elements `Mitwirkung, Titelzeile, Leitsatz, Tenor, Tatbestand, Entscheidungsgründe, Gründen, abweichende Meinung, and sonstiger Titel`. The metadata at the beginning of the documents (name of court, date of decision, file number, European Case Law Identifier, document type, laws) and those that belonged to previous legal proceedings was deleted. Paragraph numbers were removed.
The extracted data was split into sentences, tokenised using [SoMaJo](https://github.com/tsproisl/SoMaJo) and manually annotated in [WebAnno](https://webanno.github.io/webanno/).
#### Who are the source language producers?
The Federal Ministry of Justice and the Federal Office of Justice provide selected decisions. Court decisions were produced by humans.
### Annotations
#### Annotation process
For more details see [annotation guidelines](https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf) (in German).
<!-- #### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)-->
### Personal and Sensitive Information
A fundamental characteristic of the published decisions is that all personal information have been anonymised for privacy reasons. This affects the classes person, location and organization.
<!-- ## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)-->
### Licensing Information
[CC BY-SA 4.0 license](https://creativecommons.org/licenses/by-sa/4.0/)
### Citation Information
```
@misc{https://doi.org/10.48550/arxiv.2003.13016,
doi = {10.48550/ARXIV.2003.13016},
url = {https://arxiv.org/abs/2003.13016},
author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},
keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {A Dataset of German Legal Documents for Named Entity Recognition},
publisher = {arXiv},
year = {2020},
copyright = {arXiv.org perpetual, non-exclusive license}
}
```
### Contributions
|