german-ler / README.md
elenanereiss's picture
Update README.md
dc55e3c
|
raw
history blame
8.98 kB
metadata
annotations_creators:
  - expert-generated
language_creators:
  - found
language:
  - de
license:
  - cc-by-4.0
multilinguality:
  - monolingual
paperswithcode_id: dataset-of-legal-documents
pretty_name: German Named Entity Recognition in Legal Documents
size_categories:
  - 1M<n<10M
source_datasets:
  - original
tags:
  - ner, named entity recognition, legal ner, legal texts, label classification
task_categories:
  - token-classification
task_ids:
  - named-entity-recognition
train-eval-index:
  - config: conll2003
    task: token-classification
    task_id: entity_extraction
    splits:
      train_split: train
      eval_split: test
    col_mapping:
      tokens: tokens
      ner_tags: tags

Dataset Card for "German LER"

Table of Contents

Dataset Description

Dataset Summary

A dataset of Legal Documents from German federal court decisions for Named Entity Recognition. The dataset is human-annotated with 19 fine-grained entity classes. The dataset consists of approx. 67,000 sentences and contains 54,000 annotated entities. NER tags use the BIO tagging scheme.

For more details see https://arxiv.org/pdf/2003.13016v1.pdf.

Supported Tasks and Leaderboards

  • Tasks: Named Entity Recognition
  • Leaderboards:

Languages

German

Dataset Structure

Data Instances

{
 'id': '1',
 'tokens': ['Eine', 'solchermaßen', 'verzögerte', 'oder', 'bewusst', 'eingesetzte', 'Verkettung', 'sachgrundloser', 'Befristungen', 'schließt', '§', '14', 'Abs.', '2', 'Satz', '2', 'TzBfG', 'aus', '.'],
 'ner_tags': [38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 3, 22, 22, 22, 22, 22, 22, 38, 38]
}

Data Fields

{
 'id': Value(dtype='string', id=None),
 'tokens': Sequence(feature=Value(dtype='string', id=None), 
                    length=-1, id=None),
 'ner_tags': Sequence(feature=ClassLabel(num_classes=39, 
                                         names=['B-AN', 
                                                'B-EUN', 
                                                'B-GRT', 
                                                'B-GS', 
                                                'B-INN', 
                                                'B-LD', 
                                                'B-LDS', 
                                                'B-LIT', 
                                                'B-MRK', 
                                                'B-ORG', 
                                                'B-PER', 
                                                'B-RR', 
                                                'B-RS', 
                                                'B-ST', 
                                                'B-STR', 
                                                'B-UN', 
                                                'B-VO', 
                                                'B-VS', 
                                                'B-VT', 
                                                'I-AN', 
                                                'I-EUN', 
                                                'I-GRT', 
                                                'I-GS', 
                                                'I-INN', 
                                                'I-LD', 
                                                'I-LDS', 
                                                'I-LIT', 
                                                'I-MRK', 
                                                'I-ORG', 
                                                'I-PER', 
                                                'I-RR', 
                                                'I-RS', 
                                                'I-ST', 
                                                'I-STR', 
                                                'I-UN', 
                                                'I-VO', 
                                                'I-VS', 
                                                'I-VT', 
                                                'O'], 
                                         id=None), 
                      length=-1, 
                      id=None)
}

Data Splits

train validation test
Input Sentences 53384 6666 6673

Source Data

Court decisions from 2017 and 2018 were selected for the dataset, published online by the Federal Ministry of Justice and Consumer Protection. The documents originate from seven federal courts: Federal Labour Court (BAG), Federal Fiscal Court (BFH), Federal Court of Justice (BGH), Federal Patent Court (BPatG), Federal Social Court (BSG), Federal Constitutional Court (BVerfG) and Federal Administrative Court (BVerwG).

Annotations

For more details see https://github.com/elenanereiss/Legal-Entity-Recognition/blob/master/docs/Annotationsrichtlinien.pdf.

Licensing Information

CC BY-SA 4.0 license

Citation Information

@misc{https://doi.org/10.48550/arxiv.2003.13016,
  doi = {10.48550/ARXIV.2003.13016},
  url = {https://arxiv.org/abs/2003.13016},  
  author = {Leitner, Elena and Rehm, Georg and Moreno-Schneider, Julián},  
  keywords = {Computation and Language (cs.CL), Information Retrieval (cs.IR), FOS: Computer and information sciences, FOS: Computer and information sciences},  
  title = {A Dataset of German Legal Documents for Named Entity Recognition},  
  publisher = {arXiv},  
  year = {2020},  
  copyright = {arXiv.org perpetual, non-exclusive license}
}

Contributions