Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
10K - 100K
License:
File size: 5,129 Bytes
a6b5dca 19fbd03 a6b5dca 19fbd03 a6b5dca b8a8111 a6b5dca 6bbc0d9 a6b5dca bf55f49 874d9b4 fc4b3e9 874d9b4 38f5f71 874d9b4 38f5f71 a6b5dca bf55f49 a6b5dca bf55f49 a6b5dca 7dd86e2 a6b5dca bf55f49 a6b5dca bf55f49 a6b5dca bf55f49 a6b5dca bf55f49 a6b5dca 7d8f034 bf55f49 7d8f034 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
---
annotations_creators:
- found
language_creators:
- found
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Emotional Tone in Arabic
dataset_info:
features:
- name: tweet
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': anger
'2': joy
'3': sadness
'4': love
'5': sympathy
'6': surprise
'7': fear
splits:
- name: train
num_bytes: 1541738
num_examples: 10065
download_size: 862018
dataset_size: 1541738
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for Emotional Tone in Arabic
## Table of Contents
- [Dataset Card for Emotional Tone in Arabic](#dataset-card-for-emotional-tone-in-arabic)
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [|split|num examples|](#splitnum-examples)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Initial Data Collection and Normalization](#initial-data-collection-and-normalization)
- [Who are the source language producers?](#who-are-the-source-language-producers)
- [Annotations](#annotations)
- [Annotation process](#annotation-process)
- [Who are the annotators?](#who-are-the-annotators)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Repository](https://github.com/AmrMehasseb/Emotional-Tone)
- **Paper:** [Emotional Tone Detection in Arabic Tweets](https://www.researchgate.net/publication/328164296_Emotional_Tone_Detection_in_Arabic_Tweets_18th_International_Conference_CICLing_2017_Budapest_Hungary_April_17-23_2017_Revised_Selected_Papers_Part_II)
- **Point of Contact:** [Amr Al-Khatib](https://github.com/AmrMehasseb)
### Dataset Summary
Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
The dataset is based on Arabic.
## Dataset Structure
### Data Instances
example:
```
>>> {'label': 0, 'tweet': 'الاوليمبياد الجايه هكون لسه ف الكليه ..'}
```
### Data Fields
- "tweet": plain text tweet in Arabic
- "label": emotion class label
the dataset distribution and balance for each class looks like the following
|label||Label description | Count |
|---------|---------| ------- |
|0 |none | 1550 |
|1 |anger | 1444 |
|2 |joy | 1281 |
|3 |sadness | 1256 |
|4 |love | 1220 |
|5 |sympathy | 1062 |
|6 |surprise | 1045 |
|7 |fear | 1207 |
### Data Splits
The dataset is not split.
| | train |
|----------|--------:|
| no split | 10,065 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
[More Information Needed]
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[Needs More Information]
### Discussion of Biases
[Needs More Information]
### Other Known Limitations
[Needs More Information]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@inbook{inbook,
author = {Al-Khatib, Amr and El-Beltagy, Samhaa},
year = {2018},
month = {01},
pages = {105-114},
title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II},
isbn = {978-3-319-77115-1},
doi = {10.1007/978-3-319-77116-8_8}
}
```
### Contributions
Thanks to [@abdulelahsm](https://github.com/abdulelahsm) for adding this dataset. |