Datasets:
annotations_creators:
- found
language_creators:
- found
language:
- ar
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-classification
task_ids:
- sentiment-classification
pretty_name: Emotional Tone in Arabic
dataset_info:
features:
- name: tweet
dtype: string
- name: label
dtype:
class_label:
names:
'0': none
'1': anger
'2': joy
'3': sadness
'4': love
'5': sympathy
'6': surprise
'7': fear
splits:
- name: train
num_bytes: 1541738
num_examples: 10065
download_size: 862018
dataset_size: 1541738
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
Dataset Card for Emotional Tone in Arabic
Table of Contents
- Dataset Card for Emotional Tone in Arabic
Dataset Description
- Repository: Repository
- Paper: Emotional Tone Detection in Arabic Tweets
- Point of Contact: Amr Al-Khatib
Dataset Summary
Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text
Supported Tasks and Leaderboards
[More Information Needed]
Languages
The dataset is based on Arabic.
Dataset Structure
Data Instances
example:
>>> {'label': 0, 'tweet': 'الاوليمبياد الجايه هكون لسه ف الكليه ..'}
Data Fields
"tweet": plain text tweet in Arabic
"label": emotion class label
the dataset distribution and balance for each class looks like the following
|label||Label description | Count | |---------|---------| ------- | |0 |none | 1550 | |1 |anger | 1444 | |2 |joy | 1281 | |3 |sadness | 1256 | |4 |love | 1220 | |5 |sympathy | 1062 | |6 |surprise | 1045 | |7 |fear | 1207 |
Data Splits
The dataset is not split.
train | |
---|---|
no split | 10,065 |
Dataset Creation
Curation Rationale
[More Information Needed]
Source Data
[More Information Needed]
Initial Data Collection and Normalization
[More Information Needed]
Who are the source language producers?
[More Information Needed]
Annotations
Annotation process
[More Information Needed]
Who are the annotators?
[More Information Needed]
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[Needs More Information]
Discussion of Biases
[Needs More Information]
Other Known Limitations
[Needs More Information]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
[More Information Needed]
Citation Information
@inbook{inbook,
author = {Al-Khatib, Amr and El-Beltagy, Samhaa},
year = {2018},
month = {01},
pages = {105-114},
title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II},
isbn = {978-3-319-77115-1},
doi = {10.1007/978-3-319-77116-8_8}
}
Contributions
Thanks to @abdulelahsm for adding this dataset.