Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
Arabic
Size:
10K - 100K
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text """ | |
from __future__ import absolute_import, division, print_function | |
import csv | |
import datasets | |
_CITATION = """\ | |
@inbook{inbook, | |
author = {Al-Khatib, Amr and El-Beltagy, Samhaa}, | |
year = {2018}, | |
month = {01}, | |
pages = {105-114}, | |
title = {Emotional Tone Detection in Arabic Tweets: 18th International Conference, CICLing 2017, Budapest, Hungary, April 17–23, 2017, Revised Selected Papers, Part II}, | |
isbn = {978-3-319-77115-1}, | |
doi = {10.1007/978-3-319-77116-8_8} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Dataset of 10065 tweets in Arabic for Emotion detection in Arabic text""" | |
_HOMEPAGE = "https://github.com/AmrMehasseb/Emotional-Tone" | |
_DOWNLOAD_URL = "https://raw.githubusercontent.com/AmrMehasseb/Emotional-Tone/master/Emotional-Tone-Dataset.csv" | |
class EmotoneAr(datasets.GeneratorBasedBuilder): | |
"""Dataset of 10065 tweets in Arabic for Emotions detection in Arabic text""" | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"tweet": datasets.Value("string"), | |
"label": datasets.features.ClassLabel( | |
names=["none", "anger", "joy", "sadness", "love", "sympathy", "surprise", "fear"] | |
), | |
} | |
), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download_and_extract(_DOWNLOAD_URL) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_dir})] | |
def _generate_examples(self, filepath): | |
"""Generate labeled arabic tweets examples for emoptions detection.""" | |
with open(filepath, encoding="utf-8", mode="r") as csv_file: | |
next(csv_file) # skip header | |
csv_reader = csv.reader(csv_file, quotechar='"', delimiter=",") | |
for id_, row in enumerate(csv_reader): | |
_, tweet, label = row | |
yield id_, {"tweet": tweet, "label": label} | |