Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
JSONSchemaBench / README.md
Saibo-creator's picture
Upload dataset
a92d43a verified
|
raw
history blame
7.39 kB
metadata
pretty_name: J
dataset_info:
  - config_name: Github_easy
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 1191732.6278950076
        num_examples: 1169
      - name: val
        num_bytes: 194714.22748327328
        num_examples: 191
      - name: test
        num_bytes: 594337.144621719
        num_examples: 583
    download_size: 552088
    dataset_size: 1980784
  - config_name: Github_medium
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 4810334.171052632
        num_examples: 1189
      - name: val
        num_bytes: 784865.2894736842
        num_examples: 194
      - name: test
        num_bytes: 2399098.539473684
        num_examples: 593
    download_size: 1659118
    dataset_size: 7994298
  - config_name: Github_trivial
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 467333.24324324325
        num_examples: 266
      - name: val
        num_bytes: 77303.24324324324
        num_examples: 44
      - name: test
        num_bytes: 235423.51351351352
        num_examples: 134
    download_size: 158044
    dataset_size: 780060
  - config_name: Kubernetes
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 15388503.69924812
        num_examples: 639
      - name: val
        num_bytes: 2528627.3684210526
        num_examples: 105
      - name: test
        num_bytes: 7706292.932330827
        num_examples: 320
    download_size: 6819424
    dataset_size: 25623424
  - config_name: Snowplow
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 969083.2952853598
        num_examples: 242
      - name: val
        num_bytes: 160179.0570719603
        num_examples: 40
      - name: test
        num_bytes: 484541.6476426799
        num_examples: 121
    download_size: 298277
    dataset_size: 1613804
  - config_name: WashingtonPost
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: train
        num_bytes: 1604526.016
        num_examples: 74
      - name: val
        num_bytes: 281876.192
        num_examples: 13
      - name: test
        num_bytes: 823945.792
        num_examples: 38
    download_size: 565170
    dataset_size: 2710348
  - config_name: default
    features:
      - name: json_schema
        dtype: string
      - name: unique_id
        dtype: string
    splits:
      - name: WashingtonPost
        num_bytes: 2710348
        num_examples: 125
      - name: Snowplow
        num_bytes: 1613804
        num_examples: 403
      - name: Kubernetes
        num_bytes: 25623424
        num_examples: 1064
      - name: Github_trivial
        num_bytes: 780060
        num_examples: 444
      - name: Github_easy
        num_bytes: 1980784
        num_examples: 1943
      - name: Github_medium
        num_bytes: 7994298
        num_examples: 1976
      - name: Github_hard
        num_bytes: 20240875
        num_examples: 1240
      - name: Github_ultra
        num_bytes: 12235981
        num_examples: 164
      - name: JsonSchemaStore
        num_bytes: 22195651
        num_examples: 492
      - name: Glaiveai2K
        num_bytes: 1440707
        num_examples: 1707
    download_size: 19019152
    dataset_size: 96815932
configs:
  - config_name: Github_easy
    data_files:
      - split: train
        path: Github_easy/train-*
      - split: val
        path: Github_easy/val-*
      - split: test
        path: Github_easy/test-*
  - config_name: Github_medium
    data_files:
      - split: train
        path: Github_medium/train-*
      - split: val
        path: Github_medium/val-*
      - split: test
        path: Github_medium/test-*
  - config_name: Github_trivial
    data_files:
      - split: train
        path: Github_trivial/train-*
      - split: val
        path: Github_trivial/val-*
      - split: test
        path: Github_trivial/test-*
  - config_name: Kubernetes
    data_files:
      - split: train
        path: Kubernetes/train-*
      - split: val
        path: Kubernetes/val-*
      - split: test
        path: Kubernetes/test-*
  - config_name: Snowplow
    data_files:
      - split: train
        path: Snowplow/train-*
      - split: val
        path: Snowplow/val-*
      - split: test
        path: Snowplow/test-*
  - config_name: WashingtonPost
    data_files:
      - split: train
        path: WashingtonPost/train-*
      - split: val
        path: WashingtonPost/val-*
      - split: test
        path: WashingtonPost/test-*
  - config_name: default
    data_files:
      - split: WashingtonPost
        path: data/WashingtonPost-*
      - split: Snowplow
        path: data/Snowplow-*
      - split: Kubernetes
        path: data/Kubernetes-*
      - split: Github_trivial
        path: data/Github_trivial-*
      - split: Github_easy
        path: data/Github_easy-*
      - split: Github_medium
        path: data/Github_medium-*
      - split: Github_hard
        path: data/Github_hard-*
      - split: Github_ultra
        path: data/Github_ultra-*
      - split: JsonSchemaStore
        path: data/JsonSchemaStore-*
      - split: Glaiveai2K
        path: data/Glaiveai2K-*
license: mit
task_categories:
  - text-generation

JSONSchemaBench

Paper GitHub

JSONSchemaBench is a benchmark of real-world JSON schemas designed to evaluate structured output generation for Large Language Models (LLMs). It contains approximately 10,000 JSON schemas, capturing diverse constraints and complexities.

πŸ“Œ Dataset Overview

  • Purpose: Evaluate the efficiency and coverage of structured output generation.
  • Sources: GitHub, Kubernetes, API specifications, curated collections.
  • Schemas: Categorized based on complexity and domain.

πŸ“Š Dataset Breakdown

Dataset Category Count
GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164
Total 9558

πŸ“₯ Loading the Dataset

from datasets import load_dataset

dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)

πŸ” Data Structure

Each dataset split contains:

  • "json_schema": The schema definition.
  • "unique_id": A unique identifier for the schema.

πŸš€ For more details, check out the paper.

πŸ“š Citation

@misc{geng2025jsonschemabench,
      title={Generating Structured Outputs from Language Models: Benchmark and Studies},
      author={Saibo Geng et al.},
      year={2025},
      eprint={2501.10868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.10868}
}

License

This dataset is provided under the MIT License. Please ensure that you comply with the license terms when using or distributing this dataset.

Acknowledgements

We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.