Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
JSONSchemaBench / README.md
nielsr's picture
nielsr HF Staff
Add paper link and GitHub link, specify task category and license
1bd3dfc verified
|
raw
history blame
3.99 kB
metadata
pretty_name: J
dataset_info:
  features:
    - name: json_schema
      dtype: string
    - name: unique_id
      dtype: string
  splits:
    - name: WashingtonPost
      num_bytes: 2710348
      num_examples: 125
    - name: Snowplow
      num_bytes: 1613804
      num_examples: 403
    - name: Kubernetes
      num_bytes: 25623424
      num_examples: 1064
    - name: Github_trivial
      num_bytes: 780060
      num_examples: 444
    - name: Github_easy
      num_bytes: 1980784
      num_examples: 1943
    - name: Github_medium
      num_bytes: 7994298
      num_examples: 1976
    - name: Github_hard
      num_bytes: 20240875
      num_examples: 1240
    - name: Github_ultra
      num_bytes: 12235981
      num_examples: 164
    - name: JsonSchemaStore
      num_bytes: 22195651
      num_examples: 492
    - name: Glaiveai2K
      num_bytes: 1440707
      num_examples: 1707
  download_size: 19019152
  dataset_size: 96815932
configs:
  - config_name: default
    data_files:
      - split: WashingtonPost
        path: data/WashingtonPost-*
      - split: Snowplow
        path: data/Snowplow-*
      - split: Kubernetes
        path: data/Kubernetes-*
      - split: Github_trivial
        path: data/Github_trivial-*
      - split: Github_easy
        path: data/Github_easy-*
      - split: Github_medium
        path: data/Github_medium-*
      - split: Github_hard
        path: data/Github_hard-*
      - split: Github_ultra
        path: data/Github_ultra-*
      - split: JsonSchemaStore
        path: data/JsonSchemaStore-*
      - split: Glaiveai2K
        path: data/Glaiveai2K-*
license: mit
task_categories:
  - text-generation

JSONSchemaBench

Paper GitHub

JSONSchemaBench is a benchmark of real-world JSON schemas designed to evaluate structured output generation for Large Language Models (LLMs). It contains approximately 10,000 JSON schemas, capturing diverse constraints and complexities.

πŸ“Œ Dataset Overview

  • Purpose: Evaluate the efficiency and coverage of structured output generation.
  • Sources: GitHub, Kubernetes, API specifications, curated collections.
  • Schemas: Categorized based on complexity and domain.

πŸ“Š Dataset Breakdown

Dataset Category Count
GlaiveAI-2K Function Call 1707
Github-Trivial Misc 444
Github-Easy Misc 1943
Snowplow Operational API 403
Github-Medium Misc 1976
Kubernetes Kubernetes API 1064
Washington Post Resource Access API 125
Github-Hard Misc 1240
JSONSchemaStore Misc 492
Github-Ultra Misc 164
Total 9558

πŸ“₯ Loading the Dataset

from datasets import load_dataset

dataset = load_dataset("epfl-dlab/JSONSchemaBench")
print(dataset)

πŸ” Data Structure

Each dataset split contains:

  • "json_schema": The schema definition.
  • "unique_id": A unique identifier for the schema.

πŸš€ For more details, check out the paper.

πŸ“š Citation

@misc{geng2025jsonschemabench,
      title={Generating Structured Outputs from Language Models: Benchmark and Studies},
      author={Saibo Geng et al.},
      year={2025},
      eprint={2501.10868},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.10868}
}

License

This dataset is provided under the MIT License. Please ensure that you comply with the license terms when using or distributing this dataset.

Acknowledgements

We would like to thank the contributors and maintainers of the JSON schema projects and the open-source community for their invaluable work and support.