Convert dataset to Parquet
#5
by
albertvillanova
HF staff
- opened
- README.md +34 -12
- anli.py +0 -152
- dataset_infos.json +0 -1
- plain_text/dev_r1-00000-of-00001.parquet +3 -0
- plain_text/dev_r2-00000-of-00001.parquet +3 -0
- plain_text/dev_r3-00000-of-00001.parquet +3 -0
- plain_text/test_r1-00000-of-00001.parquet +3 -0
- plain_text/test_r2-00000-of-00001.parquet +3 -0
- plain_text/test_r3-00000-of-00001.parquet +3 -0
- plain_text/train_r1-00000-of-00001.parquet +3 -0
- plain_text/train_r2-00000-of-00001.parquet +3 -0
- plain_text/train_r3-00000-of-00001.parquet +3 -0
README.md
CHANGED
@@ -23,6 +23,7 @@ task_ids:
|
|
23 |
paperswithcode_id: anli
|
24 |
pretty_name: Adversarial NLI
|
25 |
dataset_info:
|
|
|
26 |
features:
|
27 |
- name: uid
|
28 |
dtype: string
|
@@ -39,37 +40,58 @@ dataset_info:
|
|
39 |
'2': contradiction
|
40 |
- name: reason
|
41 |
dtype: string
|
42 |
-
config_name: plain_text
|
43 |
splits:
|
44 |
- name: train_r1
|
45 |
-
num_bytes:
|
46 |
num_examples: 16946
|
47 |
- name: dev_r1
|
48 |
-
num_bytes:
|
49 |
num_examples: 1000
|
50 |
- name: test_r1
|
51 |
-
num_bytes:
|
52 |
num_examples: 1000
|
53 |
- name: train_r2
|
54 |
-
num_bytes:
|
55 |
num_examples: 45460
|
56 |
- name: dev_r2
|
57 |
-
num_bytes:
|
58 |
num_examples: 1000
|
59 |
- name: test_r2
|
60 |
-
num_bytes:
|
61 |
num_examples: 1000
|
62 |
- name: train_r3
|
63 |
-
num_bytes:
|
64 |
num_examples: 100459
|
65 |
- name: dev_r3
|
66 |
-
num_bytes:
|
67 |
num_examples: 1200
|
68 |
- name: test_r3
|
69 |
-
num_bytes:
|
70 |
num_examples: 1200
|
71 |
-
download_size:
|
72 |
-
dataset_size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
---
|
74 |
|
75 |
# Dataset Card for "anli"
|
|
|
23 |
paperswithcode_id: anli
|
24 |
pretty_name: Adversarial NLI
|
25 |
dataset_info:
|
26 |
+
config_name: plain_text
|
27 |
features:
|
28 |
- name: uid
|
29 |
dtype: string
|
|
|
40 |
'2': contradiction
|
41 |
- name: reason
|
42 |
dtype: string
|
|
|
43 |
splits:
|
44 |
- name: train_r1
|
45 |
+
num_bytes: 8006888
|
46 |
num_examples: 16946
|
47 |
- name: dev_r1
|
48 |
+
num_bytes: 573428
|
49 |
num_examples: 1000
|
50 |
- name: test_r1
|
51 |
+
num_bytes: 574917
|
52 |
num_examples: 1000
|
53 |
- name: train_r2
|
54 |
+
num_bytes: 20801581
|
55 |
num_examples: 45460
|
56 |
- name: dev_r2
|
57 |
+
num_bytes: 556066
|
58 |
num_examples: 1000
|
59 |
- name: test_r2
|
60 |
+
num_bytes: 572639
|
61 |
num_examples: 1000
|
62 |
- name: train_r3
|
63 |
+
num_bytes: 44720719
|
64 |
num_examples: 100459
|
65 |
- name: dev_r3
|
66 |
+
num_bytes: 663148
|
67 |
num_examples: 1200
|
68 |
- name: test_r3
|
69 |
+
num_bytes: 657586
|
70 |
num_examples: 1200
|
71 |
+
download_size: 26286748
|
72 |
+
dataset_size: 77126972
|
73 |
+
configs:
|
74 |
+
- config_name: plain_text
|
75 |
+
data_files:
|
76 |
+
- split: train_r1
|
77 |
+
path: plain_text/train_r1-*
|
78 |
+
- split: dev_r1
|
79 |
+
path: plain_text/dev_r1-*
|
80 |
+
- split: test_r1
|
81 |
+
path: plain_text/test_r1-*
|
82 |
+
- split: train_r2
|
83 |
+
path: plain_text/train_r2-*
|
84 |
+
- split: dev_r2
|
85 |
+
path: plain_text/dev_r2-*
|
86 |
+
- split: test_r2
|
87 |
+
path: plain_text/test_r2-*
|
88 |
+
- split: train_r3
|
89 |
+
path: plain_text/train_r3-*
|
90 |
+
- split: dev_r3
|
91 |
+
path: plain_text/dev_r3-*
|
92 |
+
- split: test_r3
|
93 |
+
path: plain_text/test_r3-*
|
94 |
+
default: true
|
95 |
---
|
96 |
|
97 |
# Dataset Card for "anli"
|
anli.py
DELETED
@@ -1,152 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
# Lint as: python3
|
17 |
-
"""The Adversarial NLI Corpus."""
|
18 |
-
|
19 |
-
|
20 |
-
import json
|
21 |
-
import os
|
22 |
-
|
23 |
-
import datasets
|
24 |
-
|
25 |
-
|
26 |
-
_CITATION = """\
|
27 |
-
@InProceedings{nie2019adversarial,
|
28 |
-
title={Adversarial NLI: A New Benchmark for Natural Language Understanding},
|
29 |
-
author={Nie, Yixin
|
30 |
-
and Williams, Adina
|
31 |
-
and Dinan, Emily
|
32 |
-
and Bansal, Mohit
|
33 |
-
and Weston, Jason
|
34 |
-
and Kiela, Douwe},
|
35 |
-
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
|
36 |
-
year = "2020",
|
37 |
-
publisher = "Association for Computational Linguistics",
|
38 |
-
}
|
39 |
-
"""
|
40 |
-
|
41 |
-
_DESCRIPTION = """\
|
42 |
-
The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset,
|
43 |
-
The dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.
|
44 |
-
ANLI is much more difficult than its predecessors including SNLI and MNLI.
|
45 |
-
It contains three rounds. Each round has train/dev/test splits.
|
46 |
-
"""
|
47 |
-
|
48 |
-
stdnli_label = {
|
49 |
-
"e": "entailment",
|
50 |
-
"n": "neutral",
|
51 |
-
"c": "contradiction",
|
52 |
-
}
|
53 |
-
|
54 |
-
|
55 |
-
class ANLIConfig(datasets.BuilderConfig):
|
56 |
-
"""BuilderConfig for ANLI."""
|
57 |
-
|
58 |
-
def __init__(self, **kwargs):
|
59 |
-
"""BuilderConfig for ANLI.
|
60 |
-
|
61 |
-
Args:
|
62 |
-
.
|
63 |
-
**kwargs: keyword arguments forwarded to super.
|
64 |
-
"""
|
65 |
-
super(ANLIConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs)
|
66 |
-
|
67 |
-
|
68 |
-
class ANLI(datasets.GeneratorBasedBuilder):
|
69 |
-
"""ANLI: The ANLI Dataset."""
|
70 |
-
|
71 |
-
BUILDER_CONFIGS = [
|
72 |
-
ANLIConfig(
|
73 |
-
name="plain_text",
|
74 |
-
description="Plain text",
|
75 |
-
),
|
76 |
-
]
|
77 |
-
|
78 |
-
def _info(self):
|
79 |
-
return datasets.DatasetInfo(
|
80 |
-
description=_DESCRIPTION,
|
81 |
-
features=datasets.Features(
|
82 |
-
{
|
83 |
-
"uid": datasets.Value("string"),
|
84 |
-
"premise": datasets.Value("string"),
|
85 |
-
"hypothesis": datasets.Value("string"),
|
86 |
-
"label": datasets.features.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
87 |
-
"reason": datasets.Value("string"),
|
88 |
-
}
|
89 |
-
),
|
90 |
-
# No default supervised_keys (as we have to pass both premise
|
91 |
-
# and hypothesis as input).
|
92 |
-
supervised_keys=None,
|
93 |
-
homepage="https://github.com/facebookresearch/anli/",
|
94 |
-
citation=_CITATION,
|
95 |
-
)
|
96 |
-
|
97 |
-
def _vocab_text_gen(self, filepath):
|
98 |
-
for _, ex in self._generate_examples(filepath):
|
99 |
-
yield " ".join([ex["premise"], ex["hypothesis"]])
|
100 |
-
|
101 |
-
def _split_generators(self, dl_manager):
|
102 |
-
|
103 |
-
downloaded_dir = dl_manager.download_and_extract("https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip")
|
104 |
-
|
105 |
-
anli_path = os.path.join(downloaded_dir, "anli_v0.1")
|
106 |
-
|
107 |
-
path_dict = dict()
|
108 |
-
for round_tag in ["R1", "R2", "R3"]:
|
109 |
-
path_dict[round_tag] = dict()
|
110 |
-
for split_name in ["train", "dev", "test"]:
|
111 |
-
path_dict[round_tag][split_name] = os.path.join(anli_path, round_tag, f"{split_name}.jsonl")
|
112 |
-
|
113 |
-
return [
|
114 |
-
# Round 1
|
115 |
-
datasets.SplitGenerator(name="train_r1", gen_kwargs={"filepath": path_dict["R1"]["train"]}),
|
116 |
-
datasets.SplitGenerator(name="dev_r1", gen_kwargs={"filepath": path_dict["R1"]["dev"]}),
|
117 |
-
datasets.SplitGenerator(name="test_r1", gen_kwargs={"filepath": path_dict["R1"]["test"]}),
|
118 |
-
# Round 2
|
119 |
-
datasets.SplitGenerator(name="train_r2", gen_kwargs={"filepath": path_dict["R2"]["train"]}),
|
120 |
-
datasets.SplitGenerator(name="dev_r2", gen_kwargs={"filepath": path_dict["R2"]["dev"]}),
|
121 |
-
datasets.SplitGenerator(name="test_r2", gen_kwargs={"filepath": path_dict["R2"]["test"]}),
|
122 |
-
# Round 3
|
123 |
-
datasets.SplitGenerator(name="train_r3", gen_kwargs={"filepath": path_dict["R3"]["train"]}),
|
124 |
-
datasets.SplitGenerator(name="dev_r3", gen_kwargs={"filepath": path_dict["R3"]["dev"]}),
|
125 |
-
datasets.SplitGenerator(name="test_r3", gen_kwargs={"filepath": path_dict["R3"]["test"]}),
|
126 |
-
]
|
127 |
-
|
128 |
-
def _generate_examples(self, filepath):
|
129 |
-
"""Generate mnli examples.
|
130 |
-
|
131 |
-
Args:
|
132 |
-
filepath: a string
|
133 |
-
|
134 |
-
Yields:
|
135 |
-
dictionaries containing "premise", "hypothesis" and "label" strings
|
136 |
-
"""
|
137 |
-
for idx, line in enumerate(open(filepath, "rb")):
|
138 |
-
if line is not None:
|
139 |
-
line = line.strip().decode("utf-8")
|
140 |
-
item = json.loads(line)
|
141 |
-
|
142 |
-
reason_text = ""
|
143 |
-
if "reason" in item:
|
144 |
-
reason_text = item["reason"]
|
145 |
-
|
146 |
-
yield item["uid"], {
|
147 |
-
"uid": item["uid"],
|
148 |
-
"premise": item["context"],
|
149 |
-
"hypothesis": item["hypothesis"],
|
150 |
-
"label": stdnli_label[item["label"]],
|
151 |
-
"reason": reason_text,
|
152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"plain_text": {"description": "The Adversarial Natural Language Inference (ANLI) is a new large-scale NLI benchmark dataset, \nThe dataset is collected via an iterative, adversarial human-and-model-in-the-loop procedure.\nANLI is much more difficult than its predecessors including SNLI and MNLI.\nIt contains three rounds. Each round has train/dev/test splits.\n", "citation": "@InProceedings{nie2019adversarial,\n title={Adversarial NLI: A New Benchmark for Natural Language Understanding},\n author={Nie, Yixin \n and Williams, Adina \n and Dinan, Emily \n and Bansal, Mohit \n and Weston, Jason \n and Kiela, Douwe},\n booktitle = \"Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics\",\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n}\n", "homepage": "https://github.com/facebookresearch/anli/", "license": "", "features": {"uid": {"dtype": "string", "id": null, "_type": "Value"}, "premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "neutral", "contradiction"], "names_file": null, "id": null, "_type": "ClassLabel"}, "reason": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "anli", "config_name": "plain_text", "version": {"version_str": "0.1.0", "description": "", "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"train_r1": {"name": "train_r1", "num_bytes": 8006920, "num_examples": 16946, "dataset_name": "anli"}, "dev_r1": {"name": "dev_r1", "num_bytes": 573444, "num_examples": 1000, "dataset_name": "anli"}, "test_r1": {"name": "test_r1", "num_bytes": 574933, "num_examples": 1000, "dataset_name": "anli"}, "train_r2": {"name": "train_r2", "num_bytes": 20801661, "num_examples": 45460, "dataset_name": "anli"}, "dev_r2": {"name": "dev_r2", "num_bytes": 556082, "num_examples": 1000, "dataset_name": "anli"}, "test_r2": {"name": "test_r2", "num_bytes": 572655, "num_examples": 1000, "dataset_name": "anli"}, "train_r3": {"name": "train_r3", "num_bytes": 44720895, "num_examples": 100459, "dataset_name": "anli"}, "dev_r3": {"name": "dev_r3", "num_bytes": 663164, "num_examples": 1200, "dataset_name": "anli"}, "test_r3": {"name": "test_r3", "num_bytes": 657602, "num_examples": 1200, "dataset_name": "anli"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/anli/anli_v0.1.zip": {"num_bytes": 18621352, "checksum": "16ac929a7e90ecf9093deaec89cc81fe86a379265a5320a150028efe50c5cde8"}}, "download_size": 18621352, "dataset_size": 77127356, "size_in_bytes": 95748708}}
|
|
|
|
plain_text/dev_r1-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72e27463177b4363be80f1fc6ccdaab44ddaeb65db58c2280f94690e15468334
|
3 |
+
size 351479
|
plain_text/dev_r2-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43e4673665decf0b0e8487e55f98285423cb356b985e206fe5998defae2e38fa
|
3 |
+
size 350606
|
plain_text/dev_r3-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:61775ec09351f6011ce4dc9ea313f457bba6e11d7665d34d95c111665023a83e
|
3 |
+
size 434044
|
plain_text/test_r1-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4a3d304c4671941d6bad5a07632a79713c5a1be485ccf75b81b6df93f61045e
|
3 |
+
size 353376
|
plain_text/test_r2-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df5daccdd5623cfcaa34be0100721783485f4181a42796b1d0ac0cd7601e7acb
|
3 |
+
size 361549
|
plain_text/test_r3-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3232c4217979da00b2cd6ed97d099a8a8edf04530193ea52e3c8d69190de92a2
|
3 |
+
size 434550
|
plain_text/train_r1-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:de2d038ae67f1fb1872073490b9e7685e9114d5f278ddd4631905fe0a4ecbcff
|
3 |
+
size 3140120
|
plain_text/train_r2-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:209f4a15bf77224c62ffbde5f150fda928a7e2f5175366f4cacc3c7588aab13d
|
3 |
+
size 6527557
|
plain_text/train_r3-00000-of-00001.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1d3f614d673888ac56b9ab62324e21583c98a11c4fef84e938d0f8fc414b29a
|
3 |
+
size 14333467
|