Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 13 new columns ({'n_Killed', 'n_Not vaccinated', 'n_livestock', 'suspected_cases', 'dog_pop', 'n_Vaccinated', 'vax_coverage', 'n_wildlife', 'n_Known', 'Ward', 'n_Domestic dog', 'ward_mnth_yr', 'n_Unknown'}) and 8 missing columns ({'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT', 'symptoms', 'ASSESSMENT_DECISION', 'reason_for_report', 'LFT_result', 'animal_environment', 'victim_environment', 'ANIMAL_OUTCOME'}).

This happened while the csv dataset builder was generating data using

hf://datasets/fair-forward/rabies_diagnosis_outbreak_prediction/encoded_outbreak.csv (at revision e958c172df344720054b781f6de21b55894c926c)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              ward_mnth_yr: string
              n_livestock: int64
              n_Domestic dog: int64
              n_wildlife: int64
              n_Unknown: int64
              n_Known: int64
              n_Not vaccinated: int64
              n_Vaccinated: int64
              n_Killed: int64
              suspected_cases: int64
              Ward: string
              dog_pop: double
              vax_coverage: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1928
              to
              {'Unnamed: 0': Value(dtype='int64', id=None), 'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT': Value(dtype='int64', id=None), 'LFT_result': Value(dtype='int64', id=None), 'reason_for_report': Value(dtype='int64', id=None), 'symptoms': Value(dtype='int64', id=None), 'victim_environment': Value(dtype='int64', id=None), 'ANIMAL_OUTCOME': Value(dtype='int64', id=None), 'animal_environment': Value(dtype='int64', id=None), 'ASSESSMENT_DECISION': Value(dtype='int64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 13 new columns ({'n_Killed', 'n_Not vaccinated', 'n_livestock', 'suspected_cases', 'dog_pop', 'n_Vaccinated', 'vax_coverage', 'n_wildlife', 'n_Known', 'Ward', 'n_Domestic dog', 'ward_mnth_yr', 'n_Unknown'}) and 8 missing columns ({'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT', 'symptoms', 'ASSESSMENT_DECISION', 'reason_for_report', 'LFT_result', 'animal_environment', 'victim_environment', 'ANIMAL_OUTCOME'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/fair-forward/rabies_diagnosis_outbreak_prediction/encoded_outbreak.csv (at revision e958c172df344720054b781f6de21b55894c926c)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
NO_OF_PEOPLE_BITTEN_REPEAT_COUNT
int64
LFT_result
int64
reason_for_report
int64
symptoms
int64
victim_environment
int64
ANIMAL_OUTCOME
int64
animal_environment
int64
ASSESSMENT_DECISION
int64
0
1
1
1
1
1
0
1
0
1
0
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
3
1
1
1
1
1
1
1
1
4
1
1
1
1
1
1
1
1
5
1
1
0
1
0
0
0
0
6
2
1
0
1
1
1
0
1
7
2
1
0
1
0
0
0
0
8
1
1
0
1
0
0
0
0
9
1
1
0
1
0
0
0
1
10
1
1
0
1
0
0
0
1
11
1
1
0
1
1
1
0
1
12
1
1
0
1
0
0
0
1
13
1
1
0
1
1
1
0
1
14
0
1
1
1
1
1
1
1
15
0
1
0
1
1
1
1
1
16
1
1
0
1
1
0
0
1
17
1
1
0
1
1
1
0
1
18
0
1
0
1
1
1
0
1
19
1
1
0
1
0
0
0
0
20
1
1
0
1
0
0
0
1
21
0
1
1
1
1
1
1
1
22
1
1
0
1
0
1
0
1
23
1
1
0
1
0
0
0
1
24
1
1
0
1
1
1
0
1
25
1
1
0
1
1
0
0
1
26
2
1
0
1
1
1
1
1
27
1
1
0
1
1
0
0
1
28
0
1
0
1
1
1
0
1
29
1
1
0
1
0
0
0
0
30
3
1
0
1
0
0
0
1
31
1
1
0
1
1
0
0
1
32
1
1
1
1
1
0
0
1
33
1
1
0
1
0
0
1
0
34
1
1
0
1
1
0
0
1
35
0
1
1
1
1
1
1
1
36
1
1
0
1
0
0
0
0
37
1
1
0
1
0
0
0
0
38
1
1
0
1
1
1
0
1
39
1
1
1
1
0
0
1
0
40
1
1
0
1
0
0
0
0
41
2
1
0
1
1
1
0
1
42
2
1
0
1
0
0
0
1
43
0
1
0
1
0
0
0
0
44
1
1
0
1
1
0
0
1
45
1
1
0
1
1
1
0
1
46
1
1
0
1
0
0
1
1
47
1
1
0
1
1
0
0
1
48
1
1
0
1
0
0
0
0
49
0
1
1
1
1
0
1
1
50
1
1
0
1
1
0
0
1
51
1
1
0
1
0
0
0
0
52
1
1
0
1
1
1
0
1
53
0
1
0
1
1
1
0
1
54
1
1
0
1
0
0
0
0
55
1
1
0
1
0
0
0
1
56
2
1
0
1
1
1
0
1
57
1
1
0
1
0
0
0
0
58
2
1
0
1
0
0
0
1
59
1
1
0
1
1
1
0
1
60
1
1
0
1
0
0
0
1
61
1
1
0
1
0
1
0
1
62
1
1
0
1
1
1
0
1
63
2
1
0
1
1
0
0
1
64
1
1
0
1
0
0
0
1
65
1
1
0
1
1
1
0
1
66
2
1
0
1
1
1
0
1
67
1
1
0
1
0
0
0
1
68
3
1
0
1
1
0
0
1
69
1
1
0
1
0
0
0
0
70
1
1
0
1
1
1
0
1
71
1
1
0
1
1
1
0
1
72
1
1
0
1
1
1
0
1
73
1
1
0
1
1
1
0
1
74
1
1
0
1
1
0
0
1
75
2
1
0
1
1
0
0
1
76
2
1
0
1
1
1
0
1
77
3
1
0
1
1
1
0
1
78
1
1
0
1
0
0
0
1
79
1
1
0
1
1
0
0
1
80
1
1
0
1
1
0
0
1
81
2
1
0
1
1
1
0
1
82
1
1
0
1
0
0
0
1
83
1
1
0
1
0
0
0
0
84
1
1
0
1
1
1
0
1
85
1
1
0
1
0
0
0
0
86
1
1
0
1
1
0
0
1
87
1
1
0
1
0
0
0
0
88
0
1
0
1
1
1
0
1
89
3
1
0
1
1
1
0
1
90
1
1
0
1
0
1
0
0
91
1
1
0
1
1
0
0
1
92
1
1
0
1
1
0
0
1
93
1
1
0
1
1
1
0
1
94
3
1
0
1
1
1
0
1
95
0
1
0
1
0
0
0
1
96
1
1
0
1
1
1
0
1
97
2
1
0
1
0
1
0
1
98
2
1
0
1
1
0
0
1
99
1
1
0
1
1
0
0
1
End of preview.

Machine Learning Dataset for Rabies Diagnosis and Outbreak Prediction

Contact

Asa Emmanuel at [email protected] and Kennedy Lushasi at [email protected]

Dataset

This dataset will help in the real-time and remote diagnosis of rabies disease for humans and animals in low-resource settings. A time series approach can be applied to the outbreak dataset to predict the number of rabies cases likely to occur within an area after a given time interval. This approach can help with resource mobilization, too, such as identifying the number of vaccines required in a specific area at a given time. The number of observations from the two datasets is 12,684. There are three datasets for rabies diagnosis for animals and humans, with 7,081 and 4,585 observations, respectively. In the outbreak prediction dataset, 1,018 observations were accounted for.

Authors and Affiliations

Asa Emmanuel, Rebecca Chaula, Deogratias Mzurikwao, Joel Changalucha, Kennedy Lushasi

How to cite

You can cite all versions by using DOI 10.5281/zenodo.10068425.

Downloads last month
38