The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code: DatasetGenerationCastError Exception: DatasetGenerationCastError Message: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 13 new columns ({'n_Killed', 'n_Not vaccinated', 'n_livestock', 'suspected_cases', 'dog_pop', 'n_Vaccinated', 'vax_coverage', 'n_wildlife', 'n_Known', 'Ward', 'n_Domestic dog', 'ward_mnth_yr', 'n_Unknown'}) and 8 missing columns ({'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT', 'symptoms', 'ASSESSMENT_DECISION', 'reason_for_report', 'LFT_result', 'animal_environment', 'victim_environment', 'ANIMAL_OUTCOME'}). This happened while the csv dataset builder was generating data using hf://datasets/fair-forward/rabies_diagnosis_outbreak_prediction/encoded_outbreak.csv (at revision e958c172df344720054b781f6de21b55894c926c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations) Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2256, in cast_table_to_schema raise CastError( datasets.table.CastError: Couldn't cast Unnamed: 0: int64 ward_mnth_yr: string n_livestock: int64 n_Domestic dog: int64 n_wildlife: int64 n_Unknown: int64 n_Known: int64 n_Not vaccinated: int64 n_Vaccinated: int64 n_Killed: int64 suspected_cases: int64 Ward: string dog_pop: double vax_coverage: double -- schema metadata -- pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 1928 to {'Unnamed: 0': Value(dtype='int64', id=None), 'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT': Value(dtype='int64', id=None), 'LFT_result': Value(dtype='int64', id=None), 'reason_for_report': Value(dtype='int64', id=None), 'symptoms': Value(dtype='int64', id=None), 'victim_environment': Value(dtype='int64', id=None), 'ANIMAL_OUTCOME': Value(dtype='int64', id=None), 'animal_environment': Value(dtype='int64', id=None), 'ASSESSMENT_DECISION': Value(dtype='int64', id=None)} because column names don't match During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1321, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 935, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2013, in _prepare_split_single raise DatasetGenerationCastError.from_cast_error( datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset All the data files must have the same columns, but at some point there are 13 new columns ({'n_Killed', 'n_Not vaccinated', 'n_livestock', 'suspected_cases', 'dog_pop', 'n_Vaccinated', 'vax_coverage', 'n_wildlife', 'n_Known', 'Ward', 'n_Domestic dog', 'ward_mnth_yr', 'n_Unknown'}) and 8 missing columns ({'NO_OF_PEOPLE_BITTEN_REPEAT_COUNT', 'symptoms', 'ASSESSMENT_DECISION', 'reason_for_report', 'LFT_result', 'animal_environment', 'victim_environment', 'ANIMAL_OUTCOME'}). This happened while the csv dataset builder was generating data using hf://datasets/fair-forward/rabies_diagnosis_outbreak_prediction/encoded_outbreak.csv (at revision e958c172df344720054b781f6de21b55894c926c) Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | NO_OF_PEOPLE_BITTEN_REPEAT_COUNT
int64 | LFT_result
int64 | reason_for_report
int64 | symptoms
int64 | victim_environment
int64 | ANIMAL_OUTCOME
int64 | animal_environment
int64 | ASSESSMENT_DECISION
int64 |
---|---|---|---|---|---|---|---|---|
0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 |
1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
6 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
7 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
8 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
9 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
10 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
11 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
12 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
13 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
14 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
15 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
16 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
17 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
18 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
19 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
20 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
21 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
22 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
23 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
24 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
25 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
26 | 2 | 1 | 0 | 1 | 1 | 1 | 1 | 1 |
27 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
28 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
29 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
30 | 3 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
31 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
32 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 |
33 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |
34 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
35 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
36 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
37 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
38 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
39 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 |
40 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
41 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
42 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
43 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
44 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
45 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
46 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 |
47 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
48 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
49 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 1 |
50 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
51 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
52 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
53 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
54 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
55 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
56 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
57 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
58 | 2 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
59 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
60 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
61 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
62 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
63 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
64 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
65 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
66 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
67 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
68 | 3 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
69 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
70 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
71 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
72 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
73 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
74 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
75 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
76 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
77 | 3 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
78 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
79 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
80 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
81 | 2 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
82 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
83 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
84 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
85 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
86 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
87 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
88 | 0 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
89 | 3 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
90 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 |
91 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
92 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
93 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
94 | 3 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
95 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 |
96 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
97 | 2 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
98 | 2 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
99 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 |
End of preview.