File size: 6,633 Bytes
3c1d350
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d62ed50
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
dataset_info:
  features:
  - name: model_type
    dtype: string
  - name: namespace
    dtype: string
  - name: model_name
    dtype: string
  - name: training_method
    dtype: string
  - name: model_size
    dtype: int64
  - name: trainable_params
    dtype: int64
  - name: url
    dtype: string
  - name: doi
    dtype: float64
  splits:
  - name: train
    num_bytes: 6257
    num_examples: 40
  download_size: 4879
  dataset_size: 6257
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
pretty_name: PEFT Unit Test Generation Experiments
size_categories:
- n<1K
---
# PEFT Unit Test Generation Experiments

## Dataset description

The **PEFT Unit Test Generation Experiments** dataset contains metadata and details about a set of trained models used for generating unit tests with parameter-efficient fine-tuning (PEFT) methods. This dataset includes models from multiple namespaces and various sizes, trained with different tuning methods to provide a comprehensive resource for unit test generation research.

## Dataset Structure

### Data Fields

Each example in the dataset corresponds to a specific trained model variant and includes the following features:

| Feature Name      | Description                                                                                         |
|-------------------|-----------------------------------------------------------------------------------------------------|
| `model_type`      | The type or architecture of the base model (e.g., codegen, starcoder).                              |
| `namespace`       | The organization or group that created or published the base model (e.g., Salesforce, meta-llama). |
| `model_name`      | The specific name or identifier of the model.                                                      |
| `training_method` | The parameter-efficient fine-tuning method used for training (e.g., full fine-tuning, LoRA, IA³).  |
| `model_size`      | The size of the model, typically measured in number of parameters (e.g., 350M, 7B).                 |
| `trainable_params`| The number of trainable parameters for the specific tuning method and [hyperparameters](#training-hyperparameters). |
| `url`             | A direct link to the model repository.                                           |
| `doi`             | The digital object identifier associated with the trained model.                   |

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

### Training Hyperparameters

#### Model-agnostic Hyperparameters
<table>
  <thead>
    <tr>
      <th>Hyperparameter</th>
      <th>Method</th>
      <th>Value</th>
    </tr>
  </thead>
  <tbody>
    <tr style="font-weight: bold;">
      <td colspan="3">Common</td>
    </tr>
    <tr>
      <td>Optimizer</td>
      <td>-</td>
      <td>AdamW</td>
    </tr>
    <tr>
      <td>LR schedule</td>
      <td>-</td>
      <td>Linear</td>
    </tr>
    <tr>
      <td>LR warmup ratio</td>
      <td>-</td>
      <td>0.1</td>
    </tr>
    <tr>
      <td>Batch size</td>
      <td>-</td>
      <td>1</td>
    </tr>
    <tr>
      <td>Gradient accumulation steps</td>
      <td>-</td>
      <td>8</td>
    </tr>
    <tr>
      <td># Epochs</td>
      <td>-</td>
      <td>3</td>
    </tr>
    <tr>
      <td>Precision</td>
      <td>-</td>
      <td>Mixed</td>
    </tr>
    <tr>
      <td style="vertical-align: middle;" rowspan="4">Learning rate</td>
      <td>Full fine-tuning</td>
      <td>5E-5</td>
    </tr>
    <tr>
      <td>LoRA</td>
      <td>3E-4</td>
    </tr>
    <tr>
      <td>(IA)<sup>3</sup></td>
      <td>3E-4</td>
    </tr>
    <tr>
      <td>Prompt tuning</td>
      <td>3E-3</td>
    </tr>
    <tr style="font-weight: bold;">
      <td colspan="3">Method specific</td>
    </tr>
    <tr>
      <td>Alpha</td>
      <td>LoRA</td>
      <td>32</td>
    </tr>
    <tr>
      <td>Dropout</td>
      <td>LoRA</td>
      <td>0.1</td>
    </tr>
    <tr>
      <td>Rank</td>
      <td>LoRA</td>
      <td>16</td>
    </tr>
    <tr>
      <td>Virtual tokens</td>
      <td>Prompt tuning</td>
      <td>20</td>
    </tr>
  </tbody>
</table>

#### Model-specific Hyperparameters
<table>
  <thead>
    <tr>
      <th>Hyperparameter</th>
      <th>Method</th>
      <th>Model</th>
      <th>Value</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td rowspan="10" style="vertical-align: middle;">Targeted attention modules</td>
      <td rowspan="10" style="vertical-align: middle;">LoRA, (IA)<sup>3</sup></td>
      <td>codegen-350M-multi</td>
      <td>qkv_proj</td>
    </tr>
    <tr><td>Salesforce/codegen2-1B_P</td><td>qkv_proj</td></tr>
    <tr><td>Salesforce/codegen2-3_7B_P</td><td>qkv_proj</td></tr>
    <tr><td>Salesforce/codegen2-7B_P</td><td>qkv_proj</td></tr>
    <tr><td>Salesforce/codegen2-16B_P</td><td>qkv_proj</td></tr>
    <tr><td>meta-llama/CodeLlama-7b-hf</td><td>q_proj, v_proj</td></tr>
    <tr><td>bigcode/starcoderbase</td><td>c_attn</td></tr>
    <tr><td>bigcode/starcoder2-3b</td><td>q_proj, v_proj</td></tr>
    <tr><td>bigcode/starcoder2-7b</td><td>q_proj, v_proj</td></tr>
    <tr><td>bigcode/starcoder2-15b</td><td>q_proj, v_proj</td></tr>
    <tr>
      <td rowspan="10" style="vertical-align: middle;">Targeted feedforward modules</td>
      <td rowspan="10" style="vertical-align: middle;">(IA)<sup>3</sup></td>
      <td>codegen-350M-multi</td>
      <td>fc_out</td>
    </tr>
    <tr><td>Salesforce/codegen2-1B_P</td><td>fc_out</td></tr>
    <tr><td>Salesforce/codegen2-3_7B_P</td><td>fc_out</td></tr>
    <tr><td>Salesforce/codegen2-7B_P</td><td>fc_out</td></tr>
    <tr><td>Salesforce/codegen2-16B_P</td><td>fc_out</td></tr>
    <tr><td>meta-llama/CodeLlama-7b-hf</td><td>down_proj</td></tr>
    <tr><td>bigcode/starcoderbase</td><td>mlp.c_proj</td></tr>
    <tr><td>bigcode/starcoder2-3b</td><td>q_proj, c_proj</td></tr>
    <tr><td>bigcode/starcoder2-7b</td><td>q_proj, c_proj</td></tr>
    <tr><td>bigcode/starcoder2-15b</td><td>q_proj, c_proj</td></tr>
  </tbody>
</table>


## Training Runs

![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/full-fine-tuning-train-loss-log.png)

![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/lora-train-loss-log.png)

![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/ia3-train-loss-log.png)

![image/png](https://huggingface.co/datasets/fals3/peft-unit-test-generation-experiments/resolve/main/assets/prompt-tuning-train-loss-log.png)