File size: 2,376 Bytes
11a4b70
 
 
 
2a603e0
11a4b70
 
b7a352e
 
11a4b70
b7a352e
8ae61c7
b7a352e
8ae61c7
 
 
 
11a4b70
69b7c4a
8ae61c7
b7a352e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df28d0
9ee9520
b7a352e
 
 
 
 
9df28d0
b7a352e
 
 
 
 
 
 
 
8648c0c
 
 
 
 
 
b7a352e
 
 
8648c0c
 
 
 
 
 
b7a352e
 
 
8648c0c
 
 
 
 
11a4b70
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: cc-by-3.0
tags:
- medical
viewer: false
---

# The Cancer Genome Atlas Ovarian Cancer (NSCLC-Radiomics)

The models featured in this repository uses images from the publicly available [NSCLC-Radiomics](https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics) Dataset. 

Download the data from TCIA with **Descriptive Directory Name** download option.

## Converting Format

Convert DICOM images and segmentation to NIFTI format using [pydicom](https://pydicom.github.io/) and [pydicom-seg](https://razorx89.github.io/pydicom-seg/guides/read.html). Run:

```shell
user@machine:~/NSCLC-Radiomics-NIFTI$ python convert.py
```

## Segmentations

Images will have one of the following segmentation files:

```
─ seg-Esophagus.nii.gz
─ seg-GTV-1.nii.gz
─ seg-Heart.nii.gz
─ seg-Lung-Left.nii.gz
─ seg-Lung-Right.nii.gz
─ seg-Spinal-Cord.nii.gz
```

## Requirements

```
dicom2nifti==2.4.6
pandas==1.5.0
pydicom==2.3.1
pydicom-seg==0.4.1
SimpleITK==2.2.0
tqdm==4.64.1
```

## Citation

If using this repository, please cite the following works:

```
Data Citation

  Aerts, H. J. W. L., Wee, L., Rios Velazquez, E., Leijenaar, R. T. H., Parmar, C., Grossmann, P.,
  Carvalho, S., Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F.,
  Rietbergen, M. M., Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2019).
  Data From NSCLC-Radiomics (version 4) [Data set].
  The Cancer Imaging Archive.
  https://doi.org/10.7937/K9/TCIA.2015.PF0M9REI 

Publication Citation

  Aerts, H. J. W. L., Velazquez, E. R., Leijenaar, R. T. H., Parmar, C., Grossmann, P., Carvalho, S.,
  Bussink, J., Monshouwer, R., Haibe-Kains, B., Rietveld, D., Hoebers, F., Rietbergen, M. M.,
  Leemans, C. R., Dekker, A., Quackenbush, J., Gillies, R. J., Lambin, P. (2014, June 3).
  Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach.
  Nature Communications. Nature Publishing Group.
  https://doi.org/10.1038/ncomms5006  (link)

TCIA Citation

  Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M,
  Tarbox L, Prior F.
  The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository,
  Journal of Digital Imaging, Volume 26, Number 6, December, 2013, pp 1045-1057.
  https://doi.org/10.1007/s10278-013-9622-7
```