Search is not available for this dataset
fact
string
imports
string
filename
string
symbolic_name
string
__index_level_0__
int64
Definition divr {R : unitRingType} (x y : R) : R := x / y.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
624
Definition natr {R : ringType} (x : nat) : R := x%:R.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
625
Definition alpha := @generic_alpha rat +%R divr *%R (@GRing.exp _) rat_of_Z.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
626
Definition beta := @generic_beta rat +%R divr (@GRing.exp _) rat_of_Z.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
627
Definition h := @generic_h rat +%R subr divr *%R (@GRing.exp _) rat_of_Z.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
628
Definition h_iter := @generic_h_iter rat 0%R +%R subr divr *%R (@GRing.exp _) rat_of_Z natr.
BinInt mathcomp(all_ssreflect all_algebra) CoqEAL(hrel param refinements) CoqEAL(pos binnat rational) tactics rat_of_Z
coq-community-apery/rho_computations
coq-community-apery
629
Parameter rat_of_Z : Z -> rat.
HB(structures) ZArith mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/rat_of_Z
coq-community-apery
630
Axiom rat_of_ZEdef : rat_of_Z = (fun x : Z => (int_of_Z x)%:Q).
HB(structures) ZArith mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/rat_of_Z
coq-community-apery
631
Definition rat_of_Z (x : Z) := (int_of_Z x)%:Q.
HB(structures) ZArith mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/rat_of_Z
coq-community-apery
632
Definition rat_of_ZEdef := erefl rat_of_Z.
HB(structures) ZArith mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/rat_of_Z
coq-community-apery
633
Definition c_ann := annotated_recs_c.ann c_Sn c_Sk.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
634
Definition d_ann := annotated_recs_d.ann d_Sn d_Sk d_Sm.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
635
Definition s_ann := annotated_recs_s.ann s_Sn2 s_SnSk s_Sk2.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
636
Definition z_ann := annotated_recs_z.ann z_Sn2.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
637
Definition u_ann := annotated_recs_s.ann u_Sn2 u_SnSk u_Sk2.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
638
Definition v_ann := annotated_recs_v.ann v_Sn2 v_SnSk v_Sk2.
mathcomp(all_ssreflect all_algebra) tactics shift binomialz rat_of_Z seq_defs
coq-community-apery/algo_closures
coq-community-apery
639
Fixpoint b'_rec (n : nat) : rat := match n with | 0 => b 0 | 1 => b 1 | S (S o as o') => let n' := Posz o in - (annotated_recs_c.P_cf0 n' * b'_rec o + annotated_recs_c.P_cf1 n' * b'_rec o') / annotated_recs_c.P_cf2 n' end.
BinInt mathcomp(all_ssreflect all_algebra) tactics binomialz shift rat_of_Z seq_defs
coq-community-apery/reduce_order
coq-community-apery
640
Definition b' (n : int) : rat := match n with | Negz _ => 0 | Posz o => b'_rec o end.
BinInt mathcomp(all_ssreflect all_algebra) tactics binomialz shift rat_of_Z seq_defs
coq-community-apery/reduce_order
coq-community-apery
641
Variables (n i : nat).
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
642
Hypothesis Hain : (a i <= n)%N.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
643
Definition a' i : algC := exp_quo (a i)%:Q 1%N (a i).
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
644
Definition w_seq k := \prod_(i < k) a' i.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
645
Definition a'0_ub : rat := rat_of_Z 283 / rat_of_Z 200.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
646
Definition a'1_ub : rat := rat_of_Z 1443 / rat_of_Z 1000.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
647
Definition a'2_ub : rat := rat_of_Z 1321 / rat_of_Z 1000.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
648
Definition a'3_ub : rat := rat_of_Z 273 / rat_of_Z 250.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
649
Definition a'4_ub : rat := rat_of_Z 201 / rat_of_Z 200.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
650
Definition w : rat := a'0_ub * a'1_ub * a'2_ub * a'3_ub * a'4_ub ^ 2.
ZArith mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp tactics binomialz floor arithmetics posnum rat_of_Z hanson_elem_arith hanson_elem_analysis
coq-community-apery/hanson
coq-community-apery
651
Definition P_horner := annotated_recs_v.P_horner.
coq-community-apery/annotated_recs_b
coq-community-apery
652
Variable z : int -> rat.
coq-community-apery/ops_for_u
coq-community-apery
653
Variable s : int -> int -> rat.
coq-community-apery/ops_for_u
coq-community-apery
654
Variable z_ann : z.Ann z.
coq-community-apery/ops_for_u
coq-community-apery
655
Variable s_ann : s.Ann s.
coq-community-apery/ops_for_u
coq-community-apery
656
Definition Sn (n k m : int) := (n >= 0) /\ (m > 0) /\ (n >= m).
coq-community-apery/annotated_recs_d
coq-community-apery
657
Definition Sk (n k m : int) := true.
coq-community-apery/annotated_recs_d
coq-community-apery
658
Definition Sm (n k m : int) := (n > 0) /\ (m > 0) /\ (n > m).
coq-community-apery/annotated_recs_d
coq-community-apery
659
Definition not_D1 (n k m : int) := (0 < m) && (m < n).
coq-community-apery/annotated_recs_d
coq-community-apery
660
Definition not_D2 (n k m : int) := (0 < m) && (m < n).
coq-community-apery/annotated_recs_d
coq-community-apery
661
Definition not_D3 (n k m : int) := (0 < m) && (m < n).
coq-community-apery/annotated_recs_d
coq-community-apery
662
Definition not_D4 (n k m : int) := (0 < m) && (m < n).
coq-community-apery/annotated_recs_d
coq-community-apery
663
Definition CT1 (d : int -> int -> int -> rat) : Prop := forall (n_ k_ m_ : int), not_D1 n_ k_ m_ -> P1_horner (punk.pfun2 d m_) n_ k_ = Q1_flat d n_ k_ (int.shift 1 m_) - Q1_flat d n_ k_ m_.
coq-community-apery/annotated_recs_d
coq-community-apery
664
Definition CT2 (d : int -> int -> int -> rat) := forall (n_ k_ m_ : int), not_D2 n_ k_ m_ -> P2_horner (punk.pfun2 d m_) n_ k_ = Q2_flat d n_ k_ (int.shift 1 m_) - Q2_flat d n_ k_ m_.
coq-community-apery/annotated_recs_d
coq-community-apery
665
Definition CT3 (d : int -> int -> int -> rat) := forall (n_ k_ m_ : int), not_D3 n_ k_ m_ -> P3_horner (punk.pfun2 d m_) n_ k_ = Q3_flat d n_ k_ (int.shift 1 m_) - Q3_flat d n_ k_ m_.
coq-community-apery/annotated_recs_d
coq-community-apery
666
Definition CT4 (d : int -> int -> int -> rat) := forall (n_ k_ m_ : int), not_D4 n_ k_ m_ -> P4_horner (punk.pfun2 d m_) n_ k_ = Q4_flat d n_ k_ (int.shift 1 m_) - Q4_flat d n_ k_ m_.
coq-community-apery/annotated_recs_d
coq-community-apery
667
Record Ann d : Type := ann { Sn_ : Sn d; Sk_ : Sk d; Sm_ : Sm d }.
coq-community-apery/annotated_recs_d
coq-community-apery
668
Definition shift1 (z : int) := z + 1.
BinInt ZifyClasses mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/shift
coq-community-apery
669
Definition shift_ n := iter n shift1.
BinInt ZifyClasses mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/shift
coq-community-apery
670
Definition shift := nosimpl shift_.
BinInt ZifyClasses mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/shift
coq-community-apery
671
Definition shift2Z := (zshiftP, shift1E).
BinInt ZifyClasses mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/shift
coq-community-apery
672
Definition shift2R := (shiftP, shift1P).
BinInt ZifyClasses mathcomp(all_ssreflect all_algebra) tactics
coq-community-apery/shift
coq-community-apery
673
Definition Sn2 (n : int) := (n != - 2%:~R) /\ (n != - 1).
coq-community-apery/annotated_recs_z
coq-community-apery
674
Record Ann z : Type := ann { Sn2_ : Sn2 z }.
coq-community-apery/annotated_recs_z
coq-community-apery
675
Definition index_iotaz (mi ni : int) := match mi, ni with | Posz _, Negz _ => [::] | Posz m, Posz n => map Posz (index_iota m n) | Negz m, Negz n => map Negz (rev (index_iota n.+1 m.+1)) | Negz m, Posz n => rev (map Negz (index_iota 0 m.+1)) ++ (map Posz (index_iota 0 n)) end.
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/bigopz
coq-community-apery
676
Variables (R I : Type) (idx : R) (op : Monoid.com_law idx) (r : seq I).
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/bigopz
coq-community-apery
677
Variable R : ringType.
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/bigopz
coq-community-apery
678
Variable R : fieldType.
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/bigopz
coq-community-apery
679
Structure zifyRing (R : ringType) := ZifyRing { rval : R; zval : int; _ : rval = zval%:~R }.
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
680
Definition zify_zero := ZifyRing 0 0 erefl.
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
682
Definition zify_opp e1 := ZifyRing (- rval e1) (- zval e1) (zify_opp_subproof e1).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
683
Definition zify_add e1 e2 := ZifyRing (rval e1 + rval e2) (zval e1 + zval e2) (zify_add_subproof e1 e2).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
684
Definition zify_mulrn e1 n := ZifyRing (rval e1 *+ n) (zval e1 *+ n) (zify_mulrz_subproof e1 n).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
685
Definition zify_mulrz e1 n := ZifyRing (rval e1 *~ n) (zval e1 *~ n) (zify_mulrz_subproof e1 n).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
686
Definition zify_one := ZifyRing 1 1 erefl.
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
687
Definition zify_mul e1 e2 := ZifyRing (rval e1 * rval e2) (zval e1 * zval e2) (zify_mul_subproof e1 e2).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
688
Definition zify_exprn e1 n := ZifyRing (rval e1 ^+ n) (zval e1 ^+ n) (zify_exprn_subproof e1 n).
mathcomp(ssreflect ssrfun ssrbool eqtype ssrnat choice seq) mathcomp(fintype finfun bigop order ssralg ssrnum ssrint)
coq-community-apery/tactics
coq-community-apery
689
Definition exp_quo r p q := q.-root r%:C ^+ p.
mathcomp(all_ssreflect all_algebra all_field) extra_mathcomp posnum hanson_elem_arith
coq-community-apery/hanson_elem_analysis
coq-community-apery
690
Definition floorQ (r : rat) := (numq r %/ denq r)%Z.
mathcomp(all_ssreflect all_algebra)
coq-community-apery/floor
coq-community-apery
691
Definition ghn (m : nat) (n : int) : rat := \sum_(1 <= k < n + 1 :> int) (k %:Q ^ m)^-1.
mathcomp(all_ssreflect all_algebra) tactics shift bigopz
coq-community-apery/harmonic_numbers
coq-community-apery
692
Variable d : int -> int -> int -> rat.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
693
Variable d_ann : d.Ann d.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
694
Definition P1_horner := d.P1_horner.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
695
Definition P2_horner := d.P2_horner.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
696
Definition P3_horner := d.P3_horner.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
697
Definition P4_horner := d.P4_horner.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
698
Definition P1_flat := d.P1_flat.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
699
Definition P2_flat := d.P2_flat.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
700
Definition P3_flat := d.P3_flat.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
701
Definition P4_flat := d.P4_flat.
annotated_recs_s
coq-community-apery/ops_for_s
coq-community-apery
702
Definition multinomial (l : seq nat) : nat := \prod_(0 <= i < size l) (binomial (\sum_(0 <= j < i.+1) l`_j) l`_i).
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/multinomial
coq-community-apery
703
Example foo : multinomial [::1;2] = 3.
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/multinomial
coq-community-apery
704
Definition monomial (x : seq R) (e : seq nat) := \prod_(xi <- zip x e) xi.1 ^ xi.2.
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/multinomial
coq-community-apery
705
Definition tmap_val {n m} (t : n.-tuple 'I_m) : seq nat := [seq val j | j <- t].
mathcomp(all_ssreflect all_algebra) extra_mathcomp
coq-community-apery/multinomial
coq-community-apery
706
Variable R : zmodType.
mathcomp(all_ssreflect all_algebra all_field) mathcomp(bigenough)
coq-community-apery/extra_mathcomp
coq-community-apery
707
Variables S T : Type.
mathcomp(all_ssreflect all_algebra all_field) mathcomp(bigenough)
coq-community-apery/extra_mathcomp
coq-community-apery
709
Definition z3seq (n : nat) := ghn3 (Posz n).
mathcomp(all_ssreflect all_algebra) tactics bigopz harmonic_numbers seq_defs
coq-community-apery/z3seq_props
coq-community-apery
710
Fixpoint horner_seqop_rec (cf : seq (int -> R)) (u : int -> R) n n0 := match cf with | [::] => 0 | [:: a] => a n0 * u n | a :: cf' => horner_seqop_rec cf' u (int.shift 1%N n) n0 + a n0 * u n end.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
712
Definition horner_seqop cf u n := horner_seqop_rec cf u n n.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
713
Variable u : int -> int -> R.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
714
Variable Pseq : seq (int -> R).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
715
Variable Q : (int -> int -> R) -> (int -> int -> R).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
716
Variables (a b : int).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
717
Variable not_D : int -> int -> bool.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
718
Variables (cf : seq (int -> int -> R)) (u : int -> int -> R).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
720
Definition biv_horner_seqop_rec n n0 k := horner_seqop_rec (map (fun a => a ^~ k) cf) (u ^~ k) n n0.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
721
Definition biv_horner_seqop n k := biv_horner_seqop_rec n n k.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
722
Variables (cf : seq (seq (int -> int -> R))) (u : int -> int -> R).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
723
Definition biv_horner_seqop2 : (int -> int -> R) -> int -> int -> R := foldr (fun a r u n k => let u' := fun n_ k_ : int => u n_ (int.shift 1%N k_) in r u' n k + biv_horner_seqop a u n k) (fun u n k => 0) cf.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
724
Variable u : int -> int -> int -> R.
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
725
Variable Pseq : seq (seq (int -> int -> R)).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
726
Variable Q : (int -> int -> int -> R) -> (int -> int -> int -> R).
mathcomp(all_ssreflect all_algebra) shift bigopz
coq-community-apery/punk
coq-community-apery
727