Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
celeba / README.md
adamnarozniak's picture
Update README.md
2d738f5 verified
---
license: other
license_name: celeba-dataset-release-agreement
license_link: LICENSE
dataset_info:
config_name: img_align+identity+attr
features:
- name: image
dtype: image
- name: celeb_id
dtype: int64
- name: 5_o_Clock_Shadow
dtype: bool
- name: Arched_Eyebrows
dtype: bool
- name: Attractive
dtype: bool
- name: Bags_Under_Eyes
dtype: bool
- name: Bald
dtype: bool
- name: Bangs
dtype: bool
- name: Big_Lips
dtype: bool
- name: Big_Nose
dtype: bool
- name: Black_Hair
dtype: bool
- name: Blond_Hair
dtype: bool
- name: Blurry
dtype: bool
- name: Brown_Hair
dtype: bool
- name: Bushy_Eyebrows
dtype: bool
- name: Chubby
dtype: bool
- name: Double_Chin
dtype: bool
- name: Eyeglasses
dtype: bool
- name: Goatee
dtype: bool
- name: Gray_Hair
dtype: bool
- name: Heavy_Makeup
dtype: bool
- name: High_Cheekbones
dtype: bool
- name: Male
dtype: bool
- name: Mouth_Slightly_Open
dtype: bool
- name: Mustache
dtype: bool
- name: Narrow_Eyes
dtype: bool
- name: No_Beard
dtype: bool
- name: Oval_Face
dtype: bool
- name: Pale_Skin
dtype: bool
- name: Pointy_Nose
dtype: bool
- name: Receding_Hairline
dtype: bool
- name: Rosy_Cheeks
dtype: bool
- name: Sideburns
dtype: bool
- name: Smiling
dtype: bool
- name: Straight_Hair
dtype: bool
- name: Wavy_Hair
dtype: bool
- name: Wearing_Earrings
dtype: bool
- name: Wearing_Hat
dtype: bool
- name: Wearing_Lipstick
dtype: bool
- name: Wearing_Necklace
dtype: bool
- name: Wearing_Necktie
dtype: bool
- name: Young
dtype: bool
splits:
- name: train
num_bytes: 9333552813.19
num_examples: 162770
- name: valid
num_bytes: 1138445362.203
num_examples: 19867
- name: test
num_bytes: 1204311503.112
num_examples: 19962
download_size: 11734694689
dataset_size: 11676309678.505001
configs:
- config_name: img_align+identity+attr
data_files:
- split: train
path: img_align+identity+attr/train-*
- split: valid
path: img_align+identity+attr/valid-*
- split: test
path: img_align+identity+attr/test-*
default: true
---
# Dataset Card for Dataset Name
CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations.
The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including:
* 10,177 number of identities,
* 202,599 number of face images, and
* 5 landmark locations, 40 binary attributes annotations per image.
The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face recognition, face detection, landmark (or facial part) localization, and face editing & synthesis.
This dataset is used in Federated Learning research because of the possibility of dividing it according to the identities of the celebrities.
This repository enables us to use it in this context due to the existence of celebrity id (`celeb_id`) beside the images and attributes.
## Dataset Details
This dataset was created using the following data (all of which came from the original source of the dataset):
* aligned and cropped images (in PNG format),
* celebrities annotations,
* list attributes.
The dataset was divided according to the split specified by the authors (note the celebrities do not overlap between the splits).
### Dataset Sources
- **Website:** https://liuziwei7.github.io/projects/FaceAttributes.html and https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
- **Paper:** [Deep Learning Face Attributes in the Wild](https://arxiv.org/abs/1411.7766)
## Uses
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments.
To partition the dataset, do the following.
1. Install the package.
```bash
pip install flwr-datasets[vision]
```
2. Use the HF Dataset under the hood in Flower Datasets.
```python
from flwr_datasets import FederatedDataset
from flwr_datasets.partitioner import NaturalIdPartitioner
fds = FederatedDataset(
dataset="flwrlabs/celeba",
partitioners={"train": NaturalIdPartitioner(partition_by="celeb_id")}
)
partition = fds.load_partition(partition_id=0)
```
E.g., if you are following the LEAF paper, the target is the `Smiling` column.
## Dataset Structure
### Data Instances
The first instance of the train split is presented below:
```
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=178x218>,
'celeb_id': 1,
'5_o_Clock_Shadow': True,
'Arched_Eyebrows': False,
'Attractive': False,
'Bags_Under_Eyes': True,
'Bald': False,
'Bangs': False,
'Big_Lips': False,
'Big_Nose': False,
'Black_Hair': False,
'Blond_Hair': True,
'Blurry': False,
'Brown_Hair': True,
'Bushy_Eyebrows': False,
'Chubby': False,
'Double_Chin': False,
'Eyeglasses': False,
'Goatee': False,
'Gray_Hair': False,
'Heavy_Makeup': False,
'High_Cheekbones': True,
'Male': True,
'Mouth_Slightly_Open': True,
'Mustache': False,
'Narrow_Eyes': True,
'No_Beard': True,
'Oval_Face': False,
'Pale_Skin': False,
'Pointy_Nose': True,
'Receding_Hairline': False,
'Rosy_Cheeks': False,
'Sideburns': False,
'Smiling': True,
'Straight_Hair': False,
'Wavy_Hair': False,
'Wearing_Earrings': False,
'Wearing_Hat': False,
'Wearing_Lipstick': False,
'Wearing_Necklace': False,
'Wearing_Necktie': False,
'Young': False}
```
### Data Splits
```DatasetDict({
train: Dataset({
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
num_rows: 162770
})
valid: Dataset({
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
num_rows: 19867
})
test: Dataset({
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'],
num_rows: 19962
})
})
```
## Citation
When working with the CelebA dataset, please cite the original paper.
If you're using this dataset with Flower Datasets and Flower, you can cite Flower.
**BibTeX:**
```
@inproceedings{liu2015faceattributes,
title = {Deep Learning Face Attributes in the Wild},
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}
```
```
@article{DBLP:journals/corr/abs-2007-14390,
author = {Daniel J. Beutel and
Taner Topal and
Akhil Mathur and
Xinchi Qiu and
Titouan Parcollet and
Nicholas D. Lane},
title = {Flower: {A} Friendly Federated Learning Research Framework},
journal = {CoRR},
volume = {abs/2007.14390},
year = {2020},
url = {https://arxiv.org/abs/2007.14390},
eprinttype = {arXiv},
eprint = {2007.14390},
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
## Dataset Card Contact
For questions about the dataset, please contact Ziwei Liu and Ping Luo.
In case of any doubts about the dataset preparation, please contact [Flower Labs](https://flower.ai/).