|
--- |
|
license: other |
|
license_name: celeba-dataset-release-agreement |
|
license_link: LICENSE |
|
dataset_info: |
|
config_name: img_align+identity+attr |
|
features: |
|
- name: image |
|
dtype: image |
|
- name: celeb_id |
|
dtype: int64 |
|
- name: 5_o_Clock_Shadow |
|
dtype: bool |
|
- name: Arched_Eyebrows |
|
dtype: bool |
|
- name: Attractive |
|
dtype: bool |
|
- name: Bags_Under_Eyes |
|
dtype: bool |
|
- name: Bald |
|
dtype: bool |
|
- name: Bangs |
|
dtype: bool |
|
- name: Big_Lips |
|
dtype: bool |
|
- name: Big_Nose |
|
dtype: bool |
|
- name: Black_Hair |
|
dtype: bool |
|
- name: Blond_Hair |
|
dtype: bool |
|
- name: Blurry |
|
dtype: bool |
|
- name: Brown_Hair |
|
dtype: bool |
|
- name: Bushy_Eyebrows |
|
dtype: bool |
|
- name: Chubby |
|
dtype: bool |
|
- name: Double_Chin |
|
dtype: bool |
|
- name: Eyeglasses |
|
dtype: bool |
|
- name: Goatee |
|
dtype: bool |
|
- name: Gray_Hair |
|
dtype: bool |
|
- name: Heavy_Makeup |
|
dtype: bool |
|
- name: High_Cheekbones |
|
dtype: bool |
|
- name: Male |
|
dtype: bool |
|
- name: Mouth_Slightly_Open |
|
dtype: bool |
|
- name: Mustache |
|
dtype: bool |
|
- name: Narrow_Eyes |
|
dtype: bool |
|
- name: No_Beard |
|
dtype: bool |
|
- name: Oval_Face |
|
dtype: bool |
|
- name: Pale_Skin |
|
dtype: bool |
|
- name: Pointy_Nose |
|
dtype: bool |
|
- name: Receding_Hairline |
|
dtype: bool |
|
- name: Rosy_Cheeks |
|
dtype: bool |
|
- name: Sideburns |
|
dtype: bool |
|
- name: Smiling |
|
dtype: bool |
|
- name: Straight_Hair |
|
dtype: bool |
|
- name: Wavy_Hair |
|
dtype: bool |
|
- name: Wearing_Earrings |
|
dtype: bool |
|
- name: Wearing_Hat |
|
dtype: bool |
|
- name: Wearing_Lipstick |
|
dtype: bool |
|
- name: Wearing_Necklace |
|
dtype: bool |
|
- name: Wearing_Necktie |
|
dtype: bool |
|
- name: Young |
|
dtype: bool |
|
splits: |
|
- name: train |
|
num_bytes: 9333552813.19 |
|
num_examples: 162770 |
|
- name: valid |
|
num_bytes: 1138445362.203 |
|
num_examples: 19867 |
|
- name: test |
|
num_bytes: 1204311503.112 |
|
num_examples: 19962 |
|
download_size: 11734694689 |
|
dataset_size: 11676309678.505001 |
|
configs: |
|
- config_name: img_align+identity+attr |
|
data_files: |
|
- split: train |
|
path: img_align+identity+attr/train-* |
|
- split: valid |
|
path: img_align+identity+attr/valid-* |
|
- split: test |
|
path: img_align+identity+attr/test-* |
|
default: true |
|
--- |
|
|
|
# Dataset Card for Dataset Name |
|
|
|
CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. |
|
The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including: |
|
|
|
* 10,177 number of identities, |
|
|
|
* 202,599 number of face images, and |
|
|
|
* 5 landmark locations, 40 binary attributes annotations per image. |
|
|
|
The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face recognition, face detection, landmark (or facial part) localization, and face editing & synthesis. |
|
|
|
This dataset is used in Federated Learning research because of the possibility of dividing it according to the identities of the celebrities. |
|
This repository enables us to use it in this context due to the existence of celebrity id (`celeb_id`) beside the images and attributes. |
|
|
|
## Dataset Details |
|
This dataset was created using the following data (all of which came from the original source of the dataset): |
|
* aligned and cropped images (in PNG format), |
|
* celebrities annotations, |
|
* list attributes. |
|
|
|
The dataset was divided according to the split specified by the authors (note the celebrities do not overlap between the splits). |
|
|
|
|
|
### Dataset Sources |
|
|
|
- **Website:** https://liuziwei7.github.io/projects/FaceAttributes.html and https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html |
|
- **Paper:** [Deep Learning Face Attributes in the Wild](https://arxiv.org/abs/1411.7766) |
|
|
|
## Uses |
|
|
|
In order to prepare the dataset for the FL settings, we recommend using [Flower Dataset](https://flower.ai/docs/datasets/) (flwr-datasets) for the dataset download and partitioning and [Flower](https://flower.ai/docs/framework/) (flwr) for conducting FL experiments. |
|
|
|
To partition the dataset, do the following. |
|
1. Install the package. |
|
```bash |
|
pip install flwr-datasets[vision] |
|
``` |
|
2. Use the HF Dataset under the hood in Flower Datasets. |
|
```python |
|
from flwr_datasets import FederatedDataset |
|
from flwr_datasets.partitioner import NaturalIdPartitioner |
|
|
|
fds = FederatedDataset( |
|
dataset="flwrlabs/celeba", |
|
partitioners={"train": NaturalIdPartitioner(partition_by="celeb_id")} |
|
) |
|
partition = fds.load_partition(partition_id=0) |
|
``` |
|
|
|
E.g., if you are following the LEAF paper, the target is the `Smiling` column. |
|
|
|
|
|
## Dataset Structure |
|
### Data Instances |
|
The first instance of the train split is presented below: |
|
``` |
|
{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGB size=178x218>, |
|
'celeb_id': 1, |
|
'5_o_Clock_Shadow': True, |
|
'Arched_Eyebrows': False, |
|
'Attractive': False, |
|
'Bags_Under_Eyes': True, |
|
'Bald': False, |
|
'Bangs': False, |
|
'Big_Lips': False, |
|
'Big_Nose': False, |
|
'Black_Hair': False, |
|
'Blond_Hair': True, |
|
'Blurry': False, |
|
'Brown_Hair': True, |
|
'Bushy_Eyebrows': False, |
|
'Chubby': False, |
|
'Double_Chin': False, |
|
'Eyeglasses': False, |
|
'Goatee': False, |
|
'Gray_Hair': False, |
|
'Heavy_Makeup': False, |
|
'High_Cheekbones': True, |
|
'Male': True, |
|
'Mouth_Slightly_Open': True, |
|
'Mustache': False, |
|
'Narrow_Eyes': True, |
|
'No_Beard': True, |
|
'Oval_Face': False, |
|
'Pale_Skin': False, |
|
'Pointy_Nose': True, |
|
'Receding_Hairline': False, |
|
'Rosy_Cheeks': False, |
|
'Sideburns': False, |
|
'Smiling': True, |
|
'Straight_Hair': False, |
|
'Wavy_Hair': False, |
|
'Wearing_Earrings': False, |
|
'Wearing_Hat': False, |
|
'Wearing_Lipstick': False, |
|
'Wearing_Necklace': False, |
|
'Wearing_Necktie': False, |
|
'Young': False} |
|
``` |
|
|
|
### Data Splits |
|
|
|
```DatasetDict({ |
|
train: Dataset({ |
|
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'], |
|
num_rows: 162770 |
|
}) |
|
valid: Dataset({ |
|
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'], |
|
num_rows: 19867 |
|
}) |
|
test: Dataset({ |
|
features: ['image', 'celeb_id', '5_o_Clock_Shadow', 'Arched_Eyebrows', 'Attractive', 'Bags_Under_Eyes', 'Bald', 'Bangs', 'Big_Lips', 'Big_Nose', 'Black_Hair', 'Blond_Hair', 'Blurry', 'Brown_Hair', 'Bushy_Eyebrows', 'Chubby', 'Double_Chin', 'Eyeglasses', 'Goatee', 'Gray_Hair', 'Heavy_Makeup', 'High_Cheekbones', 'Male', 'Mouth_Slightly_Open', 'Mustache', 'Narrow_Eyes', 'No_Beard', 'Oval_Face', 'Pale_Skin', 'Pointy_Nose', 'Receding_Hairline', 'Rosy_Cheeks', 'Sideburns', 'Smiling', 'Straight_Hair', 'Wavy_Hair', 'Wearing_Earrings', 'Wearing_Hat', 'Wearing_Lipstick', 'Wearing_Necklace', 'Wearing_Necktie', 'Young'], |
|
num_rows: 19962 |
|
}) |
|
}) |
|
``` |
|
|
|
## Citation |
|
When working with the CelebA dataset, please cite the original paper. |
|
If you're using this dataset with Flower Datasets and Flower, you can cite Flower. |
|
|
|
**BibTeX:** |
|
``` |
|
@inproceedings{liu2015faceattributes, |
|
title = {Deep Learning Face Attributes in the Wild}, |
|
author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou}, |
|
booktitle = {Proceedings of International Conference on Computer Vision (ICCV)}, |
|
month = {December}, |
|
year = {2015} |
|
} |
|
``` |
|
``` |
|
@article{DBLP:journals/corr/abs-2007-14390, |
|
author = {Daniel J. Beutel and |
|
Taner Topal and |
|
Akhil Mathur and |
|
Xinchi Qiu and |
|
Titouan Parcollet and |
|
Nicholas D. Lane}, |
|
title = {Flower: {A} Friendly Federated Learning Research Framework}, |
|
journal = {CoRR}, |
|
volume = {abs/2007.14390}, |
|
year = {2020}, |
|
url = {https://arxiv.org/abs/2007.14390}, |
|
eprinttype = {arXiv}, |
|
eprint = {2007.14390}, |
|
timestamp = {Mon, 03 Aug 2020 14:32:13 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2007-14390.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
``` |
|
|
|
|
|
## Dataset Card Contact |
|
|
|
For questions about the dataset, please contact Ziwei Liu and Ping Luo. |
|
In case of any doubts about the dataset preparation, please contact [Flower Labs](https://flower.ai/). |