repo
stringlengths
7
55
path
stringlengths
4
223
func_name
stringlengths
1
129
original_string
stringlengths
234
21.9k
language
stringclasses
1 value
code
stringlengths
234
21.9k
code_tokens
sequencelengths
20
10.3k
docstring
stringlengths
1
11.2k
docstring_tokens
sequencelengths
1
725
sha
stringlengths
40
40
url
stringlengths
88
315
partition
stringclasses
3 values
summary
stringlengths
5
350
ageitgey/face_recognition
examples/face_recognition_knn.py
train
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False): """ Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ โ”œโ”€โ”€ <person1>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ”œโ”€โ”€ <somename2>.jpeg โ”‚ โ”œโ”€โ”€ ... โ”œโ”€โ”€ <person2>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ””โ”€โ”€ <somename2>.jpeg โ””โ”€โ”€ ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data. """ X = [] y = [] # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)): image = face_recognition.load_image_file(img_path) face_bounding_boxes = face_recognition.face_locations(image) if len(face_bounding_boxes) != 1: # If there are no people (or too many people) in a training image, skip the image. if verbose: print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face")) else: # Add face encoding for current image to the training set X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0]) y.append(class_dir) # Determine how many neighbors to use for weighting in the KNN classifier if n_neighbors is None: n_neighbors = int(round(math.sqrt(len(X)))) if verbose: print("Chose n_neighbors automatically:", n_neighbors) # Create and train the KNN classifier knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance') knn_clf.fit(X, y) # Save the trained KNN classifier if model_save_path is not None: with open(model_save_path, 'wb') as f: pickle.dump(knn_clf, f) return knn_clf
python
def train(train_dir, model_save_path=None, n_neighbors=None, knn_algo='ball_tree', verbose=False): """ Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ โ”œโ”€โ”€ <person1>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ”œโ”€โ”€ <somename2>.jpeg โ”‚ โ”œโ”€โ”€ ... โ”œโ”€โ”€ <person2>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ””โ”€โ”€ <somename2>.jpeg โ””โ”€โ”€ ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data. """ X = [] y = [] # Loop through each person in the training set for class_dir in os.listdir(train_dir): if not os.path.isdir(os.path.join(train_dir, class_dir)): continue # Loop through each training image for the current person for img_path in image_files_in_folder(os.path.join(train_dir, class_dir)): image = face_recognition.load_image_file(img_path) face_bounding_boxes = face_recognition.face_locations(image) if len(face_bounding_boxes) != 1: # If there are no people (or too many people) in a training image, skip the image. if verbose: print("Image {} not suitable for training: {}".format(img_path, "Didn't find a face" if len(face_bounding_boxes) < 1 else "Found more than one face")) else: # Add face encoding for current image to the training set X.append(face_recognition.face_encodings(image, known_face_locations=face_bounding_boxes)[0]) y.append(class_dir) # Determine how many neighbors to use for weighting in the KNN classifier if n_neighbors is None: n_neighbors = int(round(math.sqrt(len(X)))) if verbose: print("Chose n_neighbors automatically:", n_neighbors) # Create and train the KNN classifier knn_clf = neighbors.KNeighborsClassifier(n_neighbors=n_neighbors, algorithm=knn_algo, weights='distance') knn_clf.fit(X, y) # Save the trained KNN classifier if model_save_path is not None: with open(model_save_path, 'wb') as f: pickle.dump(knn_clf, f) return knn_clf
[ "def", "train", "(", "train_dir", ",", "model_save_path", "=", "None", ",", "n_neighbors", "=", "None", ",", "knn_algo", "=", "'ball_tree'", ",", "verbose", "=", "False", ")", ":", "X", "=", "[", "]", "y", "=", "[", "]", "# Loop through each person in the training set", "for", "class_dir", "in", "os", ".", "listdir", "(", "train_dir", ")", ":", "if", "not", "os", ".", "path", ".", "isdir", "(", "os", ".", "path", ".", "join", "(", "train_dir", ",", "class_dir", ")", ")", ":", "continue", "# Loop through each training image for the current person", "for", "img_path", "in", "image_files_in_folder", "(", "os", ".", "path", ".", "join", "(", "train_dir", ",", "class_dir", ")", ")", ":", "image", "=", "face_recognition", ".", "load_image_file", "(", "img_path", ")", "face_bounding_boxes", "=", "face_recognition", ".", "face_locations", "(", "image", ")", "if", "len", "(", "face_bounding_boxes", ")", "!=", "1", ":", "# If there are no people (or too many people) in a training image, skip the image.", "if", "verbose", ":", "print", "(", "\"Image {} not suitable for training: {}\"", ".", "format", "(", "img_path", ",", "\"Didn't find a face\"", "if", "len", "(", "face_bounding_boxes", ")", "<", "1", "else", "\"Found more than one face\"", ")", ")", "else", ":", "# Add face encoding for current image to the training set", "X", ".", "append", "(", "face_recognition", ".", "face_encodings", "(", "image", ",", "known_face_locations", "=", "face_bounding_boxes", ")", "[", "0", "]", ")", "y", ".", "append", "(", "class_dir", ")", "# Determine how many neighbors to use for weighting in the KNN classifier", "if", "n_neighbors", "is", "None", ":", "n_neighbors", "=", "int", "(", "round", "(", "math", ".", "sqrt", "(", "len", "(", "X", ")", ")", ")", ")", "if", "verbose", ":", "print", "(", "\"Chose n_neighbors automatically:\"", ",", "n_neighbors", ")", "# Create and train the KNN classifier", "knn_clf", "=", "neighbors", ".", "KNeighborsClassifier", "(", "n_neighbors", "=", "n_neighbors", ",", "algorithm", "=", "knn_algo", ",", "weights", "=", "'distance'", ")", "knn_clf", ".", "fit", "(", "X", ",", "y", ")", "# Save the trained KNN classifier", "if", "model_save_path", "is", "not", "None", ":", "with", "open", "(", "model_save_path", ",", "'wb'", ")", "as", "f", ":", "pickle", ".", "dump", "(", "knn_clf", ",", "f", ")", "return", "knn_clf" ]
Trains a k-nearest neighbors classifier for face recognition. :param train_dir: directory that contains a sub-directory for each known person, with its name. (View in source code to see train_dir example tree structure) Structure: <train_dir>/ โ”œโ”€โ”€ <person1>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ”œโ”€โ”€ <somename2>.jpeg โ”‚ โ”œโ”€โ”€ ... โ”œโ”€โ”€ <person2>/ โ”‚ โ”œโ”€โ”€ <somename1>.jpeg โ”‚ โ””โ”€โ”€ <somename2>.jpeg โ””โ”€โ”€ ... :param model_save_path: (optional) path to save model on disk :param n_neighbors: (optional) number of neighbors to weigh in classification. Chosen automatically if not specified :param knn_algo: (optional) underlying data structure to support knn.default is ball_tree :param verbose: verbosity of training :return: returns knn classifier that was trained on the given data.
[ "Trains", "a", "k", "-", "nearest", "neighbors", "classifier", "for", "face", "recognition", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L46-L108
train
Train a k - nearest neighbors classifier for face recognition.
ageitgey/face_recognition
examples/face_recognition_knn.py
predict
def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.6): """ Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if not os.path.isfile(X_img_path) or os.path.splitext(X_img_path)[1][1:] not in ALLOWED_EXTENSIONS: raise Exception("Invalid image path: {}".format(X_img_path)) if knn_clf is None and model_path is None: raise Exception("Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_img = face_recognition.load_image_file(X_img_path) X_face_locations = face_recognition.face_locations(X_img) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
python
def predict(X_img_path, knn_clf=None, model_path=None, distance_threshold=0.6): """ Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned. """ if not os.path.isfile(X_img_path) or os.path.splitext(X_img_path)[1][1:] not in ALLOWED_EXTENSIONS: raise Exception("Invalid image path: {}".format(X_img_path)) if knn_clf is None and model_path is None: raise Exception("Must supply knn classifier either thourgh knn_clf or model_path") # Load a trained KNN model (if one was passed in) if knn_clf is None: with open(model_path, 'rb') as f: knn_clf = pickle.load(f) # Load image file and find face locations X_img = face_recognition.load_image_file(X_img_path) X_face_locations = face_recognition.face_locations(X_img) # If no faces are found in the image, return an empty result. if len(X_face_locations) == 0: return [] # Find encodings for faces in the test iamge faces_encodings = face_recognition.face_encodings(X_img, known_face_locations=X_face_locations) # Use the KNN model to find the best matches for the test face closest_distances = knn_clf.kneighbors(faces_encodings, n_neighbors=1) are_matches = [closest_distances[0][i][0] <= distance_threshold for i in range(len(X_face_locations))] # Predict classes and remove classifications that aren't within the threshold return [(pred, loc) if rec else ("unknown", loc) for pred, loc, rec in zip(knn_clf.predict(faces_encodings), X_face_locations, are_matches)]
[ "def", "predict", "(", "X_img_path", ",", "knn_clf", "=", "None", ",", "model_path", "=", "None", ",", "distance_threshold", "=", "0.6", ")", ":", "if", "not", "os", ".", "path", ".", "isfile", "(", "X_img_path", ")", "or", "os", ".", "path", ".", "splitext", "(", "X_img_path", ")", "[", "1", "]", "[", "1", ":", "]", "not", "in", "ALLOWED_EXTENSIONS", ":", "raise", "Exception", "(", "\"Invalid image path: {}\"", ".", "format", "(", "X_img_path", ")", ")", "if", "knn_clf", "is", "None", "and", "model_path", "is", "None", ":", "raise", "Exception", "(", "\"Must supply knn classifier either thourgh knn_clf or model_path\"", ")", "# Load a trained KNN model (if one was passed in)", "if", "knn_clf", "is", "None", ":", "with", "open", "(", "model_path", ",", "'rb'", ")", "as", "f", ":", "knn_clf", "=", "pickle", ".", "load", "(", "f", ")", "# Load image file and find face locations", "X_img", "=", "face_recognition", ".", "load_image_file", "(", "X_img_path", ")", "X_face_locations", "=", "face_recognition", ".", "face_locations", "(", "X_img", ")", "# If no faces are found in the image, return an empty result.", "if", "len", "(", "X_face_locations", ")", "==", "0", ":", "return", "[", "]", "# Find encodings for faces in the test iamge", "faces_encodings", "=", "face_recognition", ".", "face_encodings", "(", "X_img", ",", "known_face_locations", "=", "X_face_locations", ")", "# Use the KNN model to find the best matches for the test face", "closest_distances", "=", "knn_clf", ".", "kneighbors", "(", "faces_encodings", ",", "n_neighbors", "=", "1", ")", "are_matches", "=", "[", "closest_distances", "[", "0", "]", "[", "i", "]", "[", "0", "]", "<=", "distance_threshold", "for", "i", "in", "range", "(", "len", "(", "X_face_locations", ")", ")", "]", "# Predict classes and remove classifications that aren't within the threshold", "return", "[", "(", "pred", ",", "loc", ")", "if", "rec", "else", "(", "\"unknown\"", ",", "loc", ")", "for", "pred", ",", "loc", ",", "rec", "in", "zip", "(", "knn_clf", ".", "predict", "(", "faces_encodings", ")", ",", "X_face_locations", ",", "are_matches", ")", "]" ]
Recognizes faces in given image using a trained KNN classifier :param X_img_path: path to image to be recognized :param knn_clf: (optional) a knn classifier object. if not specified, model_save_path must be specified. :param model_path: (optional) path to a pickled knn classifier. if not specified, model_save_path must be knn_clf. :param distance_threshold: (optional) distance threshold for face classification. the larger it is, the more chance of mis-classifying an unknown person as a known one. :return: a list of names and face locations for the recognized faces in the image: [(name, bounding box), ...]. For faces of unrecognized persons, the name 'unknown' will be returned.
[ "Recognizes", "faces", "in", "given", "image", "using", "a", "trained", "KNN", "classifier" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L111-L150
train
Predicts faces in a given image using a KNN classifier.
ageitgey/face_recognition
examples/face_recognition_knn.py
show_prediction_labels_on_image
def show_prediction_labels_on_image(img_path, predictions): """ Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return: """ pil_image = Image.open(img_path).convert("RGB") draw = ImageDraw.Draw(pil_image) for name, (top, right, bottom, left) in predictions: # Draw a box around the face using the Pillow module draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255)) # There's a bug in Pillow where it blows up with non-UTF-8 text # when using the default bitmap font name = name.encode("UTF-8") # Draw a label with a name below the face text_width, text_height = draw.textsize(name) draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255)) draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255)) # Remove the drawing library from memory as per the Pillow docs del draw # Display the resulting image pil_image.show()
python
def show_prediction_labels_on_image(img_path, predictions): """ Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return: """ pil_image = Image.open(img_path).convert("RGB") draw = ImageDraw.Draw(pil_image) for name, (top, right, bottom, left) in predictions: # Draw a box around the face using the Pillow module draw.rectangle(((left, top), (right, bottom)), outline=(0, 0, 255)) # There's a bug in Pillow where it blows up with non-UTF-8 text # when using the default bitmap font name = name.encode("UTF-8") # Draw a label with a name below the face text_width, text_height = draw.textsize(name) draw.rectangle(((left, bottom - text_height - 10), (right, bottom)), fill=(0, 0, 255), outline=(0, 0, 255)) draw.text((left + 6, bottom - text_height - 5), name, fill=(255, 255, 255, 255)) # Remove the drawing library from memory as per the Pillow docs del draw # Display the resulting image pil_image.show()
[ "def", "show_prediction_labels_on_image", "(", "img_path", ",", "predictions", ")", ":", "pil_image", "=", "Image", ".", "open", "(", "img_path", ")", ".", "convert", "(", "\"RGB\"", ")", "draw", "=", "ImageDraw", ".", "Draw", "(", "pil_image", ")", "for", "name", ",", "(", "top", ",", "right", ",", "bottom", ",", "left", ")", "in", "predictions", ":", "# Draw a box around the face using the Pillow module", "draw", ".", "rectangle", "(", "(", "(", "left", ",", "top", ")", ",", "(", "right", ",", "bottom", ")", ")", ",", "outline", "=", "(", "0", ",", "0", ",", "255", ")", ")", "# There's a bug in Pillow where it blows up with non-UTF-8 text", "# when using the default bitmap font", "name", "=", "name", ".", "encode", "(", "\"UTF-8\"", ")", "# Draw a label with a name below the face", "text_width", ",", "text_height", "=", "draw", ".", "textsize", "(", "name", ")", "draw", ".", "rectangle", "(", "(", "(", "left", ",", "bottom", "-", "text_height", "-", "10", ")", ",", "(", "right", ",", "bottom", ")", ")", ",", "fill", "=", "(", "0", ",", "0", ",", "255", ")", ",", "outline", "=", "(", "0", ",", "0", ",", "255", ")", ")", "draw", ".", "text", "(", "(", "left", "+", "6", ",", "bottom", "-", "text_height", "-", "5", ")", ",", "name", ",", "fill", "=", "(", "255", ",", "255", ",", "255", ",", "255", ")", ")", "# Remove the drawing library from memory as per the Pillow docs", "del", "draw", "# Display the resulting image", "pil_image", ".", "show", "(", ")" ]
Shows the face recognition results visually. :param img_path: path to image to be recognized :param predictions: results of the predict function :return:
[ "Shows", "the", "face", "recognition", "results", "visually", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/examples/face_recognition_knn.py#L153-L181
train
Show the face recognition results visually.
ageitgey/face_recognition
face_recognition/api.py
_trim_css_to_bounds
def _trim_css_to_bounds(css, image_shape): """ Make sure a tuple in (top, right, bottom, left) order is within the bounds of the image. :param css: plain tuple representation of the rect in (top, right, bottom, left) order :param image_shape: numpy shape of the image array :return: a trimmed plain tuple representation of the rect in (top, right, bottom, left) order """ return max(css[0], 0), min(css[1], image_shape[1]), min(css[2], image_shape[0]), max(css[3], 0)
python
def _trim_css_to_bounds(css, image_shape): """ Make sure a tuple in (top, right, bottom, left) order is within the bounds of the image. :param css: plain tuple representation of the rect in (top, right, bottom, left) order :param image_shape: numpy shape of the image array :return: a trimmed plain tuple representation of the rect in (top, right, bottom, left) order """ return max(css[0], 0), min(css[1], image_shape[1]), min(css[2], image_shape[0]), max(css[3], 0)
[ "def", "_trim_css_to_bounds", "(", "css", ",", "image_shape", ")", ":", "return", "max", "(", "css", "[", "0", "]", ",", "0", ")", ",", "min", "(", "css", "[", "1", "]", ",", "image_shape", "[", "1", "]", ")", ",", "min", "(", "css", "[", "2", "]", ",", "image_shape", "[", "0", "]", ")", ",", "max", "(", "css", "[", "3", "]", ",", "0", ")" ]
Make sure a tuple in (top, right, bottom, left) order is within the bounds of the image. :param css: plain tuple representation of the rect in (top, right, bottom, left) order :param image_shape: numpy shape of the image array :return: a trimmed plain tuple representation of the rect in (top, right, bottom, left) order
[ "Make", "sure", "a", "tuple", "in", "(", "top", "right", "bottom", "left", ")", "order", "is", "within", "the", "bounds", "of", "the", "image", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L52-L60
train
Trim the given CSS tuple to the bounds of the image.
ageitgey/face_recognition
face_recognition/api.py
face_distance
def face_distance(face_encodings, face_to_compare): """ Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array """ if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1)
python
def face_distance(face_encodings, face_to_compare): """ Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array """ if len(face_encodings) == 0: return np.empty((0)) return np.linalg.norm(face_encodings - face_to_compare, axis=1)
[ "def", "face_distance", "(", "face_encodings", ",", "face_to_compare", ")", ":", "if", "len", "(", "face_encodings", ")", "==", "0", ":", "return", "np", ".", "empty", "(", "(", "0", ")", ")", "return", "np", ".", "linalg", ".", "norm", "(", "face_encodings", "-", "face_to_compare", ",", "axis", "=", "1", ")" ]
Given a list of face encodings, compare them to a known face encoding and get a euclidean distance for each comparison face. The distance tells you how similar the faces are. :param faces: List of face encodings to compare :param face_to_compare: A face encoding to compare against :return: A numpy ndarray with the distance for each face in the same order as the 'faces' array
[ "Given", "a", "list", "of", "face", "encodings", "compare", "them", "to", "a", "known", "face", "encoding", "and", "get", "a", "euclidean", "distance", "for", "each", "comparison", "face", ".", "The", "distance", "tells", "you", "how", "similar", "the", "faces", "are", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L63-L75
train
Given a list of face encodings compare them to a known face encoding and get a euclidean distance for each comparison face.
ageitgey/face_recognition
face_recognition/api.py
load_image_file
def load_image_file(file, mode='RGB'): """ Loads an image file (.jpg, .png, etc) into a numpy array :param file: image file name or file object to load :param mode: format to convert the image to. Only 'RGB' (8-bit RGB, 3 channels) and 'L' (black and white) are supported. :return: image contents as numpy array """ im = PIL.Image.open(file) if mode: im = im.convert(mode) return np.array(im)
python
def load_image_file(file, mode='RGB'): """ Loads an image file (.jpg, .png, etc) into a numpy array :param file: image file name or file object to load :param mode: format to convert the image to. Only 'RGB' (8-bit RGB, 3 channels) and 'L' (black and white) are supported. :return: image contents as numpy array """ im = PIL.Image.open(file) if mode: im = im.convert(mode) return np.array(im)
[ "def", "load_image_file", "(", "file", ",", "mode", "=", "'RGB'", ")", ":", "im", "=", "PIL", ".", "Image", ".", "open", "(", "file", ")", "if", "mode", ":", "im", "=", "im", ".", "convert", "(", "mode", ")", "return", "np", ".", "array", "(", "im", ")" ]
Loads an image file (.jpg, .png, etc) into a numpy array :param file: image file name or file object to load :param mode: format to convert the image to. Only 'RGB' (8-bit RGB, 3 channels) and 'L' (black and white) are supported. :return: image contents as numpy array
[ "Loads", "an", "image", "file", "(", ".", "jpg", ".", "png", "etc", ")", "into", "a", "numpy", "array" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L78-L89
train
Loads an image file into a numpy array.
ageitgey/face_recognition
face_recognition/api.py
_raw_face_locations
def _raw_face_locations(img, number_of_times_to_upsample=1, model="hog"): """ Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of dlib 'rect' objects of found face locations """ if model == "cnn": return cnn_face_detector(img, number_of_times_to_upsample) else: return face_detector(img, number_of_times_to_upsample)
python
def _raw_face_locations(img, number_of_times_to_upsample=1, model="hog"): """ Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of dlib 'rect' objects of found face locations """ if model == "cnn": return cnn_face_detector(img, number_of_times_to_upsample) else: return face_detector(img, number_of_times_to_upsample)
[ "def", "_raw_face_locations", "(", "img", ",", "number_of_times_to_upsample", "=", "1", ",", "model", "=", "\"hog\"", ")", ":", "if", "model", "==", "\"cnn\"", ":", "return", "cnn_face_detector", "(", "img", ",", "number_of_times_to_upsample", ")", "else", ":", "return", "face_detector", "(", "img", ",", "number_of_times_to_upsample", ")" ]
Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of dlib 'rect' objects of found face locations
[ "Returns", "an", "array", "of", "bounding", "boxes", "of", "human", "faces", "in", "a", "image" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L92-L105
train
Returns an array of bounding boxes of human faces in a image.
ageitgey/face_recognition
face_recognition/api.py
face_locations
def face_locations(img, number_of_times_to_upsample=1, model="hog"): """ Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ if model == "cnn": return [_trim_css_to_bounds(_rect_to_css(face.rect), img.shape) for face in _raw_face_locations(img, number_of_times_to_upsample, "cnn")] else: return [_trim_css_to_bounds(_rect_to_css(face), img.shape) for face in _raw_face_locations(img, number_of_times_to_upsample, model)]
python
def face_locations(img, number_of_times_to_upsample=1, model="hog"): """ Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ if model == "cnn": return [_trim_css_to_bounds(_rect_to_css(face.rect), img.shape) for face in _raw_face_locations(img, number_of_times_to_upsample, "cnn")] else: return [_trim_css_to_bounds(_rect_to_css(face), img.shape) for face in _raw_face_locations(img, number_of_times_to_upsample, model)]
[ "def", "face_locations", "(", "img", ",", "number_of_times_to_upsample", "=", "1", ",", "model", "=", "\"hog\"", ")", ":", "if", "model", "==", "\"cnn\"", ":", "return", "[", "_trim_css_to_bounds", "(", "_rect_to_css", "(", "face", ".", "rect", ")", ",", "img", ".", "shape", ")", "for", "face", "in", "_raw_face_locations", "(", "img", ",", "number_of_times_to_upsample", ",", "\"cnn\"", ")", "]", "else", ":", "return", "[", "_trim_css_to_bounds", "(", "_rect_to_css", "(", "face", ")", ",", "img", ".", "shape", ")", "for", "face", "in", "_raw_face_locations", "(", "img", ",", "number_of_times_to_upsample", ",", "model", ")", "]" ]
Returns an array of bounding boxes of human faces in a image :param img: An image (as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param model: Which face detection model to use. "hog" is less accurate but faster on CPUs. "cnn" is a more accurate deep-learning model which is GPU/CUDA accelerated (if available). The default is "hog". :return: A list of tuples of found face locations in css (top, right, bottom, left) order
[ "Returns", "an", "array", "of", "bounding", "boxes", "of", "human", "faces", "in", "a", "image" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L108-L121
train
Returns an array of bounding boxes of human faces in a image.
ageitgey/face_recognition
face_recognition/api.py
batch_face_locations
def batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128): """ Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ def convert_cnn_detections_to_css(detections): return [_trim_css_to_bounds(_rect_to_css(face.rect), images[0].shape) for face in detections] raw_detections_batched = _raw_face_locations_batched(images, number_of_times_to_upsample, batch_size) return list(map(convert_cnn_detections_to_css, raw_detections_batched))
python
def batch_face_locations(images, number_of_times_to_upsample=1, batch_size=128): """ Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order """ def convert_cnn_detections_to_css(detections): return [_trim_css_to_bounds(_rect_to_css(face.rect), images[0].shape) for face in detections] raw_detections_batched = _raw_face_locations_batched(images, number_of_times_to_upsample, batch_size) return list(map(convert_cnn_detections_to_css, raw_detections_batched))
[ "def", "batch_face_locations", "(", "images", ",", "number_of_times_to_upsample", "=", "1", ",", "batch_size", "=", "128", ")", ":", "def", "convert_cnn_detections_to_css", "(", "detections", ")", ":", "return", "[", "_trim_css_to_bounds", "(", "_rect_to_css", "(", "face", ".", "rect", ")", ",", "images", "[", "0", "]", ".", "shape", ")", "for", "face", "in", "detections", "]", "raw_detections_batched", "=", "_raw_face_locations_batched", "(", "images", ",", "number_of_times_to_upsample", ",", "batch_size", ")", "return", "list", "(", "map", "(", "convert_cnn_detections_to_css", ",", "raw_detections_batched", ")", ")" ]
Returns an 2d array of bounding boxes of human faces in a image using the cnn face detector If you are using a GPU, this can give you much faster results since the GPU can process batches of images at once. If you aren't using a GPU, you don't need this function. :param img: A list of images (each as a numpy array) :param number_of_times_to_upsample: How many times to upsample the image looking for faces. Higher numbers find smaller faces. :param batch_size: How many images to include in each GPU processing batch. :return: A list of tuples of found face locations in css (top, right, bottom, left) order
[ "Returns", "an", "2d", "array", "of", "bounding", "boxes", "of", "human", "faces", "in", "a", "image", "using", "the", "cnn", "face", "detector", "If", "you", "are", "using", "a", "GPU", "this", "can", "give", "you", "much", "faster", "results", "since", "the", "GPU", "can", "process", "batches", "of", "images", "at", "once", ".", "If", "you", "aren", "t", "using", "a", "GPU", "you", "don", "t", "need", "this", "function", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L135-L151
train
Returns a 2d array of bounding boxes of human faces in a given image using the cnn face detectors.
ageitgey/face_recognition
face_recognition/api.py
face_landmarks
def face_landmarks(face_image, face_locations=None, model="large"): """ Given an image, returns a dict of face feature locations (eyes, nose, etc) for each face in the image :param face_image: image to search :param face_locations: Optionally provide a list of face locations to check. :param model: Optional - which model to use. "large" (default) or "small" which only returns 5 points but is faster. :return: A list of dicts of face feature locations (eyes, nose, etc) """ landmarks = _raw_face_landmarks(face_image, face_locations, model) landmarks_as_tuples = [[(p.x, p.y) for p in landmark.parts()] for landmark in landmarks] # For a definition of each point index, see https://cdn-images-1.medium.com/max/1600/1*AbEg31EgkbXSQehuNJBlWg.png if model == 'large': return [{ "chin": points[0:17], "left_eyebrow": points[17:22], "right_eyebrow": points[22:27], "nose_bridge": points[27:31], "nose_tip": points[31:36], "left_eye": points[36:42], "right_eye": points[42:48], "top_lip": points[48:55] + [points[64]] + [points[63]] + [points[62]] + [points[61]] + [points[60]], "bottom_lip": points[54:60] + [points[48]] + [points[60]] + [points[67]] + [points[66]] + [points[65]] + [points[64]] } for points in landmarks_as_tuples] elif model == 'small': return [{ "nose_tip": [points[4]], "left_eye": points[2:4], "right_eye": points[0:2], } for points in landmarks_as_tuples] else: raise ValueError("Invalid landmarks model type. Supported models are ['small', 'large'].")
python
def face_landmarks(face_image, face_locations=None, model="large"): """ Given an image, returns a dict of face feature locations (eyes, nose, etc) for each face in the image :param face_image: image to search :param face_locations: Optionally provide a list of face locations to check. :param model: Optional - which model to use. "large" (default) or "small" which only returns 5 points but is faster. :return: A list of dicts of face feature locations (eyes, nose, etc) """ landmarks = _raw_face_landmarks(face_image, face_locations, model) landmarks_as_tuples = [[(p.x, p.y) for p in landmark.parts()] for landmark in landmarks] # For a definition of each point index, see https://cdn-images-1.medium.com/max/1600/1*AbEg31EgkbXSQehuNJBlWg.png if model == 'large': return [{ "chin": points[0:17], "left_eyebrow": points[17:22], "right_eyebrow": points[22:27], "nose_bridge": points[27:31], "nose_tip": points[31:36], "left_eye": points[36:42], "right_eye": points[42:48], "top_lip": points[48:55] + [points[64]] + [points[63]] + [points[62]] + [points[61]] + [points[60]], "bottom_lip": points[54:60] + [points[48]] + [points[60]] + [points[67]] + [points[66]] + [points[65]] + [points[64]] } for points in landmarks_as_tuples] elif model == 'small': return [{ "nose_tip": [points[4]], "left_eye": points[2:4], "right_eye": points[0:2], } for points in landmarks_as_tuples] else: raise ValueError("Invalid landmarks model type. Supported models are ['small', 'large'].")
[ "def", "face_landmarks", "(", "face_image", ",", "face_locations", "=", "None", ",", "model", "=", "\"large\"", ")", ":", "landmarks", "=", "_raw_face_landmarks", "(", "face_image", ",", "face_locations", ",", "model", ")", "landmarks_as_tuples", "=", "[", "[", "(", "p", ".", "x", ",", "p", ".", "y", ")", "for", "p", "in", "landmark", ".", "parts", "(", ")", "]", "for", "landmark", "in", "landmarks", "]", "# For a definition of each point index, see https://cdn-images-1.medium.com/max/1600/1*AbEg31EgkbXSQehuNJBlWg.png", "if", "model", "==", "'large'", ":", "return", "[", "{", "\"chin\"", ":", "points", "[", "0", ":", "17", "]", ",", "\"left_eyebrow\"", ":", "points", "[", "17", ":", "22", "]", ",", "\"right_eyebrow\"", ":", "points", "[", "22", ":", "27", "]", ",", "\"nose_bridge\"", ":", "points", "[", "27", ":", "31", "]", ",", "\"nose_tip\"", ":", "points", "[", "31", ":", "36", "]", ",", "\"left_eye\"", ":", "points", "[", "36", ":", "42", "]", ",", "\"right_eye\"", ":", "points", "[", "42", ":", "48", "]", ",", "\"top_lip\"", ":", "points", "[", "48", ":", "55", "]", "+", "[", "points", "[", "64", "]", "]", "+", "[", "points", "[", "63", "]", "]", "+", "[", "points", "[", "62", "]", "]", "+", "[", "points", "[", "61", "]", "]", "+", "[", "points", "[", "60", "]", "]", ",", "\"bottom_lip\"", ":", "points", "[", "54", ":", "60", "]", "+", "[", "points", "[", "48", "]", "]", "+", "[", "points", "[", "60", "]", "]", "+", "[", "points", "[", "67", "]", "]", "+", "[", "points", "[", "66", "]", "]", "+", "[", "points", "[", "65", "]", "]", "+", "[", "points", "[", "64", "]", "]", "}", "for", "points", "in", "landmarks_as_tuples", "]", "elif", "model", "==", "'small'", ":", "return", "[", "{", "\"nose_tip\"", ":", "[", "points", "[", "4", "]", "]", ",", "\"left_eye\"", ":", "points", "[", "2", ":", "4", "]", ",", "\"right_eye\"", ":", "points", "[", "0", ":", "2", "]", ",", "}", "for", "points", "in", "landmarks_as_tuples", "]", "else", ":", "raise", "ValueError", "(", "\"Invalid landmarks model type. Supported models are ['small', 'large'].\"", ")" ]
Given an image, returns a dict of face feature locations (eyes, nose, etc) for each face in the image :param face_image: image to search :param face_locations: Optionally provide a list of face locations to check. :param model: Optional - which model to use. "large" (default) or "small" which only returns 5 points but is faster. :return: A list of dicts of face feature locations (eyes, nose, etc)
[ "Given", "an", "image", "returns", "a", "dict", "of", "face", "feature", "locations", "(", "eyes", "nose", "etc", ")", "for", "each", "face", "in", "the", "image" ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L168-L200
train
Given an image returns a dict of face feature locations
ageitgey/face_recognition
face_recognition/api.py
face_encodings
def face_encodings(face_image, known_face_locations=None, num_jitters=1): """ Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image) """ raw_landmarks = _raw_face_landmarks(face_image, known_face_locations, model="small") return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks]
python
def face_encodings(face_image, known_face_locations=None, num_jitters=1): """ Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image) """ raw_landmarks = _raw_face_landmarks(face_image, known_face_locations, model="small") return [np.array(face_encoder.compute_face_descriptor(face_image, raw_landmark_set, num_jitters)) for raw_landmark_set in raw_landmarks]
[ "def", "face_encodings", "(", "face_image", ",", "known_face_locations", "=", "None", ",", "num_jitters", "=", "1", ")", ":", "raw_landmarks", "=", "_raw_face_landmarks", "(", "face_image", ",", "known_face_locations", ",", "model", "=", "\"small\"", ")", "return", "[", "np", ".", "array", "(", "face_encoder", ".", "compute_face_descriptor", "(", "face_image", ",", "raw_landmark_set", ",", "num_jitters", ")", ")", "for", "raw_landmark_set", "in", "raw_landmarks", "]" ]
Given an image, return the 128-dimension face encoding for each face in the image. :param face_image: The image that contains one or more faces :param known_face_locations: Optional - the bounding boxes of each face if you already know them. :param num_jitters: How many times to re-sample the face when calculating encoding. Higher is more accurate, but slower (i.e. 100 is 100x slower) :return: A list of 128-dimensional face encodings (one for each face in the image)
[ "Given", "an", "image", "return", "the", "128", "-", "dimension", "face", "encoding", "for", "each", "face", "in", "the", "image", "." ]
c96b010c02f15e8eeb0f71308c641179ac1f19bb
https://github.com/ageitgey/face_recognition/blob/c96b010c02f15e8eeb0f71308c641179ac1f19bb/face_recognition/api.py#L203-L213
train
Given an image returns the 128 - dimensional face encoding for each face in the image.
apache/spark
python/pyspark/sql/types.py
_parse_datatype_string
def _parse_datatype_string(s): """ Parses the given data type string to a :class:`DataType`. The data type string format equals to :class:`DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`ByteType`. We can also use ``int`` as a short name for :class:`IntegerType`. Since Spark 2.3, this also supports a schema in a DDL-formatted string and case-insensitive strings. >>> _parse_datatype_string("int ") IntegerType >>> _parse_datatype_string("INT ") IntegerType >>> _parse_datatype_string("a: byte, b: decimal( 16 , 8 ) ") StructType(List(StructField(a,ByteType,true),StructField(b,DecimalType(16,8),true))) >>> _parse_datatype_string("a DOUBLE, b STRING") StructType(List(StructField(a,DoubleType,true),StructField(b,StringType,true))) >>> _parse_datatype_string("a: array< short>") StructType(List(StructField(a,ArrayType(ShortType,true),true))) >>> _parse_datatype_string(" map<string , string > ") MapType(StringType,StringType,true) >>> # Error cases >>> _parse_datatype_string("blabla") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("a: int,") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("array<int") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("map<int, boolean>>") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... """ sc = SparkContext._active_spark_context def from_ddl_schema(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.types.StructType.fromDDL(type_str).json()) def from_ddl_datatype(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json()) try: # DDL format, "fieldname datatype, fieldname datatype". return from_ddl_schema(s) except Exception as e: try: # For backwards compatibility, "integer", "struct<fieldname: datatype>" and etc. return from_ddl_datatype(s) except: try: # For backwards compatibility, "fieldname: datatype, fieldname: datatype" case. return from_ddl_datatype("struct<%s>" % s.strip()) except: raise e
python
def _parse_datatype_string(s): """ Parses the given data type string to a :class:`DataType`. The data type string format equals to :class:`DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`ByteType`. We can also use ``int`` as a short name for :class:`IntegerType`. Since Spark 2.3, this also supports a schema in a DDL-formatted string and case-insensitive strings. >>> _parse_datatype_string("int ") IntegerType >>> _parse_datatype_string("INT ") IntegerType >>> _parse_datatype_string("a: byte, b: decimal( 16 , 8 ) ") StructType(List(StructField(a,ByteType,true),StructField(b,DecimalType(16,8),true))) >>> _parse_datatype_string("a DOUBLE, b STRING") StructType(List(StructField(a,DoubleType,true),StructField(b,StringType,true))) >>> _parse_datatype_string("a: array< short>") StructType(List(StructField(a,ArrayType(ShortType,true),true))) >>> _parse_datatype_string(" map<string , string > ") MapType(StringType,StringType,true) >>> # Error cases >>> _parse_datatype_string("blabla") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("a: int,") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("array<int") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("map<int, boolean>>") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... """ sc = SparkContext._active_spark_context def from_ddl_schema(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.types.StructType.fromDDL(type_str).json()) def from_ddl_datatype(type_str): return _parse_datatype_json_string( sc._jvm.org.apache.spark.sql.api.python.PythonSQLUtils.parseDataType(type_str).json()) try: # DDL format, "fieldname datatype, fieldname datatype". return from_ddl_schema(s) except Exception as e: try: # For backwards compatibility, "integer", "struct<fieldname: datatype>" and etc. return from_ddl_datatype(s) except: try: # For backwards compatibility, "fieldname: datatype, fieldname: datatype" case. return from_ddl_datatype("struct<%s>" % s.strip()) except: raise e
[ "def", "_parse_datatype_string", "(", "s", ")", ":", "sc", "=", "SparkContext", ".", "_active_spark_context", "def", "from_ddl_schema", "(", "type_str", ")", ":", "return", "_parse_datatype_json_string", "(", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "types", ".", "StructType", ".", "fromDDL", "(", "type_str", ")", ".", "json", "(", ")", ")", "def", "from_ddl_datatype", "(", "type_str", ")", ":", "return", "_parse_datatype_json_string", "(", "sc", ".", "_jvm", ".", "org", ".", "apache", ".", "spark", ".", "sql", ".", "api", ".", "python", ".", "PythonSQLUtils", ".", "parseDataType", "(", "type_str", ")", ".", "json", "(", ")", ")", "try", ":", "# DDL format, \"fieldname datatype, fieldname datatype\".", "return", "from_ddl_schema", "(", "s", ")", "except", "Exception", "as", "e", ":", "try", ":", "# For backwards compatibility, \"integer\", \"struct<fieldname: datatype>\" and etc.", "return", "from_ddl_datatype", "(", "s", ")", "except", ":", "try", ":", "# For backwards compatibility, \"fieldname: datatype, fieldname: datatype\" case.", "return", "from_ddl_datatype", "(", "\"struct<%s>\"", "%", "s", ".", "strip", "(", ")", ")", "except", ":", "raise", "e" ]
Parses the given data type string to a :class:`DataType`. The data type string format equals to :class:`DataType.simpleString`, except that top level struct type can omit the ``struct<>`` and atomic types use ``typeName()`` as their format, e.g. use ``byte`` instead of ``tinyint`` for :class:`ByteType`. We can also use ``int`` as a short name for :class:`IntegerType`. Since Spark 2.3, this also supports a schema in a DDL-formatted string and case-insensitive strings. >>> _parse_datatype_string("int ") IntegerType >>> _parse_datatype_string("INT ") IntegerType >>> _parse_datatype_string("a: byte, b: decimal( 16 , 8 ) ") StructType(List(StructField(a,ByteType,true),StructField(b,DecimalType(16,8),true))) >>> _parse_datatype_string("a DOUBLE, b STRING") StructType(List(StructField(a,DoubleType,true),StructField(b,StringType,true))) >>> _parse_datatype_string("a: array< short>") StructType(List(StructField(a,ArrayType(ShortType,true),true))) >>> _parse_datatype_string(" map<string , string > ") MapType(StringType,StringType,true) >>> # Error cases >>> _parse_datatype_string("blabla") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("a: int,") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("array<int") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:... >>> _parse_datatype_string("map<int, boolean>>") # doctest: +IGNORE_EXCEPTION_DETAIL Traceback (most recent call last): ... ParseException:...
[ "Parses", "the", "given", "data", "type", "string", "to", "a", ":", "class", ":", "DataType", ".", "The", "data", "type", "string", "format", "equals", "to", ":", "class", ":", "DataType", ".", "simpleString", "except", "that", "top", "level", "struct", "type", "can", "omit", "the", "struct<", ">", "and", "atomic", "types", "use", "typeName", "()", "as", "their", "format", "e", ".", "g", ".", "use", "byte", "instead", "of", "tinyint", "for", ":", "class", ":", "ByteType", ".", "We", "can", "also", "use", "int", "as", "a", "short", "name", "for", ":", "class", ":", "IntegerType", ".", "Since", "Spark", "2", ".", "3", "this", "also", "supports", "a", "schema", "in", "a", "DDL", "-", "formatted", "string", "and", "case", "-", "insensitive", "strings", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L758-L820
train
Parses a string into a base - level structure type.
apache/spark
python/pyspark/sql/types.py
_infer_type
def _infer_type(obj): """Infer the DataType from obj """ if obj is None: return NullType() if hasattr(obj, '__UDT__'): return obj.__UDT__ dataType = _type_mappings.get(type(obj)) if dataType is DecimalType: # the precision and scale of `obj` may be different from row to row. return DecimalType(38, 18) elif dataType is not None: return dataType() if isinstance(obj, dict): for key, value in obj.items(): if key is not None and value is not None: return MapType(_infer_type(key), _infer_type(value), True) return MapType(NullType(), NullType(), True) elif isinstance(obj, list): for v in obj: if v is not None: return ArrayType(_infer_type(obj[0]), True) return ArrayType(NullType(), True) elif isinstance(obj, array): if obj.typecode in _array_type_mappings: return ArrayType(_array_type_mappings[obj.typecode](), False) else: raise TypeError("not supported type: array(%s)" % obj.typecode) else: try: return _infer_schema(obj) except TypeError: raise TypeError("not supported type: %s" % type(obj))
python
def _infer_type(obj): """Infer the DataType from obj """ if obj is None: return NullType() if hasattr(obj, '__UDT__'): return obj.__UDT__ dataType = _type_mappings.get(type(obj)) if dataType is DecimalType: # the precision and scale of `obj` may be different from row to row. return DecimalType(38, 18) elif dataType is not None: return dataType() if isinstance(obj, dict): for key, value in obj.items(): if key is not None and value is not None: return MapType(_infer_type(key), _infer_type(value), True) return MapType(NullType(), NullType(), True) elif isinstance(obj, list): for v in obj: if v is not None: return ArrayType(_infer_type(obj[0]), True) return ArrayType(NullType(), True) elif isinstance(obj, array): if obj.typecode in _array_type_mappings: return ArrayType(_array_type_mappings[obj.typecode](), False) else: raise TypeError("not supported type: array(%s)" % obj.typecode) else: try: return _infer_schema(obj) except TypeError: raise TypeError("not supported type: %s" % type(obj))
[ "def", "_infer_type", "(", "obj", ")", ":", "if", "obj", "is", "None", ":", "return", "NullType", "(", ")", "if", "hasattr", "(", "obj", ",", "'__UDT__'", ")", ":", "return", "obj", ".", "__UDT__", "dataType", "=", "_type_mappings", ".", "get", "(", "type", "(", "obj", ")", ")", "if", "dataType", "is", "DecimalType", ":", "# the precision and scale of `obj` may be different from row to row.", "return", "DecimalType", "(", "38", ",", "18", ")", "elif", "dataType", "is", "not", "None", ":", "return", "dataType", "(", ")", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "for", "key", ",", "value", "in", "obj", ".", "items", "(", ")", ":", "if", "key", "is", "not", "None", "and", "value", "is", "not", "None", ":", "return", "MapType", "(", "_infer_type", "(", "key", ")", ",", "_infer_type", "(", "value", ")", ",", "True", ")", "return", "MapType", "(", "NullType", "(", ")", ",", "NullType", "(", ")", ",", "True", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "for", "v", "in", "obj", ":", "if", "v", "is", "not", "None", ":", "return", "ArrayType", "(", "_infer_type", "(", "obj", "[", "0", "]", ")", ",", "True", ")", "return", "ArrayType", "(", "NullType", "(", ")", ",", "True", ")", "elif", "isinstance", "(", "obj", ",", "array", ")", ":", "if", "obj", ".", "typecode", "in", "_array_type_mappings", ":", "return", "ArrayType", "(", "_array_type_mappings", "[", "obj", ".", "typecode", "]", "(", ")", ",", "False", ")", "else", ":", "raise", "TypeError", "(", "\"not supported type: array(%s)\"", "%", "obj", ".", "typecode", ")", "else", ":", "try", ":", "return", "_infer_schema", "(", "obj", ")", "except", "TypeError", ":", "raise", "TypeError", "(", "\"not supported type: %s\"", "%", "type", "(", "obj", ")", ")" ]
Infer the DataType from obj
[ "Infer", "the", "DataType", "from", "obj" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1003-L1038
train
Infer the DataType from obj
apache/spark
python/pyspark/sql/types.py
_infer_schema
def _infer_schema(row, names=None): """Infer the schema from dict/namedtuple/object""" if isinstance(row, dict): items = sorted(row.items()) elif isinstance(row, (tuple, list)): if hasattr(row, "__fields__"): # Row items = zip(row.__fields__, tuple(row)) elif hasattr(row, "_fields"): # namedtuple items = zip(row._fields, tuple(row)) else: if names is None: names = ['_%d' % i for i in range(1, len(row) + 1)] elif len(names) < len(row): names.extend('_%d' % i for i in range(len(names) + 1, len(row) + 1)) items = zip(names, row) elif hasattr(row, "__dict__"): # object items = sorted(row.__dict__.items()) else: raise TypeError("Can not infer schema for type: %s" % type(row)) fields = [StructField(k, _infer_type(v), True) for k, v in items] return StructType(fields)
python
def _infer_schema(row, names=None): """Infer the schema from dict/namedtuple/object""" if isinstance(row, dict): items = sorted(row.items()) elif isinstance(row, (tuple, list)): if hasattr(row, "__fields__"): # Row items = zip(row.__fields__, tuple(row)) elif hasattr(row, "_fields"): # namedtuple items = zip(row._fields, tuple(row)) else: if names is None: names = ['_%d' % i for i in range(1, len(row) + 1)] elif len(names) < len(row): names.extend('_%d' % i for i in range(len(names) + 1, len(row) + 1)) items = zip(names, row) elif hasattr(row, "__dict__"): # object items = sorted(row.__dict__.items()) else: raise TypeError("Can not infer schema for type: %s" % type(row)) fields = [StructField(k, _infer_type(v), True) for k, v in items] return StructType(fields)
[ "def", "_infer_schema", "(", "row", ",", "names", "=", "None", ")", ":", "if", "isinstance", "(", "row", ",", "dict", ")", ":", "items", "=", "sorted", "(", "row", ".", "items", "(", ")", ")", "elif", "isinstance", "(", "row", ",", "(", "tuple", ",", "list", ")", ")", ":", "if", "hasattr", "(", "row", ",", "\"__fields__\"", ")", ":", "# Row", "items", "=", "zip", "(", "row", ".", "__fields__", ",", "tuple", "(", "row", ")", ")", "elif", "hasattr", "(", "row", ",", "\"_fields\"", ")", ":", "# namedtuple", "items", "=", "zip", "(", "row", ".", "_fields", ",", "tuple", "(", "row", ")", ")", "else", ":", "if", "names", "is", "None", ":", "names", "=", "[", "'_%d'", "%", "i", "for", "i", "in", "range", "(", "1", ",", "len", "(", "row", ")", "+", "1", ")", "]", "elif", "len", "(", "names", ")", "<", "len", "(", "row", ")", ":", "names", ".", "extend", "(", "'_%d'", "%", "i", "for", "i", "in", "range", "(", "len", "(", "names", ")", "+", "1", ",", "len", "(", "row", ")", "+", "1", ")", ")", "items", "=", "zip", "(", "names", ",", "row", ")", "elif", "hasattr", "(", "row", ",", "\"__dict__\"", ")", ":", "# object", "items", "=", "sorted", "(", "row", ".", "__dict__", ".", "items", "(", ")", ")", "else", ":", "raise", "TypeError", "(", "\"Can not infer schema for type: %s\"", "%", "type", "(", "row", ")", ")", "fields", "=", "[", "StructField", "(", "k", ",", "_infer_type", "(", "v", ")", ",", "True", ")", "for", "k", ",", "v", "in", "items", "]", "return", "StructType", "(", "fields", ")" ]
Infer the schema from dict/namedtuple/object
[ "Infer", "the", "schema", "from", "dict", "/", "namedtuple", "/", "object" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1041-L1065
train
Infer the schema from dict namedtuple or object
apache/spark
python/pyspark/sql/types.py
_create_converter
def _create_converter(dataType): """Create a converter to drop the names of fields in obj """ if not _need_converter(dataType): return lambda x: x if isinstance(dataType, ArrayType): conv = _create_converter(dataType.elementType) return lambda row: [conv(v) for v in row] elif isinstance(dataType, MapType): kconv = _create_converter(dataType.keyType) vconv = _create_converter(dataType.valueType) return lambda row: dict((kconv(k), vconv(v)) for k, v in row.items()) elif isinstance(dataType, NullType): return lambda x: None elif not isinstance(dataType, StructType): return lambda x: x # dataType must be StructType names = [f.name for f in dataType.fields] converters = [_create_converter(f.dataType) for f in dataType.fields] convert_fields = any(_need_converter(f.dataType) for f in dataType.fields) def convert_struct(obj): if obj is None: return if isinstance(obj, (tuple, list)): if convert_fields: return tuple(conv(v) for v, conv in zip(obj, converters)) else: return tuple(obj) if isinstance(obj, dict): d = obj elif hasattr(obj, "__dict__"): # object d = obj.__dict__ else: raise TypeError("Unexpected obj type: %s" % type(obj)) if convert_fields: return tuple([conv(d.get(name)) for name, conv in zip(names, converters)]) else: return tuple([d.get(name) for name in names]) return convert_struct
python
def _create_converter(dataType): """Create a converter to drop the names of fields in obj """ if not _need_converter(dataType): return lambda x: x if isinstance(dataType, ArrayType): conv = _create_converter(dataType.elementType) return lambda row: [conv(v) for v in row] elif isinstance(dataType, MapType): kconv = _create_converter(dataType.keyType) vconv = _create_converter(dataType.valueType) return lambda row: dict((kconv(k), vconv(v)) for k, v in row.items()) elif isinstance(dataType, NullType): return lambda x: None elif not isinstance(dataType, StructType): return lambda x: x # dataType must be StructType names = [f.name for f in dataType.fields] converters = [_create_converter(f.dataType) for f in dataType.fields] convert_fields = any(_need_converter(f.dataType) for f in dataType.fields) def convert_struct(obj): if obj is None: return if isinstance(obj, (tuple, list)): if convert_fields: return tuple(conv(v) for v, conv in zip(obj, converters)) else: return tuple(obj) if isinstance(obj, dict): d = obj elif hasattr(obj, "__dict__"): # object d = obj.__dict__ else: raise TypeError("Unexpected obj type: %s" % type(obj)) if convert_fields: return tuple([conv(d.get(name)) for name, conv in zip(names, converters)]) else: return tuple([d.get(name) for name in names]) return convert_struct
[ "def", "_create_converter", "(", "dataType", ")", ":", "if", "not", "_need_converter", "(", "dataType", ")", ":", "return", "lambda", "x", ":", "x", "if", "isinstance", "(", "dataType", ",", "ArrayType", ")", ":", "conv", "=", "_create_converter", "(", "dataType", ".", "elementType", ")", "return", "lambda", "row", ":", "[", "conv", "(", "v", ")", "for", "v", "in", "row", "]", "elif", "isinstance", "(", "dataType", ",", "MapType", ")", ":", "kconv", "=", "_create_converter", "(", "dataType", ".", "keyType", ")", "vconv", "=", "_create_converter", "(", "dataType", ".", "valueType", ")", "return", "lambda", "row", ":", "dict", "(", "(", "kconv", "(", "k", ")", ",", "vconv", "(", "v", ")", ")", "for", "k", ",", "v", "in", "row", ".", "items", "(", ")", ")", "elif", "isinstance", "(", "dataType", ",", "NullType", ")", ":", "return", "lambda", "x", ":", "None", "elif", "not", "isinstance", "(", "dataType", ",", "StructType", ")", ":", "return", "lambda", "x", ":", "x", "# dataType must be StructType", "names", "=", "[", "f", ".", "name", "for", "f", "in", "dataType", ".", "fields", "]", "converters", "=", "[", "_create_converter", "(", "f", ".", "dataType", ")", "for", "f", "in", "dataType", ".", "fields", "]", "convert_fields", "=", "any", "(", "_need_converter", "(", "f", ".", "dataType", ")", "for", "f", "in", "dataType", ".", "fields", ")", "def", "convert_struct", "(", "obj", ")", ":", "if", "obj", "is", "None", ":", "return", "if", "isinstance", "(", "obj", ",", "(", "tuple", ",", "list", ")", ")", ":", "if", "convert_fields", ":", "return", "tuple", "(", "conv", "(", "v", ")", "for", "v", ",", "conv", "in", "zip", "(", "obj", ",", "converters", ")", ")", "else", ":", "return", "tuple", "(", "obj", ")", "if", "isinstance", "(", "obj", ",", "dict", ")", ":", "d", "=", "obj", "elif", "hasattr", "(", "obj", ",", "\"__dict__\"", ")", ":", "# object", "d", "=", "obj", ".", "__dict__", "else", ":", "raise", "TypeError", "(", "\"Unexpected obj type: %s\"", "%", "type", "(", "obj", ")", ")", "if", "convert_fields", ":", "return", "tuple", "(", "[", "conv", "(", "d", ".", "get", "(", "name", ")", ")", "for", "name", ",", "conv", "in", "zip", "(", "names", ",", "converters", ")", "]", ")", "else", ":", "return", "tuple", "(", "[", "d", ".", "get", "(", "name", ")", "for", "name", "in", "names", "]", ")", "return", "convert_struct" ]
Create a converter to drop the names of fields in obj
[ "Create", "a", "converter", "to", "drop", "the", "names", "of", "fields", "in", "obj" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1133-L1180
train
Create a converter to drop the names of fields in obj
apache/spark
python/pyspark/sql/types.py
to_arrow_type
def to_arrow_type(dt): """ Convert Spark data type to pyarrow type """ import pyarrow as pa if type(dt) == BooleanType: arrow_type = pa.bool_() elif type(dt) == ByteType: arrow_type = pa.int8() elif type(dt) == ShortType: arrow_type = pa.int16() elif type(dt) == IntegerType: arrow_type = pa.int32() elif type(dt) == LongType: arrow_type = pa.int64() elif type(dt) == FloatType: arrow_type = pa.float32() elif type(dt) == DoubleType: arrow_type = pa.float64() elif type(dt) == DecimalType: arrow_type = pa.decimal128(dt.precision, dt.scale) elif type(dt) == StringType: arrow_type = pa.string() elif type(dt) == BinaryType: arrow_type = pa.binary() elif type(dt) == DateType: arrow_type = pa.date32() elif type(dt) == TimestampType: # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read arrow_type = pa.timestamp('us', tz='UTC') elif type(dt) == ArrayType: if type(dt.elementType) in [StructType, TimestampType]: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) arrow_type = pa.list_(to_arrow_type(dt.elementType)) elif type(dt) == StructType: if any(type(field.dataType) == StructType for field in dt): raise TypeError("Nested StructType not supported in conversion to Arrow") fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in dt] arrow_type = pa.struct(fields) else: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) return arrow_type
python
def to_arrow_type(dt): """ Convert Spark data type to pyarrow type """ import pyarrow as pa if type(dt) == BooleanType: arrow_type = pa.bool_() elif type(dt) == ByteType: arrow_type = pa.int8() elif type(dt) == ShortType: arrow_type = pa.int16() elif type(dt) == IntegerType: arrow_type = pa.int32() elif type(dt) == LongType: arrow_type = pa.int64() elif type(dt) == FloatType: arrow_type = pa.float32() elif type(dt) == DoubleType: arrow_type = pa.float64() elif type(dt) == DecimalType: arrow_type = pa.decimal128(dt.precision, dt.scale) elif type(dt) == StringType: arrow_type = pa.string() elif type(dt) == BinaryType: arrow_type = pa.binary() elif type(dt) == DateType: arrow_type = pa.date32() elif type(dt) == TimestampType: # Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read arrow_type = pa.timestamp('us', tz='UTC') elif type(dt) == ArrayType: if type(dt.elementType) in [StructType, TimestampType]: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) arrow_type = pa.list_(to_arrow_type(dt.elementType)) elif type(dt) == StructType: if any(type(field.dataType) == StructType for field in dt): raise TypeError("Nested StructType not supported in conversion to Arrow") fields = [pa.field(field.name, to_arrow_type(field.dataType), nullable=field.nullable) for field in dt] arrow_type = pa.struct(fields) else: raise TypeError("Unsupported type in conversion to Arrow: " + str(dt)) return arrow_type
[ "def", "to_arrow_type", "(", "dt", ")", ":", "import", "pyarrow", "as", "pa", "if", "type", "(", "dt", ")", "==", "BooleanType", ":", "arrow_type", "=", "pa", ".", "bool_", "(", ")", "elif", "type", "(", "dt", ")", "==", "ByteType", ":", "arrow_type", "=", "pa", ".", "int8", "(", ")", "elif", "type", "(", "dt", ")", "==", "ShortType", ":", "arrow_type", "=", "pa", ".", "int16", "(", ")", "elif", "type", "(", "dt", ")", "==", "IntegerType", ":", "arrow_type", "=", "pa", ".", "int32", "(", ")", "elif", "type", "(", "dt", ")", "==", "LongType", ":", "arrow_type", "=", "pa", ".", "int64", "(", ")", "elif", "type", "(", "dt", ")", "==", "FloatType", ":", "arrow_type", "=", "pa", ".", "float32", "(", ")", "elif", "type", "(", "dt", ")", "==", "DoubleType", ":", "arrow_type", "=", "pa", ".", "float64", "(", ")", "elif", "type", "(", "dt", ")", "==", "DecimalType", ":", "arrow_type", "=", "pa", ".", "decimal128", "(", "dt", ".", "precision", ",", "dt", ".", "scale", ")", "elif", "type", "(", "dt", ")", "==", "StringType", ":", "arrow_type", "=", "pa", ".", "string", "(", ")", "elif", "type", "(", "dt", ")", "==", "BinaryType", ":", "arrow_type", "=", "pa", ".", "binary", "(", ")", "elif", "type", "(", "dt", ")", "==", "DateType", ":", "arrow_type", "=", "pa", ".", "date32", "(", ")", "elif", "type", "(", "dt", ")", "==", "TimestampType", ":", "# Timestamps should be in UTC, JVM Arrow timestamps require a timezone to be read", "arrow_type", "=", "pa", ".", "timestamp", "(", "'us'", ",", "tz", "=", "'UTC'", ")", "elif", "type", "(", "dt", ")", "==", "ArrayType", ":", "if", "type", "(", "dt", ".", "elementType", ")", "in", "[", "StructType", ",", "TimestampType", "]", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion to Arrow: \"", "+", "str", "(", "dt", ")", ")", "arrow_type", "=", "pa", ".", "list_", "(", "to_arrow_type", "(", "dt", ".", "elementType", ")", ")", "elif", "type", "(", "dt", ")", "==", "StructType", ":", "if", "any", "(", "type", "(", "field", ".", "dataType", ")", "==", "StructType", "for", "field", "in", "dt", ")", ":", "raise", "TypeError", "(", "\"Nested StructType not supported in conversion to Arrow\"", ")", "fields", "=", "[", "pa", ".", "field", "(", "field", ".", "name", ",", "to_arrow_type", "(", "field", ".", "dataType", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "dt", "]", "arrow_type", "=", "pa", ".", "struct", "(", "fields", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion to Arrow: \"", "+", "str", "(", "dt", ")", ")", "return", "arrow_type" ]
Convert Spark data type to pyarrow type
[ "Convert", "Spark", "data", "type", "to", "pyarrow", "type" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1581-L1622
train
Convert Spark data type to Arrow type
apache/spark
python/pyspark/sql/types.py
from_arrow_type
def from_arrow_type(at): """ Convert pyarrow type to Spark data type. """ import pyarrow.types as types if types.is_boolean(at): spark_type = BooleanType() elif types.is_int8(at): spark_type = ByteType() elif types.is_int16(at): spark_type = ShortType() elif types.is_int32(at): spark_type = IntegerType() elif types.is_int64(at): spark_type = LongType() elif types.is_float32(at): spark_type = FloatType() elif types.is_float64(at): spark_type = DoubleType() elif types.is_decimal(at): spark_type = DecimalType(precision=at.precision, scale=at.scale) elif types.is_string(at): spark_type = StringType() elif types.is_binary(at): spark_type = BinaryType() elif types.is_date32(at): spark_type = DateType() elif types.is_timestamp(at): spark_type = TimestampType() elif types.is_list(at): if types.is_timestamp(at.value_type): raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) spark_type = ArrayType(from_arrow_type(at.value_type)) elif types.is_struct(at): if any(types.is_struct(field.type) for field in at): raise TypeError("Nested StructType not supported in conversion from Arrow: " + str(at)) return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in at]) else: raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) return spark_type
python
def from_arrow_type(at): """ Convert pyarrow type to Spark data type. """ import pyarrow.types as types if types.is_boolean(at): spark_type = BooleanType() elif types.is_int8(at): spark_type = ByteType() elif types.is_int16(at): spark_type = ShortType() elif types.is_int32(at): spark_type = IntegerType() elif types.is_int64(at): spark_type = LongType() elif types.is_float32(at): spark_type = FloatType() elif types.is_float64(at): spark_type = DoubleType() elif types.is_decimal(at): spark_type = DecimalType(precision=at.precision, scale=at.scale) elif types.is_string(at): spark_type = StringType() elif types.is_binary(at): spark_type = BinaryType() elif types.is_date32(at): spark_type = DateType() elif types.is_timestamp(at): spark_type = TimestampType() elif types.is_list(at): if types.is_timestamp(at.value_type): raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) spark_type = ArrayType(from_arrow_type(at.value_type)) elif types.is_struct(at): if any(types.is_struct(field.type) for field in at): raise TypeError("Nested StructType not supported in conversion from Arrow: " + str(at)) return StructType( [StructField(field.name, from_arrow_type(field.type), nullable=field.nullable) for field in at]) else: raise TypeError("Unsupported type in conversion from Arrow: " + str(at)) return spark_type
[ "def", "from_arrow_type", "(", "at", ")", ":", "import", "pyarrow", ".", "types", "as", "types", "if", "types", ".", "is_boolean", "(", "at", ")", ":", "spark_type", "=", "BooleanType", "(", ")", "elif", "types", ".", "is_int8", "(", "at", ")", ":", "spark_type", "=", "ByteType", "(", ")", "elif", "types", ".", "is_int16", "(", "at", ")", ":", "spark_type", "=", "ShortType", "(", ")", "elif", "types", ".", "is_int32", "(", "at", ")", ":", "spark_type", "=", "IntegerType", "(", ")", "elif", "types", ".", "is_int64", "(", "at", ")", ":", "spark_type", "=", "LongType", "(", ")", "elif", "types", ".", "is_float32", "(", "at", ")", ":", "spark_type", "=", "FloatType", "(", ")", "elif", "types", ".", "is_float64", "(", "at", ")", ":", "spark_type", "=", "DoubleType", "(", ")", "elif", "types", ".", "is_decimal", "(", "at", ")", ":", "spark_type", "=", "DecimalType", "(", "precision", "=", "at", ".", "precision", ",", "scale", "=", "at", ".", "scale", ")", "elif", "types", ".", "is_string", "(", "at", ")", ":", "spark_type", "=", "StringType", "(", ")", "elif", "types", ".", "is_binary", "(", "at", ")", ":", "spark_type", "=", "BinaryType", "(", ")", "elif", "types", ".", "is_date32", "(", "at", ")", ":", "spark_type", "=", "DateType", "(", ")", "elif", "types", ".", "is_timestamp", "(", "at", ")", ":", "spark_type", "=", "TimestampType", "(", ")", "elif", "types", ".", "is_list", "(", "at", ")", ":", "if", "types", ".", "is_timestamp", "(", "at", ".", "value_type", ")", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "spark_type", "=", "ArrayType", "(", "from_arrow_type", "(", "at", ".", "value_type", ")", ")", "elif", "types", ".", "is_struct", "(", "at", ")", ":", "if", "any", "(", "types", ".", "is_struct", "(", "field", ".", "type", ")", "for", "field", "in", "at", ")", ":", "raise", "TypeError", "(", "\"Nested StructType not supported in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "return", "StructType", "(", "[", "StructField", "(", "field", ".", "name", ",", "from_arrow_type", "(", "field", ".", "type", ")", ",", "nullable", "=", "field", ".", "nullable", ")", "for", "field", "in", "at", "]", ")", "else", ":", "raise", "TypeError", "(", "\"Unsupported type in conversion from Arrow: \"", "+", "str", "(", "at", ")", ")", "return", "spark_type" ]
Convert pyarrow type to Spark data type.
[ "Convert", "pyarrow", "type", "to", "Spark", "data", "type", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1634-L1674
train
Convert a pyarrow type to Spark data type.
apache/spark
python/pyspark/sql/types.py
_check_series_localize_timestamps
def _check_series_localize_timestamps(s, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64tz_dtype tz = timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(tz).dt.tz_localize(None) else: return s
python
def _check_series_localize_timestamps(s, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64tz_dtype tz = timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(tz).dt.tz_localize(None) else: return s
[ "def", "_check_series_localize_timestamps", "(", "s", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64tz_dtype", "tz", "=", "timezone", "or", "_get_local_timezone", "(", ")", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "tz", ")", ".", "dt", ".", "tz_localize", "(", "None", ")", "else", ":", "return", "s" ]
Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone. If the input series is not a timestamp series, then the same series is returned. If the input series is a timestamp series, then a converted series is returned. :param s: pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series that have been converted to tz-naive
[ "Convert", "timezone", "aware", "timestamps", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1700-L1720
train
Convert timezone aware timestamps to timezone - naive in the specified timezone or local timezone.
apache/spark
python/pyspark/sql/types.py
_check_dataframe_localize_timestamps
def _check_dataframe_localize_timestamps(pdf, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() for column, series in pdf.iteritems(): pdf[column] = _check_series_localize_timestamps(series, timezone) return pdf
python
def _check_dataframe_localize_timestamps(pdf, timezone): """ Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() for column, series in pdf.iteritems(): pdf[column] = _check_series_localize_timestamps(series, timezone) return pdf
[ "def", "_check_dataframe_localize_timestamps", "(", "pdf", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "for", "column", ",", "series", "in", "pdf", ".", "iteritems", "(", ")", ":", "pdf", "[", "column", "]", "=", "_check_series_localize_timestamps", "(", "series", ",", "timezone", ")", "return", "pdf" ]
Convert timezone aware timestamps to timezone-naive in the specified timezone or local timezone :param pdf: pandas.DataFrame :param timezone: the timezone to convert. if None then use local timezone :return pandas.DataFrame where any timezone aware columns have been converted to tz-naive
[ "Convert", "timezone", "aware", "timestamps", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1723-L1736
train
Convert timezone aware timestamps to timezone - naive in the specified timezone or local timezone - naive in the specified timezone or local timezone - naive in the specified timezone.
apache/spark
python/pyspark/sql/types.py
_check_series_convert_timestamps_internal
def _check_series_convert_timestamps_internal(s, timezone): """ Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64_dtype(s.dtype): # When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive # timestamp is during the hour when the clock is adjusted backward during due to # daylight saving time (dst). # E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to # 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize # a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either # dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500). # # Here we explicit choose to use standard time. This matches the default behavior of # pytz. # # Here are some code to help understand this behavior: # >>> import datetime # >>> import pandas as pd # >>> import pytz # >>> # >>> t = datetime.datetime(2015, 11, 1, 1, 30) # >>> ts = pd.Series([t]) # >>> tz = pytz.timezone('America/New_York') # >>> # >>> ts.dt.tz_localize(tz, ambiguous=True) # 0 2015-11-01 01:30:00-04:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> ts.dt.tz_localize(tz, ambiguous=False) # 0 2015-11-01 01:30:00-05:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> str(tz.localize(t)) # '2015-11-01 01:30:00-05:00' tz = timezone or _get_local_timezone() return s.dt.tz_localize(tz, ambiguous=False).dt.tz_convert('UTC') elif is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert('UTC') else: return s
python
def _check_series_convert_timestamps_internal(s, timezone): """ Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() from pandas.api.types import is_datetime64_dtype, is_datetime64tz_dtype # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64_dtype(s.dtype): # When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive # timestamp is during the hour when the clock is adjusted backward during due to # daylight saving time (dst). # E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to # 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize # a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either # dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500). # # Here we explicit choose to use standard time. This matches the default behavior of # pytz. # # Here are some code to help understand this behavior: # >>> import datetime # >>> import pandas as pd # >>> import pytz # >>> # >>> t = datetime.datetime(2015, 11, 1, 1, 30) # >>> ts = pd.Series([t]) # >>> tz = pytz.timezone('America/New_York') # >>> # >>> ts.dt.tz_localize(tz, ambiguous=True) # 0 2015-11-01 01:30:00-04:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> ts.dt.tz_localize(tz, ambiguous=False) # 0 2015-11-01 01:30:00-05:00 # dtype: datetime64[ns, America/New_York] # >>> # >>> str(tz.localize(t)) # '2015-11-01 01:30:00-05:00' tz = timezone or _get_local_timezone() return s.dt.tz_localize(tz, ambiguous=False).dt.tz_convert('UTC') elif is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert('UTC') else: return s
[ "def", "_check_series_convert_timestamps_internal", "(", "s", ",", "timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64_dtype", ",", "is_datetime64tz_dtype", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64_dtype", "(", "s", ".", "dtype", ")", ":", "# When tz_localize a tz-naive timestamp, the result is ambiguous if the tz-naive", "# timestamp is during the hour when the clock is adjusted backward during due to", "# daylight saving time (dst).", "# E.g., for America/New_York, the clock is adjusted backward on 2015-11-01 2:00 to", "# 2015-11-01 1:00 from dst-time to standard time, and therefore, when tz_localize", "# a tz-naive timestamp 2015-11-01 1:30 with America/New_York timezone, it can be either", "# dst time (2015-01-01 1:30-0400) or standard time (2015-11-01 1:30-0500).", "#", "# Here we explicit choose to use standard time. This matches the default behavior of", "# pytz.", "#", "# Here are some code to help understand this behavior:", "# >>> import datetime", "# >>> import pandas as pd", "# >>> import pytz", "# >>>", "# >>> t = datetime.datetime(2015, 11, 1, 1, 30)", "# >>> ts = pd.Series([t])", "# >>> tz = pytz.timezone('America/New_York')", "# >>>", "# >>> ts.dt.tz_localize(tz, ambiguous=True)", "# 0 2015-11-01 01:30:00-04:00", "# dtype: datetime64[ns, America/New_York]", "# >>>", "# >>> ts.dt.tz_localize(tz, ambiguous=False)", "# 0 2015-11-01 01:30:00-05:00", "# dtype: datetime64[ns, America/New_York]", "# >>>", "# >>> str(tz.localize(t))", "# '2015-11-01 01:30:00-05:00'", "tz", "=", "timezone", "or", "_get_local_timezone", "(", ")", "return", "s", ".", "dt", ".", "tz_localize", "(", "tz", ",", "ambiguous", "=", "False", ")", ".", "dt", ".", "tz_convert", "(", "'UTC'", ")", "elif", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "'UTC'", ")", "else", ":", "return", "s" ]
Convert a tz-naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage :param s: a pandas.Series :param timezone: the timezone to convert. if None then use local timezone :return pandas.Series where if it is a timestamp, has been UTC normalized without a time zone
[ "Convert", "a", "tz", "-", "naive", "timestamp", "in", "the", "specified", "timezone", "or", "local", "timezone", "to", "UTC", "normalized", "for", "Spark", "internal", "storage" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1739-L1789
train
Convert a tz - naive timestamp in the specified timezone or local timezone to UTC normalized for Spark internal storage.
apache/spark
python/pyspark/sql/types.py
_check_series_convert_timestamps_localize
def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd from pandas.api.types import is_datetime64tz_dtype, is_datetime64_dtype from_tz = from_timezone or _get_local_timezone() to_tz = to_timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(to_tz).dt.tz_localize(None) elif is_datetime64_dtype(s.dtype) and from_tz != to_tz: # `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT. return s.apply( lambda ts: ts.tz_localize(from_tz, ambiguous=False).tz_convert(to_tz).tz_localize(None) if ts is not pd.NaT else pd.NaT) else: return s
python
def _check_series_convert_timestamps_localize(s, from_timezone, to_timezone): """ Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive """ from pyspark.sql.utils import require_minimum_pandas_version require_minimum_pandas_version() import pandas as pd from pandas.api.types import is_datetime64tz_dtype, is_datetime64_dtype from_tz = from_timezone or _get_local_timezone() to_tz = to_timezone or _get_local_timezone() # TODO: handle nested timestamps, such as ArrayType(TimestampType())? if is_datetime64tz_dtype(s.dtype): return s.dt.tz_convert(to_tz).dt.tz_localize(None) elif is_datetime64_dtype(s.dtype) and from_tz != to_tz: # `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT. return s.apply( lambda ts: ts.tz_localize(from_tz, ambiguous=False).tz_convert(to_tz).tz_localize(None) if ts is not pd.NaT else pd.NaT) else: return s
[ "def", "_check_series_convert_timestamps_localize", "(", "s", ",", "from_timezone", ",", "to_timezone", ")", ":", "from", "pyspark", ".", "sql", ".", "utils", "import", "require_minimum_pandas_version", "require_minimum_pandas_version", "(", ")", "import", "pandas", "as", "pd", "from", "pandas", ".", "api", ".", "types", "import", "is_datetime64tz_dtype", ",", "is_datetime64_dtype", "from_tz", "=", "from_timezone", "or", "_get_local_timezone", "(", ")", "to_tz", "=", "to_timezone", "or", "_get_local_timezone", "(", ")", "# TODO: handle nested timestamps, such as ArrayType(TimestampType())?", "if", "is_datetime64tz_dtype", "(", "s", ".", "dtype", ")", ":", "return", "s", ".", "dt", ".", "tz_convert", "(", "to_tz", ")", ".", "dt", ".", "tz_localize", "(", "None", ")", "elif", "is_datetime64_dtype", "(", "s", ".", "dtype", ")", "and", "from_tz", "!=", "to_tz", ":", "# `s.dt.tz_localize('tzlocal()')` doesn't work properly when including NaT.", "return", "s", ".", "apply", "(", "lambda", "ts", ":", "ts", ".", "tz_localize", "(", "from_tz", ",", "ambiguous", "=", "False", ")", ".", "tz_convert", "(", "to_tz", ")", ".", "tz_localize", "(", "None", ")", "if", "ts", "is", "not", "pd", ".", "NaT", "else", "pd", ".", "NaT", ")", "else", ":", "return", "s" ]
Convert timestamp to timezone-naive in the specified timezone or local timezone :param s: a pandas.Series :param from_timezone: the timezone to convert from. if None then use local timezone :param to_timezone: the timezone to convert to. if None then use local timezone :return pandas.Series where if it is a timestamp, has been converted to tz-naive
[ "Convert", "timestamp", "to", "timezone", "-", "naive", "in", "the", "specified", "timezone", "or", "local", "timezone" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1792-L1817
train
Convert timestamp to timezone - naive in the specified timezone or local timezone.
apache/spark
python/pyspark/sql/types.py
StructType.add
def add(self, field, data_type=None, nullable=True, metadata=None): """ Construct a StructType by adding new elements to it to define the schema. The method accepts either: a) A single parameter which is a StructField object. b) Between 2 and 4 parameters as (name, data_type, nullable (optional), metadata(optional). The data_type parameter may be either a String or a DataType object. >>> struct1 = StructType().add("f1", StringType(), True).add("f2", StringType(), True, None) >>> struct2 = StructType([StructField("f1", StringType(), True), \\ ... StructField("f2", StringType(), True, None)]) >>> struct1 == struct2 True >>> struct1 = StructType().add(StructField("f1", StringType(), True)) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True >>> struct1 = StructType().add("f1", "string", True) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True :param field: Either the name of the field or a StructField object :param data_type: If present, the DataType of the StructField to create :param nullable: Whether the field to add should be nullable (default True) :param metadata: Any additional metadata (default None) :return: a new updated StructType """ if isinstance(field, StructField): self.fields.append(field) self.names.append(field.name) else: if isinstance(field, str) and data_type is None: raise ValueError("Must specify DataType if passing name of struct_field to create.") if isinstance(data_type, str): data_type_f = _parse_datatype_json_value(data_type) else: data_type_f = data_type self.fields.append(StructField(field, data_type_f, nullable, metadata)) self.names.append(field) # Precalculated list of fields that need conversion with fromInternal/toInternal functions self._needConversion = [f.needConversion() for f in self] self._needSerializeAnyField = any(self._needConversion) return self
python
def add(self, field, data_type=None, nullable=True, metadata=None): """ Construct a StructType by adding new elements to it to define the schema. The method accepts either: a) A single parameter which is a StructField object. b) Between 2 and 4 parameters as (name, data_type, nullable (optional), metadata(optional). The data_type parameter may be either a String or a DataType object. >>> struct1 = StructType().add("f1", StringType(), True).add("f2", StringType(), True, None) >>> struct2 = StructType([StructField("f1", StringType(), True), \\ ... StructField("f2", StringType(), True, None)]) >>> struct1 == struct2 True >>> struct1 = StructType().add(StructField("f1", StringType(), True)) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True >>> struct1 = StructType().add("f1", "string", True) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True :param field: Either the name of the field or a StructField object :param data_type: If present, the DataType of the StructField to create :param nullable: Whether the field to add should be nullable (default True) :param metadata: Any additional metadata (default None) :return: a new updated StructType """ if isinstance(field, StructField): self.fields.append(field) self.names.append(field.name) else: if isinstance(field, str) and data_type is None: raise ValueError("Must specify DataType if passing name of struct_field to create.") if isinstance(data_type, str): data_type_f = _parse_datatype_json_value(data_type) else: data_type_f = data_type self.fields.append(StructField(field, data_type_f, nullable, metadata)) self.names.append(field) # Precalculated list of fields that need conversion with fromInternal/toInternal functions self._needConversion = [f.needConversion() for f in self] self._needSerializeAnyField = any(self._needConversion) return self
[ "def", "add", "(", "self", ",", "field", ",", "data_type", "=", "None", ",", "nullable", "=", "True", ",", "metadata", "=", "None", ")", ":", "if", "isinstance", "(", "field", ",", "StructField", ")", ":", "self", ".", "fields", ".", "append", "(", "field", ")", "self", ".", "names", ".", "append", "(", "field", ".", "name", ")", "else", ":", "if", "isinstance", "(", "field", ",", "str", ")", "and", "data_type", "is", "None", ":", "raise", "ValueError", "(", "\"Must specify DataType if passing name of struct_field to create.\"", ")", "if", "isinstance", "(", "data_type", ",", "str", ")", ":", "data_type_f", "=", "_parse_datatype_json_value", "(", "data_type", ")", "else", ":", "data_type_f", "=", "data_type", "self", ".", "fields", ".", "append", "(", "StructField", "(", "field", ",", "data_type_f", ",", "nullable", ",", "metadata", ")", ")", "self", ".", "names", ".", "append", "(", "field", ")", "# Precalculated list of fields that need conversion with fromInternal/toInternal functions", "self", ".", "_needConversion", "=", "[", "f", ".", "needConversion", "(", ")", "for", "f", "in", "self", "]", "self", ".", "_needSerializeAnyField", "=", "any", "(", "self", ".", "_needConversion", ")", "return", "self" ]
Construct a StructType by adding new elements to it to define the schema. The method accepts either: a) A single parameter which is a StructField object. b) Between 2 and 4 parameters as (name, data_type, nullable (optional), metadata(optional). The data_type parameter may be either a String or a DataType object. >>> struct1 = StructType().add("f1", StringType(), True).add("f2", StringType(), True, None) >>> struct2 = StructType([StructField("f1", StringType(), True), \\ ... StructField("f2", StringType(), True, None)]) >>> struct1 == struct2 True >>> struct1 = StructType().add(StructField("f1", StringType(), True)) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True >>> struct1 = StructType().add("f1", "string", True) >>> struct2 = StructType([StructField("f1", StringType(), True)]) >>> struct1 == struct2 True :param field: Either the name of the field or a StructField object :param data_type: If present, the DataType of the StructField to create :param nullable: Whether the field to add should be nullable (default True) :param metadata: Any additional metadata (default None) :return: a new updated StructType
[ "Construct", "a", "StructType", "by", "adding", "new", "elements", "to", "it", "to", "define", "the", "schema", ".", "The", "method", "accepts", "either", ":" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L491-L537
train
Constructs a new StructType object by adding new elements to the list of fields.
apache/spark
python/pyspark/sql/types.py
Row.asDict
def asDict(self, recursive=False): """ Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True """ if not hasattr(self, "__fields__"): raise TypeError("Cannot convert a Row class into dict") if recursive: def conv(obj): if isinstance(obj, Row): return obj.asDict(True) elif isinstance(obj, list): return [conv(o) for o in obj] elif isinstance(obj, dict): return dict((k, conv(v)) for k, v in obj.items()) else: return obj return dict(zip(self.__fields__, (conv(o) for o in self))) else: return dict(zip(self.__fields__, self))
python
def asDict(self, recursive=False): """ Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True """ if not hasattr(self, "__fields__"): raise TypeError("Cannot convert a Row class into dict") if recursive: def conv(obj): if isinstance(obj, Row): return obj.asDict(True) elif isinstance(obj, list): return [conv(o) for o in obj] elif isinstance(obj, dict): return dict((k, conv(v)) for k, v in obj.items()) else: return obj return dict(zip(self.__fields__, (conv(o) for o in self))) else: return dict(zip(self.__fields__, self))
[ "def", "asDict", "(", "self", ",", "recursive", "=", "False", ")", ":", "if", "not", "hasattr", "(", "self", ",", "\"__fields__\"", ")", ":", "raise", "TypeError", "(", "\"Cannot convert a Row class into dict\"", ")", "if", "recursive", ":", "def", "conv", "(", "obj", ")", ":", "if", "isinstance", "(", "obj", ",", "Row", ")", ":", "return", "obj", ".", "asDict", "(", "True", ")", "elif", "isinstance", "(", "obj", ",", "list", ")", ":", "return", "[", "conv", "(", "o", ")", "for", "o", "in", "obj", "]", "elif", "isinstance", "(", "obj", ",", "dict", ")", ":", "return", "dict", "(", "(", "k", ",", "conv", "(", "v", ")", ")", "for", "k", ",", "v", "in", "obj", ".", "items", "(", ")", ")", "else", ":", "return", "obj", "return", "dict", "(", "zip", "(", "self", ".", "__fields__", ",", "(", "conv", "(", "o", ")", "for", "o", "in", "self", ")", ")", ")", "else", ":", "return", "dict", "(", "zip", "(", "self", ".", "__fields__", ",", "self", ")", ")" ]
Return as an dict :param recursive: turns the nested Row as dict (default: False). >>> Row(name="Alice", age=11).asDict() == {'name': 'Alice', 'age': 11} True >>> row = Row(key=1, value=Row(name='a', age=2)) >>> row.asDict() == {'key': 1, 'value': Row(age=2, name='a')} True >>> row.asDict(True) == {'key': 1, 'value': {'name': 'a', 'age': 2}} True
[ "Return", "as", "an", "dict" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/sql/types.py#L1463-L1492
train
Converts the table into a dict.
apache/spark
python/pyspark/shuffle.py
ExternalMerger.mergeValues
def mergeValues(self, iterator): """ Combine the items by creator and combiner """ # speedup attribute lookup creator, comb = self.agg.createCombiner, self.agg.mergeValue c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch limit = self.memory_limit for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else creator(v) c += 1 if c >= batch: if get_used_memory() >= limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if get_used_memory() >= limit: self._spill()
python
def mergeValues(self, iterator): """ Combine the items by creator and combiner """ # speedup attribute lookup creator, comb = self.agg.createCombiner, self.agg.mergeValue c, data, pdata, hfun, batch = 0, self.data, self.pdata, self._partition, self.batch limit = self.memory_limit for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else creator(v) c += 1 if c >= batch: if get_used_memory() >= limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if get_used_memory() >= limit: self._spill()
[ "def", "mergeValues", "(", "self", ",", "iterator", ")", ":", "# speedup attribute lookup", "creator", ",", "comb", "=", "self", ".", "agg", ".", "createCombiner", ",", "self", ".", "agg", ".", "mergeValue", "c", ",", "data", ",", "pdata", ",", "hfun", ",", "batch", "=", "0", ",", "self", ".", "data", ",", "self", ".", "pdata", ",", "self", ".", "_partition", ",", "self", ".", "batch", "limit", "=", "self", ".", "memory_limit", "for", "k", ",", "v", "in", "iterator", ":", "d", "=", "pdata", "[", "hfun", "(", "k", ")", "]", "if", "pdata", "else", "data", "d", "[", "k", "]", "=", "comb", "(", "d", "[", "k", "]", ",", "v", ")", "if", "k", "in", "d", "else", "creator", "(", "v", ")", "c", "+=", "1", "if", "c", ">=", "batch", ":", "if", "get_used_memory", "(", ")", ">=", "limit", ":", "self", ".", "_spill", "(", ")", "limit", "=", "self", ".", "_next_limit", "(", ")", "batch", "/=", "2", "c", "=", "0", "else", ":", "batch", "*=", "1.5", "if", "get_used_memory", "(", ")", ">=", "limit", ":", "self", ".", "_spill", "(", ")" ]
Combine the items by creator and combiner
[ "Combine", "the", "items", "by", "creator", "and", "combiner" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L231-L253
train
Combine the items by creator and combiner
apache/spark
python/pyspark/shuffle.py
ExternalMerger.mergeCombiners
def mergeCombiners(self, iterator, limit=None): """ Merge (K,V) pair by mergeCombiner """ if limit is None: limit = self.memory_limit # speedup attribute lookup comb, hfun, objsize = self.agg.mergeCombiners, self._partition, self._object_size c, data, pdata, batch = 0, self.data, self.pdata, self.batch for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else v if not limit: continue c += objsize(v) if c > batch: if get_used_memory() > limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if limit and get_used_memory() >= limit: self._spill()
python
def mergeCombiners(self, iterator, limit=None): """ Merge (K,V) pair by mergeCombiner """ if limit is None: limit = self.memory_limit # speedup attribute lookup comb, hfun, objsize = self.agg.mergeCombiners, self._partition, self._object_size c, data, pdata, batch = 0, self.data, self.pdata, self.batch for k, v in iterator: d = pdata[hfun(k)] if pdata else data d[k] = comb(d[k], v) if k in d else v if not limit: continue c += objsize(v) if c > batch: if get_used_memory() > limit: self._spill() limit = self._next_limit() batch /= 2 c = 0 else: batch *= 1.5 if limit and get_used_memory() >= limit: self._spill()
[ "def", "mergeCombiners", "(", "self", ",", "iterator", ",", "limit", "=", "None", ")", ":", "if", "limit", "is", "None", ":", "limit", "=", "self", ".", "memory_limit", "# speedup attribute lookup", "comb", ",", "hfun", ",", "objsize", "=", "self", ".", "agg", ".", "mergeCombiners", ",", "self", ".", "_partition", ",", "self", ".", "_object_size", "c", ",", "data", ",", "pdata", ",", "batch", "=", "0", ",", "self", ".", "data", ",", "self", ".", "pdata", ",", "self", ".", "batch", "for", "k", ",", "v", "in", "iterator", ":", "d", "=", "pdata", "[", "hfun", "(", "k", ")", "]", "if", "pdata", "else", "data", "d", "[", "k", "]", "=", "comb", "(", "d", "[", "k", "]", ",", "v", ")", "if", "k", "in", "d", "else", "v", "if", "not", "limit", ":", "continue", "c", "+=", "objsize", "(", "v", ")", "if", "c", ">", "batch", ":", "if", "get_used_memory", "(", ")", ">", "limit", ":", "self", ".", "_spill", "(", ")", "limit", "=", "self", ".", "_next_limit", "(", ")", "batch", "/=", "2", "c", "=", "0", "else", ":", "batch", "*=", "1.5", "if", "limit", "and", "get_used_memory", "(", ")", ">=", "limit", ":", "self", ".", "_spill", "(", ")" ]
Merge (K,V) pair by mergeCombiner
[ "Merge", "(", "K", "V", ")", "pair", "by", "mergeCombiner" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L265-L289
train
Merge a set of keys and values by merging them into a single object.
apache/spark
python/pyspark/shuffle.py
ExternalMerger._spill
def _spill(self): """ dump already partitioned data into disks. It will dump the data in batch for better performance. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # dataset once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] for k, v in self.data.items(): h = self._partition(k) # put one item in batch, make it compatible with load_stream # it will increase the memory if dump them in batch self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch self.serializer.dump_stream(iter(self.pdata[i].items()), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
python
def _spill(self): """ dump already partitioned data into disks. It will dump the data in batch for better performance. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # dataset once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] for k, v in self.data.items(): h = self._partition(k) # put one item in batch, make it compatible with load_stream # it will increase the memory if dump them in batch self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch self.serializer.dump_stream(iter(self.pdata[i].items()), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
[ "def", "_spill", "(", "self", ")", ":", "global", "MemoryBytesSpilled", ",", "DiskBytesSpilled", "path", "=", "self", ".", "_get_spill_dir", "(", "self", ".", "spills", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "os", ".", "makedirs", "(", "path", ")", "used_memory", "=", "get_used_memory", "(", ")", "if", "not", "self", ".", "pdata", ":", "# The data has not been partitioned, it will iterator the", "# dataset once, write them into different files, has no", "# additional memory. It only called when the memory goes", "# above limit at the first time.", "# open all the files for writing", "streams", "=", "[", "open", "(", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", ",", "'wb'", ")", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", "]", "for", "k", ",", "v", "in", "self", ".", "data", ".", "items", "(", ")", ":", "h", "=", "self", ".", "_partition", "(", "k", ")", "# put one item in batch, make it compatible with load_stream", "# it will increase the memory if dump them in batch", "self", ".", "serializer", ".", "dump_stream", "(", "[", "(", "k", ",", "v", ")", "]", ",", "streams", "[", "h", "]", ")", "for", "s", "in", "streams", ":", "DiskBytesSpilled", "+=", "s", ".", "tell", "(", ")", "s", ".", "close", "(", ")", "self", ".", "data", ".", "clear", "(", ")", "self", ".", "pdata", ".", "extend", "(", "[", "{", "}", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", "]", ")", "else", ":", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", ":", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", "with", "open", "(", "p", ",", "\"wb\"", ")", "as", "f", ":", "# dump items in batch", "self", ".", "serializer", ".", "dump_stream", "(", "iter", "(", "self", ".", "pdata", "[", "i", "]", ".", "items", "(", ")", ")", ",", "f", ")", "self", ".", "pdata", "[", "i", "]", ".", "clear", "(", ")", "DiskBytesSpilled", "+=", "os", ".", "path", ".", "getsize", "(", "p", ")", "self", ".", "spills", "+=", "1", "gc", ".", "collect", "(", ")", "# release the memory as much as possible", "MemoryBytesSpilled", "+=", "max", "(", "used_memory", "-", "get_used_memory", "(", ")", ",", "0", ")", "<<", "20" ]
dump already partitioned data into disks. It will dump the data in batch for better performance.
[ "dump", "already", "partitioned", "data", "into", "disks", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L291-L337
train
This function will dump already partitioned data into disks. It will dump the data into the disks and the memory used by the memory.
apache/spark
python/pyspark/shuffle.py
ExternalMerger._external_items
def _external_items(self): """ Return all partitioned items as iterator """ assert not self.data if any(self.pdata): self._spill() # disable partitioning and spilling when merge combiners from disk self.pdata = [] try: for i in range(self.partitions): for v in self._merged_items(i): yield v self.data.clear() # remove the merged partition for j in range(self.spills): path = self._get_spill_dir(j) os.remove(os.path.join(path, str(i))) finally: self._cleanup()
python
def _external_items(self): """ Return all partitioned items as iterator """ assert not self.data if any(self.pdata): self._spill() # disable partitioning and spilling when merge combiners from disk self.pdata = [] try: for i in range(self.partitions): for v in self._merged_items(i): yield v self.data.clear() # remove the merged partition for j in range(self.spills): path = self._get_spill_dir(j) os.remove(os.path.join(path, str(i))) finally: self._cleanup()
[ "def", "_external_items", "(", "self", ")", ":", "assert", "not", "self", ".", "data", "if", "any", "(", "self", ".", "pdata", ")", ":", "self", ".", "_spill", "(", ")", "# disable partitioning and spilling when merge combiners from disk", "self", ".", "pdata", "=", "[", "]", "try", ":", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", ":", "for", "v", "in", "self", ".", "_merged_items", "(", "i", ")", ":", "yield", "v", "self", ".", "data", ".", "clear", "(", ")", "# remove the merged partition", "for", "j", "in", "range", "(", "self", ".", "spills", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "os", ".", "remove", "(", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", ")", "finally", ":", "self", ".", "_cleanup", "(", ")" ]
Return all partitioned items as iterator
[ "Return", "all", "partitioned", "items", "as", "iterator" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L345-L364
train
Return all partitioned items as iterator
apache/spark
python/pyspark/shuffle.py
ExternalMerger._recursive_merged_items
def _recursive_merged_items(self, index): """ merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively. """ subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs] m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs, self.scale * self.partitions, self.partitions, self.batch) m.pdata = [{} for _ in range(self.partitions)] limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb') as f: m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() limit = self._next_limit() return m._external_items()
python
def _recursive_merged_items(self, index): """ merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively. """ subdirs = [os.path.join(d, "parts", str(index)) for d in self.localdirs] m = ExternalMerger(self.agg, self.memory_limit, self.serializer, subdirs, self.scale * self.partitions, self.partitions, self.batch) m.pdata = [{} for _ in range(self.partitions)] limit = self._next_limit() for j in range(self.spills): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb') as f: m.mergeCombiners(self.serializer.load_stream(f), 0) if get_used_memory() > limit: m._spill() limit = self._next_limit() return m._external_items()
[ "def", "_recursive_merged_items", "(", "self", ",", "index", ")", ":", "subdirs", "=", "[", "os", ".", "path", ".", "join", "(", "d", ",", "\"parts\"", ",", "str", "(", "index", ")", ")", "for", "d", "in", "self", ".", "localdirs", "]", "m", "=", "ExternalMerger", "(", "self", ".", "agg", ",", "self", ".", "memory_limit", ",", "self", ".", "serializer", ",", "subdirs", ",", "self", ".", "scale", "*", "self", ".", "partitions", ",", "self", ".", "partitions", ",", "self", ".", "batch", ")", "m", ".", "pdata", "=", "[", "{", "}", "for", "_", "in", "range", "(", "self", ".", "partitions", ")", "]", "limit", "=", "self", ".", "_next_limit", "(", ")", "for", "j", "in", "range", "(", "self", ".", "spills", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "index", ")", ")", "with", "open", "(", "p", ",", "'rb'", ")", "as", "f", ":", "m", ".", "mergeCombiners", "(", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ",", "0", ")", "if", "get_used_memory", "(", ")", ">", "limit", ":", "m", ".", "_spill", "(", ")", "limit", "=", "self", ".", "_next_limit", "(", ")", "return", "m", ".", "_external_items", "(", ")" ]
merge the partitioned items and return the as iterator If one partition can not be fit in memory, then them will be partitioned and merged recursively.
[ "merge", "the", "partitioned", "items", "and", "return", "the", "as", "iterator" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L386-L409
train
Merge the partitioned items and return the as iterator
apache/spark
python/pyspark/shuffle.py
ExternalSorter.sorted
def sorted(self, iterator, key=None, reverse=False): """ Sort the elements in iterator, do external sort when the memory goes above the limit. """ global MemoryBytesSpilled, DiskBytesSpilled batch, limit = 100, self._next_limit() chunks, current_chunk = [], [] iterator = iter(iterator) while True: # pick elements in batch chunk = list(itertools.islice(iterator, batch)) current_chunk.extend(chunk) if len(chunk) < batch: break used_memory = get_used_memory() if used_memory > limit: # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) def load(f): for v in self.serializer.load_stream(f): yield v # close the file explicit once we consume all the items # to avoid ResourceWarning in Python3 f.close() chunks.append(load(open(path, 'rb'))) current_chunk = [] MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 DiskBytesSpilled += os.path.getsize(path) os.unlink(path) # data will be deleted after close elif not chunks: batch = min(int(batch * 1.5), 10000) current_chunk.sort(key=key, reverse=reverse) if not chunks: return current_chunk if current_chunk: chunks.append(iter(current_chunk)) return heapq.merge(chunks, key=key, reverse=reverse)
python
def sorted(self, iterator, key=None, reverse=False): """ Sort the elements in iterator, do external sort when the memory goes above the limit. """ global MemoryBytesSpilled, DiskBytesSpilled batch, limit = 100, self._next_limit() chunks, current_chunk = [], [] iterator = iter(iterator) while True: # pick elements in batch chunk = list(itertools.islice(iterator, batch)) current_chunk.extend(chunk) if len(chunk) < batch: break used_memory = get_used_memory() if used_memory > limit: # sort them inplace will save memory current_chunk.sort(key=key, reverse=reverse) path = self._get_path(len(chunks)) with open(path, 'wb') as f: self.serializer.dump_stream(current_chunk, f) def load(f): for v in self.serializer.load_stream(f): yield v # close the file explicit once we consume all the items # to avoid ResourceWarning in Python3 f.close() chunks.append(load(open(path, 'rb'))) current_chunk = [] MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20 DiskBytesSpilled += os.path.getsize(path) os.unlink(path) # data will be deleted after close elif not chunks: batch = min(int(batch * 1.5), 10000) current_chunk.sort(key=key, reverse=reverse) if not chunks: return current_chunk if current_chunk: chunks.append(iter(current_chunk)) return heapq.merge(chunks, key=key, reverse=reverse)
[ "def", "sorted", "(", "self", ",", "iterator", ",", "key", "=", "None", ",", "reverse", "=", "False", ")", ":", "global", "MemoryBytesSpilled", ",", "DiskBytesSpilled", "batch", ",", "limit", "=", "100", ",", "self", ".", "_next_limit", "(", ")", "chunks", ",", "current_chunk", "=", "[", "]", ",", "[", "]", "iterator", "=", "iter", "(", "iterator", ")", "while", "True", ":", "# pick elements in batch", "chunk", "=", "list", "(", "itertools", ".", "islice", "(", "iterator", ",", "batch", ")", ")", "current_chunk", ".", "extend", "(", "chunk", ")", "if", "len", "(", "chunk", ")", "<", "batch", ":", "break", "used_memory", "=", "get_used_memory", "(", ")", "if", "used_memory", ">", "limit", ":", "# sort them inplace will save memory", "current_chunk", ".", "sort", "(", "key", "=", "key", ",", "reverse", "=", "reverse", ")", "path", "=", "self", ".", "_get_path", "(", "len", "(", "chunks", ")", ")", "with", "open", "(", "path", ",", "'wb'", ")", "as", "f", ":", "self", ".", "serializer", ".", "dump_stream", "(", "current_chunk", ",", "f", ")", "def", "load", "(", "f", ")", ":", "for", "v", "in", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ":", "yield", "v", "# close the file explicit once we consume all the items", "# to avoid ResourceWarning in Python3", "f", ".", "close", "(", ")", "chunks", ".", "append", "(", "load", "(", "open", "(", "path", ",", "'rb'", ")", ")", ")", "current_chunk", "=", "[", "]", "MemoryBytesSpilled", "+=", "max", "(", "used_memory", "-", "get_used_memory", "(", ")", ",", "0", ")", "<<", "20", "DiskBytesSpilled", "+=", "os", ".", "path", ".", "getsize", "(", "path", ")", "os", ".", "unlink", "(", "path", ")", "# data will be deleted after close", "elif", "not", "chunks", ":", "batch", "=", "min", "(", "int", "(", "batch", "*", "1.5", ")", ",", "10000", ")", "current_chunk", ".", "sort", "(", "key", "=", "key", ",", "reverse", "=", "reverse", ")", "if", "not", "chunks", ":", "return", "current_chunk", "if", "current_chunk", ":", "chunks", ".", "append", "(", "iter", "(", "current_chunk", ")", ")", "return", "heapq", ".", "merge", "(", "chunks", ",", "key", "=", "key", ",", "reverse", "=", "reverse", ")" ]
Sort the elements in iterator, do external sort when the memory goes above the limit.
[ "Sort", "the", "elements", "in", "iterator", "do", "external", "sort", "when", "the", "memory", "goes", "above", "the", "limit", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L455-L501
train
Sort the elements in iterator do external sort when the memory is below the limit.
apache/spark
python/pyspark/shuffle.py
ExternalGroupBy._spill
def _spill(self): """ dump already partitioned data into disks. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # data once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] # If the number of keys is small, then the overhead of sort is small # sort them before dumping into disks self._sorted = len(self.data) < self.SORT_KEY_LIMIT if self._sorted: self.serializer = self.flattened_serializer() for k in sorted(self.data.keys()): h = self._partition(k) self.serializer.dump_stream([(k, self.data[k])], streams[h]) else: for k, v in self.data.items(): h = self._partition(k) self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() # self.pdata is cached in `mergeValues` and `mergeCombiners` self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch if self._sorted: # sort by key only (stable) sorted_items = sorted(self.pdata[i].items(), key=operator.itemgetter(0)) self.serializer.dump_stream(sorted_items, f) else: self.serializer.dump_stream(self.pdata[i].items(), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
python
def _spill(self): """ dump already partitioned data into disks. """ global MemoryBytesSpilled, DiskBytesSpilled path = self._get_spill_dir(self.spills) if not os.path.exists(path): os.makedirs(path) used_memory = get_used_memory() if not self.pdata: # The data has not been partitioned, it will iterator the # data once, write them into different files, has no # additional memory. It only called when the memory goes # above limit at the first time. # open all the files for writing streams = [open(os.path.join(path, str(i)), 'wb') for i in range(self.partitions)] # If the number of keys is small, then the overhead of sort is small # sort them before dumping into disks self._sorted = len(self.data) < self.SORT_KEY_LIMIT if self._sorted: self.serializer = self.flattened_serializer() for k in sorted(self.data.keys()): h = self._partition(k) self.serializer.dump_stream([(k, self.data[k])], streams[h]) else: for k, v in self.data.items(): h = self._partition(k) self.serializer.dump_stream([(k, v)], streams[h]) for s in streams: DiskBytesSpilled += s.tell() s.close() self.data.clear() # self.pdata is cached in `mergeValues` and `mergeCombiners` self.pdata.extend([{} for i in range(self.partitions)]) else: for i in range(self.partitions): p = os.path.join(path, str(i)) with open(p, "wb") as f: # dump items in batch if self._sorted: # sort by key only (stable) sorted_items = sorted(self.pdata[i].items(), key=operator.itemgetter(0)) self.serializer.dump_stream(sorted_items, f) else: self.serializer.dump_stream(self.pdata[i].items(), f) self.pdata[i].clear() DiskBytesSpilled += os.path.getsize(p) self.spills += 1 gc.collect() # release the memory as much as possible MemoryBytesSpilled += max(used_memory - get_used_memory(), 0) << 20
[ "def", "_spill", "(", "self", ")", ":", "global", "MemoryBytesSpilled", ",", "DiskBytesSpilled", "path", "=", "self", ".", "_get_spill_dir", "(", "self", ".", "spills", ")", "if", "not", "os", ".", "path", ".", "exists", "(", "path", ")", ":", "os", ".", "makedirs", "(", "path", ")", "used_memory", "=", "get_used_memory", "(", ")", "if", "not", "self", ".", "pdata", ":", "# The data has not been partitioned, it will iterator the", "# data once, write them into different files, has no", "# additional memory. It only called when the memory goes", "# above limit at the first time.", "# open all the files for writing", "streams", "=", "[", "open", "(", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", ",", "'wb'", ")", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", "]", "# If the number of keys is small, then the overhead of sort is small", "# sort them before dumping into disks", "self", ".", "_sorted", "=", "len", "(", "self", ".", "data", ")", "<", "self", ".", "SORT_KEY_LIMIT", "if", "self", ".", "_sorted", ":", "self", ".", "serializer", "=", "self", ".", "flattened_serializer", "(", ")", "for", "k", "in", "sorted", "(", "self", ".", "data", ".", "keys", "(", ")", ")", ":", "h", "=", "self", ".", "_partition", "(", "k", ")", "self", ".", "serializer", ".", "dump_stream", "(", "[", "(", "k", ",", "self", ".", "data", "[", "k", "]", ")", "]", ",", "streams", "[", "h", "]", ")", "else", ":", "for", "k", ",", "v", "in", "self", ".", "data", ".", "items", "(", ")", ":", "h", "=", "self", ".", "_partition", "(", "k", ")", "self", ".", "serializer", ".", "dump_stream", "(", "[", "(", "k", ",", "v", ")", "]", ",", "streams", "[", "h", "]", ")", "for", "s", "in", "streams", ":", "DiskBytesSpilled", "+=", "s", ".", "tell", "(", ")", "s", ".", "close", "(", ")", "self", ".", "data", ".", "clear", "(", ")", "# self.pdata is cached in `mergeValues` and `mergeCombiners`", "self", ".", "pdata", ".", "extend", "(", "[", "{", "}", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", "]", ")", "else", ":", "for", "i", "in", "range", "(", "self", ".", "partitions", ")", ":", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "i", ")", ")", "with", "open", "(", "p", ",", "\"wb\"", ")", "as", "f", ":", "# dump items in batch", "if", "self", ".", "_sorted", ":", "# sort by key only (stable)", "sorted_items", "=", "sorted", "(", "self", ".", "pdata", "[", "i", "]", ".", "items", "(", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "0", ")", ")", "self", ".", "serializer", ".", "dump_stream", "(", "sorted_items", ",", "f", ")", "else", ":", "self", ".", "serializer", ".", "dump_stream", "(", "self", ".", "pdata", "[", "i", "]", ".", "items", "(", ")", ",", "f", ")", "self", ".", "pdata", "[", "i", "]", ".", "clear", "(", ")", "DiskBytesSpilled", "+=", "os", ".", "path", ".", "getsize", "(", "p", ")", "self", ".", "spills", "+=", "1", "gc", ".", "collect", "(", ")", "# release the memory as much as possible", "MemoryBytesSpilled", "+=", "max", "(", "used_memory", "-", "get_used_memory", "(", ")", ",", "0", ")", "<<", "20" ]
dump already partitioned data into disks.
[ "dump", "already", "partitioned", "data", "into", "disks", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L709-L766
train
Dump already partitioned data into disks.
apache/spark
python/pyspark/shuffle.py
ExternalGroupBy._merge_sorted_items
def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb', 65536) as f: for v in self.serializer.load_stream(f): yield v disk_items = [load_partition(j) for j in range(self.spills)] if self._sorted: # all the partitions are already sorted sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0)) else: # Flatten the combined values, so it will not consume huge # memory during merging sort. ser = self.flattened_serializer() sorter = ExternalSorter(self.memory_limit, ser) sorted_items = sorter.sorted(itertools.chain(*disk_items), key=operator.itemgetter(0)) return ((k, vs) for k, vs in GroupByKey(sorted_items))
python
def _merge_sorted_items(self, index): """ load a partition from disk, then sort and group by key """ def load_partition(j): path = self._get_spill_dir(j) p = os.path.join(path, str(index)) with open(p, 'rb', 65536) as f: for v in self.serializer.load_stream(f): yield v disk_items = [load_partition(j) for j in range(self.spills)] if self._sorted: # all the partitions are already sorted sorted_items = heapq.merge(disk_items, key=operator.itemgetter(0)) else: # Flatten the combined values, so it will not consume huge # memory during merging sort. ser = self.flattened_serializer() sorter = ExternalSorter(self.memory_limit, ser) sorted_items = sorter.sorted(itertools.chain(*disk_items), key=operator.itemgetter(0)) return ((k, vs) for k, vs in GroupByKey(sorted_items))
[ "def", "_merge_sorted_items", "(", "self", ",", "index", ")", ":", "def", "load_partition", "(", "j", ")", ":", "path", "=", "self", ".", "_get_spill_dir", "(", "j", ")", "p", "=", "os", ".", "path", ".", "join", "(", "path", ",", "str", "(", "index", ")", ")", "with", "open", "(", "p", ",", "'rb'", ",", "65536", ")", "as", "f", ":", "for", "v", "in", "self", ".", "serializer", ".", "load_stream", "(", "f", ")", ":", "yield", "v", "disk_items", "=", "[", "load_partition", "(", "j", ")", "for", "j", "in", "range", "(", "self", ".", "spills", ")", "]", "if", "self", ".", "_sorted", ":", "# all the partitions are already sorted", "sorted_items", "=", "heapq", ".", "merge", "(", "disk_items", ",", "key", "=", "operator", ".", "itemgetter", "(", "0", ")", ")", "else", ":", "# Flatten the combined values, so it will not consume huge", "# memory during merging sort.", "ser", "=", "self", ".", "flattened_serializer", "(", ")", "sorter", "=", "ExternalSorter", "(", "self", ".", "memory_limit", ",", "ser", ")", "sorted_items", "=", "sorter", ".", "sorted", "(", "itertools", ".", "chain", "(", "*", "disk_items", ")", ",", "key", "=", "operator", ".", "itemgetter", "(", "0", ")", ")", "return", "(", "(", "k", ",", "vs", ")", "for", "k", ",", "vs", "in", "GroupByKey", "(", "sorted_items", ")", ")" ]
load a partition from disk, then sort and group by key
[ "load", "a", "partition", "from", "disk", "then", "sort", "and", "group", "by", "key" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/shuffle.py#L786-L808
train
Load a partition from disk then sort and group by key
apache/spark
python/pyspark/daemon.py
worker
def worker(sock, authenticated): """ Called by a worker process after the fork(). """ signal.signal(SIGHUP, SIG_DFL) signal.signal(SIGCHLD, SIG_DFL) signal.signal(SIGTERM, SIG_DFL) # restore the handler for SIGINT, # it's useful for debugging (show the stacktrace before exit) signal.signal(SIGINT, signal.default_int_handler) # Read the socket using fdopen instead of socket.makefile() because the latter # seems to be very slow; note that we need to dup() the file descriptor because # otherwise writes also cause a seek that makes us miss data on the read side. infile = os.fdopen(os.dup(sock.fileno()), "rb", 65536) outfile = os.fdopen(os.dup(sock.fileno()), "wb", 65536) if not authenticated: client_secret = UTF8Deserializer().loads(infile) if os.environ["PYTHON_WORKER_FACTORY_SECRET"] == client_secret: write_with_length("ok".encode("utf-8"), outfile) outfile.flush() else: write_with_length("err".encode("utf-8"), outfile) outfile.flush() sock.close() return 1 exit_code = 0 try: worker_main(infile, outfile) except SystemExit as exc: exit_code = compute_real_exit_code(exc.code) finally: try: outfile.flush() except Exception: pass return exit_code
python
def worker(sock, authenticated): """ Called by a worker process after the fork(). """ signal.signal(SIGHUP, SIG_DFL) signal.signal(SIGCHLD, SIG_DFL) signal.signal(SIGTERM, SIG_DFL) # restore the handler for SIGINT, # it's useful for debugging (show the stacktrace before exit) signal.signal(SIGINT, signal.default_int_handler) # Read the socket using fdopen instead of socket.makefile() because the latter # seems to be very slow; note that we need to dup() the file descriptor because # otherwise writes also cause a seek that makes us miss data on the read side. infile = os.fdopen(os.dup(sock.fileno()), "rb", 65536) outfile = os.fdopen(os.dup(sock.fileno()), "wb", 65536) if not authenticated: client_secret = UTF8Deserializer().loads(infile) if os.environ["PYTHON_WORKER_FACTORY_SECRET"] == client_secret: write_with_length("ok".encode("utf-8"), outfile) outfile.flush() else: write_with_length("err".encode("utf-8"), outfile) outfile.flush() sock.close() return 1 exit_code = 0 try: worker_main(infile, outfile) except SystemExit as exc: exit_code = compute_real_exit_code(exc.code) finally: try: outfile.flush() except Exception: pass return exit_code
[ "def", "worker", "(", "sock", ",", "authenticated", ")", ":", "signal", ".", "signal", "(", "SIGHUP", ",", "SIG_DFL", ")", "signal", ".", "signal", "(", "SIGCHLD", ",", "SIG_DFL", ")", "signal", ".", "signal", "(", "SIGTERM", ",", "SIG_DFL", ")", "# restore the handler for SIGINT,", "# it's useful for debugging (show the stacktrace before exit)", "signal", ".", "signal", "(", "SIGINT", ",", "signal", ".", "default_int_handler", ")", "# Read the socket using fdopen instead of socket.makefile() because the latter", "# seems to be very slow; note that we need to dup() the file descriptor because", "# otherwise writes also cause a seek that makes us miss data on the read side.", "infile", "=", "os", ".", "fdopen", "(", "os", ".", "dup", "(", "sock", ".", "fileno", "(", ")", ")", ",", "\"rb\"", ",", "65536", ")", "outfile", "=", "os", ".", "fdopen", "(", "os", ".", "dup", "(", "sock", ".", "fileno", "(", ")", ")", ",", "\"wb\"", ",", "65536", ")", "if", "not", "authenticated", ":", "client_secret", "=", "UTF8Deserializer", "(", ")", ".", "loads", "(", "infile", ")", "if", "os", ".", "environ", "[", "\"PYTHON_WORKER_FACTORY_SECRET\"", "]", "==", "client_secret", ":", "write_with_length", "(", "\"ok\"", ".", "encode", "(", "\"utf-8\"", ")", ",", "outfile", ")", "outfile", ".", "flush", "(", ")", "else", ":", "write_with_length", "(", "\"err\"", ".", "encode", "(", "\"utf-8\"", ")", ",", "outfile", ")", "outfile", ".", "flush", "(", ")", "sock", ".", "close", "(", ")", "return", "1", "exit_code", "=", "0", "try", ":", "worker_main", "(", "infile", ",", "outfile", ")", "except", "SystemExit", "as", "exc", ":", "exit_code", "=", "compute_real_exit_code", "(", "exc", ".", "code", ")", "finally", ":", "try", ":", "outfile", ".", "flush", "(", ")", "except", "Exception", ":", "pass", "return", "exit_code" ]
Called by a worker process after the fork().
[ "Called", "by", "a", "worker", "process", "after", "the", "fork", "()", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/daemon.py#L43-L81
train
This function is called by the worker process.
apache/spark
python/pyspark/rdd.py
portable_hash
def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version_info >= (3, 2, 3) and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return int(h) return hash(x)
python
def portable_hash(x): """ This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521 """ if sys.version_info >= (3, 2, 3) and 'PYTHONHASHSEED' not in os.environ: raise Exception("Randomness of hash of string should be disabled via PYTHONHASHSEED") if x is None: return 0 if isinstance(x, tuple): h = 0x345678 for i in x: h ^= portable_hash(i) h *= 1000003 h &= sys.maxsize h ^= len(x) if h == -1: h = -2 return int(h) return hash(x)
[ "def", "portable_hash", "(", "x", ")", ":", "if", "sys", ".", "version_info", ">=", "(", "3", ",", "2", ",", "3", ")", "and", "'PYTHONHASHSEED'", "not", "in", "os", ".", "environ", ":", "raise", "Exception", "(", "\"Randomness of hash of string should be disabled via PYTHONHASHSEED\"", ")", "if", "x", "is", "None", ":", "return", "0", "if", "isinstance", "(", "x", ",", "tuple", ")", ":", "h", "=", "0x345678", "for", "i", "in", "x", ":", "h", "^=", "portable_hash", "(", "i", ")", "h", "*=", "1000003", "h", "&=", "sys", ".", "maxsize", "h", "^=", "len", "(", "x", ")", "if", "h", "==", "-", "1", ":", "h", "=", "-", "2", "return", "int", "(", "h", ")", "return", "hash", "(", "x", ")" ]
This function returns consistent hash code for builtin types, especially for None and tuple with None. The algorithm is similar to that one used by CPython 2.7 >>> portable_hash(None) 0 >>> portable_hash((None, 1)) & 0xffffffff 219750521
[ "This", "function", "returns", "consistent", "hash", "code", "for", "builtin", "types", "especially", "for", "None", "and", "tuple", "with", "None", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L78-L106
train
This function returns consistent hash code for builtin types and tuple with None.
apache/spark
python/pyspark/rdd.py
_parse_memory
def _parse_memory(s): """ Parse a memory string in the format supported by Java (e.g. 1g, 200m) and return the value in MiB >>> _parse_memory("256m") 256 >>> _parse_memory("2g") 2048 """ units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024} if s[-1].lower() not in units: raise ValueError("invalid format: " + s) return int(float(s[:-1]) * units[s[-1].lower()])
python
def _parse_memory(s): """ Parse a memory string in the format supported by Java (e.g. 1g, 200m) and return the value in MiB >>> _parse_memory("256m") 256 >>> _parse_memory("2g") 2048 """ units = {'g': 1024, 'm': 1, 't': 1 << 20, 'k': 1.0 / 1024} if s[-1].lower() not in units: raise ValueError("invalid format: " + s) return int(float(s[:-1]) * units[s[-1].lower()])
[ "def", "_parse_memory", "(", "s", ")", ":", "units", "=", "{", "'g'", ":", "1024", ",", "'m'", ":", "1", ",", "'t'", ":", "1", "<<", "20", ",", "'k'", ":", "1.0", "/", "1024", "}", "if", "s", "[", "-", "1", "]", ".", "lower", "(", ")", "not", "in", "units", ":", "raise", "ValueError", "(", "\"invalid format: \"", "+", "s", ")", "return", "int", "(", "float", "(", "s", "[", ":", "-", "1", "]", ")", "*", "units", "[", "s", "[", "-", "1", "]", ".", "lower", "(", ")", "]", ")" ]
Parse a memory string in the format supported by Java (e.g. 1g, 200m) and return the value in MiB >>> _parse_memory("256m") 256 >>> _parse_memory("2g") 2048
[ "Parse", "a", "memory", "string", "in", "the", "format", "supported", "by", "Java", "(", "e", ".", "g", ".", "1g", "200m", ")", "and", "return", "the", "value", "in", "MiB" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L125-L138
train
Parse a memory string in the format supported by Java and return the value in MiB.
apache/spark
python/pyspark/rdd.py
ignore_unicode_prefix
def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f
python
def ignore_unicode_prefix(f): """ Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3 """ if sys.version >= '3': # the representation of unicode string in Python 3 does not have prefix 'u', # so remove the prefix 'u' for doc tests literal_re = re.compile(r"(\W|^)[uU](['])", re.UNICODE) f.__doc__ = literal_re.sub(r'\1\2', f.__doc__) return f
[ "def", "ignore_unicode_prefix", "(", "f", ")", ":", "if", "sys", ".", "version", ">=", "'3'", ":", "# the representation of unicode string in Python 3 does not have prefix 'u',", "# so remove the prefix 'u' for doc tests", "literal_re", "=", "re", ".", "compile", "(", "r\"(\\W|^)[uU](['])\"", ",", "re", ".", "UNICODE", ")", "f", ".", "__doc__", "=", "literal_re", ".", "sub", "(", "r'\\1\\2'", ",", "f", ".", "__doc__", ")", "return", "f" ]
Ignore the 'u' prefix of string in doc tests, to make it works in both python 2 and 3
[ "Ignore", "the", "u", "prefix", "of", "string", "in", "doc", "tests", "to", "make", "it", "works", "in", "both", "python", "2", "and", "3" ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L150-L160
train
Ignore the u prefix of string in doc tests
apache/spark
python/pyspark/rdd.py
RDD.persist
def persist(self, storageLevel=StorageLevel.MEMORY_ONLY): """ Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}). >>> rdd = sc.parallelize(["b", "a", "c"]) >>> rdd.persist().is_cached True """ self.is_cached = True javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) self._jrdd.persist(javaStorageLevel) return self
python
def persist(self, storageLevel=StorageLevel.MEMORY_ONLY): """ Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}). >>> rdd = sc.parallelize(["b", "a", "c"]) >>> rdd.persist().is_cached True """ self.is_cached = True javaStorageLevel = self.ctx._getJavaStorageLevel(storageLevel) self._jrdd.persist(javaStorageLevel) return self
[ "def", "persist", "(", "self", ",", "storageLevel", "=", "StorageLevel", ".", "MEMORY_ONLY", ")", ":", "self", ".", "is_cached", "=", "True", "javaStorageLevel", "=", "self", ".", "ctx", ".", "_getJavaStorageLevel", "(", "storageLevel", ")", "self", ".", "_jrdd", ".", "persist", "(", "javaStorageLevel", ")", "return", "self" ]
Set this RDD's storage level to persist its values across operations after the first time it is computed. This can only be used to assign a new storage level if the RDD does not have a storage level set yet. If no storage level is specified defaults to (C{MEMORY_ONLY}). >>> rdd = sc.parallelize(["b", "a", "c"]) >>> rdd.persist().is_cached True
[ "Set", "this", "RDD", "s", "storage", "level", "to", "persist", "its", "values", "across", "operations", "after", "the", "first", "time", "it", "is", "computed", ".", "This", "can", "only", "be", "used", "to", "assign", "a", "new", "storage", "level", "if", "the", "RDD", "does", "not", "have", "a", "storage", "level", "set", "yet", ".", "If", "no", "storage", "level", "is", "specified", "defaults", "to", "(", "C", "{", "MEMORY_ONLY", "}", ")", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L231-L245
train
Set this RDD s storage level to persist its values across operations .
apache/spark
python/pyspark/rdd.py
RDD.flatMap
def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(fail_on_stopiteration(f), iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning)
python
def flatMap(self, f, preservesPartitioning=False): """ Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)] """ def func(s, iterator): return chain.from_iterable(map(fail_on_stopiteration(f), iterator)) return self.mapPartitionsWithIndex(func, preservesPartitioning)
[ "def", "flatMap", "(", "self", ",", "f", ",", "preservesPartitioning", "=", "False", ")", ":", "def", "func", "(", "s", ",", "iterator", ")", ":", "return", "chain", ".", "from_iterable", "(", "map", "(", "fail_on_stopiteration", "(", "f", ")", ",", "iterator", ")", ")", "return", "self", ".", "mapPartitionsWithIndex", "(", "func", ",", "preservesPartitioning", ")" ]
Return a new RDD by first applying a function to all elements of this RDD, and then flattening the results. >>> rdd = sc.parallelize([2, 3, 4]) >>> sorted(rdd.flatMap(lambda x: range(1, x)).collect()) [1, 1, 1, 2, 2, 3] >>> sorted(rdd.flatMap(lambda x: [(x, x), (x, x)]).collect()) [(2, 2), (2, 2), (3, 3), (3, 3), (4, 4), (4, 4)]
[ "Return", "a", "new", "RDD", "by", "first", "applying", "a", "function", "to", "all", "elements", "of", "this", "RDD", "and", "then", "flattening", "the", "results", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L329-L342
train
Return a new RDD by first applying a function to all elements of this RDD and then flattening the results.
apache/spark
python/pyspark/rdd.py
RDD.mapPartitionsWithSplit
def mapPartitionsWithSplit(self, f, preservesPartitioning=False): """ Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6 """ warnings.warn("mapPartitionsWithSplit is deprecated; " "use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2) return self.mapPartitionsWithIndex(f, preservesPartitioning)
python
def mapPartitionsWithSplit(self, f, preservesPartitioning=False): """ Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6 """ warnings.warn("mapPartitionsWithSplit is deprecated; " "use mapPartitionsWithIndex instead", DeprecationWarning, stacklevel=2) return self.mapPartitionsWithIndex(f, preservesPartitioning)
[ "def", "mapPartitionsWithSplit", "(", "self", ",", "f", ",", "preservesPartitioning", "=", "False", ")", ":", "warnings", ".", "warn", "(", "\"mapPartitionsWithSplit is deprecated; \"", "\"use mapPartitionsWithIndex instead\"", ",", "DeprecationWarning", ",", "stacklevel", "=", "2", ")", "return", "self", ".", "mapPartitionsWithIndex", "(", "f", ",", "preservesPartitioning", ")" ]
Deprecated: use mapPartitionsWithIndex instead. Return a new RDD by applying a function to each partition of this RDD, while tracking the index of the original partition. >>> rdd = sc.parallelize([1, 2, 3, 4], 4) >>> def f(splitIndex, iterator): yield splitIndex >>> rdd.mapPartitionsWithSplit(f).sum() 6
[ "Deprecated", ":", "use", "mapPartitionsWithIndex", "instead", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L369-L383
train
Return a new RDD by applying a function to each partition of this RDD while tracking the index of the original partition.
apache/spark
python/pyspark/rdd.py
RDD.sample
def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
python
def sample(self, withReplacement, fraction, seed=None): """ Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True """ assert fraction >= 0.0, "Negative fraction value: %s" % fraction return self.mapPartitionsWithIndex(RDDSampler(withReplacement, fraction, seed).func, True)
[ "def", "sample", "(", "self", ",", "withReplacement", ",", "fraction", ",", "seed", "=", "None", ")", ":", "assert", "fraction", ">=", "0.0", ",", "\"Negative fraction value: %s\"", "%", "fraction", "return", "self", ".", "mapPartitionsWithIndex", "(", "RDDSampler", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "func", ",", "True", ")" ]
Return a sampled subset of this RDD. :param withReplacement: can elements be sampled multiple times (replaced when sampled out) :param fraction: expected size of the sample as a fraction of this RDD's size without replacement: probability that each element is chosen; fraction must be [0, 1] with replacement: expected number of times each element is chosen; fraction must be >= 0 :param seed: seed for the random number generator .. note:: This is not guaranteed to provide exactly the fraction specified of the total count of the given :class:`DataFrame`. >>> rdd = sc.parallelize(range(100), 4) >>> 6 <= rdd.sample(False, 0.1, 81).count() <= 14 True
[ "Return", "a", "sampled", "subset", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L418-L436
train
Return a new RDD with the specified fraction of the total number of elements in this RDD.
apache/spark
python/pyspark/rdd.py
RDD.randomSplit
def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])]
python
def randomSplit(self, weights, seed=None): """ Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True """ s = float(sum(weights)) cweights = [0.0] for w in weights: cweights.append(cweights[-1] + w / s) if seed is None: seed = random.randint(0, 2 ** 32 - 1) return [self.mapPartitionsWithIndex(RDDRangeSampler(lb, ub, seed).func, True) for lb, ub in zip(cweights, cweights[1:])]
[ "def", "randomSplit", "(", "self", ",", "weights", ",", "seed", "=", "None", ")", ":", "s", "=", "float", "(", "sum", "(", "weights", ")", ")", "cweights", "=", "[", "0.0", "]", "for", "w", "in", "weights", ":", "cweights", ".", "append", "(", "cweights", "[", "-", "1", "]", "+", "w", "/", "s", ")", "if", "seed", "is", "None", ":", "seed", "=", "random", ".", "randint", "(", "0", ",", "2", "**", "32", "-", "1", ")", "return", "[", "self", ".", "mapPartitionsWithIndex", "(", "RDDRangeSampler", "(", "lb", ",", "ub", ",", "seed", ")", ".", "func", ",", "True", ")", "for", "lb", ",", "ub", "in", "zip", "(", "cweights", ",", "cweights", "[", "1", ":", "]", ")", "]" ]
Randomly splits this RDD with the provided weights. :param weights: weights for splits, will be normalized if they don't sum to 1 :param seed: random seed :return: split RDDs in a list >>> rdd = sc.parallelize(range(500), 1) >>> rdd1, rdd2 = rdd.randomSplit([2, 3], 17) >>> len(rdd1.collect() + rdd2.collect()) 500 >>> 150 < rdd1.count() < 250 True >>> 250 < rdd2.count() < 350 True
[ "Randomly", "splits", "this", "RDD", "with", "the", "provided", "weights", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L438-L462
train
Randomly splits this RDD with the provided weights.
apache/spark
python/pyspark/rdd.py
RDD.takeSample
def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num]
python
def takeSample(self, withReplacement, num, seed=None): """ Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10 """ numStDev = 10.0 if num < 0: raise ValueError("Sample size cannot be negative.") elif num == 0: return [] initialCount = self.count() if initialCount == 0: return [] rand = random.Random(seed) if (not withReplacement) and num >= initialCount: # shuffle current RDD and return samples = self.collect() rand.shuffle(samples) return samples maxSampleSize = sys.maxsize - int(numStDev * sqrt(sys.maxsize)) if num > maxSampleSize: raise ValueError( "Sample size cannot be greater than %d." % maxSampleSize) fraction = RDD._computeFractionForSampleSize( num, initialCount, withReplacement) samples = self.sample(withReplacement, fraction, seed).collect() # If the first sample didn't turn out large enough, keep trying to take samples; # this shouldn't happen often because we use a big multiplier for their initial size. # See: scala/spark/RDD.scala while len(samples) < num: # TODO: add log warning for when more than one iteration was run seed = rand.randint(0, sys.maxsize) samples = self.sample(withReplacement, fraction, seed).collect() rand.shuffle(samples) return samples[0:num]
[ "def", "takeSample", "(", "self", ",", "withReplacement", ",", "num", ",", "seed", "=", "None", ")", ":", "numStDev", "=", "10.0", "if", "num", "<", "0", ":", "raise", "ValueError", "(", "\"Sample size cannot be negative.\"", ")", "elif", "num", "==", "0", ":", "return", "[", "]", "initialCount", "=", "self", ".", "count", "(", ")", "if", "initialCount", "==", "0", ":", "return", "[", "]", "rand", "=", "random", ".", "Random", "(", "seed", ")", "if", "(", "not", "withReplacement", ")", "and", "num", ">=", "initialCount", ":", "# shuffle current RDD and return", "samples", "=", "self", ".", "collect", "(", ")", "rand", ".", "shuffle", "(", "samples", ")", "return", "samples", "maxSampleSize", "=", "sys", ".", "maxsize", "-", "int", "(", "numStDev", "*", "sqrt", "(", "sys", ".", "maxsize", ")", ")", "if", "num", ">", "maxSampleSize", ":", "raise", "ValueError", "(", "\"Sample size cannot be greater than %d.\"", "%", "maxSampleSize", ")", "fraction", "=", "RDD", ".", "_computeFractionForSampleSize", "(", "num", ",", "initialCount", ",", "withReplacement", ")", "samples", "=", "self", ".", "sample", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "collect", "(", ")", "# If the first sample didn't turn out large enough, keep trying to take samples;", "# this shouldn't happen often because we use a big multiplier for their initial size.", "# See: scala/spark/RDD.scala", "while", "len", "(", "samples", ")", "<", "num", ":", "# TODO: add log warning for when more than one iteration was run", "seed", "=", "rand", ".", "randint", "(", "0", ",", "sys", ".", "maxsize", ")", "samples", "=", "self", ".", "sample", "(", "withReplacement", ",", "fraction", ",", "seed", ")", ".", "collect", "(", ")", "rand", ".", "shuffle", "(", "samples", ")", "return", "samples", "[", "0", ":", "num", "]" ]
Return a fixed-size sampled subset of this RDD. .. note:: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver's memory. >>> rdd = sc.parallelize(range(0, 10)) >>> len(rdd.takeSample(True, 20, 1)) 20 >>> len(rdd.takeSample(False, 5, 2)) 5 >>> len(rdd.takeSample(False, 15, 3)) 10
[ "Return", "a", "fixed", "-", "size", "sampled", "subset", "of", "this", "RDD", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L465-L518
train
Return a fixed - size sampled subset of this RDD.
apache/spark
python/pyspark/rdd.py
RDD._computeFractionForSampleSize
def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): """ Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement. """ fraction = float(sampleSizeLowerBound) / total if withReplacement: numStDev = 5 if (sampleSizeLowerBound < 12): numStDev = 9 return fraction + numStDev * sqrt(fraction / total) else: delta = 0.00005 gamma = - log(delta) / total return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction))
python
def _computeFractionForSampleSize(sampleSizeLowerBound, total, withReplacement): """ Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement. """ fraction = float(sampleSizeLowerBound) / total if withReplacement: numStDev = 5 if (sampleSizeLowerBound < 12): numStDev = 9 return fraction + numStDev * sqrt(fraction / total) else: delta = 0.00005 gamma = - log(delta) / total return min(1, fraction + gamma + sqrt(gamma * gamma + 2 * gamma * fraction))
[ "def", "_computeFractionForSampleSize", "(", "sampleSizeLowerBound", ",", "total", ",", "withReplacement", ")", ":", "fraction", "=", "float", "(", "sampleSizeLowerBound", ")", "/", "total", "if", "withReplacement", ":", "numStDev", "=", "5", "if", "(", "sampleSizeLowerBound", "<", "12", ")", ":", "numStDev", "=", "9", "return", "fraction", "+", "numStDev", "*", "sqrt", "(", "fraction", "/", "total", ")", "else", ":", "delta", "=", "0.00005", "gamma", "=", "-", "log", "(", "delta", ")", "/", "total", "return", "min", "(", "1", ",", "fraction", "+", "gamma", "+", "sqrt", "(", "gamma", "*", "gamma", "+", "2", "*", "gamma", "*", "fraction", ")", ")" ]
Returns a sampling rate that guarantees a sample of size >= sampleSizeLowerBound 99.99% of the time. How the sampling rate is determined: Let p = num / total, where num is the sample size and total is the total number of data points in the RDD. We're trying to compute q > p such that - when sampling with replacement, we're drawing each data point with prob_i ~ Pois(q), where we want to guarantee Pr[s < num] < 0.0001 for s = sum(prob_i for i from 0 to total), i.e. the failure rate of not having a sufficiently large sample < 0.0001. Setting q = p + 5 * sqrt(p/total) is sufficient to guarantee 0.9999 success rate for num > 12, but we need a slightly larger q (9 empirically determined). - when sampling without replacement, we're drawing each data point with prob_i ~ Binomial(total, fraction) and our choice of q guarantees 1-delta, or 0.9999 success rate, where success rate is defined the same as in sampling with replacement.
[ "Returns", "a", "sampling", "rate", "that", "guarantees", "a", "sample", "of", "size", ">", "=", "sampleSizeLowerBound", "99", ".", "99%", "of", "the", "time", "." ]
618d6bff71073c8c93501ab7392c3cc579730f0b
https://github.com/apache/spark/blob/618d6bff71073c8c93501ab7392c3cc579730f0b/python/pyspark/rdd.py#L521-L551
train
Compute the sampling rate for a specific sample size.
README.md exists but content is empty.
Downloads last month
18

Spaces using frankjosh/filtered_dataset 2