rct_dataset / convert_images.py
frutiemax's picture
Add helper scripts
fcbbb8b
raw
history blame
1.26 kB
import subprocess
import os
from pathlib import Path
from PIL import Image
import numpy as np
input_folder = Path("./original_images/")
output_folder = Path("./data/train/")
output_folder.mkdir(parents=True, exist_ok=True)
folders = os.listdir(input_folder)
for folder in folders:
folder_path = input_folder.joinpath(folder)
images = os.listdir(folder_path)
for image in images:
output = output_folder.joinpath(f'{folder}')
output.mkdir(parents=True, exist_ok=True)
output = output.joinpath(f'{folder}_{image}')
output = str(output.absolute())
input = folder_path.joinpath(image)
input = str(input.absolute())
if os.path.isfile(input) == False or '.json' in image:
continue
image_input = Image.open(input)
background_color = (23, 35, 35, 255)
new_color = (0, 0, 0, 255)
data = np.array(image_input)
data[(data == background_color).all(axis=-1)] = new_color
image_input = Image.fromarray(data, 'RGBA')
new_image = Image.new('RGB', image_input.size)
new_image.paste(image_input, mask=image_input.split()[3])
bbox = new_image.getbbox()
new_image = new_image.crop(bbox)
new_image.save(output)