pipeline_tag
stringclasses
48 values
library_name
stringclasses
198 values
text
stringlengths
1
900k
metadata
stringlengths
2
438k
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
arxiv
sequencelengths
0
201
languages
sequencelengths
0
1.83k
tags_str
stringlengths
17
9.34k
text_str
stringlengths
0
389k
text_lists
sequencelengths
0
722
processed_texts
sequencelengths
1
723
tokens_length
sequencelengths
1
723
input_texts
sequencelengths
1
1
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
monjoychoudhury29/gpt2PPO200
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:22:32+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
sentence-similarity
sentence-transformers
# Kyurem This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [Model Stock](https://arxiv.org/abs/2403.19522) merge method using [TaylorAI/bge-micro](https://huggingface.co/TaylorAI/bge-micro) as a base. ### Models Merged The following models were included in the merge: * [Mihaiii/Wartortle](https://huggingface.co/Mihaiii/Wartortle) * [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Mihaiii/Wartortle - model: TaylorAI/bge-micro-v2 - model: TaylorAI/bge-micro merge_method: model_stock base_model: TaylorAI/bge-micro ```
{"license": "mit", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge"], "pipeline_tag": "sentence-similarity", "base_model": ["Mihaiii/Wartortle", "TaylorAI/bge-micro-v2", "TaylorAI/bge-micro"], "model-index": [{"name": "Kyurem", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 66.83582089552239}, {"type": "ap", "value": 29.376874523513568}, {"type": "f1", "value": 60.66923695285069}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 70.484925}, {"type": "ap", "value": 64.8627321394567}, {"type": "f1", "value": 70.2682474297364}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 33.652}, {"type": "f1", "value": 33.48200260424572}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 22.404}, {"type": "map_at_10", "value": 36.144999999999996}, {"type": "map_at_100", "value": 37.309}, {"type": "map_at_1000", "value": 37.333}, {"type": "map_at_20", "value": 37.0}, {"type": "map_at_3", "value": 31.105}, {"type": "map_at_5", "value": 34.149}, {"type": "mrr_at_1", "value": 23.186}, {"type": "mrr_at_10", "value": 36.439}, {"type": "mrr_at_100", "value": 37.617}, {"type": "mrr_at_1000", "value": 37.641000000000005}, {"type": "mrr_at_20", "value": 37.308}, {"type": "mrr_at_3", "value": 31.52}, {"type": "mrr_at_5", "value": 34.486}, {"type": "ndcg_at_1", "value": 22.404}, {"type": "ndcg_at_10", "value": 44.346000000000004}, {"type": "ndcg_at_100", "value": 49.594}, {"type": "ndcg_at_1000", "value": 50.183}, {"type": "ndcg_at_20", "value": 47.435}, {"type": "ndcg_at_3", "value": 34.032000000000004}, {"type": "ndcg_at_5", "value": 39.513999999999996}, {"type": "precision_at_1", "value": 22.404}, {"type": "precision_at_10", "value": 7.077}, {"type": "precision_at_100", "value": 0.9440000000000001}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 4.147}, {"type": "precision_at_3", "value": 14.177000000000001}, {"type": "precision_at_5", "value": 11.166}, {"type": "recall_at_1", "value": 22.404}, {"type": "recall_at_10", "value": 70.768}, {"type": "recall_at_100", "value": 94.381}, {"type": "recall_at_1000", "value": 98.933}, {"type": "recall_at_20", "value": 82.93}, {"type": "recall_at_3", "value": 42.532}, {"type": "recall_at_5", "value": 55.832}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 41.21099868792524}, {"type": "v_measures", "value": [0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081, 0.40254382303117714, 0.4224347357966498, 0.4262617634576952, 0.4155783533141191, 0.4134542696349061, 0.4109306689786127, 0.42283748567668517, 0.42630877911174075, 0.41954609741659976, 0.4080526281513678, 0.4665726313656592, 0.46970780377849464, 0.47074911489648613, 0.47032107785889893, 0.47247596890763377, 0.4743057900773427, 0.47343092962272254, 0.4740124648309491, 0.47535619759392983, 0.47158247790286856, 0.437018098047854, 0.27185199681652455, 0.3306623377989388, 0.33899929363512366, 0.3121088511800512, 0.23413488160460388, 0.2719324856879174, 0.1998457246704459, 0.24909013187651663, 1.0, 0.2433027305343081]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 30.197465353915163}, {"type": "v_measures", "value": [0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163, 0.2905524176824988, 0.291103538455947, 0.28894162841179344, 0.29649675876421755, 0.29231736509624334, 0.30442213735811063, 0.2847393063957453, 0.26988201497587866, 0.2711592176853713, 0.28311982942883407, 0.3518959784626743, 0.33624815138935277, 0.34168811776728936, 0.3493214206111818, 0.3499866889294907, 0.3430234433994317, 0.34590297266407044, 0.3510161765327283, 0.3453908893596643, 0.34714783179256786, 0.30825855383831946, 0.18694103070132714, 0.23709665898103785, 0.25367423666463856, 0.22273213483970394, 0.16424804396466802, 0.1942990554685164, 0.12027269236596984, 0.18123437904907694, 1.0, 0.15810158867735163]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 56.482918023354756}, {"type": "mrr", "value": 71.40625687024578}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.45457865102485}, {"type": "cos_sim_spearman", "value": 80.93979607539022}, {"type": "euclidean_pearson", "value": 80.32159015984955}, {"type": "euclidean_spearman", "value": 80.43857983556106}, {"type": "manhattan_pearson", "value": 79.92848954545586}, {"type": "manhattan_spearman", "value": 80.13375361278035}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 78.03896103896105}, {"type": "f1", "value": 77.95281857082068}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 35.6206528975171}, {"type": "v_measures", "value": [0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064, 0.3550189100877105, 0.34550652980495794, 0.36092536833460803, 0.35938254051414886, 0.3516284143017118, 0.35098438313464037, 0.3586214467312379, 0.36298576063406635, 0.3490090965727369, 0.36800283963589064]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 25.403397653930277}, {"type": "v_measures", "value": [0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105, 0.25211135920974637, 0.2555810935778401, 0.24514558082881716, 0.2403770723658212, 0.24447620192409808, 0.2626903314918885, 0.26306584584054, 0.25496385558544915, 0.25490931908560616, 0.26701910548322105]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 21.698999999999998}, {"type": "map_at_10", "value": 28.98}, {"type": "map_at_100", "value": 30.364}, {"type": "map_at_1000", "value": 30.516}, {"type": "map_at_20", "value": 29.681}, {"type": "map_at_3", "value": 26.418000000000003}, {"type": "map_at_5", "value": 27.590999999999998}, {"type": "mrr_at_1", "value": 27.325}, {"type": "mrr_at_10", "value": 34.595}, {"type": "mrr_at_100", "value": 35.63}, {"type": "mrr_at_1000", "value": 35.705}, {"type": "mrr_at_20", "value": 35.199000000000005}, {"type": "mrr_at_3", "value": 32.403}, {"type": "mrr_at_5", "value": 33.605000000000004}, {"type": "ndcg_at_1", "value": 27.325}, {"type": "ndcg_at_10", "value": 34.005}, {"type": "ndcg_at_100", "value": 40.031}, {"type": "ndcg_at_1000", "value": 42.962}, {"type": "ndcg_at_20", "value": 36.095}, {"type": "ndcg_at_3", "value": 30.081999999999997}, {"type": "ndcg_at_5", "value": 31.447999999999997}, {"type": "precision_at_1", "value": 27.325}, {"type": "precision_at_10", "value": 6.552}, {"type": "precision_at_100", "value": 1.22}, {"type": "precision_at_1000", "value": 0.17500000000000002}, {"type": "precision_at_20", "value": 4.041}, {"type": "precision_at_3", "value": 14.496999999999998}, {"type": "precision_at_5", "value": 10.242999999999999}, {"type": "recall_at_1", "value": 21.698999999999998}, {"type": "recall_at_10", "value": 43.295}, {"type": "recall_at_100", "value": 69.304}, {"type": "recall_at_1000", "value": 89.241}, {"type": "recall_at_20", "value": 50.856}, {"type": "recall_at_3", "value": 31.230000000000004}, {"type": "recall_at_5", "value": 35.587999999999994}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 14.81}, {"type": "map_at_10", "value": 19.692999999999998}, {"type": "map_at_100", "value": 20.535}, {"type": "map_at_1000", "value": 20.643}, {"type": "map_at_20", "value": 20.097}, {"type": "map_at_3", "value": 18.157}, {"type": "map_at_5", "value": 19.006999999999998}, {"type": "mrr_at_1", "value": 17.898}, {"type": "mrr_at_10", "value": 22.719}, {"type": "mrr_at_100", "value": 23.473}, {"type": "mrr_at_1000", "value": 23.547}, {"type": "mrr_at_20", "value": 23.111}, {"type": "mrr_at_3", "value": 21.189}, {"type": "mrr_at_5", "value": 21.934}, {"type": "ndcg_at_1", "value": 17.898}, {"type": "ndcg_at_10", "value": 22.817999999999998}, {"type": "ndcg_at_100", "value": 26.998}, {"type": "ndcg_at_1000", "value": 29.698}, {"type": "ndcg_at_20", "value": 24.123}, {"type": "ndcg_at_3", "value": 20.115}, {"type": "ndcg_at_5", "value": 21.288999999999998}, {"type": "precision_at_1", "value": 17.898}, {"type": "precision_at_10", "value": 4.159}, {"type": "precision_at_100", "value": 0.769}, {"type": "precision_at_1000", "value": 0.123}, {"type": "precision_at_20", "value": 2.506}, {"type": "precision_at_3", "value": 9.406}, {"type": "precision_at_5", "value": 6.688}, {"type": "recall_at_1", "value": 14.81}, {"type": "recall_at_10", "value": 29.049000000000003}, {"type": "recall_at_100", "value": 47.699999999999996}, {"type": "recall_at_1000", "value": 66.43599999999999}, {"type": "recall_at_20", "value": 33.812}, {"type": "recall_at_3", "value": 21.435000000000002}, {"type": "recall_at_5", "value": 24.573999999999998}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 25.629}, {"type": "map_at_10", "value": 35.592}, {"type": "map_at_100", "value": 36.663000000000004}, {"type": "map_at_1000", "value": 36.746}, {"type": "map_at_20", "value": 36.15}, {"type": "map_at_3", "value": 32.903}, {"type": "map_at_5", "value": 34.448}, {"type": "mrr_at_1", "value": 29.404000000000003}, {"type": "mrr_at_10", "value": 38.423}, {"type": "mrr_at_100", "value": 39.283}, {"type": "mrr_at_1000", "value": 39.334}, {"type": "mrr_at_20", "value": 38.895}, {"type": "mrr_at_3", "value": 36.134}, {"type": "mrr_at_5", "value": 37.441}, {"type": "ndcg_at_1", "value": 29.404000000000003}, {"type": "ndcg_at_10", "value": 40.814}, {"type": "ndcg_at_100", "value": 45.800999999999995}, {"type": "ndcg_at_1000", "value": 47.721999999999994}, {"type": "ndcg_at_20", "value": 42.576}, {"type": "ndcg_at_3", "value": 35.931999999999995}, {"type": "ndcg_at_5", "value": 38.305}, {"type": "precision_at_1", "value": 29.404000000000003}, {"type": "precision_at_10", "value": 6.802999999999999}, {"type": "precision_at_100", "value": 1.023}, {"type": "precision_at_1000", "value": 0.125}, {"type": "precision_at_20", "value": 3.9059999999999997}, {"type": "precision_at_3", "value": 16.343}, {"type": "precision_at_5", "value": 11.472999999999999}, {"type": "recall_at_1", "value": 25.629}, {"type": "recall_at_10", "value": 53.672}, {"type": "recall_at_100", "value": 76.322}, {"type": "recall_at_1000", "value": 90.231}, {"type": "recall_at_20", "value": 60.19}, {"type": "recall_at_3", "value": 40.454}, {"type": "recall_at_5", "value": 46.237}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 15.157000000000002}, {"type": "map_at_10", "value": 21.04}, {"type": "map_at_100", "value": 21.94}, {"type": "map_at_1000", "value": 22.048000000000002}, {"type": "map_at_20", "value": 21.497}, {"type": "map_at_3", "value": 19.082}, {"type": "map_at_5", "value": 20.252}, {"type": "mrr_at_1", "value": 16.723}, {"type": "mrr_at_10", "value": 22.637999999999998}, {"type": "mrr_at_100", "value": 23.51}, {"type": "mrr_at_1000", "value": 23.602}, {"type": "mrr_at_20", "value": 23.086000000000002}, {"type": "mrr_at_3", "value": 20.716}, {"type": "mrr_at_5", "value": 21.863}, {"type": "ndcg_at_1", "value": 16.723}, {"type": "ndcg_at_10", "value": 24.684}, {"type": "ndcg_at_100", "value": 29.397000000000002}, {"type": "ndcg_at_1000", "value": 32.545}, {"type": "ndcg_at_20", "value": 26.299}, {"type": "ndcg_at_3", "value": 20.809}, {"type": "ndcg_at_5", "value": 22.830000000000002}, {"type": "precision_at_1", "value": 16.723}, {"type": "precision_at_10", "value": 3.932}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.098}, {"type": "precision_at_20", "value": 2.339}, {"type": "precision_at_3", "value": 8.964}, {"type": "precision_at_5", "value": 6.531000000000001}, {"type": "recall_at_1", "value": 15.157000000000002}, {"type": "recall_at_10", "value": 34.552}, {"type": "recall_at_100", "value": 56.629}, {"type": "recall_at_1000", "value": 80.962}, {"type": "recall_at_20", "value": 40.626}, {"type": "recall_at_3", "value": 24.012}, {"type": "recall_at_5", "value": 28.888}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 10.983}, {"type": "map_at_10", "value": 16.149}, {"type": "map_at_100", "value": 17.321}, {"type": "map_at_1000", "value": 17.432}, {"type": "map_at_20", "value": 16.742}, {"type": "map_at_3", "value": 14.524999999999999}, {"type": "map_at_5", "value": 15.357000000000001}, {"type": "mrr_at_1", "value": 13.433}, {"type": "mrr_at_10", "value": 19.508}, {"type": "mrr_at_100", "value": 20.559}, {"type": "mrr_at_1000", "value": 20.64}, {"type": "mrr_at_20", "value": 20.078}, {"type": "mrr_at_3", "value": 17.848}, {"type": "mrr_at_5", "value": 18.657}, {"type": "ndcg_at_1", "value": 13.433}, {"type": "ndcg_at_10", "value": 19.719}, {"type": "ndcg_at_100", "value": 25.689}, {"type": "ndcg_at_1000", "value": 28.907}, {"type": "ndcg_at_20", "value": 21.816}, {"type": "ndcg_at_3", "value": 16.659}, {"type": "ndcg_at_5", "value": 17.877000000000002}, {"type": "precision_at_1", "value": 13.433}, {"type": "precision_at_10", "value": 3.794}, {"type": "precision_at_100", "value": 0.7849999999999999}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_20", "value": 2.456}, {"type": "precision_at_3", "value": 8.126}, {"type": "precision_at_5", "value": 5.821}, {"type": "recall_at_1", "value": 10.983}, {"type": "recall_at_10", "value": 27.284000000000002}, {"type": "recall_at_100", "value": 54.167}, {"type": "recall_at_1000", "value": 78.131}, {"type": "recall_at_20", "value": 35.012}, {"type": "recall_at_3", "value": 18.557000000000002}, {"type": "recall_at_5", "value": 21.753}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 19.062}, {"type": "map_at_10", "value": 26.586}, {"type": "map_at_100", "value": 27.767999999999997}, {"type": "map_at_1000", "value": 27.904}, {"type": "map_at_20", "value": 27.162999999999997}, {"type": "map_at_3", "value": 23.751}, {"type": "map_at_5", "value": 25.320999999999998}, {"type": "mrr_at_1", "value": 23.388}, {"type": "mrr_at_10", "value": 31.291999999999998}, {"type": "mrr_at_100", "value": 32.196000000000005}, {"type": "mrr_at_1000", "value": 32.269999999999996}, {"type": "mrr_at_20", "value": 31.752000000000002}, {"type": "mrr_at_3", "value": 28.681}, {"type": "mrr_at_5", "value": 30.168}, {"type": "ndcg_at_1", "value": 23.388}, {"type": "ndcg_at_10", "value": 31.741999999999997}, {"type": "ndcg_at_100", "value": 37.279}, {"type": "ndcg_at_1000", "value": 40.199}, {"type": "ndcg_at_20", "value": 33.566}, {"type": "ndcg_at_3", "value": 26.858999999999998}, {"type": "ndcg_at_5", "value": 29.165000000000003}, {"type": "precision_at_1", "value": 23.388}, {"type": "precision_at_10", "value": 6.0249999999999995}, {"type": "precision_at_100", "value": 1.056}, {"type": "precision_at_1000", "value": 0.151}, {"type": "precision_at_20", "value": 3.614}, {"type": "precision_at_3", "value": 12.737000000000002}, {"type": "precision_at_5", "value": 9.471}, {"type": "recall_at_1", "value": 19.062}, {"type": "recall_at_10", "value": 42.549}, {"type": "recall_at_100", "value": 66.708}, {"type": "recall_at_1000", "value": 86.7}, {"type": "recall_at_20", "value": 48.991}, {"type": "recall_at_3", "value": 29.024}, {"type": "recall_at_5", "value": 34.885}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 13.578000000000001}, {"type": "map_at_10", "value": 19.436}, {"type": "map_at_100", "value": 20.51}, {"type": "map_at_1000", "value": 20.654}, {"type": "map_at_20", "value": 19.948}, {"type": "map_at_3", "value": 17.293}, {"type": "map_at_5", "value": 18.166}, {"type": "mrr_at_1", "value": 16.21}, {"type": "mrr_at_10", "value": 22.668}, {"type": "mrr_at_100", "value": 23.572000000000003}, {"type": "mrr_at_1000", "value": 23.666}, {"type": "mrr_at_20", "value": 23.095}, {"type": "mrr_at_3", "value": 20.491}, {"type": "mrr_at_5", "value": 21.444}, {"type": "ndcg_at_1", "value": 16.21}, {"type": "ndcg_at_10", "value": 23.648}, {"type": "ndcg_at_100", "value": 29.029}, {"type": "ndcg_at_1000", "value": 32.550000000000004}, {"type": "ndcg_at_20", "value": 25.28}, {"type": "ndcg_at_3", "value": 19.515}, {"type": "ndcg_at_5", "value": 20.821}, {"type": "precision_at_1", "value": 16.21}, {"type": "precision_at_10", "value": 4.566}, {"type": "precision_at_100", "value": 0.873}, {"type": "precision_at_1000", "value": 0.135}, {"type": "precision_at_20", "value": 2.791}, {"type": "precision_at_3", "value": 9.399000000000001}, {"type": "precision_at_5", "value": 6.758}, {"type": "recall_at_1", "value": 13.578000000000001}, {"type": "recall_at_10", "value": 33.276}, {"type": "recall_at_100", "value": 57.316}, {"type": "recall_at_1000", "value": 82.33500000000001}, {"type": "recall_at_20", "value": 38.95}, {"type": "recall_at_3", "value": 21.467}, {"type": "recall_at_5", "value": 24.939}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 15.536166666666668}, {"type": "map_at_10", "value": 21.584333333333337}, {"type": "map_at_100", "value": 22.610750000000003}, {"type": "map_at_1000", "value": 22.732083333333335}, {"type": "map_at_20", "value": 22.088166666666666}, {"type": "map_at_3", "value": 19.561583333333328}, {"type": "map_at_5", "value": 20.634666666666668}, {"type": "mrr_at_1", "value": 18.388583333333333}, {"type": "mrr_at_10", "value": 24.63783333333333}, {"type": "mrr_at_100", "value": 25.53608333333333}, {"type": "mrr_at_1000", "value": 25.61658333333333}, {"type": "mrr_at_20", "value": 25.101000000000003}, {"type": "mrr_at_3", "value": 22.641583333333333}, {"type": "mrr_at_5", "value": 23.715083333333336}, {"type": "ndcg_at_1", "value": 18.388583333333333}, {"type": "ndcg_at_10", "value": 25.564000000000004}, {"type": "ndcg_at_100", "value": 30.654500000000002}, {"type": "ndcg_at_1000", "value": 33.64308333333334}, {"type": "ndcg_at_20", "value": 27.234}, {"type": "ndcg_at_3", "value": 21.81491666666667}, {"type": "ndcg_at_5", "value": 23.46691666666667}, {"type": "precision_at_1", "value": 18.388583333333333}, {"type": "precision_at_10", "value": 4.581499999999999}, {"type": "precision_at_100", "value": 0.8400833333333335}, {"type": "precision_at_1000", "value": 0.12791666666666665}, {"type": "precision_at_20", "value": 2.7849166666666663}, {"type": "precision_at_3", "value": 10.077333333333334}, {"type": "precision_at_5", "value": 7.273250000000001}, {"type": "recall_at_1", "value": 15.536166666666668}, {"type": "recall_at_10", "value": 34.61533333333334}, {"type": "recall_at_100", "value": 57.71308333333332}, {"type": "recall_at_1000", "value": 79.32074999999999}, {"type": "recall_at_20", "value": 40.750416666666666}, {"type": "recall_at_3", "value": 24.079333333333334}, {"type": "recall_at_5", "value": 28.31308333333333}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 14.603}, {"type": "map_at_10", "value": 20.063}, {"type": "map_at_100", "value": 20.966}, {"type": "map_at_1000", "value": 21.060000000000002}, {"type": "map_at_20", "value": 20.531}, {"type": "map_at_3", "value": 18.448}, {"type": "map_at_5", "value": 19.484}, {"type": "mrr_at_1", "value": 16.258}, {"type": "mrr_at_10", "value": 22.21}, {"type": "mrr_at_100", "value": 23.066}, {"type": "mrr_at_1000", "value": 23.142}, {"type": "mrr_at_20", "value": 22.631999999999998}, {"type": "mrr_at_3", "value": 20.602999999999998}, {"type": "mrr_at_5", "value": 21.593}, {"type": "ndcg_at_1", "value": 16.258}, {"type": "ndcg_at_10", "value": 23.396}, {"type": "ndcg_at_100", "value": 28.023999999999997}, {"type": "ndcg_at_1000", "value": 30.681000000000004}, {"type": "ndcg_at_20", "value": 24.971}, {"type": "ndcg_at_3", "value": 20.352}, {"type": "ndcg_at_5", "value": 22.036}, {"type": "precision_at_1", "value": 16.258}, {"type": "precision_at_10", "value": 3.758}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.096}, {"type": "precision_at_20", "value": 2.247}, {"type": "precision_at_3", "value": 9.1}, {"type": "precision_at_5", "value": 6.503}, {"type": "recall_at_1", "value": 14.603}, {"type": "recall_at_10", "value": 31.578}, {"type": "recall_at_100", "value": 52.87500000000001}, {"type": "recall_at_1000", "value": 72.993}, {"type": "recall_at_20", "value": 37.464}, {"type": "recall_at_3", "value": 23.089000000000002}, {"type": "recall_at_5", "value": 27.272000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 9.844999999999999}, {"type": "map_at_10", "value": 14.209}, {"type": "map_at_100", "value": 15.094}, {"type": "map_at_1000", "value": 15.215}, {"type": "map_at_20", "value": 14.646}, {"type": "map_at_3", "value": 12.802}, {"type": "map_at_5", "value": 13.543}, {"type": "mrr_at_1", "value": 12.113}, {"type": "mrr_at_10", "value": 16.875}, {"type": "mrr_at_100", "value": 17.73}, {"type": "mrr_at_1000", "value": 17.824}, {"type": "mrr_at_20", "value": 17.318}, {"type": "mrr_at_3", "value": 15.273}, {"type": "mrr_at_5", "value": 16.164}, {"type": "ndcg_at_1", "value": 12.113}, {"type": "ndcg_at_10", "value": 17.28}, {"type": "ndcg_at_100", "value": 21.939}, {"type": "ndcg_at_1000", "value": 25.262}, {"type": "ndcg_at_20", "value": 18.822}, {"type": "ndcg_at_3", "value": 14.485999999999999}, {"type": "ndcg_at_5", "value": 15.731}, {"type": "precision_at_1", "value": 12.113}, {"type": "precision_at_10", "value": 3.19}, {"type": "precision_at_100", "value": 0.661}, {"type": "precision_at_1000", "value": 0.11}, {"type": "precision_at_20", "value": 2.046}, {"type": "precision_at_3", "value": 6.825}, {"type": "precision_at_5", "value": 5.003}, {"type": "recall_at_1", "value": 9.844999999999999}, {"type": "recall_at_10", "value": 24.005000000000003}, {"type": "recall_at_100", "value": 45.385}, {"type": "recall_at_1000", "value": 69.99499999999999}, {"type": "recall_at_20", "value": 29.704000000000004}, {"type": "recall_at_3", "value": 16.295}, {"type": "recall_at_5", "value": 19.444}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 14.875}, {"type": "map_at_10", "value": 20.305999999999997}, {"type": "map_at_100", "value": 21.23}, {"type": "map_at_1000", "value": 21.342}, {"type": "map_at_20", "value": 20.709}, {"type": "map_at_3", "value": 18.199}, {"type": "map_at_5", "value": 19.268}, {"type": "mrr_at_1", "value": 17.071}, {"type": "mrr_at_10", "value": 23.003}, {"type": "mrr_at_100", "value": 23.857999999999997}, {"type": "mrr_at_1000", "value": 23.939}, {"type": "mrr_at_20", "value": 23.398}, {"type": "mrr_at_3", "value": 20.569000000000003}, {"type": "mrr_at_5", "value": 21.776999999999997}, {"type": "ndcg_at_1", "value": 17.071}, {"type": "ndcg_at_10", "value": 24.262}, {"type": "ndcg_at_100", "value": 29.217}, {"type": "ndcg_at_1000", "value": 32.133}, {"type": "ndcg_at_20", "value": 25.679000000000002}, {"type": "ndcg_at_3", "value": 19.844}, {"type": "ndcg_at_5", "value": 21.712}, {"type": "precision_at_1", "value": 17.071}, {"type": "precision_at_10", "value": 4.198}, {"type": "precision_at_100", "value": 0.765}, {"type": "precision_at_1000", "value": 0.11199999999999999}, {"type": "precision_at_20", "value": 2.481}, {"type": "precision_at_3", "value": 8.613}, {"type": "precision_at_5", "value": 6.287}, {"type": "recall_at_1", "value": 14.875}, {"type": "recall_at_10", "value": 33.915}, {"type": "recall_at_100", "value": 56.513000000000005}, {"type": "recall_at_1000", "value": 77.737}, {"type": "recall_at_20", "value": 39.047}, {"type": "recall_at_3", "value": 22.017999999999997}, {"type": "recall_at_5", "value": 26.514}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 16.02}, {"type": "map_at_10", "value": 21.43}, {"type": "map_at_100", "value": 22.468}, {"type": "map_at_1000", "value": 22.659000000000002}, {"type": "map_at_20", "value": 21.926000000000002}, {"type": "map_at_3", "value": 19.258}, {"type": "map_at_5", "value": 20.405}, {"type": "mrr_at_1", "value": 19.564999999999998}, {"type": "mrr_at_10", "value": 25.063999999999997}, {"type": "mrr_at_100", "value": 25.918999999999997}, {"type": "mrr_at_1000", "value": 26.007}, {"type": "mrr_at_20", "value": 25.490000000000002}, {"type": "mrr_at_3", "value": 22.727}, {"type": "mrr_at_5", "value": 23.992}, {"type": "ndcg_at_1", "value": 19.564999999999998}, {"type": "ndcg_at_10", "value": 25.575}, {"type": "ndcg_at_100", "value": 30.464999999999996}, {"type": "ndcg_at_1000", "value": 34.131}, {"type": "ndcg_at_20", "value": 27.119}, {"type": "ndcg_at_3", "value": 21.607000000000003}, {"type": "ndcg_at_5", "value": 23.331}, {"type": "precision_at_1", "value": 19.564999999999998}, {"type": "precision_at_10", "value": 4.822}, {"type": "precision_at_100", "value": 0.98}, {"type": "precision_at_1000", "value": 0.196}, {"type": "precision_at_20", "value": 3.0140000000000002}, {"type": "precision_at_3", "value": 10.079}, {"type": "precision_at_5", "value": 7.51}, {"type": "recall_at_1", "value": 16.02}, {"type": "recall_at_10", "value": 34.215}, {"type": "recall_at_100", "value": 57.220000000000006}, {"type": "recall_at_1000", "value": 81.721}, {"type": "recall_at_20", "value": 40.169}, {"type": "recall_at_3", "value": 22.289}, {"type": "recall_at_5", "value": 26.856}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 10.173}, {"type": "map_at_10", "value": 15.528}, {"type": "map_at_100", "value": 16.470000000000002}, {"type": "map_at_1000", "value": 16.566}, {"type": "map_at_20", "value": 15.967999999999998}, {"type": "map_at_3", "value": 13.902999999999999}, {"type": "map_at_5", "value": 14.774000000000001}, {"type": "mrr_at_1", "value": 11.275}, {"type": "mrr_at_10", "value": 16.659}, {"type": "mrr_at_100", "value": 17.637}, {"type": "mrr_at_1000", "value": 17.723}, {"type": "mrr_at_20", "value": 17.158}, {"type": "mrr_at_3", "value": 15.065000000000001}, {"type": "mrr_at_5", "value": 15.943}, {"type": "ndcg_at_1", "value": 11.275}, {"type": "ndcg_at_10", "value": 18.825}, {"type": "ndcg_at_100", "value": 23.985}, {"type": "ndcg_at_1000", "value": 26.927}, {"type": "ndcg_at_20", "value": 20.462}, {"type": "ndcg_at_3", "value": 15.519}, {"type": "ndcg_at_5", "value": 17.058}, {"type": "precision_at_1", "value": 11.275}, {"type": "precision_at_10", "value": 3.179}, {"type": "precision_at_100", "value": 0.627}, {"type": "precision_at_1000", "value": 0.094}, {"type": "precision_at_20", "value": 1.978}, {"type": "precision_at_3", "value": 6.839}, {"type": "precision_at_5", "value": 4.9910000000000005}, {"type": "recall_at_1", "value": 10.173}, {"type": "recall_at_10", "value": 27.994000000000003}, {"type": "recall_at_100", "value": 52.418}, {"type": "recall_at_1000", "value": 75.36699999999999}, {"type": "recall_at_20", "value": 34.184}, {"type": "recall_at_3", "value": 19.082}, {"type": "recall_at_5", "value": 22.807}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ClimateFEVER", "type": "mteb/climate-fever", "config": "default", "split": "test", "revision": "47f2ac6acb640fc46020b02a5b59fdda04d39380"}, "metrics": [{"type": "map_at_1", "value": 7.394}, {"type": "map_at_10", "value": 12.179}, {"type": "map_at_100", "value": 13.644}, {"type": "map_at_1000", "value": 13.821}, {"type": "map_at_20", "value": 12.969}, {"type": "map_at_3", "value": 10.177}, {"type": "map_at_5", "value": 11.155}, {"type": "mrr_at_1", "value": 15.961}, {"type": "mrr_at_10", "value": 24.118000000000002}, {"type": "mrr_at_100", "value": 25.318}, {"type": "mrr_at_1000", "value": 25.384}, {"type": "mrr_at_20", "value": 24.911}, {"type": "mrr_at_3", "value": 21.151}, {"type": "mrr_at_5", "value": 22.731}, {"type": "ndcg_at_1", "value": 15.961}, {"type": "ndcg_at_10", "value": 17.77}, {"type": "ndcg_at_100", "value": 24.282}, {"type": "ndcg_at_1000", "value": 27.788}, {"type": "ndcg_at_20", "value": 20.345}, {"type": "ndcg_at_3", "value": 13.996}, {"type": "ndcg_at_5", "value": 15.277}, {"type": "precision_at_1", "value": 15.961}, {"type": "precision_at_10", "value": 5.629}, {"type": "precision_at_100", "value": 1.243}, {"type": "precision_at_1000", "value": 0.188}, {"type": "precision_at_20", "value": 3.8830000000000005}, {"type": "precision_at_3", "value": 10.228}, {"type": "precision_at_5", "value": 8.065}, {"type": "recall_at_1", "value": 7.394}, {"type": "recall_at_10", "value": 22.037000000000003}, {"type": "recall_at_100", "value": 44.823}, {"type": "recall_at_1000", "value": 64.782}, {"type": "recall_at_20", "value": 29.416999999999998}, {"type": "recall_at_3", "value": 12.931999999999999}, {"type": "recall_at_5", "value": 16.392}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB DBPedia", "type": "mteb/dbpedia", "config": "default", "split": "test", "revision": "c0f706b76e590d620bd6618b3ca8efdd34e2d659"}, "metrics": [{"type": "map_at_1", "value": 4.22}, {"type": "map_at_10", "value": 9.109}, {"type": "map_at_100", "value": 12.520999999999999}, {"type": "map_at_1000", "value": 13.461}, {"type": "map_at_20", "value": 10.374}, {"type": "map_at_3", "value": 6.524000000000001}, {"type": "map_at_5", "value": 7.664999999999999}, {"type": "mrr_at_1", "value": 34.75}, {"type": "mrr_at_10", "value": 46.822}, {"type": "mrr_at_100", "value": 47.501}, {"type": "mrr_at_1000", "value": 47.546}, {"type": "mrr_at_20", "value": 47.246}, {"type": "mrr_at_3", "value": 43.875}, {"type": "mrr_at_5", "value": 45.637}, {"type": "ndcg_at_1", "value": 25.874999999999996}, {"type": "ndcg_at_10", "value": 21.938}, {"type": "ndcg_at_100", "value": 24.924}, {"type": "ndcg_at_1000", "value": 31.627}, {"type": "ndcg_at_20", "value": 21.627}, {"type": "ndcg_at_3", "value": 23.132}, {"type": "ndcg_at_5", "value": 22.553}, {"type": "precision_at_1", "value": 34.75}, {"type": "precision_at_10", "value": 18.65}, {"type": "precision_at_100", "value": 5.862}, {"type": "precision_at_1000", "value": 1.348}, {"type": "precision_at_20", "value": 13.750000000000002}, {"type": "precision_at_3", "value": 27.333000000000002}, {"type": "precision_at_5", "value": 24.05}, {"type": "recall_at_1", "value": 4.22}, {"type": "recall_at_10", "value": 14.191}, {"type": "recall_at_100", "value": 31.192999999999998}, {"type": "recall_at_1000", "value": 53.517}, {"type": "recall_at_20", "value": 18.516}, {"type": "recall_at_3", "value": 8.036}, {"type": "recall_at_5", "value": 10.329}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 39.184999999999995}, {"type": "f1", "value": 35.27301038035798}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 65.1424}, {"type": "ap", "value": 60.060650493494705}, {"type": "f1", "value": 64.97836345253516}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 89.27496580027359}, {"type": "f1", "value": 88.46317641931785}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 65.35567715458276}, {"type": "f1", "value": 46.496133882315355}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.31943510423672}, {"type": "f1", "value": 63.99472103750694}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 70.51445864156018}, {"type": "f1", "value": 69.5241099650794}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 31.419094146071636}, {"type": "v_measures", "value": [0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803, 0.3020555490758911, 0.2938404993041935, 0.31003486442397693, 0.29994028507254, 0.3117838741396249, 0.33398660039531675, 0.3256932743486633, 0.3333149476944512, 0.31390791542085783, 0.31735160473164803]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 27.139470452055658}, {"type": "v_measures", "value": [0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234, 0.2666897682408128, 0.24820682008741687, 0.25843857871975573, 0.26380153279538504, 0.2695448754656727, 0.29420218181123714, 0.2758015348668051, 0.29195529172947926, 0.28303617852082885, 0.26227028296817234]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 29.568052227516432}, {"type": "mrr", "value": 30.428712172981818}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 39.24416138727274}, {"type": "v_measures", "value": [0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104, 0.43499839908655386, 0.44949111745990283, 0.3282199294811291, 0.35836434105127885, 0.3996692801648296, 0.37140089609771104, 0.45580333661879363, 0.32870104358549745, 0.34552478969922684, 0.3435867156147152, 0.3723906509782702, 0.4578688879470604, 0.40139901059405236, 0.41428187134812494, 0.49362011628941965, 0.3329568427762181, 0.41363539091339463, 0.4953683198268942, 0.38415843544654976, 0.3659517751191816, 0.33402918021400635, 0.3504966594445426, 0.47289460572561565, 0.3579242965734061, 0.34830445476181104]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 52.2014890689022}, {"type": "v_measures", "value": [0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125, 0.5736447196090492, 0.5591207176151745, 0.6165844008882311, 0.32294491953108684, 0.5721588579925929, 0.5023325203908285, 0.25921303858162814, 0.6135926784368556, 0.5799592791212607, 0.6205977747235125]}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.49732285023127}, {"type": "cos_sim_spearman", "value": 69.06853511870162}, {"type": "euclidean_pearson", "value": 73.63802461551214}, {"type": "euclidean_spearman", "value": 68.89675389831514}, {"type": "manhattan_pearson", "value": 73.31463476887929}, {"type": "manhattan_spearman", "value": 68.62065836256522}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.30725406004984}, {"type": "cos_sim_spearman", "value": 71.77933625004815}, {"type": "euclidean_pearson", "value": 75.6716433687837}, {"type": "euclidean_spearman", "value": 71.29004792199038}, {"type": "manhattan_pearson", "value": 75.71992020594199}, {"type": "manhattan_spearman", "value": 71.32910104106817}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.48949837438562}, {"type": "cos_sim_spearman", "value": 77.70387570173884}, {"type": "euclidean_pearson", "value": 77.31697136821097}, {"type": "euclidean_spearman", "value": 77.7725127232427}, {"type": "manhattan_pearson", "value": 77.2104513638156}, {"type": "manhattan_spearman", "value": 77.6662508639199}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.92186146745203}, {"type": "cos_sim_spearman", "value": 74.03500111217282}, {"type": "euclidean_pearson", "value": 76.92245132110358}, {"type": "euclidean_spearman", "value": 74.1163537497533}, {"type": "manhattan_pearson", "value": 76.7405912634287}, {"type": "manhattan_spearman", "value": 74.00559912577475}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 82.41755953814916}, {"type": "cos_sim_spearman", "value": 83.12590620595532}, {"type": "euclidean_pearson", "value": 82.81061023887204}, {"type": "euclidean_spearman", "value": 83.22204855595223}, {"type": "manhattan_pearson", "value": 82.69802515552313}, {"type": "manhattan_spearman", "value": 83.09996325139677}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.75524761527194}, {"type": "cos_sim_spearman", "value": 78.87593181990188}, {"type": "euclidean_pearson", "value": 78.55191677073188}, {"type": "euclidean_spearman", "value": 78.92172836212852}, {"type": "manhattan_pearson", "value": 78.36496155482094}, {"type": "manhattan_spearman", "value": 78.67446213683105}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 84.7638229493128}, {"type": "cos_sim_spearman", "value": 85.55048917425349}, {"type": "euclidean_pearson", "value": 84.8901462981343}, {"type": "euclidean_spearman", "value": 85.10066833018679}, {"type": "manhattan_pearson", "value": 84.74064489630906}, {"type": "manhattan_spearman", "value": 85.03532091650423}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 63.74800563207841}, {"type": "cos_sim_spearman", "value": 65.54768610942277}, {"type": "euclidean_pearson", "value": 65.832924763177}, {"type": "euclidean_spearman", "value": 65.67977634984801}, {"type": "manhattan_pearson", "value": 66.04809976105817}, {"type": "manhattan_spearman", "value": 65.8551641921871}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.42910915029356}, {"type": "cos_sim_spearman", "value": 78.93487000382834}, {"type": "euclidean_pearson", "value": 79.97058072370304}, {"type": "euclidean_spearman", "value": 79.02999975191632}, {"type": "manhattan_pearson", "value": 79.75656714948262}, {"type": "manhattan_spearman", "value": 78.82176824285669}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 74.6588967461659}, {"type": "mrr", "value": 91.90398381574852}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.7960396039604}, {"type": "cos_sim_ap", "value": 94.40352134094806}, {"type": "cos_sim_f1", "value": 89.42505133470226}, {"type": "cos_sim_precision", "value": 91.87763713080169}, {"type": "cos_sim_recall", "value": 87.1}, {"type": "dot_accuracy", "value": 99.61980198019802}, {"type": "dot_ap", "value": 86.92800137802539}, {"type": "dot_f1", "value": 80.60606060606061}, {"type": "dot_precision", "value": 81.42857142857143}, {"type": "dot_recall", "value": 79.80000000000001}, {"type": "euclidean_accuracy", "value": 99.7910891089109}, {"type": "euclidean_ap", "value": 94.1534710913129}, {"type": "euclidean_f1", "value": 89.18232605383443}, {"type": "euclidean_precision", "value": 90.60887512899896}, {"type": "euclidean_recall", "value": 87.8}, {"type": "manhattan_accuracy", "value": 99.79207920792079}, {"type": "manhattan_ap", "value": 94.24718696087999}, {"type": "manhattan_f1", "value": 89.0852390852391}, {"type": "manhattan_precision", "value": 92.74891774891775}, {"type": "manhattan_recall", "value": 85.7}, {"type": "max_accuracy", "value": 99.7960396039604}, {"type": "max_ap", "value": 94.40352134094806}, {"type": "max_f1", "value": 89.42505133470226}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 46.43052365225014}, {"type": "v_measures", "value": [0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516, 0.46949617094171353, 0.5016501987155662, 0.39614533561402826, 0.4989385141713651, 0.48509099959411306, 0.40533374038777203, 0.40529478125672896, 0.5082739568354655, 0.5030979306869503, 0.4595532620038804, 0.47211153537957196, 0.5227243370686985, 0.5456607251430196, 0.47553733275974336, 0.4420574009508892, 0.4626364920948223, 0.4590717082280871, 0.48104525838895923, 0.4404325607349749, 0.44346399346052534, 0.47186015982295226, 0.4172565494218566, 0.42016525478004946, 0.47129065428528527, 0.449442060335516]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 34.30506603469398}, {"type": "v_measures", "value": [0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176, 0.32727591279468415, 0.3313895667479962, 0.3305242647375887, 0.3232075550236724, 0.3262703745255289, 0.37062320483945455, 0.34981605267303767, 0.3588695732319254, 0.3533013172889691, 0.35922878160654176]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 45.986302830652576}, {"type": "mrr", "value": 46.73859126984127}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 31.681504542251222}, {"type": "cos_sim_spearman", "value": 30.52300975318605}, {"type": "dot_pearson", "value": 30.89258938963458}, {"type": "dot_spearman", "value": 30.789407411509075}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 63.916015625}, {"type": "ap", "value": 11.079823797650405}, {"type": "f1", "value": 48.9073889627104}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 54.80192416525185}, {"type": "f1", "value": 55.06729742763208}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 30.428269625267067}, {"type": "v_measures", "value": [0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833, 0.3140126107181758, 0.29509063136396313, 0.277413411099062, 0.31521756372510074, 0.30320384565249453, 0.3189898605229486, 0.29781665025127024, 0.3067043341523218, 0.29320744109308605, 0.3211706139482833]}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.04226023722954}, {"type": "cos_sim_ap", "value": 63.85841588156352}, {"type": "cos_sim_f1", "value": 60.82009954965631}, {"type": "cos_sim_precision", "value": 55.2065404475043}, {"type": "cos_sim_recall", "value": 67.70448548812665}, {"type": "dot_accuracy", "value": 78.91756571496693}, {"type": "dot_ap", "value": 46.39288120938224}, {"type": "dot_f1", "value": 49.36296847391426}, {"type": "dot_precision", "value": 38.11575470343243}, {"type": "dot_recall", "value": 70.0263852242744}, {"type": "euclidean_accuracy", "value": 83.18531322644095}, {"type": "euclidean_ap", "value": 64.47939517179049}, {"type": "euclidean_f1", "value": 61.326567596955414}, {"type": "euclidean_precision", "value": 56.56340539335859}, {"type": "euclidean_recall", "value": 66.96569920844327}, {"type": "manhattan_accuracy", "value": 82.9826548250581}, {"type": "manhattan_ap", "value": 64.01165035368786}, {"type": "manhattan_f1", "value": 60.99290780141844}, {"type": "manhattan_precision", "value": 54.52088962793597}, {"type": "manhattan_recall", "value": 69.2084432717678}, {"type": "max_accuracy", "value": 83.18531322644095}, {"type": "max_ap", "value": 64.47939517179049}, {"type": "max_f1", "value": 61.326567596955414}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.53832421314084}, {"type": "cos_sim_ap", "value": 82.94679942153577}, {"type": "cos_sim_f1", "value": 74.90408975750995}, {"type": "cos_sim_precision", "value": 70.67340527250376}, {"type": "cos_sim_recall", "value": 79.6735448105944}, {"type": "dot_accuracy", "value": 85.2214072262972}, {"type": "dot_ap", "value": 76.39891716014382}, {"type": "dot_f1", "value": 70.62225554246545}, {"type": "dot_precision", "value": 65.83904679491447}, {"type": "dot_recall", "value": 76.15491222667077}, {"type": "euclidean_accuracy", "value": 87.55190747855785}, {"type": "euclidean_ap", "value": 82.9537174035843}, {"type": "euclidean_f1", "value": 75.01588844442783}, {"type": "euclidean_precision", "value": 72.90894557081607}, {"type": "euclidean_recall", "value": 77.24822913458577}, {"type": "manhattan_accuracy", "value": 87.5499670120697}, {"type": "manhattan_ap", "value": 82.85971137826064}, {"type": "manhattan_f1", "value": 74.86758672137262}, {"type": "manhattan_precision", "value": 72.60888438720879}, {"type": "manhattan_recall", "value": 77.27132737911919}, {"type": "max_accuracy", "value": 87.55190747855785}, {"type": "max_ap", "value": 82.9537174035843}, {"type": "max_f1", "value": 75.01588844442783}]}]}]}
Mihaiii/test24
null
[ "sentence-transformers", "onnx", "safetensors", "bert", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge", "arxiv:2403.19522", "base_model:Mihaiii/Wartortle", "base_model:TaylorAI/bge-micro-v2", "base_model:TaylorAI/bge-micro", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:23:14+00:00
[ "2403.19522" ]
[]
TAGS #sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #arxiv-2403.19522 #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #base_model-TaylorAI/bge-micro #license-mit #model-index #endpoints_compatible #region-us
# Kyurem This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the Model Stock merge method using TaylorAI/bge-micro as a base. ### Models Merged The following models were included in the merge: * Mihaiii/Wartortle * TaylorAI/bge-micro-v2 ### Configuration The following YAML configuration was used to produce this model:
[ "# Kyurem\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the Model Stock merge method using TaylorAI/bge-micro as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #arxiv-2403.19522 #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #base_model-TaylorAI/bge-micro #license-mit #model-index #endpoints_compatible #region-us \n", "# Kyurem\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the Model Stock merge method using TaylorAI/bge-micro as a base.", "### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ 99, 19, 4, 27, 33, 16 ]
[ "TAGS\n#sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #arxiv-2403.19522 #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #base_model-TaylorAI/bge-micro #license-mit #model-index #endpoints_compatible #region-us \n# Kyurem\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the Model Stock merge method using TaylorAI/bge-micro as a base.### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
null
transformers
## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> static quants of https://huggingface.co/jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF/resolve/main/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "library_name": "transformers", "tags": [], "base_model": "jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2", "quantized_by": "mradermacher"}
mradermacher/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2-GGUF
null
[ "transformers", "gguf", "en", "base_model:jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:24:04+00:00
[]
[ "en" ]
TAGS #transformers #gguf #en #base_model-jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2 #endpoints_compatible #region-us
About ----- static quants of URL weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. Usage ----- If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files. Provided Quants --------------- (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): !URL And here are Artefact2's thoughts on the matter: URL FAQ / Model Request ------------------- See URL for some answers to questions you might have and/or if you want some other model quantized. Thanks ------ I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.
[]
[ "TAGS\n#transformers #gguf #en #base_model-jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2 #endpoints_compatible #region-us \n" ]
[ 49 ]
[ "TAGS\n#transformers #gguf #en #base_model-jhmejia/Classifai-ORPO-Meta-Llama-3-8B-Instruct-2 #endpoints_compatible #region-us \n" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nobody12321/poker-tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:25:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi21_LoRA <Gallery /> ## Model description These are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tiger Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi21_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tiger Roll", "widget": []}
embracellm/sushi21_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T18:25:33+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi21_LoRA <Gallery /> ## Model description These are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tiger Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi21_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tiger Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi21_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tiger Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 18, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi21_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi21_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Tiger Roll to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/orzqomb
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:26:35+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/2nt0eqt
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:26:40+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Vikhr-7B-instruct_0.4 - bnb 8bits - Model creator: https://huggingface.co/Vikhrmodels/ - Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/ Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели [collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ```
{}
RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:27:04+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Vikhr-7B-instruct_0.4 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели collab
[ "# Релиз вихря 0.3-0.4 \n\nДолили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели\n\ncollab" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Релиз вихря 0.3-0.4 \n\nДолили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели\n\ncollab" ]
[ 41, 113 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Релиз вихря 0.3-0.4 \n\nДолили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели\n\ncollab" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama10 - bnb 4bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llama10/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llama10-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:27:58+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llama10 - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llm-jp-1b-sft-100k-LoRA - bnb 4bits - Model creator: https://huggingface.co/ryota39/ - Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/ Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) - 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA" ) pad_token_id = tokenizer.pad_token_id model = AutoModelForCausalLM.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA", device_map="auto", torch_dtype=torch.float16, ) text = "###Input: 東京の観光名所を教えてください。\n###Output: " tokenized_input = tokenizer.encode( text, add_special_tokens=False, return_tensors="pt" ).to(model.device) attention_mask = torch.ones_like(tokenized_input) attention_mask[tokenized_input == pad_token_id] = 0 with torch.no_grad(): output = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=128, do_sample=True, # top_p=0.95, temperature=0.8, repetition_penalty=1.0 )[0] print(tokenizer.decode(output)) ``` ## 出力例 ``` ###Input: 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。 各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。 東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場 ``` ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 [メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
{}
RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-4bits
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:29:10+00:00
[]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llm-jp-1b-sft-100k-LoRA - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:llm-jp/llm-jp-1.3b-v1.0 - 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ## 出力例 ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始
[ "## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])", "## サンプル", "## 出力例", "## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])", "## サンプル", "## 出力例", "## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
[ 39, 129, 6, 5, 166 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])## サンプル## 出力例## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llm-jp-1b-sft-100k-LoRA - bnb 8bits - Model creator: https://huggingface.co/ryota39/ - Original model: https://huggingface.co/ryota39/llm-jp-1b-sft-100k-LoRA/ Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:[llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) - 学習データセット:[cl-nagoya/auto-wiki-qa](https://huggingface.co/datasets/cl-nagoya/auto-wiki-qa) (`seed=42`でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA" ) pad_token_id = tokenizer.pad_token_id model = AutoModelForCausalLM.from_pretrained( "ryota39/llm-jp-1b-sft-100k-LoRA", device_map="auto", torch_dtype=torch.float16, ) text = "###Input: 東京の観光名所を教えてください。\n###Output: " tokenized_input = tokenizer.encode( text, add_special_tokens=False, return_tensors="pt" ).to(model.device) attention_mask = torch.ones_like(tokenized_input) attention_mask[tokenized_input == pad_token_id] = 0 with torch.no_grad(): output = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=128, do_sample=True, # top_p=0.95, temperature=0.8, repetition_penalty=1.0 )[0] print(tokenizer.decode(output)) ``` ## 出力例 ``` ###Input: 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォート。世界各国の観光客で賑わう。世界からの観光客を呼び込むために、ここのフードコートでは各国の料理を提供しています。 各国の料理を提供するフードコートもあるが、イタリアンやフレンチなどのファストフードの店もある。 東京の観光名所を紹介するサイトがたくさんあり、そのサイトに自分のオススメするスポットを掲載しています。 東京の観光名所を教えてください。 ###Output: お台場のヴィーナスフォートの中にあるアクアシティというショッピングセンターの中にあるお台場 ``` ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 [メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始](https://prtimes.jp/main/html/rd/p/000000008.000056944.html)
{}
RichardErkhov/ryota39_-_llm-jp-1b-sft-100k-LoRA-8bits
null
[ "transformers", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:30:29+00:00
[]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llm-jp-1b-sft-100k-LoRA - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- ## モデル - ベースモデル:llm-jp/llm-jp-1.3b-v1.0 - 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用) - 学習方式:LoRA (r=8, alpha=16, target_modules=["c_attn", "c_proj", "c_fc"]) ## サンプル ## 出力例 ## 謝辞 本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。 運営の方々に深く御礼申し上げます。 - 【メタデータラボ株式会社】様 - 【AI声づくり技術研究会】 - サーバー主:やなぎ(Yanagi)様 - 【ローカルLLMに向き合う会】 - サーバー主:saldra(サルドラ)様 メタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始
[ "## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])", "## サンプル", "## 出力例", "## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])", "## サンプル", "## 出力例", "## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
[ 39, 129, 6, 5, 166 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n## モデル\n\n- ベースモデル:llm-jp/llm-jp-1.3b-v1.0\n- 学習データセット:cl-nagoya/auto-wiki-qa ('seed=42'でシャッフルした後、先頭の10万件を学習データに使用)\n- 学習方式:LoRA (r=8, alpha=16, target_modules=[\"c_attn\", \"c_proj\", \"c_fc\"])## サンプル## 出力例## 謝辞\n\n本成果は【LOCAL AI HACKATHON #001】240時間ハッカソンの成果です。\n運営の方々に深く御礼申し上げます。\n\n- 【メタデータラボ株式会社】様\n- 【AI声づくり技術研究会】\n - サーバー主:やなぎ(Yanagi)様\n- 【ローカルLLMに向き合う会】\n - サーバー主:saldra(サルドラ)様\n\nメタデータラボ、日本最大規模のAIハッカソン「LOCAL AI HACKATHON #001」~ AIの民主化 ~を開催、本日より出場チームの募集を開始" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Main_Fashion This model is a fine-tuned version of [google/vit-base-patch16-224-in21K](https://huggingface.co/google/vit-base-patch16-224-in21K) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7633 - Accuracy: 0.6961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 7 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.934 | 0.9259 | 100 | 0.9492 | 0.7030 | | 0.9191 | 1.8519 | 200 | 0.7838 | 0.7401 | | 0.7774 | 2.7778 | 300 | 0.8152 | 0.7123 | | 0.5743 | 3.7037 | 400 | 0.7249 | 0.7100 | | 0.5145 | 4.6296 | 500 | 0.7721 | 0.7077 | | 0.4713 | 5.5556 | 600 | 0.7182 | 0.7146 | | 0.4397 | 6.4815 | 700 | 0.7633 | 0.6961 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "google/vit-base-patch16-224-in21K", "model-index": [{"name": "Main_Fashion", "results": []}]}
vlevi/Main_Fashion
null
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21K", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:31:13+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21K #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Main\_Fashion ============= This model is a fine-tuned version of google/vit-base-patch16-224-in21K on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.7633 * Accuracy: 0.6961 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 0.0002 * train\_batch\_size: 16 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 7 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21K #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 65, 112, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #vit #image-classification #generated_from_trainer #base_model-google/vit-base-patch16-224-in21K #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 0.0002\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 7\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Mubin1917/Mistral-7B-Instruct-v0.2-lamini-docs-adapters-epoch-3_test_lr_scheduler_type-constant
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:32:25+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 26, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-mermaid-flow-chart This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-mermaid-flow-chart", "results": []}]}
rakitha/llava-1.5-7b-hf-mermaid-flow-chart
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "dataset:imagefolder", "base_model:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-05-01T18:33:23+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us
# llava-1.5-7b-hf-mermaid-flow-chart This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# llava-1.5-7b-hf-mermaid-flow-chart\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us \n", "# llava-1.5-7b-hf-mermaid-flow-chart\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 57, 54, 7, 9, 9, 4, 104, 5, 52 ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #dataset-imagefolder #base_model-llava-hf/llava-1.5-7b-hf #region-us \n# llava-1.5-7b-hf-mermaid-flow-chart\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on the imagefolder dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 16\n- eval_batch_size: 16\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 5\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text-generation
transformers
<img src="https://huggingface.co/KOCDIGITAL/Kocdigital-LLM-8b-v0.1/resolve/main/icon.jpeg" alt="KOCDIGITAL LLM" width="420"/> # Kocdigital-LLM-8b-v0.1 This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method. ## Model Details - **Base Model**: Llama3 8B based LLM - **Training Dataset**: High Quality Turkish instruction sets - **Training Method**: SFT with QLORA ### QLORA Fine-Tuning Configuration - `lora_alpha`: 128 - `lora_dropout`: 0 - `r`: 64 - `target_modules`: "q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj" - `bias`: "none" ## Usage Examples ```python from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained( "KOCDIGITAL/Kocdigital-LLM-8b-v0.1", max_seq_length=4096) model = AutoModelForCausalLM.from_pretrained( "KOCDIGITAL/Kocdigital-LLM-8b-v0.1", load_in_4bit=True, ) system = 'Sen Türkçe konuşan genel amaçlı bir asistansın. Her zaman kullanıcının verdiği talimatları doğru, kısa ve güzel bir gramer ile yerine getir.' template = "{}\n\n###Talimat\n{}\n###Yanıt\n" content = template.format(system, 'Türkiyenin 3 büyük ilini listeler misin.') conv = [] conv.append({'role': 'user', 'content': content}) inputs = tokenizer.apply_chat_template(conv, tokenize=False, add_generation_prompt=True, return_tensors="pt") print(inputs) inputs = tokenizer([inputs], return_tensors = "pt", add_special_tokens=False).to("cuda") outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample = True, top_k = 50, top_p = 0.60, temperature = 0.3, repetition_penalty=1.1) out_text = tokenizer.batch_decode(outputs)[0] print(out_text) ``` # [Open LLM Turkish Leaderboard v0.2 Evaluation Results] | Metric | Value | |---------------------------------|------:| | Avg. | 49.11 | | AI2 Reasoning Challenge_tr-v0.2 | 44.03 | | HellaSwag_tr-v0.2 | 46.73 | | MMLU_tr-v0.2 | 49.11 | | TruthfulQA_tr-v0.2 | 48.51 | | Winogrande _tr-v0.2 | 54.98 | | GSM8k_tr-v0.2 | 51.78 | ## Considerations on Limitations, Risks, Bias, and Ethical Factors ### Limitations and Recognized Biases - **Core Functionality and Usage:** KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated. - **Language Understanding and Generation:** The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations. - **Production of Misleading Information:** Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions. ### Ethical Concerns and Potential Risks - **Risk of Misuse:** KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation. - **Unintended Biases and Content:** The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies. - **Toxicity:** Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks. ### Guidelines for Secure and Ethical Utilization - **Human Oversight:** We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content. - **Tailored Testing for Specific Applications:** Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs. - **Responsible Development and Deployment:** Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes.
{"language": ["tr"], "license": "llama3", "model-index": [{"name": "Kocdigital-LLM-8b-v0.1", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge TR", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc", "value": 44.03, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag TR", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 46.73, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU TR", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 49.11, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA TR", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "acc", "value": 48.21, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande TR", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc", "value": 54.98, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k TR", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 51.78, "name": "accuracy"}]}]}]}
KOCDIGITAL/Kocdigital-LLM-8b-v0.1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "tr", "license:llama3", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:34:27+00:00
[]
[ "tr" ]
TAGS #transformers #safetensors #llama #text-generation #conversational #tr #license-llama3 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
<img src="URL alt="KOCDIGITAL LLM" width="420"/> Kocdigital-LLM-8b-v0.1 ====================== This model is an fine-tuned version of a Llama3 8b Large Language Model (LLM) for Turkish. It was trained on a high quality Turkish instruction sets created from various open-source and internal resources. Turkish Instruction dataset carefully annotated to carry out Turkish instructions in an accurate and organized manner. The training process involved using the QLORA method. Model Details ------------- * Base Model: Llama3 8B based LLM * Training Dataset: High Quality Turkish instruction sets * Training Method: SFT with QLORA ### QLORA Fine-Tuning Configuration * 'lora\_alpha': 128 * 'lora\_dropout': 0 * 'r': 64 * 'target\_modules': "q\_proj", "k\_proj", "v\_proj", "o\_proj", "gate\_proj", "up\_proj", "down\_proj" * 'bias': "none" Usage Examples -------------- [Open LLM Turkish Leaderboard v0.2 Evaluation Results] ====================================================== Considerations on Limitations, Risks, Bias, and Ethical Factors --------------------------------------------------------------- ### Limitations and Recognized Biases * Core Functionality and Usage: KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated. * Language Understanding and Generation: The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations. * Production of Misleading Information: Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions. ### Ethical Concerns and Potential Risks * Risk of Misuse: KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation. * Unintended Biases and Content: The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies. * Toxicity: Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks. ### Guidelines for Secure and Ethical Utilization * Human Oversight: We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content. * Tailored Testing for Specific Applications: Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs. * Responsible Development and Deployment: Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes.
[ "### QLORA Fine-Tuning Configuration\n\n\n* 'lora\\_alpha': 128\n* 'lora\\_dropout': 0\n* 'r': 64\n* 'target\\_modules': \"q\\_proj\", \"k\\_proj\", \"v\\_proj\", \"o\\_proj\",\n\"gate\\_proj\", \"up\\_proj\", \"down\\_proj\"\n* 'bias': \"none\"\n\n\nUsage Examples\n--------------\n\n\n[Open LLM Turkish Leaderboard v0.2 Evaluation Results]\n======================================================\n\n\n\nConsiderations on Limitations, Risks, Bias, and Ethical Factors\n---------------------------------------------------------------", "### Limitations and Recognized Biases\n\n\n* Core Functionality and Usage: KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated.\n* Language Understanding and Generation: The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations.\n* Production of Misleading Information: Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions.", "### Ethical Concerns and Potential Risks\n\n\n* Risk of Misuse: KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation.\n* Unintended Biases and Content: The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies.\n* Toxicity: Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks.", "### Guidelines for Secure and Ethical Utilization\n\n\n* Human Oversight: We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content.\n* Tailored Testing for Specific Applications: Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs.\n* Responsible Development and Deployment: Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #tr #license-llama3 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### QLORA Fine-Tuning Configuration\n\n\n* 'lora\\_alpha': 128\n* 'lora\\_dropout': 0\n* 'r': 64\n* 'target\\_modules': \"q\\_proj\", \"k\\_proj\", \"v\\_proj\", \"o\\_proj\",\n\"gate\\_proj\", \"up\\_proj\", \"down\\_proj\"\n* 'bias': \"none\"\n\n\nUsage Examples\n--------------\n\n\n[Open LLM Turkish Leaderboard v0.2 Evaluation Results]\n======================================================\n\n\n\nConsiderations on Limitations, Risks, Bias, and Ethical Factors\n---------------------------------------------------------------", "### Limitations and Recognized Biases\n\n\n* Core Functionality and Usage: KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated.\n* Language Understanding and Generation: The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations.\n* Production of Misleading Information: Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions.", "### Ethical Concerns and Potential Risks\n\n\n* Risk of Misuse: KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation.\n* Unintended Biases and Content: The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies.\n* Toxicity: Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks.", "### Guidelines for Secure and Ethical Utilization\n\n\n* Human Oversight: We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content.\n* Tailored Testing for Specific Applications: Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs.\n* Responsible Development and Deployment: Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes." ]
[ 49, 266, 178, 157, 178 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #tr #license-llama3 #model-index #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### QLORA Fine-Tuning Configuration\n\n\n* 'lora\\_alpha': 128\n* 'lora\\_dropout': 0\n* 'r': 64\n* 'target\\_modules': \"q\\_proj\", \"k\\_proj\", \"v\\_proj\", \"o\\_proj\",\n\"gate\\_proj\", \"up\\_proj\", \"down\\_proj\"\n* 'bias': \"none\"\n\n\nUsage Examples\n--------------\n\n\n[Open LLM Turkish Leaderboard v0.2 Evaluation Results]\n======================================================\n\n\n\nConsiderations on Limitations, Risks, Bias, and Ethical Factors\n---------------------------------------------------------------### Limitations and Recognized Biases\n\n\n* Core Functionality and Usage: KocDigital LLM, functioning as an autoregressive language model, is primarily purposed for predicting the subsequent token within a text sequence. Although commonly applied across different contexts, it's crucial to acknowledge that comprehensive real-world testing has not been conducted. Therefore, its efficacy and consistency in diverse situations are largely unvalidated.\n* Language Understanding and Generation: The model's training is mainly focused on standard English and Turkish. Its proficiency in grasping and generating slang, colloquial language, or different languages might be restricted, possibly resulting in errors or misinterpretations.\n* Production of Misleading Information: Users should acknowledge that KocDigital LLM might generate incorrect or deceptive information. Results should be viewed as initial prompts or recommendations rather than absolute conclusions.### Ethical Concerns and Potential Risks\n\n\n* Risk of Misuse: KocDigital LLM carries the potential for generating language that could be offensive or harmful. We strongly advise against its utilization for such purposes and stress the importance of conducting thorough safety and fairness assessments tailored to specific applications before implementation.\n* Unintended Biases and Content: The model underwent training on a vast corpus of text data without explicit vetting for offensive material or inherent biases. Consequently, it may inadvertently generate content reflecting these biases or inaccuracies.\n* Toxicity: Despite efforts to curate appropriate training data, the model has the capacity to produce harmful content, particularly when prompted explicitly. We encourage active participation from the open-source community to devise strategies aimed at mitigating such risks.### Guidelines for Secure and Ethical Utilization\n\n\n* Human Oversight: We advocate for the integration of a human oversight mechanism or the utilization of filters to oversee and enhance the quality of outputs, particularly in applications accessible to the public. This strategy can assist in minimizing the likelihood of unexpectedly generating objectionable content.\n* Tailored Testing for Specific Applications: Developers planning to utilize KocDigital LLM should execute comprehensive safety assessments and optimizations customized to their unique applications. This step is essential as the model's responses may exhibit unpredictability and occasional biases, inaccuracies, or offensive outputs.\n* Responsible Development and Deployment: Developers and users of KocDigital LLM bear the responsibility for ensuring its ethical and secure application. We encourage users to be cognizant of the model's limitations and to implement appropriate measures to prevent misuse or adverse outcomes." ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llama10 - bnb 8bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llama10/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llama10-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:35:27+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llama10 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
# **Fluenlty XL** V4 - the best XL-model ![preview](images/preview.png) Introducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true. ## About this model The model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others. ### Features - Correct anatomy - Art and realism in one - Controling contrast - Great nature - Great faces without AfterDetailer ### More info Our model is better than others because we do not mix but **train**, but at first it may seem that the model is not very good, but if you are a real professional you will like it. ## Using Optimal parameters in Automatic1111/ComfyUI: - Sampling steps: 20-35 - Sampler method: Euler a/Euler - CFG Scale: 4-6.5 ## End Let's remove models that copy each other from the top and put one that is actually developing, thank you)
{"license": "other", "library_name": "diffusers", "tags": ["safetensors", "stable-diffusion", "sdxl", "fluetnly-xl", "fluently", "trained"], "datasets": ["ehristoforu/midjourney-images", "ehristoforu/dalle-3-images", "ehristoforu/fav_images"], "license_name": "fluently-license", "license_link": "https://huggingface.co/spaces/fluently/License", "pipeline_tag": "text-to-image", "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "inference": {"parameters": {"num_inference_steps": 25, "guidance_scale": 5, "negative_prompt": "(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation"}}}
fluently/Fluently-XL-v4
null
[ "diffusers", "safetensors", "stable-diffusion", "sdxl", "fluetnly-xl", "fluently", "trained", "text-to-image", "dataset:ehristoforu/midjourney-images", "dataset:ehristoforu/dalle-3-images", "dataset:ehristoforu/fav_images", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:other", "endpoints_compatible", "has_space", "diffusers:StableDiffusionXLPipeline", "region:us" ]
null
2024-05-01T18:35:57+00:00
[]
[]
TAGS #diffusers #safetensors #stable-diffusion #sdxl #fluetnly-xl #fluently #trained #text-to-image #dataset-ehristoforu/midjourney-images #dataset-ehristoforu/dalle-3-images #dataset-ehristoforu/fav_images #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us
# Fluenlty XL V4 - the best XL-model !preview Introducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true. ## About this model The model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others. ### Features - Correct anatomy - Art and realism in one - Controling contrast - Great nature - Great faces without AfterDetailer ### More info Our model is better than others because we do not mix but train, but at first it may seem that the model is not very good, but if you are a real professional you will like it. ## Using Optimal parameters in Automatic1111/ComfyUI: - Sampling steps: 20-35 - Sampler method: Euler a/Euler - CFG Scale: 4-6.5 ## End Let's remove models that copy each other from the top and put one that is actually developing, thank you)
[ "# Fluenlty XL V4 - the best XL-model\n\n!preview\n\n\nIntroducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true.", "## About this model\n\nThe model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others.", "### Features\n\n - Correct anatomy\n\n - Art and realism in one\n\n - Controling contrast\n\n - Great nature\n\n - Great faces without AfterDetailer", "### More info\n\nOur model is better than others because we do not mix but train, but at first it may seem that the model is not very good, but if you are a real professional you will like it.", "## Using\n\nOptimal parameters in Automatic1111/ComfyUI:\n\n - Sampling steps: 20-35\n\n - Sampler method: Euler a/Euler\n\n - CFG Scale: 4-6.5", "## End\n\nLet's remove models that copy each other from the top and put one that is actually developing, thank you)" ]
[ "TAGS\n#diffusers #safetensors #stable-diffusion #sdxl #fluetnly-xl #fluently #trained #text-to-image #dataset-ehristoforu/midjourney-images #dataset-ehristoforu/dalle-3-images #dataset-ehristoforu/fav_images #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us \n", "# Fluenlty XL V4 - the best XL-model\n\n!preview\n\n\nIntroducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true.", "## About this model\n\nThe model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others.", "### Features\n\n - Correct anatomy\n\n - Art and realism in one\n\n - Controling contrast\n\n - Great nature\n\n - Great faces without AfterDetailer", "### More info\n\nOur model is better than others because we do not mix but train, but at first it may seem that the model is not very good, but if you are a real professional you will like it.", "## Using\n\nOptimal parameters in Automatic1111/ComfyUI:\n\n - Sampling steps: 20-35\n\n - Sampler method: Euler a/Euler\n\n - CFG Scale: 4-6.5", "## End\n\nLet's remove models that copy each other from the top and put one that is actually developing, thank you)" ]
[ 127, 53, 39, 28, 45, 42, 26 ]
[ "TAGS\n#diffusers #safetensors #stable-diffusion #sdxl #fluetnly-xl #fluently #trained #text-to-image #dataset-ehristoforu/midjourney-images #dataset-ehristoforu/dalle-3-images #dataset-ehristoforu/fav_images #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-other #endpoints_compatible #has_space #diffusers-StableDiffusionXLPipeline #region-us \n# Fluenlty XL V4 - the best XL-model\n\n!preview\n\n\nIntroducing Fluently XL, you are probably ready to argue with the name of the model: “The best XL-model”, but now I will prove to you why it is true.## About this model\n\nThe model was obtained through training on *expensive graphics accelerators*, a lot of work was done, now we will show why this XL model is better than others.### Features\n\n - Correct anatomy\n\n - Art and realism in one\n\n - Controling contrast\n\n - Great nature\n\n - Great faces without AfterDetailer### More info\n\nOur model is better than others because we do not mix but train, but at first it may seem that the model is not very good, but if you are a real professional you will like it.## Using\n\nOptimal parameters in Automatic1111/ComfyUI:\n\n - Sampling steps: 20-35\n\n - Sampler method: Euler a/Euler\n\n - CFG Scale: 4-6.5## End\n\nLet's remove models that copy each other from the top and put one that is actually developing, thank you)" ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Vikhr-7B-instruct_0.4 - GGUF - Model creator: https://huggingface.co/Vikhrmodels/ - Original model: https://huggingface.co/Vikhrmodels/Vikhr-7B-instruct_0.4/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Vikhr-7B-instruct_0.4.Q2_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q2_K.gguf) | Q2_K | 2.74GB | | [Vikhr-7B-instruct_0.4.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_XS.gguf) | IQ3_XS | 3.04GB | | [Vikhr-7B-instruct_0.4.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_S.gguf) | IQ3_S | 3.19GB | | [Vikhr-7B-instruct_0.4.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_S.gguf) | Q3_K_S | 3.17GB | | [Vikhr-7B-instruct_0.4.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ3_M.gguf) | IQ3_M | 3.29GB | | [Vikhr-7B-instruct_0.4.Q3_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K.gguf) | Q3_K | 3.5GB | | [Vikhr-7B-instruct_0.4.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_M.gguf) | Q3_K_M | 3.5GB | | [Vikhr-7B-instruct_0.4.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q3_K_L.gguf) | Q3_K_L | 3.79GB | | [Vikhr-7B-instruct_0.4.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_XS.gguf) | IQ4_XS | 3.92GB | | [Vikhr-7B-instruct_0.4.Q4_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_0.gguf) | Q4_0 | 4.08GB | | [Vikhr-7B-instruct_0.4.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.IQ4_NL.gguf) | IQ4_NL | 4.12GB | | [Vikhr-7B-instruct_0.4.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_S.gguf) | Q4_K_S | 4.11GB | | [Vikhr-7B-instruct_0.4.Q4_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K.gguf) | Q4_K | 4.32GB | | [Vikhr-7B-instruct_0.4.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_K_M.gguf) | Q4_K_M | 4.32GB | | [Vikhr-7B-instruct_0.4.Q4_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q4_1.gguf) | Q4_1 | 4.5GB | | [Vikhr-7B-instruct_0.4.Q5_0.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_0.gguf) | Q5_0 | 4.93GB | | [Vikhr-7B-instruct_0.4.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_S.gguf) | Q5_K_S | 4.93GB | | [Vikhr-7B-instruct_0.4.Q5_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K.gguf) | Q5_K | 5.05GB | | [Vikhr-7B-instruct_0.4.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_K_M.gguf) | Q5_K_M | 5.05GB | | [Vikhr-7B-instruct_0.4.Q5_1.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q5_1.gguf) | Q5_1 | 5.35GB | | [Vikhr-7B-instruct_0.4.Q6_K.gguf](https://huggingface.co/RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf/blob/main/Vikhr-7B-instruct_0.4.Q6_K.gguf) | Q6_K | 5.83GB | Original model description: --- library_name: transformers tags: [] --- # Релиз вихря 0.3-0.4 Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели [collab](https://colab.research.google.com/drive/15O9LwZhVUa1LWhZa2UKr_B-KOKenJBvv#scrollTo=5EeNFU2-9ERi) ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained("AlexWortega/v5-it", device_map="auto", attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("AlexWortega/v5-it") from transformers import AutoTokenizer, pipeline pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) prompts = [ "В чем разница между фруктом и овощем?", "Годы жизни колмагорова?"] def test_inference(prompt): prompt = pipe.tokenizer.apply_chat_template([{"role": "user", "content": prompt}], tokenize=False, add_generation_prompt=True) print(prompt) outputs = pipe(prompt, max_new_tokens=512, do_sample=True, num_beams=1, temperature=0.25, top_k=50, top_p=0.98, eos_token_id=79097) return outputs[0]['generated_text'][len(prompt):].strip() for prompt in prompts: print(f" prompt:\n{prompt}") print(f" response:\n{test_inference(prompt)}") print("-"*50) ```
{}
RichardErkhov/Vikhrmodels_-_Vikhr-7B-instruct_0.4-gguf
null
[ "gguf", "region:us" ]
null
2024-05-01T18:37:08+00:00
[]
[]
TAGS #gguf #region-us
Quantization made by Richard Erkhov. Github Discord Request more models Vikhr-7B-instruct\_0.4 - GGUF * Model creator: URL * Original model: URL Name: Vikhr-7B-instruct\_0.4.Q2\_K.gguf, Quant method: Q2\_K, Size: 2.74GB Name: Vikhr-7B-instruct\_0.4.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 3.04GB Name: Vikhr-7B-instruct\_0.4.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 3.19GB Name: Vikhr-7B-instruct\_0.4.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 3.17GB Name: Vikhr-7B-instruct\_0.4.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 3.29GB Name: Vikhr-7B-instruct\_0.4.Q3\_K.gguf, Quant method: Q3\_K, Size: 3.5GB Name: Vikhr-7B-instruct\_0.4.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 3.5GB Name: Vikhr-7B-instruct\_0.4.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 3.79GB Name: Vikhr-7B-instruct\_0.4.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 3.92GB Name: Vikhr-7B-instruct\_0.4.Q4\_0.gguf, Quant method: Q4\_0, Size: 4.08GB Name: Vikhr-7B-instruct\_0.4.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 4.12GB Name: Vikhr-7B-instruct\_0.4.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 4.11GB Name: Vikhr-7B-instruct\_0.4.Q4\_K.gguf, Quant method: Q4\_K, Size: 4.32GB Name: Vikhr-7B-instruct\_0.4.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 4.32GB Name: Vikhr-7B-instruct\_0.4.Q4\_1.gguf, Quant method: Q4\_1, Size: 4.5GB Name: Vikhr-7B-instruct\_0.4.Q5\_0.gguf, Quant method: Q5\_0, Size: 4.93GB Name: Vikhr-7B-instruct\_0.4.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 4.93GB Name: Vikhr-7B-instruct\_0.4.Q5\_K.gguf, Quant method: Q5\_K, Size: 5.05GB Name: Vikhr-7B-instruct\_0.4.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 5.05GB Name: Vikhr-7B-instruct\_0.4.Q5\_1.gguf, Quant method: Q5\_1, Size: 5.35GB Name: Vikhr-7B-instruct\_0.4.Q6\_K.gguf, Quant method: Q6\_K, Size: 5.83GB Original model description: --------------------------- library\_name: transformers tags: [] ------------------------------------ Релиз вихря 0.3-0.4 =================== Долили сильно больше данных в sft, теперь стабильнее работает json и multiturn, слегка подточили параметры претрена модели collab
[]
[ "TAGS\n#gguf #region-us \n" ]
[ 9 ]
[ "TAGS\n#gguf #region-us \n" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ikeno-ada/madlad400-3b-mt-Quanto-2bit
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:39:08+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 50, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.00001_withdpo_4iters_bs256_531lr_iter_4 This model is a fine-tuned version of [ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3](https://huggingface.co/ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3", "model-index": [{"name": "0.00001_withdpo_4iters_bs256_531lr_iter_4", "results": []}]}
ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:39:48+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.00001_withdpo_4iters_bs256_531lr_iter_4 This model is a fine-tuned version of ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.00001_withdpo_4iters_bs256_531lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.00001_withdpo_4iters_bs256_531lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ 101, 74, 7, 9, 9, 4, 155, 5, 44 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# 0.00001_withdpo_4iters_bs256_531lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.00001_withdpo_4iters_bs256_531lr_iter_3 on the updated and the original datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abc88767/model32
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:42:57+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
transformers
# Uploaded model - **Developed by:** myrulezzzz - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"}
myrulezzzz/llama3_llamaFactory
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:44:45+00:00
[]
[ "en" ]
TAGS #transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: myrulezzzz - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: myrulezzzz\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: myrulezzzz\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 85 ]
[ "TAGS\n#transformers #gguf #llama #text-generation-inference #unsloth #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: myrulezzzz\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6 This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2623 - Accuracy: 0.7465 ## Model description 55 dişi 30 pixel büyük croplandı More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | No log | 0.9231 | 3 | 0.6891 | 0.5493 | | No log | 1.8462 | 6 | 0.8674 | 0.4930 | | No log | 2.7692 | 9 | 0.6711 | 0.5915 | | 0.753 | 4.0 | 13 | 0.6249 | 0.6197 | | 0.753 | 4.9231 | 16 | 0.6793 | 0.5775 | | 0.753 | 5.8462 | 19 | 0.5528 | 0.7465 | | 0.6323 | 6.7692 | 22 | 0.6201 | 0.6197 | | 0.6323 | 8.0 | 26 | 0.6397 | 0.6761 | | 0.6323 | 8.9231 | 29 | 0.5666 | 0.6901 | | 0.5383 | 9.8462 | 32 | 0.6194 | 0.7183 | | 0.5383 | 10.7692 | 35 | 0.5351 | 0.7183 | | 0.5383 | 12.0 | 39 | 0.4823 | 0.7887 | | 0.5486 | 12.9231 | 42 | 0.7049 | 0.6620 | | 0.5486 | 13.8462 | 45 | 0.5251 | 0.7465 | | 0.5486 | 14.7692 | 48 | 0.5594 | 0.7606 | | 0.4685 | 16.0 | 52 | 0.9009 | 0.6338 | | 0.4685 | 16.9231 | 55 | 0.5820 | 0.8028 | | 0.4685 | 17.8462 | 58 | 0.6392 | 0.7324 | | 0.4436 | 18.7692 | 61 | 0.6104 | 0.6901 | | 0.4436 | 20.0 | 65 | 0.5907 | 0.7465 | | 0.4436 | 20.9231 | 68 | 0.6099 | 0.7746 | | 0.4195 | 21.8462 | 71 | 0.7244 | 0.7183 | | 0.4195 | 22.7692 | 74 | 0.8852 | 0.6479 | | 0.4195 | 24.0 | 78 | 0.7331 | 0.7465 | | 0.3628 | 24.9231 | 81 | 0.6333 | 0.7746 | | 0.3628 | 25.8462 | 84 | 0.9643 | 0.6620 | | 0.3628 | 26.7692 | 87 | 0.6534 | 0.7324 | | 0.352 | 28.0 | 91 | 1.5101 | 0.6197 | | 0.352 | 28.9231 | 94 | 0.9274 | 0.7042 | | 0.352 | 29.8462 | 97 | 0.7304 | 0.7465 | | 0.3561 | 30.7692 | 100 | 1.3176 | 0.6197 | | 0.3561 | 32.0 | 104 | 0.6449 | 0.7465 | | 0.3561 | 32.9231 | 107 | 1.0145 | 0.6620 | | 0.315 | 33.8462 | 110 | 0.7764 | 0.6901 | | 0.315 | 34.7692 | 113 | 1.0190 | 0.6901 | | 0.315 | 36.0 | 117 | 0.7332 | 0.7606 | | 0.264 | 36.9231 | 120 | 0.8076 | 0.7606 | | 0.264 | 37.8462 | 123 | 1.1015 | 0.6901 | | 0.264 | 38.7692 | 126 | 1.0194 | 0.6901 | | 0.2067 | 40.0 | 130 | 0.8318 | 0.7887 | | 0.2067 | 40.9231 | 133 | 0.8739 | 0.7606 | | 0.2067 | 41.8462 | 136 | 0.8776 | 0.7746 | | 0.2067 | 42.7692 | 139 | 0.8354 | 0.7606 | | 0.2289 | 44.0 | 143 | 1.2781 | 0.6620 | | 0.2289 | 44.9231 | 146 | 0.9686 | 0.7183 | | 0.2289 | 45.8462 | 149 | 1.1955 | 0.6901 | | 0.2034 | 46.7692 | 152 | 1.2282 | 0.6901 | | 0.2034 | 48.0 | 156 | 1.1087 | 0.7042 | | 0.2034 | 48.9231 | 159 | 1.2796 | 0.7183 | | 0.1743 | 49.8462 | 162 | 0.9281 | 0.7606 | | 0.1743 | 50.7692 | 165 | 0.9575 | 0.7465 | | 0.1743 | 52.0 | 169 | 1.0668 | 0.7042 | | 0.193 | 52.9231 | 172 | 0.9671 | 0.8028 | | 0.193 | 53.8462 | 175 | 1.2764 | 0.6479 | | 0.193 | 54.7692 | 178 | 1.3111 | 0.6761 | | 0.1628 | 56.0 | 182 | 1.1932 | 0.6901 | | 0.1628 | 56.9231 | 185 | 1.9299 | 0.6197 | | 0.1628 | 57.8462 | 188 | 1.2456 | 0.6761 | | 0.2067 | 58.7692 | 191 | 1.3794 | 0.6901 | | 0.2067 | 60.0 | 195 | 1.1626 | 0.7183 | | 0.2067 | 60.9231 | 198 | 1.0306 | 0.7324 | | 0.1761 | 61.8462 | 201 | 1.2267 | 0.6901 | | 0.1761 | 62.7692 | 204 | 1.4236 | 0.6479 | | 0.1761 | 64.0 | 208 | 1.2046 | 0.7042 | | 0.1771 | 64.9231 | 211 | 1.1581 | 0.7183 | | 0.1771 | 65.8462 | 214 | 1.2519 | 0.7042 | | 0.1771 | 66.7692 | 217 | 0.9807 | 0.7606 | | 0.1474 | 68.0 | 221 | 1.0221 | 0.7746 | | 0.1474 | 68.9231 | 224 | 1.3951 | 0.6901 | | 0.1474 | 69.8462 | 227 | 1.4294 | 0.6761 | | 0.145 | 70.7692 | 230 | 1.3713 | 0.6761 | | 0.145 | 72.0 | 234 | 1.4898 | 0.6761 | | 0.145 | 72.9231 | 237 | 1.7988 | 0.6620 | | 0.1305 | 73.8462 | 240 | 1.5864 | 0.6620 | | 0.1305 | 74.7692 | 243 | 1.3643 | 0.6901 | | 0.1305 | 76.0 | 247 | 1.4033 | 0.6901 | | 0.1373 | 76.9231 | 250 | 1.5816 | 0.6620 | | 0.1373 | 77.8462 | 253 | 1.6152 | 0.6761 | | 0.1373 | 78.7692 | 256 | 1.6678 | 0.6761 | | 0.142 | 80.0 | 260 | 1.7231 | 0.6901 | | 0.142 | 80.9231 | 263 | 1.4983 | 0.6901 | | 0.142 | 81.8462 | 266 | 1.4728 | 0.6901 | | 0.142 | 82.7692 | 269 | 1.4265 | 0.6901 | | 0.1225 | 84.0 | 273 | 1.3066 | 0.7183 | | 0.1225 | 84.9231 | 276 | 1.2789 | 0.7324 | | 0.1225 | 85.8462 | 279 | 1.2780 | 0.7324 | | 0.12 | 86.7692 | 282 | 1.2361 | 0.7324 | | 0.12 | 88.0 | 286 | 1.2396 | 0.7324 | | 0.12 | 88.9231 | 289 | 1.2637 | 0.7465 | | 0.1263 | 89.8462 | 292 | 1.2693 | 0.7465 | | 0.1263 | 90.7692 | 295 | 1.2724 | 0.7465 | | 0.1263 | 92.0 | 299 | 1.2635 | 0.7465 | | 0.1027 | 92.3077 | 300 | 1.2623 | 0.7465 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "metrics": ["accuracy"], "base_model": "microsoft/beit-base-patch16-224", "model-index": [{"name": "beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "imagefolder", "type": "imagefolder", "config": "default", "split": "train", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.7464788732394366, "name": "Accuracy"}]}]}]}
BilalMuftuoglu/beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6
null
[ "transformers", "tensorboard", "safetensors", "beit", "image-classification", "generated_from_trainer", "dataset:imagefolder", "base_model:microsoft/beit-base-patch16-224", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:02+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us
beit-base-patch16-224-7468f127-0d9d-4ea2-b9f1-197a8e13e3f6 ========================================================== This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set: * Loss: 1.2623 * Accuracy: 0.7465 Model description ----------------- 55 dişi 30 pixel büyük croplandı More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 100 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 70, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #beit #image-classification #generated_from_trainer #dataset-imagefolder #base_model-microsoft/beit-base-patch16-224 #license-apache-2.0 #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 100### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Main_Fashion-convnext This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1758 - Accuracy: 0.6381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.0951 | 0.9630 | 13 | 2.0201 | 0.2251 | | 1.9821 | 2.0 | 27 | 1.8213 | 0.4037 | | 1.7245 | 2.9630 | 40 | 1.6774 | 0.4640 | | 1.6117 | 4.0 | 54 | 1.5480 | 0.5452 | | 1.5 | 4.9630 | 67 | 1.4506 | 0.5615 | | 1.3393 | 6.0 | 81 | 1.3610 | 0.5963 | | 1.2579 | 6.9630 | 94 | 1.2995 | 0.6172 | | 1.2405 | 8.0 | 108 | 1.2480 | 0.6288 | | 1.1479 | 8.9630 | 121 | 1.2127 | 0.6357 | | 1.1005 | 10.0 | 135 | 1.1898 | 0.6381 | | 1.0989 | 10.9630 | 148 | 1.1778 | 0.6381 | | 1.0816 | 11.5556 | 156 | 1.1758 | 0.6381 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "facebook/convnext-tiny-224", "model-index": [{"name": "Main_Fashion-convnext", "results": []}]}
vlevi/Main_Fashion-convnext
null
[ "transformers", "tensorboard", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-tiny-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:28+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-tiny-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Main\_Fashion-convnext ====================== This model is a fine-tuned version of facebook/convnext-tiny-224 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.1758 * Accuracy: 0.6381 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 12 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-tiny-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 62, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #convnext #image-classification #generated_from_trainer #base_model-facebook/convnext-tiny-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ZurabDz/mlm-bpe-tokenizer-ka
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:45:46+00:00
[ "1910.09700" ]
[]
TAGS #transformers #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 22, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Vexemous/distilgpt2-finetuned-scificorpus-pos
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:46:51+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 45, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the truongpdd/new_dataset_v2 dataset. It achieves the following results on the evaluation set: - Loss: 0.0135 - Precision: 0.9119 - Recall: 0.9119 - F1: 0.9119 - Accuracy: 0.9963 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0154 | 1.0 | 19381 | 0.0186 | 0.7900 | 0.7900 | 0.7900 | 0.9911 | | 0.0137 | 2.0 | 38762 | 0.0132 | 0.8603 | 0.8603 | 0.8603 | 0.9941 | | 0.0121 | 3.0 | 58143 | 0.0125 | 0.8724 | 0.8725 | 0.8725 | 0.9946 | | 0.0104 | 4.0 | 77524 | 0.0116 | 0.8838 | 0.8838 | 0.8838 | 0.9951 | | 0.009 | 5.0 | 96905 | 0.0110 | 0.8915 | 0.8915 | 0.8915 | 0.9954 | | 0.0078 | 6.0 | 116286 | 0.0110 | 0.8981 | 0.8983 | 0.8982 | 0.9957 | | 0.0075 | 7.0 | 135667 | 0.0114 | 0.9014 | 0.9013 | 0.9014 | 0.9958 | | 0.0063 | 8.0 | 155048 | 0.0113 | 0.9036 | 0.9036 | 0.9036 | 0.9959 | | 0.0062 | 9.0 | 174429 | 0.0115 | 0.9052 | 0.9053 | 0.9053 | 0.9960 | | 0.0053 | 10.0 | 193810 | 0.0116 | 0.9052 | 0.9052 | 0.9052 | 0.9960 | | 0.0047 | 11.0 | 213191 | 0.0122 | 0.9085 | 0.9086 | 0.9085 | 0.9961 | | 0.0041 | 12.0 | 232572 | 0.0124 | 0.9098 | 0.9098 | 0.9098 | 0.9962 | | 0.0037 | 13.0 | 251953 | 0.0130 | 0.9117 | 0.9117 | 0.9117 | 0.9963 | | 0.0036 | 14.0 | 271334 | 0.0135 | 0.9103 | 0.9103 | 0.9103 | 0.9962 | | 0.0034 | 15.0 | 290715 | 0.0135 | 0.9119 | 0.9119 | 0.9119 | 0.9963 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["truongpdd/new_dataset_v2"], "metrics": ["precision", "recall", "f1", "accuracy"], "base_model": "microsoft/deberta-v3-base", "model-index": [{"name": "output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "truongpdd/new_dataset_v2", "type": "truongpdd/new_dataset_v2"}, "metrics": [{"type": "precision", "value": 0.9119287924126388, "name": "Precision"}, {"type": "recall", "value": 0.9119287924126388, "name": "Recall"}, {"type": "f1", "value": 0.9119287924126388, "name": "F1"}, {"type": "accuracy", "value": 0.9962801049882261, "name": "Accuracy"}]}]}]}
truongpdd/output_deberta_v3_on_new_dataset_v2_base_eval_each_step_lr_1e_5_15_epochs
null
[ "transformers", "safetensors", "deberta-v2", "token-classification", "generated_from_trainer", "dataset:truongpdd/new_dataset_v2", "base_model:microsoft/deberta-v3-base", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:47:07+00:00
[]
[]
TAGS #transformers #safetensors #deberta-v2 #token-classification #generated_from_trainer #dataset-truongpdd/new_dataset_v2 #base_model-microsoft/deberta-v3-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us
output\_deberta\_v3\_on\_new\_dataset\_v2\_base\_eval\_each\_step\_lr\_1e\_5\_15\_epochs ======================================================================================== This model is a fine-tuned version of microsoft/deberta-v3-base on the truongpdd/new\_dataset\_v2 dataset. It achieves the following results on the evaluation set: * Loss: 0.0135 * Precision: 0.9119 * Recall: 0.9119 * F1: 0.9119 * Accuracy: 0.9963 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 1e-05 * train\_batch\_size: 8 * eval\_batch\_size: 8 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 15.0 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.0.1+cu117 * Datasets 2.15.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.1+cu117\n* Datasets 2.15.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #deberta-v2 #token-classification #generated_from_trainer #dataset-truongpdd/new_dataset_v2 #base_model-microsoft/deberta-v3-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.1+cu117\n* Datasets 2.15.0\n* Tokenizers 0.15.2" ]
[ 78, 103, 5, 44 ]
[ "TAGS\n#transformers #safetensors #deberta-v2 #token-classification #generated_from_trainer #dataset-truongpdd/new_dataset_v2 #base_model-microsoft/deberta-v3-base #license-mit #model-index #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 1e-05\n* train\\_batch\\_size: 8\n* eval\\_batch\\_size: 8\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 15.0### Training results### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.1+cu117\n* Datasets 2.15.0\n* Tokenizers 0.15.2" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-100
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:49:06+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-150
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:49:58+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
fill-mask
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
AmalNlal/testing2
null
[ "transformers", "safetensors", "roberta", "fill-mask", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:50:29+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #roberta #fill-mask #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #roberta #fill-mask #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 37, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #roberta #fill-mask #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
ikeno-ada/madlad400-3b-mt-Quanto-4bit
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T18:50:37+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 50, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llamaft6v2 - bnb 4bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llamaft6v2/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llamaft6v2-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T18:50:39+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llamaft6v2 - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-200
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:50:51+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
cilantro9246/8rr4nts
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:51:20+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/t5oncme
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:51:36+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-250
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:51:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-300
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:52:46+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-350
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:53:41+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Uploaded model - **Developed by:** mcgalleg - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/mistral-7b-instruct-v0.2-bnb-4bit"}
mcgalleg/mistral-7b-bnb-4bit-forced
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/mistral-7b-instruct-v0.2-bnb-4bit", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "4-bit", "region:us" ]
null
2024-05-01T18:54:10+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us
# Uploaded model - Developed by: mcgalleg - License: apache-2.0 - Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: mcgalleg\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n", "# Uploaded model\n\n- Developed by: mcgalleg\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 89, 86 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/mistral-7b-instruct-v0.2-bnb-4bit #license-apache-2.0 #autotrain_compatible #endpoints_compatible #4-bit #region-us \n# Uploaded model\n\n- Developed by: mcgalleg\n- License: apache-2.0\n- Finetuned from model : unsloth/mistral-7b-instruct-v0.2-bnb-4bit\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
transformers
# Uploaded model - **Developed by:** achintyasharma - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
achintyasharma/lora_model
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:54:11+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: achintyasharma - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: achintyasharma\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: achintyasharma\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 64, 82 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: achintyasharma\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-400
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:54:42+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Example 1: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Result 1: ``` [{'label': 'positive', 'score': 0.9997604489326477}] ``` # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> # Citation Please cite this model as follows: ``` author = {Alas Development Center}, title = text classification, year = 2024, url = https://huggingface.co/alasdevcenter/text classification, doi = 10.57967/hf/2027, publisher = Hugging Face ```
{}
Ilkinism/ilmetin
null
[ "region:us" ]
null
2024-05-01T18:55:05+00:00
[]
[]
TAGS #region-us
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: Example 1: Result 1: # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> Please cite this model as follows:
[ "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ "TAGS\n#region-us \n", "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ 5, 99, 37, 91, 231 ]
[ "TAGS\n#region-us \n# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s># How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s># Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
ambrosfitz/llama-3-history
null
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "autotrain", "text-generation-inference", "peft", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:55:28+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #llama #text-generation #autotrain #text-generation-inference #peft #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #tensorboard #safetensors #llama #text-generation #autotrain #text-generation-inference #peft #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ 50, 23, 2 ]
[ "TAGS\n#transformers #tensorboard #safetensors #llama #text-generation #autotrain #text-generation-inference #peft #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-450
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:55:34+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0", "results": []}]}
ThuyNT/CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:55:35+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0 This model is a fine-tuned version of VietAI/vit5-large on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 62, 49, 7, 9, 9, 4, 102, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# CS505_COQE_viT5_total_Instruction0_ASPOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
null
null
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Example 1: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Result 1: ``` [{'label': 'positive', 'score': 0.9997604489326477}] ``` # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> # Citation Please cite this model as follows: ``` author = {Alas Development Center}, title = text classification, year = 2024, url = https://huggingface.co/alasdevcenter/text classification, doi = 10.57967/hf/2027, publisher = Hugging Face ```
{}
Ilkinism/ilmetin1
null
[ "region:us" ]
null
2024-05-01T18:56:13+00:00
[]
[]
TAGS #region-us
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: Example 1: Result 1: # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> Please cite this model as follows:
[ "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ "TAGS\n#region-us \n", "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ 5, 99, 37, 91, 231 ]
[ "TAGS\n#region-us \n# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s># How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s># Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-500
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:56:30+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-550
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:57:26+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0", "results": []}]}
ThuyNT/CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T18:57:31+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0 This model is a fine-tuned version of VietAI/vit5-large on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 62, 49, 7, 9, 9, 4, 102, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# CS505_COQE_viT5_total_Instruction0_APSOL_v1_h0\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
sreddy109/large-v0-600
null
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T18:58:21+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 40, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #xlm-roberta #text-classification #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
adapter-transformers
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Example 1: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Result 1: ``` [{'label': 'positive', 'score': 0.9997604489326477}] ``` # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> # Citation Please cite this model as follows: ``` author = {Alas Development Center}, title = text classification, year = 2024, url = https://huggingface.co/alasdevcenter/text classification, doi = 10.57967/hf/2027, publisher = Hugging Face ```
{"language": "az", "license": "apache-2.0", "library_name": "adapter-transformers"}
Ilkinism/ilmetin2
null
[ "adapter-transformers", "az", "license:apache-2.0", "region:us" ]
null
2024-05-01T18:58:40+00:00
[]
[ "az" ]
TAGS #adapter-transformers #az #license-apache-2.0 #region-us
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: Example 1: Result 1: # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> Please cite this model as follows:
[ "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ "TAGS\n#adapter-transformers #az #license-apache-2.0 #region-us \n", "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ 20, 99, 37, 91, 231 ]
[ "TAGS\n#adapter-transformers #az #license-apache-2.0 #region-us \n# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s># How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s># Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llamaft5 - bnb 4bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llamaft5/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llamaft5-4bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T19:01:55+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llamaft5 - bnb 4bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi22_LoRA <Gallery /> ## Model description These are embracellm/sushi22_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Avocado Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi22_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tuna Avocado Roll", "widget": []}
embracellm/sushi22_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T19:02:27+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi22_LoRA <Gallery /> ## Model description These are embracellm/sushi22_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Avocado Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi22_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi22_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Avocado Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi22_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi22_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Avocado Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 21, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi22_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi22_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Tuna Avocado Roll to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-generation
transformers
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain). # Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "PATH_TO_THIS_REPO" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", torch_dtype='auto' ).eval() # Prompt content: "hi" messages = [ {"role": "user", "content": "hi"} ] input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt') output_ids = model.generate(input_ids.to('cuda')) response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) # Model response: "Hello! How can I assist you today?" print(response) ```
{"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]}
abhishek/autotrain-mixtral-8x7b-orpo-v2
null
[ "transformers", "tensorboard", "safetensors", "mixtral", "text-generation", "autotrain", "text-generation-inference", "conversational", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:03:38+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #mixtral #text-generation #autotrain #text-generation-inference #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us
# Model Trained Using AutoTrain This model was trained using AutoTrain. For more information, please visit AutoTrain. # Usage
[ "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ "TAGS\n#transformers #tensorboard #safetensors #mixtral #text-generation #autotrain #text-generation-inference #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.", "# Usage" ]
[ 47, 23, 2 ]
[ "TAGS\n#transformers #tensorboard #safetensors #mixtral #text-generation #autotrain #text-generation-inference #conversational #license-other #autotrain_compatible #endpoints_compatible #region-us \n# Model Trained Using AutoTrain\n\nThis model was trained using AutoTrain. For more information, please visit AutoTrain.# Usage" ]
null
adapter-transformers
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Example 1: ```python from transformers import MBartForSequenceClassification, MBartTokenizer from transformers import pipeline model_path = r"/home/user/Desktop/Synthetic data/models/model_bart_saved" model = MBartForSequenceClassification.from_pretrained(model_path) tokenizer = MBartTokenizer.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) print(nlp("Yaşadığımız ölkədə xeyirxahlıq etmək əsas keyfiyyət göstəricilərindən biridir")) ``` Result 1: ``` [{'label': 'positive', 'score': 0.9997604489326477}] ``` # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> # Citation Please cite this model as follows: ``` author = {Alas Development Center}, title = text classification, year = 2024, url = https://huggingface.co/alasdevcenter/text classification, doi = 10.57967/hf/2027, publisher = Hugging Face ```
{"language": "az", "license": "apache-2.0", "library_name": "adapter-transformers"}
Ilkinism/ilmetin3
null
[ "adapter-transformers", "mbart", "az", "license:apache-2.0", "region:us" ]
null
2024-05-01T19:03:43+00:00
[]
[ "az" ]
TAGS #adapter-transformers #mbart #az #license-apache-2.0 #region-us
# text classification This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s> # How to Use This model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python: Example 1: Result 1: # Limitations and Bias For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s> # Ethical Considerations I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses. In sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary. Furthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts. In summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s> Please cite this model as follows:
[ "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ "TAGS\n#adapter-transformers #mbart #az #license-apache-2.0 #region-us \n", "# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s>", "# How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:", "# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s>", "# Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
[ 23, 99, 37, 91, 231 ]
[ "TAGS\n#adapter-transformers #mbart #az #license-apache-2.0 #region-us \n# text classification\n\n This model is a fine-tuned version of XLM-RoBERTa (XLM-R) on a text classification dataset in Azerbaijani. XLM-RoBERTa is a powerful multilingual model that supports 100+ languages. Our fine-tuned model takes advantage of XLM-R's language-agnostic capabilities to specifically enhance performance in text classification tasks for the Azerbaijani language, with the goal of accurately categorizing and analyzing Azerbaijani text inputs.</s># How to Use\nThis model can be loaded and used for prediction using the Hugging Face Transformers library. Below is an example code snippet in Python:\n\n\n\nExample 1:\n\nResult 1:# Limitations and Bias\n For text classification tasks, the model's performance may be limited due to its fine-tuning for just one epoch. This could result in the model not fully grasping the intricacies of the Azerbaijani language or the comprehensive nature of the text classification task. Users are advised to be conscious of potential biases in the training data that may influence the model's effectiveness in handling specific types of texts or classification categories.</s># Ethical Considerations\n I strongly agree with the statement. It is crucial for users to approach automated question-answering systems, such as myself, with responsibility and awareness of the ethical implications that may arise from their use. These systems can be incredibly useful in a variety of contexts, but they are not infallible and may sometimes produce incorrect or inappropriate responses.\n\nIn sensitive or high-stakes contexts, it is essential to exercise caution and verify the information provided by the system. Users should also be mindful of the potential consequences of relying on automated systems and consider seeking guidance from human experts when necessary.\n\nFurthermore, users should be aware of the limitations of automated question-answering systems and avoid using them to make important decisions without proper human oversight. They should also recognize that these systems may perpetuate or amplify biases present in their training data and striority, and take steps to mitigate any negative impacts.\n\nIn summary, while automated question-answering systems can be valuable tools, they should be used responsibly, ethically, and with an understanding of their limitations and potential risks.</s>\n\nPlease cite this model as follows:" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llamaft6v2 - bnb 8bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llamaft6v2/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llamaft6v2-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T19:04:00+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llamaft6v2 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
reinforcement-learning
null
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters ```python {'exp_name': 'ppo' 'env_id': 'LunarLander-v2' 'seed': 1 'torch_deterministic': True 'cuda': True 'track': False 'wandb_project_name': 'cleanRL' 'wandb_entity': None 'capture_video': False 'learning_rate': 0.00025 'total_timesteps': 1000000 'num_envs': 4 'num_steps': 1024 'anneal_lr': True 'gae': True 'gamma': 0.99 'gae_lambda': 0.98 'num_minibatches': 4 'update_epochs': 20 'norm_adv': True 'clip_coef': 0.2 'clip_vloss': True 'ent_coef': 0.01 'vf_coef': 0.5 'max_grad_norm': 0.5 'target_kl': None 'repo_id': 'rahil1206/test' 'batch_size': 4096 'minibatch_size': 1024} ```
{"tags": ["LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "173.53 +/- 62.70", "name": "mean_reward", "verified": false}]}]}]}
rahil1206/test
null
[ "tensorboard", "LunarLander-v2", "ppo", "deep-reinforcement-learning", "reinforcement-learning", "custom-implementation", "deep-rl-course", "model-index", "region:us" ]
null
2024-05-01T19:04:22+00:00
[]
[]
TAGS #tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us
# PPO Agent Playing LunarLander-v2 This is a trained model of a PPO agent playing LunarLander-v2. # Hyperparameters
[ "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n", "# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
[ 42, 32 ]
[ "TAGS\n#tensorboard #LunarLander-v2 #ppo #deep-reinforcement-learning #reinforcement-learning #custom-implementation #deep-rl-course #model-index #region-us \n# PPO Agent Playing LunarLander-v2\n\n This is a trained model of a PPO agent playing LunarLander-v2.\n\n # Hyperparameters" ]
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
andersonbcdefg/tiny-emb-2024-05-01_19-05-40
null
[ "transformers", "safetensors", "bert", "feature-extraction", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:05:40+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 32, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #bert #feature-extraction #arxiv-1910.09700 #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Main_fashion-swin This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7830 - Accuracy: 0.7053 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 2.019 | 0.9630 | 13 | 1.7204 | 0.3805 | | 1.646 | 2.0 | 27 | 1.2356 | 0.5940 | | 0.9911 | 2.9630 | 40 | 0.9948 | 0.6821 | | 0.9104 | 4.0 | 54 | 0.9069 | 0.6775 | | 0.8337 | 4.9630 | 67 | 0.8472 | 0.6961 | | 0.7425 | 6.0 | 81 | 0.8436 | 0.6891 | | 0.6625 | 6.9630 | 94 | 0.8257 | 0.6937 | | 0.6814 | 8.0 | 108 | 0.8274 | 0.6914 | | 0.6445 | 8.9630 | 121 | 0.7940 | 0.7053 | | 0.6032 | 10.0 | 135 | 0.8015 | 0.7030 | | 0.6231 | 10.9630 | 148 | 0.7825 | 0.7077 | | 0.6337 | 11.5556 | 156 | 0.7830 | 0.7053 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "microsoft/swin-tiny-patch4-window7-224", "model-index": [{"name": "Main_fashion-swin", "results": []}]}
vlevi/Main_fashion-swin
null
[ "transformers", "tensorboard", "safetensors", "swin", "image-classification", "generated_from_trainer", "base_model:microsoft/swin-tiny-patch4-window7-224", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:06:09+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
Main\_fashion-swin ================== This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.7830 * Accuracy: 0.7053 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 32 * eval\_batch\_size: 32 * seed: 42 * gradient\_accumulation\_steps: 4 * total\_train\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 12 ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 64, 142, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #swin #image-classification #generated_from_trainer #base_model-microsoft/swin-tiny-patch4-window7-224 #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 32\n* eval\\_batch\\_size: 32\n* seed: 42\n* gradient\\_accumulation\\_steps: 4\n* total\\_train\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 12### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) llamaft5 - bnb 8bits - Model creator: https://huggingface.co/Aspik101/ - Original model: https://huggingface.co/Aspik101/llamaft5/ Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
RichardErkhov/Aspik101_-_llamaft5-8bits
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T19:08:29+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models llamaft5 - bnb 8bits - Model creator: URL - Original model: URL Original model description: --- library_name: transformers tags: [] --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 51, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - Kousha/realistic_Person2.0_LORA <Gallery /> ## Model description These are Kousha/realistic_Person2.0_LORA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use an image of RL person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](Kousha/realistic_Person2.0_LORA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "an image of RL person", "widget": []}
Kousha/realistic_Person2.0_LORA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T19:09:46+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - Kousha/realistic_Person2.0_LORA <Gallery /> ## Model description These are Kousha/realistic_Person2.0_LORA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use an image of RL person to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - Kousha/realistic_Person2.0_LORA\n\n<Gallery />", "## Model description\n\nThese are Kousha/realistic_Person2.0_LORA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use an image of RL person to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - Kousha/realistic_Person2.0_LORA\n\n<Gallery />", "## Model description\n\nThese are Kousha/realistic_Person2.0_LORA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use an image of RL person to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 27, 87, 19, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - Kousha/realistic_Person2.0_LORA\n\n<Gallery />## Model description\n\nThese are Kousha/realistic_Person2.0_LORA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use an image of RL person to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pigas/phi-2-GPTQ-4bits
null
[ "transformers", "safetensors", "phi", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T19:11:12+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #phi #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #phi #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
null
null
# Yamshadowexperiment28Shadowm7exp-7B Yamshadowexperiment28Shadowm7exp-7B is an automated merge created by [Maxime Labonne](https://huggingface.co/mlabonne) using the following configuration. ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 - model: automerger/YamshadowExperiment28-7B - model: mahiatlinux/ShadowM7EXP-7B merge_method: model_stock base_model: mistralai/Mistral-7B-v0.1 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "automerger/Yamshadowexperiment28Shadowm7exp-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "automerger"]}
automerger/Yamshadowexperiment28Shadowm7exp-7B
null
[ "merge", "mergekit", "lazymergekit", "automerger", "license:apache-2.0", "region:us" ]
null
2024-05-01T19:12:34+00:00
[]
[]
TAGS #merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us
# Yamshadowexperiment28Shadowm7exp-7B Yamshadowexperiment28Shadowm7exp-7B is an automated merge created by Maxime Labonne using the following configuration. ## Configuration ## Usage
[ "# Yamshadowexperiment28Shadowm7exp-7B\n\nYamshadowexperiment28Shadowm7exp-7B is an automated merge created by Maxime Labonne using the following configuration.", "## Configuration", "## Usage" ]
[ "TAGS\n#merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us \n", "# Yamshadowexperiment28Shadowm7exp-7B\n\nYamshadowexperiment28Shadowm7exp-7B is an automated merge created by Maxime Labonne using the following configuration.", "## Configuration", "## Usage" ]
[ 27, 54, 3, 3 ]
[ "TAGS\n#merge #mergekit #lazymergekit #automerger #license-apache-2.0 #region-us \n# Yamshadowexperiment28Shadowm7exp-7B\n\nYamshadowexperiment28Shadowm7exp-7B is an automated merge created by Maxime Labonne using the following configuration.## Configuration## Usage" ]
null
null
# Quantized_by: Zeeshan # Tinyllama 1.1B Chat v0.3 - GGUF - Model creator: [TinyLlama](https://huggingface.co/TinyLlama) - Original model: [Tinyllama 1.1B Chat v0.3](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3) <!-- description start --> ## Description This repo contains GGUF format model files for [TinyLlama's Tinyllama 1.1B Chat v0.3](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v0.3). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplete list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * Faraday.dev <!-- footer end --> <!-- original-model-card start --> # Original model card: TinyLlama's Tinyllama 1.1B Chat v0.3 <div align="center"> # TinyLlama-1.1B </div> https://github.com/jzhang38/TinyLlama The TinyLlama project aims to **pretrain** a **1.1B Llama model on 3 trillion tokens**. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on top of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T). **We follow [HF's Zephyr](https://huggingface.co/HuggingFaceH4/zephyr-7b-alpha/edit/main/README.md)'s training recipe.** The model was " initially fine-tuned on a variant of the [`UltraChat`](https://huggingface.co/datasets/stingning/ultrachat) dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with [🤗 TRL's](https://github.com/huggingface/trl) `DPOTrainer` on the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset, which contain 64k prompts and model completions that are ranked by GPT-4." #### How to use You will need the transformers>=4.34 Do check the [TinyLlama](https://github.com/jzhang38/TinyLlama) github page for more information. ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v0.3", torch_dtype=torch.bfloat16, device_map="auto") # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) # <|system|> # You are a friendly chatbot who always responds in the style of a pirate.</s> # <|user|> # How many helicopters can a human eat in one sitting?</s> # <|assistant|> # ... ``` <!-- original-model-card end -->
{}
zeeshanali01/TinyLlama-1.1B-Chat-v0.3-GGUF
null
[ "gguf", "region:us" ]
null
2024-05-01T19:14:04+00:00
[]
[]
TAGS #gguf #region-us
# Quantized_by: Zeeshan # Tinyllama 1.1B Chat v0.3 - GGUF - Model creator: TinyLlama - Original model: Tinyllama 1.1B Chat v0.3 ## Description This repo contains GGUF format model files for TinyLlama's Tinyllama 1.1B Chat v0.3. ### About GGUF GGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL. Here is an incomplete list of clients and libraries that are known to support GGUF: * URL. The source project for GGUF. Offers a CLI and a server option. * text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. * LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. * LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection. * URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use. * ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. ## How to download GGUF files Note for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: * LM Studio * LoLLMS Web UI * URL # Original model card: TinyLlama's Tinyllama 1.1B Chat v0.3 <div align="center"> # TinyLlama-1.1B </div> URL The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs . The training has started on 2023-09-01. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint. #### This Model This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the 'UltraChat' dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with TRL's 'DPOTrainer' on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4." #### How to use You will need the transformers>=4.34 Do check the TinyLlama github page for more information.
[ "# Quantized_by: Zeeshan", "# Tinyllama 1.1B Chat v0.3 - GGUF\n- Model creator: TinyLlama\n- Original model: Tinyllama 1.1B Chat v0.3", "## Description\n\nThis repo contains GGUF format model files for TinyLlama's Tinyllama 1.1B Chat v0.3.", "### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.", "## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL", "# Original model card: TinyLlama's Tinyllama 1.1B Chat v0.3\n\n<div align=\"center\">", "# TinyLlama-1.1B\n</div>\n\nURL\n\nThe TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of \"just\" 90 days using 16 A100-40G GPUs . The training has started on 2023-09-01.\n\n\nWe adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.", "#### This Model\nThis is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was \" initially fine-tuned on a variant of the 'UltraChat' dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.\nWe then further aligned the model with TRL's 'DPOTrainer' on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4.\"", "#### How to use\nYou will need the transformers>=4.34\nDo check the TinyLlama github page for more information." ]
[ "TAGS\n#gguf #region-us \n", "# Quantized_by: Zeeshan", "# Tinyllama 1.1B Chat v0.3 - GGUF\n- Model creator: TinyLlama\n- Original model: Tinyllama 1.1B Chat v0.3", "## Description\n\nThis repo contains GGUF format model files for TinyLlama's Tinyllama 1.1B Chat v0.3.", "### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.", "## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL", "# Original model card: TinyLlama's Tinyllama 1.1B Chat v0.3\n\n<div align=\"center\">", "# TinyLlama-1.1B\n</div>\n\nURL\n\nThe TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of \"just\" 90 days using 16 A100-40G GPUs . The training has started on 2023-09-01.\n\n\nWe adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.", "#### This Model\nThis is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was \" initially fine-tuned on a variant of the 'UltraChat' dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.\nWe then further aligned the model with TRL's 'DPOTrainer' on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4.\"", "#### How to use\nYou will need the transformers>=4.34\nDo check the TinyLlama github page for more information." ]
[ 9, 8, 38, 31, 392, 83, 30, 147, 139, 31 ]
[ "TAGS\n#gguf #region-us \n# Quantized_by: Zeeshan# Tinyllama 1.1B Chat v0.3 - GGUF\n- Model creator: TinyLlama\n- Original model: Tinyllama 1.1B Chat v0.3## Description\n\nThis repo contains GGUF format model files for TinyLlama's Tinyllama 1.1B Chat v0.3.### About GGUF\n\nGGUF is a new format introduced by the URL team on August 21st 2023. It is a replacement for GGML, which is no longer supported by URL.\n\nHere is an incomplete list of clients and libraries that are known to support GGUF:\n\n* URL. The source project for GGUF. Offers a CLI and a server option.\n* text-generation-webui, the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.\n* KoboldCpp, a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.\n* GPT4All, a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.\n* LM Studio, an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.\n* LoLLMS Web UI, a great web UI with many interesting and unique features, including a full model library for easy model selection.\n* URL, an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.\n* llama-cpp-python, a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.\n* candle, a Rust ML framework with a focus on performance, including GPU support, and ease of use.\n* ctransformers, a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.## How to download GGUF files\n\nNote for manual downloaders: You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file.\n\nThe following clients/libraries will automatically download models for you, providing a list of available models to choose from:\n\n* LM Studio\n* LoLLMS Web UI\n* URL# Original model card: TinyLlama's Tinyllama 1.1B Chat v0.3\n\n<div align=\"center\"># TinyLlama-1.1B\n</div>\n\nURL\n\nThe TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of \"just\" 90 days using 16 A100-40G GPUs . The training has started on 2023-09-01.\n\n\nWe adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.#### This Model\nThis is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was \" initially fine-tuned on a variant of the 'UltraChat' dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT.\nWe then further aligned the model with TRL's 'DPOTrainer' on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4.\"#### How to use\nYou will need the transformers>=4.34\nDo check the TinyLlama github page for more information." ]
null
transformers
# Uploaded model - **Developed by:** felixml - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-Instruct-bnb-4bit"}
felixml/Llama-3-8B-Instruct-synthetic_text_to_sql-600-steps-lora
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-Instruct-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:14:43+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: felixml - License: apache-2.0 - Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit This llama model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: felixml\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: felixml\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 67, 82 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #llama #trl #en #base_model-unsloth/llama-3-8b-Instruct-bnb-4bit #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: felixml\n- License: apache-2.0\n- Finetuned from model : unsloth/llama-3-8b-Instruct-bnb-4bit\n\nThis llama model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # still-cooking-temp-0.5-distilled-code-llama This model is a fine-tuned version of [anudaw/still-cooking-temp-0.5-distilled-code-llama](https://huggingface.co/anudaw/still-cooking-temp-0.5-distilled-code-llama) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "anudaw/still-cooking-temp-0.5-distilled-code-llama", "model-index": [{"name": "still-cooking-temp-0.5-distilled-code-llama", "results": []}]}
anudaw/still-cooking-temp-0.5-distilled-code-llama
null
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "generated_from_trainer", "base_model:anudaw/still-cooking-temp-0.5-distilled-code-llama", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:15:26+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #trl #sft #generated_from_trainer #base_model-anudaw/still-cooking-temp-0.5-distilled-code-llama #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# still-cooking-temp-0.5-distilled-code-llama This model is a fine-tuned version of anudaw/still-cooking-temp-0.5-distilled-code-llama on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - lr_scheduler_warmup_ratio: 0.03 - num_epochs: 3 ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "# still-cooking-temp-0.5-distilled-code-llama\n\nThis model is a fine-tuned version of anudaw/still-cooking-temp-0.5-distilled-code-llama on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #sft #generated_from_trainer #base_model-anudaw/still-cooking-temp-0.5-distilled-code-llama #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# still-cooking-temp-0.5-distilled-code-llama\n\nThis model is a fine-tuned version of anudaw/still-cooking-temp-0.5-distilled-code-llama on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 82, 58, 7, 9, 9, 4, 126, 44 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #trl #sft #generated_from_trainer #base_model-anudaw/still-cooking-temp-0.5-distilled-code-llama #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# still-cooking-temp-0.5-distilled-code-llama\n\nThis model is a fine-tuned version of anudaw/still-cooking-temp-0.5-distilled-code-llama on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 1\n- eval_batch_size: 1\n- seed: 42\n- gradient_accumulation_steps: 32\n- total_train_batch_size: 32\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: constant\n- lr_scheduler_warmup_ratio: 0.03\n- num_epochs: 3### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text-generation
null
## Exllama v2 Quantizations of Scarlett-Llama-3-8B-v1.0 Using <a href="https://github.com/turboderp/exllamav2/releases/tag/v0.0.20">turboderp's ExLlamaV2 v0.0.20</a> for quantization. <b>The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)</b> Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions. Original model: https://huggingface.co/ajibawa-2023/Scarlett-Llama-3-8B-v1.0 ## Prompt format ``` <|im_start|>system {system_prompt}<|im_end|> <|im_start|>user {prompt}<|im_end|> <|im_start|>assistant ``` ## Available sizes | Branch | Bits | lm_head bits | VRAM (4k) | VRAM (8K) | VRAM (16k) | VRAM (32k) | Description | | ----- | ---- | ------- | ------ | ------ | ------ | ------ | ------------ | | [8_0](https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2/tree/8_0) | 8.0 | 8.0 | 10.1 GB | 10.5 GB | 11.5 GB | 13.6 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. | | [6_5](https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2/tree/6_5) | 6.5 | 8.0 | 8.9 GB | 9.3 GB | 10.3 GB | 12.4 GB | Very similar to 8.0, good tradeoff of size vs performance, **recommended**. | | [5_0](https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2/tree/5_0) | 5.0 | 6.0 | 7.7 GB | 8.1 GB | 9.1 GB | 11.2 GB | Slightly lower quality vs 6.5, but usable on 8GB cards. | | [4_25](https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2/tree/4_25) | 4.25 | 6.0 | 7.0 GB | 7.4 GB | 8.4 GB | 10.5 GB | GPTQ equivalent bits per weight, slightly higher quality. | | [3_5](https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2/tree/3_5) | 3.5 | 6.0 | 6.4 GB | 6.8 GB | 7.8 GB | 9.9 GB | Lower quality, only use if you have to. | ## Download instructions With git: ```shell git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/Scarlett-Llama-3-8B-v1.0-exl2 Scarlett-Llama-3-8B-v1.0-exl2-6_5 ``` With huggingface hub (credit to TheBloke for instructions): ```shell pip3 install huggingface-hub ``` To download a specific branch, use the `--revision` parameter. For example, to download the 6.5 bpw branch: Linux: ```shell huggingface-cli download bartowski/Scarlett-Llama-3-8B-v1.0-exl2 --revision 6_5 --local-dir Scarlett-Llama-3-8B-v1.0-exl2-6_5 --local-dir-use-symlinks False ``` Windows (which apparently doesn't like _ in folders sometimes?): ```shell huggingface-cli download bartowski/Scarlett-Llama-3-8B-v1.0-exl2 --revision 6_5 --local-dir Scarlett-Llama-3-8B-v1.0-exl2-6.5 --local-dir-use-symlinks False ``` Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski
{"language": ["en"], "license": "other", "tags": ["art", "philosophy", "romance", "jokes", "advice", "code", "companionship"], "license_name": "llama3", "license_link": "LICENSE", "quantized_by": "bartowski", "pipeline_tag": "text-generation"}
bartowski/Scarlett-Llama-3-8B-v1.0-exl2
null
[ "art", "philosophy", "romance", "jokes", "advice", "code", "companionship", "text-generation", "en", "license:other", "region:us" ]
null
2024-05-01T19:18:14+00:00
[]
[ "en" ]
TAGS #art #philosophy #romance #jokes #advice #code #companionship #text-generation #en #license-other #region-us
Exllama v2 Quantizations of Scarlett-Llama-3-8B-v1.0 ---------------------------------------------------- Using <a href="URL ExLlamaV2 v0.0.20 for quantization. **The "main" branch only contains the URL, download one of the other branches for the model (see below)** Each branch contains an individual bits per weight, with the main one containing only the URL for further conversions. Original model: URL Prompt format ------------- Available sizes --------------- Download instructions --------------------- With git: With huggingface hub (credit to TheBloke for instructions): To download a specific branch, use the '--revision' parameter. For example, to download the 6.5 bpw branch: Linux: Windows (which apparently doesn't like \_ in folders sometimes?): Want to support my work? Visit my ko-fi page here: URL
[]
[ "TAGS\n#art #philosophy #romance #jokes #advice #code #companionship #text-generation #en #license-other #region-us \n" ]
[ 30 ]
[ "TAGS\n#art #philosophy #romance #jokes #advice #code #companionship #text-generation #en #license-other #region-us \n" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
OwOpeepeepoopoo/onetwothree
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:21:28+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 47, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi23_LoRA <Gallery /> ## Model description These are embracellm/sushi23_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Poke Bowl to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi23_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Tuna Poke Bowl", "widget": []}
embracellm/sushi23_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T19:22:35+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi23_LoRA <Gallery /> ## Model description These are embracellm/sushi23_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Tuna Poke Bowl to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi23_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi23_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Poke Bowl to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi23_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi23_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Tuna Poke Bowl to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 19, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi23_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi23_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Tuna Poke Bowl to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-Ruby-7B-Fixed - bnb 4bits - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed/ Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-Ruby-7B-Fixed results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.22 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard --- # KangalKhan-Ruby-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF KangalKhan-Ruby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-Ruby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-Ruby-7B-Fixed) | Metric |Value| |---------------------------------|----:| |Avg. |68.68| |AI2 Reasoning Challenge (25-Shot)|67.24| |HellaSwag (10-Shot) |85.22| |MMLU (5-Shot) |63.21| |TruthfulQA (0-shot) |56.49| |Winogrande (5-shot) |77.98| |GSM8k (5-shot) |61.94|
{}
RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-4bits
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T19:23:51+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-Ruby-7B-Fixed - bnb 4bits * Model creator: URL * Original model: URL Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-Ruby-7B-Fixed results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 67.24 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.22 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 56.49 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-Ruby-7B ================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-Ruby-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n" ]
[ 41 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-Ruby-7B-Fixed - bnb 8bits - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed/ Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-Ruby-7B-Fixed results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.22 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard --- # KangalKhan-Ruby-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF KangalKhan-Ruby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-Ruby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-Ruby-7B-Fixed) | Metric |Value| |---------------------------------|----:| |Avg. |68.68| |AI2 Reasoning Challenge (25-Shot)|67.24| |HellaSwag (10-Shot) |85.22| |MMLU (5-Shot) |63.21| |TruthfulQA (0-shot) |56.49| |Winogrande (5-shot) |77.98| |GSM8k (5-shot) |61.94|
{}
RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-8bits
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T19:28:35+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-Ruby-7B-Fixed - bnb 8bits * Model creator: URL * Original model: URL Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-Ruby-7B-Fixed results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 67.24 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.22 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 56.49 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-Ruby-7B ================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-Ruby-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n" ]
[ 41 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
vishruthnath/codellama_1024_seq_len
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:29:11+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 44, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_train_Instruction1_SOAPL_v1 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_train_Instruction1_SOAPL_v1", "results": []}]}
ThuyNT/CS505_COQE_viT5_train_Instruction1_SOAPL_v1
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:30:08+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# CS505_COQE_viT5_train_Instruction1_SOAPL_v1 This model is a fine-tuned version of VietAI/vit5-large on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
[ "# CS505_COQE_viT5_train_Instruction1_SOAPL_v1\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# CS505_COQE_viT5_train_Instruction1_SOAPL_v1\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
[ 62, 46, 7, 9, 9, 4, 102, 5, 40 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-VietAI/vit5-large #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# CS505_COQE_viT5_train_Instruction1_SOAPL_v1\n\nThis model is a fine-tuned version of VietAI/vit5-large on the None dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 8\n- eval_batch_size: 64\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 20\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- Transformers 4.39.3\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.15.2" ]
sentence-similarity
sentence-transformers
# Giratina This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [Mihaiii/Wartortle](https://huggingface.co/Mihaiii/Wartortle) * [TaylorAI/bge-micro-v2](https://huggingface.co/TaylorAI/bge-micro-v2) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Mihaiii/Wartortle - model: TaylorAI/bge-micro-v2 merge_method: slerp base_model: TaylorAI/bge-micro-v2 parameters: t: - value: 0.5 dtype: float32 ```
{"license": "mit", "library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge"], "pipeline_tag": "sentence-similarity", "base_model": ["Mihaiii/Wartortle", "TaylorAI/bge-micro-v2"], "model-index": [{"name": "Giratina", "results": [{"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonCounterfactualClassification (en)", "type": "mteb/amazon_counterfactual", "config": "en", "split": "test", "revision": "e8379541af4e31359cca9fbcf4b00f2671dba205"}, "metrics": [{"type": "accuracy", "value": 69.56716417910448}, {"type": "ap", "value": 31.399435128856624}, {"type": "f1", "value": 63.139089415537256}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonPolarityClassification", "type": "mteb/amazon_polarity", "config": "default", "split": "test", "revision": "e2d317d38cd51312af73b3d32a06d1a08b442046"}, "metrics": [{"type": "accuracy", "value": 74.73525000000001}, {"type": "ap", "value": 69.2327764533514}, {"type": "f1", "value": 74.61617659775962}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB AmazonReviewsClassification (en)", "type": "mteb/amazon_reviews_multi", "config": "en", "split": "test", "revision": "1399c76144fd37290681b995c656ef9b2e06e26d"}, "metrics": [{"type": "accuracy", "value": 35.356}, {"type": "f1", "value": 35.165109893437204}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB ArguAna", "type": "mteb/arguana", "config": "default", "split": "test", "revision": "c22ab2a51041ffd869aaddef7af8d8215647e41a"}, "metrics": [{"type": "map_at_1", "value": 17.141000000000002}, {"type": "map_at_10", "value": 28.292}, {"type": "map_at_100", "value": 29.532000000000004}, {"type": "map_at_1000", "value": 29.580000000000002}, {"type": "map_at_20", "value": 29.048000000000002}, {"type": "map_at_3", "value": 24.277}, {"type": "map_at_5", "value": 26.339000000000002}, {"type": "mrr_at_1", "value": 17.781}, {"type": "mrr_at_10", "value": 28.534}, {"type": "mrr_at_100", "value": 29.779}, {"type": "mrr_at_1000", "value": 29.826999999999998}, {"type": "mrr_at_20", "value": 29.293000000000003}, {"type": "mrr_at_3", "value": 24.490000000000002}, {"type": "mrr_at_5", "value": 26.564}, {"type": "ndcg_at_1", "value": 17.141000000000002}, {"type": "ndcg_at_10", "value": 35.004000000000005}, {"type": "ndcg_at_100", "value": 41.056}, {"type": "ndcg_at_1000", "value": 42.388}, {"type": "ndcg_at_20", "value": 37.721}, {"type": "ndcg_at_3", "value": 26.592}, {"type": "ndcg_at_5", "value": 30.294999999999998}, {"type": "precision_at_1", "value": 17.141000000000002}, {"type": "precision_at_10", "value": 5.676}, {"type": "precision_at_100", "value": 0.851}, {"type": "precision_at_1000", "value": 0.096}, {"type": "precision_at_20", "value": 3.3709999999999996}, {"type": "precision_at_3", "value": 11.094999999999999}, {"type": "precision_at_5", "value": 8.450000000000001}, {"type": "recall_at_1", "value": 17.141000000000002}, {"type": "recall_at_10", "value": 56.757000000000005}, {"type": "recall_at_100", "value": 85.064}, {"type": "recall_at_1000", "value": 95.661}, {"type": "recall_at_20", "value": 67.425}, {"type": "recall_at_3", "value": 33.286}, {"type": "recall_at_5", "value": 42.248000000000005}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringP2P", "type": "mteb/arxiv-clustering-p2p", "config": "default", "split": "test", "revision": "a122ad7f3f0291bf49cc6f4d32aa80929df69d5d"}, "metrics": [{"type": "v_measure", "value": 37.86211319797047}, {"type": "v_measures", "value": [0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497, 0.33158313059028166, 0.37901912420270933, 0.368350193636622, 0.3710910416810123, 0.33682934300988204, 0.3935143766420073, 0.3506042155722468, 0.38890637022748253, 0.3809948829762236, 0.3573848842626061, 0.4384574114930339, 0.44065249261067524, 0.4455934266459656, 0.44427870340567255, 0.44866585162160194, 0.4400562736320333, 0.44272671447092676, 0.4472379619739013, 0.447120409649494, 0.4374054560695822, 0.42821311110400917, 0.26728232917410677, 0.2819026763758509, 0.3341565824397579, 0.29184325438397496, 0.190440948203588, 0.26951517878043996, 0.1580088222464484, 0.20107217046853706, 1.0, 0.22434775382017497]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB ArxivClusteringS2S", "type": "mteb/arxiv-clustering-s2s", "config": "default", "split": "test", "revision": "f910caf1a6075f7329cdf8c1a6135696f37dbd53"}, "metrics": [{"type": "v_measure", "value": 28.836354293877637}, {"type": "v_measures", "value": [0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873, 0.26770607587929524, 0.25679087657287986, 0.26683847803527544, 0.27314067131657194, 0.2637027189955263, 0.27546553977066784, 0.2663910185474206, 0.26115132013506304, 0.28239605072779855, 0.2715001900369248, 0.3338711918999345, 0.330513643529441, 0.32916198249267603, 0.33648402018146334, 0.33995041466013076, 0.33576749276064755, 0.3328011112044641, 0.33773499787647715, 0.3347474569158458, 0.33112140013488434, 0.3093636862898543, 0.1601792611076284, 0.20820618472388558, 0.2622841294938964, 0.20833795363058114, 0.15304171124037919, 0.19106061252763054, 0.09640933163812757, 0.16463927791620916, 1.0, 0.1585110308604873]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB AskUbuntuDupQuestions", "type": "mteb/askubuntudupquestions-reranking", "config": "default", "split": "test", "revision": "2000358ca161889fa9c082cb41daa8dcfb161a54"}, "metrics": [{"type": "map", "value": 55.77162231859219}, {"type": "mrr", "value": 69.60614254935584}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB BIOSSES", "type": "mteb/biosses-sts", "config": "default", "split": "test", "revision": "d3fb88f8f02e40887cd149695127462bbcf29b4a"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.005851173518}, {"type": "cos_sim_spearman", "value": 76.4866825599851}, {"type": "euclidean_pearson", "value": 74.6002011099264}, {"type": "euclidean_spearman", "value": 74.99267261434052}, {"type": "manhattan_pearson", "value": 74.69084330891174}, {"type": "manhattan_spearman", "value": 74.06253093850374}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB Banking77Classification", "type": "mteb/banking77", "config": "default", "split": "test", "revision": "0fd18e25b25c072e09e0d92ab615fda904d66300"}, "metrics": [{"type": "accuracy", "value": 77.51298701298701}, {"type": "f1", "value": 77.42714563211781}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringP2P", "type": "mteb/biorxiv-clustering-p2p", "config": "default", "split": "test", "revision": "65b79d1d13f80053f67aca9498d9402c2d9f1f40"}, "metrics": [{"type": "v_measure", "value": 32.087909450126375}, {"type": "v_measures", "value": [0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755, 0.3142833102070323, 0.3203971307539949, 0.3161164170523813, 0.30802810025196975, 0.3177972043203049, 0.3186492377314429, 0.3324448674345129, 0.3302138414852389, 0.32033008662475176, 0.33053074915100755]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB BiorxivClusteringS2S", "type": "mteb/biorxiv-clustering-s2s", "config": "default", "split": "test", "revision": "258694dd0231531bc1fd9de6ceb52a0853c6d908"}, "metrics": [{"type": "v_measure", "value": 23.549481691079134}, {"type": "v_measures", "value": [0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226, 0.24931741412344044, 0.2294313928519603, 0.23307236126201172, 0.22749497519161602, 0.22860245646223934, 0.2307563678480302, 0.242195701791265, 0.23584374186405796, 0.23666135736396998, 0.24157240034932226]}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackAndroidRetrieval", "type": "mteb/cqadupstack-android", "config": "default", "split": "test", "revision": "f46a197baaae43b4f621051089b82a364682dfeb"}, "metrics": [{"type": "map_at_1", "value": 20.156}, {"type": "map_at_10", "value": 26.989}, {"type": "map_at_100", "value": 28.165000000000003}, {"type": "map_at_1000", "value": 28.302}, {"type": "map_at_20", "value": 27.505000000000003}, {"type": "map_at_3", "value": 24.631}, {"type": "map_at_5", "value": 25.886}, {"type": "mrr_at_1", "value": 25.607999999999997}, {"type": "mrr_at_10", "value": 31.972}, {"type": "mrr_at_100", "value": 32.993}, {"type": "mrr_at_1000", "value": 33.061}, {"type": "mrr_at_20", "value": 32.471}, {"type": "mrr_at_3", "value": 30.019000000000002}, {"type": "mrr_at_5", "value": 31.041999999999998}, {"type": "ndcg_at_1", "value": 25.607999999999997}, {"type": "ndcg_at_10", "value": 31.438}, {"type": "ndcg_at_100", "value": 37.347}, {"type": "ndcg_at_1000", "value": 40.075}, {"type": "ndcg_at_20", "value": 33.068}, {"type": "ndcg_at_3", "value": 27.846}, {"type": "ndcg_at_5", "value": 29.304999999999996}, {"type": "precision_at_1", "value": 25.607999999999997}, {"type": "precision_at_10", "value": 5.923}, {"type": "precision_at_100", "value": 1.102}, {"type": "precision_at_1000", "value": 0.161}, {"type": "precision_at_20", "value": 3.5340000000000003}, {"type": "precision_at_3", "value": 13.305}, {"type": "precision_at_5", "value": 9.585}, {"type": "recall_at_1", "value": 20.156}, {"type": "recall_at_10", "value": 39.741}, {"type": "recall_at_100", "value": 66.428}, {"type": "recall_at_1000", "value": 84.694}, {"type": "recall_at_20", "value": 45.688}, {"type": "recall_at_3", "value": 28.876}, {"type": "recall_at_5", "value": 33.284000000000006}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackEnglishRetrieval", "type": "mteb/cqadupstack-english", "config": "default", "split": "test", "revision": "ad9991cb51e31e31e430383c75ffb2885547b5f0"}, "metrics": [{"type": "map_at_1", "value": 14.568}, {"type": "map_at_10", "value": 19.356}, {"type": "map_at_100", "value": 20.044}, {"type": "map_at_1000", "value": 20.146}, {"type": "map_at_20", "value": 19.717000000000002}, {"type": "map_at_3", "value": 17.82}, {"type": "map_at_5", "value": 18.724}, {"type": "mrr_at_1", "value": 18.025}, {"type": "mrr_at_10", "value": 22.933}, {"type": "mrr_at_100", "value": 23.599}, {"type": "mrr_at_1000", "value": 23.669999999999998}, {"type": "mrr_at_20", "value": 23.283}, {"type": "mrr_at_3", "value": 21.295}, {"type": "mrr_at_5", "value": 22.314}, {"type": "ndcg_at_1", "value": 18.025}, {"type": "ndcg_at_10", "value": 22.559}, {"type": "ndcg_at_100", "value": 26.045}, {"type": "ndcg_at_1000", "value": 28.785}, {"type": "ndcg_at_20", "value": 23.727999999999998}, {"type": "ndcg_at_3", "value": 19.914}, {"type": "ndcg_at_5", "value": 21.241}, {"type": "precision_at_1", "value": 18.025}, {"type": "precision_at_10", "value": 4.102}, {"type": "precision_at_100", "value": 0.715}, {"type": "precision_at_1000", "value": 0.11800000000000001}, {"type": "precision_at_20", "value": 2.452}, {"type": "precision_at_3", "value": 9.447999999999999}, {"type": "precision_at_5", "value": 6.827999999999999}, {"type": "recall_at_1", "value": 14.568}, {"type": "recall_at_10", "value": 28.677999999999997}, {"type": "recall_at_100", "value": 44.362}, {"type": "recall_at_1000", "value": 63.705999999999996}, {"type": "recall_at_20", "value": 32.932}, {"type": "recall_at_3", "value": 21.029999999999998}, {"type": "recall_at_5", "value": 24.573}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGamingRetrieval", "type": "mteb/cqadupstack-gaming", "config": "default", "split": "test", "revision": "4885aa143210c98657558c04aaf3dc47cfb54340"}, "metrics": [{"type": "map_at_1", "value": 25.104}, {"type": "map_at_10", "value": 33.857}, {"type": "map_at_100", "value": 34.808}, {"type": "map_at_1000", "value": 34.904}, {"type": "map_at_20", "value": 34.404}, {"type": "map_at_3", "value": 31.176}, {"type": "map_at_5", "value": 32.626}, {"type": "mrr_at_1", "value": 28.84}, {"type": "mrr_at_10", "value": 36.817}, {"type": "mrr_at_100", "value": 37.633}, {"type": "mrr_at_1000", "value": 37.698}, {"type": "mrr_at_20", "value": 37.312}, {"type": "mrr_at_3", "value": 34.451}, {"type": "mrr_at_5", "value": 35.748999999999995}, {"type": "ndcg_at_1", "value": 28.84}, {"type": "ndcg_at_10", "value": 38.745000000000005}, {"type": "ndcg_at_100", "value": 43.183}, {"type": "ndcg_at_1000", "value": 45.419}, {"type": "ndcg_at_20", "value": 40.571}, {"type": "ndcg_at_3", "value": 33.751}, {"type": "ndcg_at_5", "value": 36.042}, {"type": "precision_at_1", "value": 28.84}, {"type": "precision_at_10", "value": 6.389}, {"type": "precision_at_100", "value": 0.941}, {"type": "precision_at_1000", "value": 0.12}, {"type": "precision_at_20", "value": 3.6929999999999996}, {"type": "precision_at_3", "value": 15.068000000000001}, {"type": "precision_at_5", "value": 10.583}, {"type": "recall_at_1", "value": 25.104}, {"type": "recall_at_10", "value": 50.749}, {"type": "recall_at_100", "value": 70.336}, {"type": "recall_at_1000", "value": 86.591}, {"type": "recall_at_20", "value": 57.473}, {"type": "recall_at_3", "value": 37.230000000000004}, {"type": "recall_at_5", "value": 42.774}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackGisRetrieval", "type": "mteb/cqadupstack-gis", "config": "default", "split": "test", "revision": "5003b3064772da1887988e05400cf3806fe491f2"}, "metrics": [{"type": "map_at_1", "value": 12.712000000000002}, {"type": "map_at_10", "value": 18.064}, {"type": "map_at_100", "value": 18.775}, {"type": "map_at_1000", "value": 18.886}, {"type": "map_at_20", "value": 18.375}, {"type": "map_at_3", "value": 16.304}, {"type": "map_at_5", "value": 17.183999999999997}, {"type": "mrr_at_1", "value": 13.672}, {"type": "mrr_at_10", "value": 19.392}, {"type": "mrr_at_100", "value": 20.088}, {"type": "mrr_at_1000", "value": 20.186999999999998}, {"type": "mrr_at_20", "value": 19.721}, {"type": "mrr_at_3", "value": 17.495}, {"type": "mrr_at_5", "value": 18.473}, {"type": "ndcg_at_1", "value": 13.672}, {"type": "ndcg_at_10", "value": 21.427}, {"type": "ndcg_at_100", "value": 25.448999999999998}, {"type": "ndcg_at_1000", "value": 28.78}, {"type": "ndcg_at_20", "value": 22.56}, {"type": "ndcg_at_3", "value": 17.752000000000002}, {"type": "ndcg_at_5", "value": 19.356}, {"type": "precision_at_1", "value": 13.672}, {"type": "precision_at_10", "value": 3.5029999999999997}, {"type": "precision_at_100", "value": 0.5910000000000001}, {"type": "precision_at_1000", "value": 0.092}, {"type": "precision_at_20", "value": 2.011}, {"type": "precision_at_3", "value": 7.571}, {"type": "precision_at_5", "value": 5.537}, {"type": "recall_at_1", "value": 12.712000000000002}, {"type": "recall_at_10", "value": 30.596}, {"type": "recall_at_100", "value": 49.909}, {"type": "recall_at_1000", "value": 76.01400000000001}, {"type": "recall_at_20", "value": 34.903}, {"type": "recall_at_3", "value": 20.721999999999998}, {"type": "recall_at_5", "value": 24.428}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackMathematicaRetrieval", "type": "mteb/cqadupstack-mathematica", "config": "default", "split": "test", "revision": "90fceea13679c63fe563ded68f3b6f06e50061de"}, "metrics": [{"type": "map_at_1", "value": 7.48}, {"type": "map_at_10", "value": 12.089}, {"type": "map_at_100", "value": 12.974}, {"type": "map_at_1000", "value": 13.099}, {"type": "map_at_20", "value": 12.537}, {"type": "map_at_3", "value": 10.402000000000001}, {"type": "map_at_5", "value": 11.261000000000001}, {"type": "mrr_at_1", "value": 9.577}, {"type": "mrr_at_10", "value": 15.043999999999999}, {"type": "mrr_at_100", "value": 15.909}, {"type": "mrr_at_1000", "value": 15.998000000000001}, {"type": "mrr_at_20", "value": 15.512999999999998}, {"type": "mrr_at_3", "value": 13.184000000000001}, {"type": "mrr_at_5", "value": 14.066999999999998}, {"type": "ndcg_at_1", "value": 9.577}, {"type": "ndcg_at_10", "value": 15.511}, {"type": "ndcg_at_100", "value": 20.193}, {"type": "ndcg_at_1000", "value": 23.691000000000003}, {"type": "ndcg_at_20", "value": 17.176}, {"type": "ndcg_at_3", "value": 12.134}, {"type": "ndcg_at_5", "value": 13.506000000000002}, {"type": "precision_at_1", "value": 9.577}, {"type": "precision_at_10", "value": 3.159}, {"type": "precision_at_100", "value": 0.634}, {"type": "precision_at_1000", "value": 0.106}, {"type": "precision_at_20", "value": 2.009}, {"type": "precision_at_3", "value": 6.012}, {"type": "precision_at_5", "value": 4.627}, {"type": "recall_at_1", "value": 7.48}, {"type": "recall_at_10", "value": 23.134}, {"type": "recall_at_100", "value": 44.254}, {"type": "recall_at_1000", "value": 70.35}, {"type": "recall_at_20", "value": 29.383}, {"type": "recall_at_3", "value": 13.84}, {"type": "recall_at_5", "value": 17.175}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackPhysicsRetrieval", "type": "mteb/cqadupstack-physics", "config": "default", "split": "test", "revision": "79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4"}, "metrics": [{"type": "map_at_1", "value": 18.035}, {"type": "map_at_10", "value": 24.007}, {"type": "map_at_100", "value": 25.113999999999997}, {"type": "map_at_1000", "value": 25.245}, {"type": "map_at_20", "value": 24.587}, {"type": "map_at_3", "value": 21.921}, {"type": "map_at_5", "value": 22.917}, {"type": "mrr_at_1", "value": 22.233}, {"type": "mrr_at_10", "value": 28.479}, {"type": "mrr_at_100", "value": 29.412}, {"type": "mrr_at_1000", "value": 29.49}, {"type": "mrr_at_20", "value": 29.031000000000002}, {"type": "mrr_at_3", "value": 26.275}, {"type": "mrr_at_5", "value": 27.400999999999996}, {"type": "ndcg_at_1", "value": 22.233}, {"type": "ndcg_at_10", "value": 28.382}, {"type": "ndcg_at_100", "value": 33.86}, {"type": "ndcg_at_1000", "value": 36.903000000000006}, {"type": "ndcg_at_20", "value": 30.341}, {"type": "ndcg_at_3", "value": 24.695}, {"type": "ndcg_at_5", "value": 26.13}, {"type": "precision_at_1", "value": 22.233}, {"type": "precision_at_10", "value": 5.2170000000000005}, {"type": "precision_at_100", "value": 0.95}, {"type": "precision_at_1000", "value": 0.13899999999999998}, {"type": "precision_at_20", "value": 3.2239999999999998}, {"type": "precision_at_3", "value": 11.485}, {"type": "precision_at_5", "value": 8.181}, {"type": "recall_at_1", "value": 18.035}, {"type": "recall_at_10", "value": 37.222}, {"type": "recall_at_100", "value": 61.602000000000004}, {"type": "recall_at_1000", "value": 82.92}, {"type": "recall_at_20", "value": 44.221}, {"type": "recall_at_3", "value": 26.625}, {"type": "recall_at_5", "value": 30.461}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackProgrammersRetrieval", "type": "mteb/cqadupstack-programmers", "config": "default", "split": "test", "revision": "6184bc1440d2dbc7612be22b50686b8826d22b32"}, "metrics": [{"type": "map_at_1", "value": 13.281}, {"type": "map_at_10", "value": 17.756}, {"type": "map_at_100", "value": 18.785}, {"type": "map_at_1000", "value": 18.921}, {"type": "map_at_20", "value": 18.209}, {"type": "map_at_3", "value": 15.817999999999998}, {"type": "map_at_5", "value": 16.939}, {"type": "mrr_at_1", "value": 16.096}, {"type": "mrr_at_10", "value": 21.079}, {"type": "mrr_at_100", "value": 22.061}, {"type": "mrr_at_1000", "value": 22.151}, {"type": "mrr_at_20", "value": 21.557000000000002}, {"type": "mrr_at_3", "value": 19.006999999999998}, {"type": "mrr_at_5", "value": 20.171}, {"type": "ndcg_at_1", "value": 16.096}, {"type": "ndcg_at_10", "value": 21.278}, {"type": "ndcg_at_100", "value": 26.687}, {"type": "ndcg_at_1000", "value": 30.016}, {"type": "ndcg_at_20", "value": 22.871}, {"type": "ndcg_at_3", "value": 17.705000000000002}, {"type": "ndcg_at_5", "value": 19.427}, {"type": "precision_at_1", "value": 16.096}, {"type": "precision_at_10", "value": 3.893}, {"type": "precision_at_100", "value": 0.792}, {"type": "precision_at_1000", "value": 0.124}, {"type": "precision_at_20", "value": 2.414}, {"type": "precision_at_3", "value": 8.029}, {"type": "precision_at_5", "value": 6.119}, {"type": "recall_at_1", "value": 13.281}, {"type": "recall_at_10", "value": 28.849000000000004}, {"type": "recall_at_100", "value": 53.010999999999996}, {"type": "recall_at_1000", "value": 76.512}, {"type": "recall_at_20", "value": 34.547}, {"type": "recall_at_3", "value": 19.177}, {"type": "recall_at_5", "value": 23.455000000000002}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackRetrieval", "type": "mteb/cqadupstack", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 14.161583333333333}, {"type": "map_at_10", "value": 19.378833333333333}, {"type": "map_at_100", "value": 20.27525}, {"type": "map_at_1000", "value": 20.394499999999997}, {"type": "map_at_20", "value": 19.831333333333333}, {"type": "map_at_3", "value": 17.55408333333333}, {"type": "map_at_5", "value": 18.52841666666667}, {"type": "mrr_at_1", "value": 17.00033333333333}, {"type": "mrr_at_10", "value": 22.41916666666667}, {"type": "mrr_at_100", "value": 23.252666666666666}, {"type": "mrr_at_1000", "value": 23.337583333333335}, {"type": "mrr_at_20", "value": 22.866666666666667}, {"type": "mrr_at_3", "value": 20.56991666666667}, {"type": "mrr_at_5", "value": 21.567666666666664}, {"type": "ndcg_at_1", "value": 17.00033333333333}, {"type": "ndcg_at_10", "value": 22.96475}, {"type": "ndcg_at_100", "value": 27.526833333333332}, {"type": "ndcg_at_1000", "value": 30.597416666666668}, {"type": "ndcg_at_20", "value": 24.52133333333333}, {"type": "ndcg_at_3", "value": 19.60108333333334}, {"type": "ndcg_at_5", "value": 21.089750000000002}, {"type": "precision_at_1", "value": 17.00033333333333}, {"type": "precision_at_10", "value": 4.10625}, {"type": "precision_at_100", "value": 0.7497499999999999}, {"type": "precision_at_1000", "value": 0.11733333333333335}, {"type": "precision_at_20", "value": 2.499416666666667}, {"type": "precision_at_3", "value": 9.041}, {"type": "precision_at_5", "value": 6.554250000000001}, {"type": "recall_at_1", "value": 14.161583333333333}, {"type": "recall_at_10", "value": 30.899916666666666}, {"type": "recall_at_100", "value": 51.66383333333333}, {"type": "recall_at_1000", "value": 74.103}, {"type": "recall_at_20", "value": 36.698}, {"type": "recall_at_3", "value": 21.398}, {"type": "recall_at_5", "value": 25.241750000000003}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackStatsRetrieval", "type": "mteb/cqadupstack-stats", "config": "default", "split": "test", "revision": "65ac3a16b8e91f9cee4c9828cc7c335575432a2a"}, "metrics": [{"type": "map_at_1", "value": 13.036}, {"type": "map_at_10", "value": 17.142}, {"type": "map_at_100", "value": 17.915}, {"type": "map_at_1000", "value": 18.002000000000002}, {"type": "map_at_20", "value": 17.558}, {"type": "map_at_3", "value": 15.459}, {"type": "map_at_5", "value": 16.474}, {"type": "mrr_at_1", "value": 14.877}, {"type": "mrr_at_10", "value": 19.365}, {"type": "mrr_at_100", "value": 20.085}, {"type": "mrr_at_1000", "value": 20.165}, {"type": "mrr_at_20", "value": 19.75}, {"type": "mrr_at_3", "value": 17.638}, {"type": "mrr_at_5", "value": 18.673000000000002}, {"type": "ndcg_at_1", "value": 14.877}, {"type": "ndcg_at_10", "value": 20.199}, {"type": "ndcg_at_100", "value": 24.275}, {"type": "ndcg_at_1000", "value": 26.933}, {"type": "ndcg_at_20", "value": 21.683}, {"type": "ndcg_at_3", "value": 16.925}, {"type": "ndcg_at_5", "value": 18.565}, {"type": "precision_at_1", "value": 14.877}, {"type": "precision_at_10", "value": 3.374}, {"type": "precision_at_100", "value": 0.59}, {"type": "precision_at_1000", "value": 0.087}, {"type": "precision_at_20", "value": 2.04}, {"type": "precision_at_3", "value": 7.515}, {"type": "precision_at_5", "value": 5.491}, {"type": "recall_at_1", "value": 13.036}, {"type": "recall_at_10", "value": 27.750000000000004}, {"type": "recall_at_100", "value": 46.798}, {"type": "recall_at_1000", "value": 67.372}, {"type": "recall_at_20", "value": 33.406000000000006}, {"type": "recall_at_3", "value": 18.381}, {"type": "recall_at_5", "value": 22.559}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackTexRetrieval", "type": "mteb/cqadupstack-tex", "config": "default", "split": "test", "revision": "46989137a86843e03a6195de44b09deda022eec7"}, "metrics": [{"type": "map_at_1", "value": 8.448}, {"type": "map_at_10", "value": 11.978}, {"type": "map_at_100", "value": 12.736}, {"type": "map_at_1000", "value": 12.848}, {"type": "map_at_20", "value": 12.354}, {"type": "map_at_3", "value": 10.687000000000001}, {"type": "map_at_5", "value": 11.344}, {"type": "mrr_at_1", "value": 10.771}, {"type": "mrr_at_10", "value": 14.753}, {"type": "mrr_at_100", "value": 15.501000000000001}, {"type": "mrr_at_1000", "value": 15.592}, {"type": "mrr_at_20", "value": 15.148}, {"type": "mrr_at_3", "value": 13.425999999999998}, {"type": "mrr_at_5", "value": 14.059}, {"type": "ndcg_at_1", "value": 10.771}, {"type": "ndcg_at_10", "value": 14.788}, {"type": "ndcg_at_100", "value": 18.769}, {"type": "ndcg_at_1000", "value": 21.939}, {"type": "ndcg_at_20", "value": 16.113}, {"type": "ndcg_at_3", "value": 12.356}, {"type": "ndcg_at_5", "value": 13.316}, {"type": "precision_at_1", "value": 10.771}, {"type": "precision_at_10", "value": 2.842}, {"type": "precision_at_100", "value": 0.58}, {"type": "precision_at_1000", "value": 0.099}, {"type": "precision_at_20", "value": 1.807}, {"type": "precision_at_3", "value": 5.976}, {"type": "precision_at_5", "value": 4.322}, {"type": "recall_at_1", "value": 8.448}, {"type": "recall_at_10", "value": 20.666}, {"type": "recall_at_100", "value": 39.111000000000004}, {"type": "recall_at_1000", "value": 62.673}, {"type": "recall_at_20", "value": 25.686999999999998}, {"type": "recall_at_3", "value": 13.572999999999999}, {"type": "recall_at_5", "value": 16.239}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackUnixRetrieval", "type": "mteb/cqadupstack-unix", "config": "default", "split": "test", "revision": "6c6430d3a6d36f8d2a829195bc5dc94d7e063e53"}, "metrics": [{"type": "map_at_1", "value": 14.025000000000002}, {"type": "map_at_10", "value": 18.605}, {"type": "map_at_100", "value": 19.442999999999998}, {"type": "map_at_1000", "value": 19.569}, {"type": "map_at_20", "value": 19.070999999999998}, {"type": "map_at_3", "value": 17.072000000000003}, {"type": "map_at_5", "value": 17.866}, {"type": "mrr_at_1", "value": 16.511}, {"type": "mrr_at_10", "value": 21.633}, {"type": "mrr_at_100", "value": 22.419}, {"type": "mrr_at_1000", "value": 22.521}, {"type": "mrr_at_20", "value": 22.063}, {"type": "mrr_at_3", "value": 19.932}, {"type": "mrr_at_5", "value": 20.864}, {"type": "ndcg_at_1", "value": 16.511}, {"type": "ndcg_at_10", "value": 21.931}, {"type": "ndcg_at_100", "value": 26.088}, {"type": "ndcg_at_1000", "value": 29.564}, {"type": "ndcg_at_20", "value": 23.557}, {"type": "ndcg_at_3", "value": 18.869}, {"type": "ndcg_at_5", "value": 20.203}, {"type": "precision_at_1", "value": 16.511}, {"type": "precision_at_10", "value": 3.7220000000000004}, {"type": "precision_at_100", "value": 0.637}, {"type": "precision_at_1000", "value": 0.105}, {"type": "precision_at_20", "value": 2.299}, {"type": "precision_at_3", "value": 8.52}, {"type": "precision_at_5", "value": 6.007}, {"type": "recall_at_1", "value": 14.025000000000002}, {"type": "recall_at_10", "value": 29.24}, {"type": "recall_at_100", "value": 47.771}, {"type": "recall_at_1000", "value": 73.37599999999999}, {"type": "recall_at_20", "value": 35.148}, {"type": "recall_at_3", "value": 20.721}, {"type": "recall_at_5", "value": 24.162}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWebmastersRetrieval", "type": "mteb/cqadupstack-webmasters", "config": "default", "split": "test", "revision": "160c094312a0e1facb97e55eeddb698c0abe3571"}, "metrics": [{"type": "map_at_1", "value": 14.610000000000001}, {"type": "map_at_10", "value": 20.089000000000002}, {"type": "map_at_100", "value": 21.105}, {"type": "map_at_1000", "value": 21.275}, {"type": "map_at_20", "value": 20.604}, {"type": "map_at_3", "value": 18.323}, {"type": "map_at_5", "value": 19.192}, {"type": "mrr_at_1", "value": 18.182000000000002}, {"type": "mrr_at_10", "value": 23.458000000000002}, {"type": "mrr_at_100", "value": 24.379}, {"type": "mrr_at_1000", "value": 24.474999999999998}, {"type": "mrr_at_20", "value": 23.973}, {"type": "mrr_at_3", "value": 21.64}, {"type": "mrr_at_5", "value": 22.579}, {"type": "ndcg_at_1", "value": 18.182000000000002}, {"type": "ndcg_at_10", "value": 23.842}, {"type": "ndcg_at_100", "value": 28.604000000000003}, {"type": "ndcg_at_1000", "value": 32.192}, {"type": "ndcg_at_20", "value": 25.507}, {"type": "ndcg_at_3", "value": 20.937}, {"type": "ndcg_at_5", "value": 22.125}, {"type": "precision_at_1", "value": 18.182000000000002}, {"type": "precision_at_10", "value": 4.526}, {"type": "precision_at_100", "value": 0.955}, {"type": "precision_at_1000", "value": 0.17500000000000002}, {"type": "precision_at_20", "value": 2.846}, {"type": "precision_at_3", "value": 10.079}, {"type": "precision_at_5", "value": 7.194000000000001}, {"type": "recall_at_1", "value": 14.610000000000001}, {"type": "recall_at_10", "value": 31.086999999999996}, {"type": "recall_at_100", "value": 53.032000000000004}, {"type": "recall_at_1000", "value": 77.781}, {"type": "recall_at_20", "value": 37.801}, {"type": "recall_at_3", "value": 22.078999999999997}, {"type": "recall_at_5", "value": 25.572}]}, {"task": {"type": "Retrieval"}, "dataset": {"name": "MTEB CQADupstackWordpressRetrieval", "type": "mteb/cqadupstack-wordpress", "config": "default", "split": "test", "revision": "4ffe81d471b1924886b33c7567bfb200e9eec5c4"}, "metrics": [{"type": "map_at_1", "value": 8.484}, {"type": "map_at_10", "value": 12.614}, {"type": "map_at_100", "value": 13.439}, {"type": "map_at_1000", "value": 13.536999999999999}, {"type": "map_at_20", "value": 13.055}, {"type": "map_at_3", "value": 11.036}, {"type": "map_at_5", "value": 11.927999999999999}, {"type": "mrr_at_1", "value": 9.612}, {"type": "mrr_at_10", "value": 14.105}, {"type": "mrr_at_100", "value": 14.953}, {"type": "mrr_at_1000", "value": 15.043000000000001}, {"type": "mrr_at_20", "value": 14.578}, {"type": "mrr_at_3", "value": 12.477}, {"type": "mrr_at_5", "value": 13.420000000000002}, {"type": "ndcg_at_1", "value": 9.612}, {"type": "ndcg_at_10", "value": 15.476999999999999}, {"type": "ndcg_at_100", "value": 19.822}, {"type": "ndcg_at_1000", "value": 22.872}, {"type": "ndcg_at_20", "value": 17.081}, {"type": "ndcg_at_3", "value": 12.328999999999999}, {"type": "ndcg_at_5", "value": 13.861}, {"type": "precision_at_1", "value": 9.612}, {"type": "precision_at_10", "value": 2.625}, {"type": "precision_at_100", "value": 0.51}, {"type": "precision_at_1000", "value": 0.082}, {"type": "precision_at_20", "value": 1.664}, {"type": "precision_at_3", "value": 5.484}, {"type": "precision_at_5", "value": 4.1770000000000005}, {"type": "recall_at_1", "value": 8.484}, {"type": "recall_at_10", "value": 23.087}, {"type": "recall_at_100", "value": 43.352000000000004}, {"type": "recall_at_1000", "value": 67.247}, {"type": "recall_at_20", "value": 29.187}, {"type": "recall_at_3", "value": 14.521999999999998}, {"type": "recall_at_5", "value": 18.218999999999998}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB EmotionClassification", "type": "mteb/emotion", "config": "default", "split": "test", "revision": "4f58c6b202a23cf9a4da393831edf4f9183cad37"}, "metrics": [{"type": "accuracy", "value": 39.095}, {"type": "f1", "value": 35.03781407521973}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ImdbClassification", "type": "mteb/imdb", "config": "default", "split": "test", "revision": "3d86128a09e091d6018b6d26cad27f2739fc2db7"}, "metrics": [{"type": "accuracy", "value": 67.87360000000001}, {"type": "ap", "value": 62.5359530212091}, {"type": "f1", "value": 67.76861907065303}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPDomainClassification (en)", "type": "mteb/mtop_domain", "config": "en", "split": "test", "revision": "d80d48c1eb48d3562165c59d59d0034df9fff0bf"}, "metrics": [{"type": "accuracy", "value": 89.98176014591884}, {"type": "f1", "value": 89.12439802681382}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MTOPIntentClassification (en)", "type": "mteb/mtop_intent", "config": "en", "split": "test", "revision": "ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba"}, "metrics": [{"type": "accuracy", "value": 66.42954856361149}, {"type": "f1", "value": 46.845543295765395}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveIntentClassification (en)", "type": "mteb/amazon_massive_intent", "config": "en", "split": "test", "revision": "31efe3c427b0bae9c22cbb560b8f15491cc6bed7"}, "metrics": [{"type": "accuracy", "value": 65.15131136516476}, {"type": "f1", "value": 63.15954994502248}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB MassiveScenarioClassification (en)", "type": "mteb/amazon_massive_scenario", "config": "en", "split": "test", "revision": "7d571f92784cd94a019292a1f45445077d0ef634"}, "metrics": [{"type": "accuracy", "value": 70.74983187626093}, {"type": "f1", "value": 69.86842975748304}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringP2P", "type": "mteb/medrxiv-clustering-p2p", "config": "default", "split": "test", "revision": "e7a26af6f3ae46b30dde8737f02c07b1505bcc73"}, "metrics": [{"type": "v_measure", "value": 28.540533318170436}, {"type": "v_measures", "value": [0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925, 0.2685927394835013, 0.2783483658319506, 0.2665766690371173, 0.27851721126872275, 0.27353686950062217, 0.30395264384113213, 0.2947770213532569, 0.2955213403120467, 0.29310302531656435, 0.30112744587212925]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB MedrxivClusteringS2S", "type": "mteb/medrxiv-clustering-s2s", "config": "default", "split": "test", "revision": "35191c8c0dca72d8ff3efcd72aa802307d469663"}, "metrics": [{"type": "v_measure", "value": 24.72766780458758}, {"type": "v_measures", "value": [0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677, 0.2360459034955713, 0.2388482784840708, 0.2325812879581466, 0.22505966000679387, 0.22406230314275308, 0.2639574575941564, 0.26920314836084647, 0.27094201539166474, 0.2607957980208871, 0.2512709280038677]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB MindSmallReranking", "type": "mteb/mind_small", "config": "default", "split": "test", "revision": "3bdac13927fdc888b903db93b2ffdbd90b295a69"}, "metrics": [{"type": "map", "value": 29.041674385781967}, {"type": "mrr", "value": 29.79989064897717}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClustering", "type": "mteb/reddit-clustering", "config": "default", "split": "test", "revision": "24640382cdbf8abc73003fb0fa6d111a705499eb"}, "metrics": [{"type": "v_measure", "value": 35.536820860805534}, {"type": "v_measures", "value": [0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254, 0.4526409230197192, 0.4418874523236007, 0.2923442821974814, 0.29815379814662973, 0.3546740441941569, 0.31765082600163064, 0.38073340268020667, 0.3175014611482366, 0.31266612397153287, 0.3004669681159753, 0.33575554767305055, 0.39815200864255257, 0.3336520605714611, 0.38338117463096916, 0.4620636786448619, 0.313480729190297, 0.3538208608160554, 0.3625124773562338, 0.35967221153279816, 0.34429637871008256, 0.315565319725188, 0.31257481088967437, 0.48026035919192217, 0.3260933295798252, 0.33420498624724254]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB RedditClusteringP2P", "type": "mteb/reddit-clustering-p2p", "config": "default", "split": "test", "revision": "385e3cb46b4cfa89021f56c4380204149d0efe33"}, "metrics": [{"type": "v_measure", "value": 47.42966991443242}, {"type": "v_measures", "value": [0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793, 0.5265449680406118, 0.5493672486309341, 0.5519094814834113, 0.30132219602063365, 0.5071491767482975, 0.4654803385774871, 0.20652468935420157, 0.5484274172396977, 0.5112975786305867, 0.5749438967173793]}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB SICK-R", "type": "mteb/sickr-sts", "config": "default", "split": "test", "revision": "20a6d6f312dd54037fe07a32d58e5e168867909d"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.02197797488559}, {"type": "cos_sim_spearman", "value": 71.7037151299904}, {"type": "euclidean_pearson", "value": 76.1707252695092}, {"type": "euclidean_spearman", "value": 71.57310842242731}, {"type": "manhattan_pearson", "value": 76.03615971307154}, {"type": "manhattan_spearman", "value": 71.53631984773847}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS12", "type": "mteb/sts12-sts", "config": "default", "split": "test", "revision": "a0d554a64d88156834ff5ae9920b964011b16384"}, "metrics": [{"type": "cos_sim_pearson", "value": 79.02494360083622}, {"type": "cos_sim_spearman", "value": 69.72575299384381}, {"type": "euclidean_pearson", "value": 75.74354904408656}, {"type": "euclidean_spearman", "value": 69.54484408453516}, {"type": "manhattan_pearson", "value": 75.77951962076156}, {"type": "manhattan_spearman", "value": 69.6354936146991}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS13", "type": "mteb/sts13-sts", "config": "default", "split": "test", "revision": "7e90230a92c190f1bf69ae9002b8cea547a64cca"}, "metrics": [{"type": "cos_sim_pearson", "value": 75.08237871140905}, {"type": "cos_sim_spearman", "value": 76.43254419101892}, {"type": "euclidean_pearson", "value": 77.01392166862142}, {"type": "euclidean_spearman", "value": 77.25873928927386}, {"type": "manhattan_pearson", "value": 76.8322542796806}, {"type": "manhattan_spearman", "value": 77.06622162313037}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS14", "type": "mteb/sts14-sts", "config": "default", "split": "test", "revision": "6031580fec1f6af667f0bd2da0a551cf4f0b2375"}, "metrics": [{"type": "cos_sim_pearson", "value": 76.15651557768992}, {"type": "cos_sim_spearman", "value": 73.66468164294979}, {"type": "euclidean_pearson", "value": 76.01343601779764}, {"type": "euclidean_spearman", "value": 74.26813269648791}, {"type": "manhattan_pearson", "value": 75.81532622772455}, {"type": "manhattan_spearman", "value": 74.11890179466049}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS15", "type": "mteb/sts15-sts", "config": "default", "split": "test", "revision": "ae752c7c21bf194d8b67fd573edf7ae58183cbe3"}, "metrics": [{"type": "cos_sim_pearson", "value": 81.80212103727666}, {"type": "cos_sim_spearman", "value": 82.61832225494061}, {"type": "euclidean_pearson", "value": 81.83006587249692}, {"type": "euclidean_spearman", "value": 82.61429686151203}, {"type": "manhattan_pearson", "value": 81.76278849963437}, {"type": "manhattan_spearman", "value": 82.54152053739365}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS16", "type": "mteb/sts16-sts", "config": "default", "split": "test", "revision": "4d8694f8f0e0100860b497b999b3dbed754a0513"}, "metrics": [{"type": "cos_sim_pearson", "value": 77.75548172603382}, {"type": "cos_sim_spearman", "value": 79.48976464310448}, {"type": "euclidean_pearson", "value": 78.54266801280951}, {"type": "euclidean_spearman", "value": 79.30766703387586}, {"type": "manhattan_pearson", "value": 78.28008795002846}, {"type": "manhattan_spearman", "value": 79.07395809817007}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS17 (en-en)", "type": "mteb/sts17-crosslingual-sts", "config": "en-en", "split": "test", "revision": "af5e6fb845001ecf41f4c1e033ce921939a2a68d"}, "metrics": [{"type": "cos_sim_pearson", "value": 83.813657478234}, {"type": "cos_sim_spearman", "value": 84.38223117622964}, {"type": "euclidean_pearson", "value": 84.57065602789609}, {"type": "euclidean_spearman", "value": 83.8380794185294}, {"type": "manhattan_pearson", "value": 84.42039206232738}, {"type": "manhattan_spearman", "value": 83.74732339282085}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STS22 (en)", "type": "mteb/sts22-crosslingual-sts", "config": "en", "split": "test", "revision": "eea2b4fe26a775864c896887d910b76a8098ad3f"}, "metrics": [{"type": "cos_sim_pearson", "value": 50.88695953591733}, {"type": "cos_sim_spearman", "value": 60.61167810477114}, {"type": "euclidean_pearson", "value": 55.81887963485168}, {"type": "euclidean_spearman", "value": 60.28385340456606}, {"type": "manhattan_pearson", "value": 56.03578991214848}, {"type": "manhattan_spearman", "value": 59.94178607215249}]}, {"task": {"type": "STS"}, "dataset": {"name": "MTEB STSBenchmark", "type": "mteb/stsbenchmark-sts", "config": "default", "split": "test", "revision": "b0fddb56ed78048fa8b90373c8a3cfc37b684831"}, "metrics": [{"type": "cos_sim_pearson", "value": 78.97129674864591}, {"type": "cos_sim_spearman", "value": 78.60681572589853}, {"type": "euclidean_pearson", "value": 79.71108582359511}, {"type": "euclidean_spearman", "value": 78.71541582168763}, {"type": "manhattan_pearson", "value": 79.55279136411954}, {"type": "manhattan_spearman", "value": 78.57797218212967}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB SciDocsRR", "type": "mteb/scidocs-reranking", "config": "default", "split": "test", "revision": "d3c5e1fc0b855ab6097bf1cda04dd73947d7caab"}, "metrics": [{"type": "map", "value": 72.91005664580126}, {"type": "mrr", "value": 91.49957703879274}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB SprintDuplicateQuestions", "type": "mteb/sprintduplicatequestions-pairclassification", "config": "default", "split": "test", "revision": "d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46"}, "metrics": [{"type": "cos_sim_accuracy", "value": 99.73960396039604}, {"type": "cos_sim_ap", "value": 92.14278266682584}, {"type": "cos_sim_f1", "value": 86.90890990542557}, {"type": "cos_sim_precision", "value": 86.5213082259663}, {"type": "cos_sim_recall", "value": 87.3}, {"type": "dot_accuracy", "value": 99.49801980198019}, {"type": "dot_ap", "value": 77.95867119922542}, {"type": "dot_f1", "value": 71.30528586839266}, {"type": "dot_precision", "value": 77.40046838407494}, {"type": "dot_recall", "value": 66.10000000000001}, {"type": "euclidean_accuracy", "value": 99.73861386138614}, {"type": "euclidean_ap", "value": 92.13035792099073}, {"type": "euclidean_f1", "value": 86.81102362204726}, {"type": "euclidean_precision", "value": 85.46511627906976}, {"type": "euclidean_recall", "value": 88.2}, {"type": "manhattan_accuracy", "value": 99.73762376237623}, {"type": "manhattan_ap", "value": 92.12382961875572}, {"type": "manhattan_f1", "value": 86.85770750988142}, {"type": "manhattan_precision", "value": 85.83984375}, {"type": "manhattan_recall", "value": 87.9}, {"type": "max_accuracy", "value": 99.73960396039604}, {"type": "max_ap", "value": 92.14278266682584}, {"type": "max_f1", "value": 86.90890990542557}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClustering", "type": "mteb/stackexchange-clustering", "config": "default", "split": "test", "revision": "6cbc1f7b2bc0622f2e39d2c77fa502909748c259"}, "metrics": [{"type": "v_measure", "value": 46.543842750900396}, {"type": "v_measures", "value": [0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893, 0.4503379530441486, 0.5055050814643914, 0.37196718256808775, 0.4626103115561461, 0.5045922481143936, 0.4024029244484936, 0.40741224663943404, 0.5217286774083806, 0.47473832818512185, 0.4423513686832282, 0.5254123899176399, 0.5290494091156918, 0.6004444685084731, 0.5097409136008207, 0.42510119674835567, 0.45914095980022224, 0.43938053466177135, 0.459032754379216, 0.43147103735898107, 0.4430589611998686, 0.4953516718234184, 0.4169835530427121, 0.43908761316001205, 0.46089722865011284, 0.45816167364597893]}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB StackExchangeClusteringP2P", "type": "mteb/stackexchange-clustering-p2p", "config": "default", "split": "test", "revision": "815ca46b2622cec33ccafc3735d572c266efdb44"}, "metrics": [{"type": "v_measure", "value": 30.878511440057455}, {"type": "v_measures", "value": [0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626, 0.29953106753859926, 0.2959477268193652, 0.2907437538793838, 0.2896752248560134, 0.29823646573245677, 0.3302941899873012, 0.3118332962228191, 0.3227164592768227, 0.32075958907773794, 0.32811337061524626]}]}, {"task": {"type": "Reranking"}, "dataset": {"name": "MTEB StackOverflowDupQuestions", "type": "mteb/stackoverflowdupquestions-reranking", "config": "default", "split": "test", "revision": "e185fbe320c72810689fc5848eb6114e1ef5ec69"}, "metrics": [{"type": "map", "value": 44.48878112961158}, {"type": "mrr", "value": 45.088675621763855}]}, {"task": {"type": "Summarization"}, "dataset": {"name": "MTEB SummEval", "type": "mteb/summeval", "config": "default", "split": "test", "revision": "cda12ad7615edc362dbf25a00fdd61d3b1eaf93c"}, "metrics": [{"type": "cos_sim_pearson", "value": 30.941315767578654}, {"type": "cos_sim_spearman", "value": 29.329027079065966}, {"type": "dot_pearson", "value": 25.836517566143634}, {"type": "dot_spearman", "value": 26.352097845535162}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB ToxicConversationsClassification", "type": "mteb/toxic_conversations_50k", "config": "default", "split": "test", "revision": "edfaf9da55d3dd50d43143d90c1ac476895ae6de"}, "metrics": [{"type": "accuracy", "value": 64.013671875}, {"type": "ap", "value": 10.97313563679864}, {"type": "f1", "value": 48.85384219487}]}, {"task": {"type": "Classification"}, "dataset": {"name": "MTEB TweetSentimentExtractionClassification", "type": "mteb/tweet_sentiment_extraction", "config": "default", "split": "test", "revision": "d604517c81ca91fe16a244d1248fc021f9ecee7a"}, "metrics": [{"type": "accuracy", "value": 54.25863044708545}, {"type": "f1", "value": 54.478056275468234}]}, {"task": {"type": "Clustering"}, "dataset": {"name": "MTEB TwentyNewsgroupsClustering", "type": "mteb/twentynewsgroups-clustering", "config": "default", "split": "test", "revision": "6125ec4e24fa026cec8a478383ee943acfbd5449"}, "metrics": [{"type": "v_measure", "value": 28.676358868345943}, {"type": "v_measures", "value": [0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625, 0.29080031699004694, 0.2957827890450158, 0.279781173635388, 0.28316010309239503, 0.29801751933798737, 0.30045501200974795, 0.2750357568275408, 0.28736739490829033, 0.26884372823491953, 0.2883920927532625]}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterSemEval2015", "type": "mteb/twittersemeval2015-pairclassification", "config": "default", "split": "test", "revision": "70970daeab8776df92f5ea462b6173c0b46fd2d1"}, "metrics": [{"type": "cos_sim_accuracy", "value": 83.23895809739524}, {"type": "cos_sim_ap", "value": 63.43837390346798}, {"type": "cos_sim_f1", "value": 60.3425871234495}, {"type": "cos_sim_precision", "value": 54.63101604278074}, {"type": "cos_sim_recall", "value": 67.38786279683377}, {"type": "dot_accuracy", "value": 79.70435715562974}, {"type": "dot_ap", "value": 50.219858779642024}, {"type": "dot_f1", "value": 52.03935006079363}, {"type": "dot_precision", "value": 44.778390717139054}, {"type": "dot_recall", "value": 62.11081794195251}, {"type": "euclidean_accuracy", "value": 83.3581689217381}, {"type": "euclidean_ap", "value": 63.866502871821886}, {"type": "euclidean_f1", "value": 60.66180862501495}, {"type": "euclidean_precision", "value": 55.42457978607291}, {"type": "euclidean_recall", "value": 66.99208443271768}, {"type": "manhattan_accuracy", "value": 83.32836621565238}, {"type": "manhattan_ap", "value": 63.58246341419401}, {"type": "manhattan_f1", "value": 60.405654578979714}, {"type": "manhattan_precision", "value": 56.54775604142692}, {"type": "manhattan_recall", "value": 64.82849604221636}, {"type": "max_accuracy", "value": 83.3581689217381}, {"type": "max_ap", "value": 63.866502871821886}, {"type": "max_f1", "value": 60.66180862501495}]}, {"task": {"type": "PairClassification"}, "dataset": {"name": "MTEB TwitterURLCorpus", "type": "mteb/twitterurlcorpus-pairclassification", "config": "default", "split": "test", "revision": "8b6510b0b1fa4e4c4f879467980e9be563ec1cdf"}, "metrics": [{"type": "cos_sim_accuracy", "value": 87.77894205767066}, {"type": "cos_sim_ap", "value": 83.5297230824822}, {"type": "cos_sim_f1", "value": 75.65036420395423}, {"type": "cos_sim_precision", "value": 73.11781609195403}, {"type": "cos_sim_recall", "value": 78.3646442870342}, {"type": "dot_accuracy", "value": 86.03058175185313}, {"type": "dot_ap", "value": 78.95144253575621}, {"type": "dot_f1", "value": 72.20582032897512}, {"type": "dot_precision", "value": 66.42524573202276}, {"type": "dot_recall", "value": 79.08838928241454}, {"type": "euclidean_accuracy", "value": 87.7265494624908}, {"type": "euclidean_ap", "value": 83.29997302389856}, {"type": "euclidean_f1", "value": 75.38237163905613}, {"type": "euclidean_precision", "value": 73.28582854649895}, {"type": "euclidean_recall", "value": 77.60240221743148}, {"type": "manhattan_accuracy", "value": 87.65475220242946}, {"type": "manhattan_ap", "value": 83.1779453049763}, {"type": "manhattan_f1", "value": 75.17620001483792}, {"type": "manhattan_precision", "value": 72.53400143163923}, {"type": "manhattan_recall", "value": 78.01817061903296}, {"type": "max_accuracy", "value": 87.77894205767066}, {"type": "max_ap", "value": 83.5297230824822}, {"type": "max_f1", "value": 75.65036420395423}]}]}]}
Mihaiii/test25
null
[ "sentence-transformers", "onnx", "safetensors", "bert", "feature-extraction", "sentence-similarity", "bge", "mteb", "mergekit", "merge", "base_model:Mihaiii/Wartortle", "base_model:TaylorAI/bge-micro-v2", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:31:02+00:00
[]
[]
TAGS #sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #license-mit #model-index #endpoints_compatible #region-us
# Giratina This is a merge of pre-trained language models created using mergekit. ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * Mihaiii/Wartortle * TaylorAI/bge-micro-v2 ### Configuration The following YAML configuration was used to produce this model:
[ "# Giratina\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ "TAGS\n#sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #license-mit #model-index #endpoints_compatible #region-us \n", "# Giratina\n\nThis is a merge of pre-trained language models created using mergekit.", "## Merge Details", "### Merge Method\n\nThis model was merged using the SLERP merge method.", "### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2", "### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
[ 77, 19, 4, 17, 33, 16 ]
[ "TAGS\n#sentence-transformers #onnx #safetensors #bert #feature-extraction #sentence-similarity #bge #mteb #mergekit #merge #base_model-Mihaiii/Wartortle #base_model-TaylorAI/bge-micro-v2 #license-mit #model-index #endpoints_compatible #region-us \n# Giratina\n\nThis is a merge of pre-trained language models created using mergekit.## Merge Details### Merge Method\n\nThis model was merged using the SLERP merge method.### Models Merged\n\nThe following models were included in the merge:\n* Mihaiii/Wartortle\n* TaylorAI/bge-micro-v2### Configuration\n\nThe following YAML configuration was used to produce this model:" ]
text-generation
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> ## Gemma-7B-Chat-DcardStylePost-SFT This model is a fine-tuned version of [google/gemma-7b-it](https://huggingface.co/google/gemma-7b-it) on the dcardwom_zhtw_train dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "gpl-3.0", "library_name": "peft", "tags": ["art", "marketing", "llama-factory", "lora", "generated_from_trainer"], "base_model": "google/gemma-7b-it", "pipeline_tag": "text-generation", "model-index": [{"name": "train_2024-05-01-08-42-24", "results": []}]}
JiunYi/Gemma-7B-Chat-zhtw-DcardStylePost-SFT
null
[ "peft", "safetensors", "gemma", "art", "marketing", "llama-factory", "lora", "generated_from_trainer", "text-generation", "conversational", "base_model:google/gemma-7b-it", "license:gpl-3.0", "region:us" ]
null
2024-05-01T19:31:47+00:00
[]
[]
TAGS #peft #safetensors #gemma #art #marketing #llama-factory #lora #generated_from_trainer #text-generation #conversational #base_model-google/gemma-7b-it #license-gpl-3.0 #region-us
## Gemma-7B-Chat-DcardStylePost-SFT This model is a fine-tuned version of google/gemma-7b-it on the dcardwom_zhtw_train dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.2.0a0+81ea7a4 - Datasets 2.19.0 - Tokenizers 0.19.1
[ "## Gemma-7B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of google/gemma-7b-it on the dcardwom_zhtw_train dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #safetensors #gemma #art #marketing #llama-factory #lora #generated_from_trainer #text-generation #conversational #base_model-google/gemma-7b-it #license-gpl-3.0 #region-us \n", "## Gemma-7B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of google/gemma-7b-it on the dcardwom_zhtw_train dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
[ 61, 48, 7, 9, 9, 4, 124, 5, 56 ]
[ "TAGS\n#peft #safetensors #gemma #art #marketing #llama-factory #lora #generated_from_trainer #text-generation #conversational #base_model-google/gemma-7b-it #license-gpl-3.0 #region-us \n## Gemma-7B-Chat-DcardStylePost-SFT\n\nThis model is a fine-tuned version of google/gemma-7b-it on the dcardwom_zhtw_train dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 5e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- gradient_accumulation_steps: 8\n- total_train_batch_size: 16\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- num_epochs: 3.0\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.2.0a0+81ea7a4\n- Datasets 2.19.0\n- Tokenizers 0.19.1" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - eval_loss: 2.5726 - eval_rouge1: 26.5342 - eval_rouge2: 6.8822 - eval_rougeL: 20.9891 - eval_rougeLsum: 20.9973 - eval_gen_len: 18.8023 - eval_runtime: 96.7741 - eval_samples_per_second: 11.708 - eval_steps_per_second: 2.935 - epoch: 1.0 - step: 5101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "model-index": [{"name": "t5-small-finetuned-xsum", "results": []}]}
Suryansh5545/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:31:51+00:00
[]
[]
TAGS #transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# t5-small-finetuned-xsum This model is a fine-tuned version of t5-small on the xsum dataset. It achieves the following results on the evaluation set: - eval_loss: 2.5726 - eval_rouge1: 26.5342 - eval_rouge2: 6.8822 - eval_rougeL: 20.9891 - eval_rougeLsum: 20.9973 - eval_gen_len: 18.8023 - eval_runtime: 96.7741 - eval_samples_per_second: 11.708 - eval_steps_per_second: 2.935 - epoch: 1.0 - step: 5101 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.30.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.13.3
[ "# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.5726\n- eval_rouge1: 26.5342\n- eval_rouge2: 6.8822\n- eval_rougeL: 20.9891\n- eval_rougeLsum: 20.9973\n- eval_gen_len: 18.8023\n- eval_runtime: 96.7741\n- eval_samples_per_second: 11.708\n- eval_steps_per_second: 2.935\n- epoch: 1.0\n- step: 5101", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.30.0\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.5726\n- eval_rouge1: 26.5342\n- eval_rouge2: 6.8822\n- eval_rougeL: 20.9891\n- eval_rougeLsum: 20.9973\n- eval_gen_len: 18.8023\n- eval_runtime: 96.7741\n- eval_samples_per_second: 11.708\n- eval_steps_per_second: 2.935\n- epoch: 1.0\n- step: 5101", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1", "### Framework versions\n\n- Transformers 4.30.0\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
[ 60, 162, 7, 9, 9, 4, 93, 44 ]
[ "TAGS\n#transformers #pytorch #tensorboard #t5 #text2text-generation #generated_from_trainer #dataset-xsum #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# t5-small-finetuned-xsum\n\nThis model is a fine-tuned version of t5-small on the xsum dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 2.5726\n- eval_rouge1: 26.5342\n- eval_rouge2: 6.8822\n- eval_rougeL: 20.9891\n- eval_rougeLsum: 20.9973\n- eval_gen_len: 18.8023\n- eval_runtime: 96.7741\n- eval_samples_per_second: 11.708\n- eval_steps_per_second: 2.935\n- epoch: 1.0\n- step: 5101## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-05\n- train_batch_size: 4\n- eval_batch_size: 4\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1### Framework versions\n\n- Transformers 4.30.0\n- Pytorch 2.3.0+cu121\n- Datasets 2.19.0\n- Tokenizers 0.13.3" ]
sentence-similarity
sentence-transformers
# {MODEL_NAME} This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('{MODEL_NAME}') embeddings = model.encode(sentences) print(embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 27371 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 2737, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Citing & Authors <!--- Describe where people can find more information -->
{"library_name": "sentence-transformers", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"], "pipeline_tag": "sentence-similarity"}
alexjones1925/all-MiniLM-L12-v2-gp-walmart-dae-allrows-search-clicks
null
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:32:28+00:00
[]
[]
TAGS #sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us
# {MODEL_NAME} This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. ## Usage (Sentence-Transformers) Using this model becomes easy when you have sentence-transformers installed: Then you can use the model like this: ## Evaluation Results For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL ## Training The model was trained with the parameters: DataLoader: 'URL.dataloader.DataLoader' of length 27371 with parameters: Loss: 'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters: Parameters of the fit()-Method: ## Full Model Architecture ## Citing & Authors
[ "# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 27371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n", "# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.", "## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:", "## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL", "## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 27371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:", "## Full Model Architecture", "## Citing & Authors" ]
[ 28, 41, 30, 26, 74, 5, 5 ]
[ "TAGS\n#sentence-transformers #safetensors #bert #feature-extraction #sentence-similarity #endpoints_compatible #region-us \n# {MODEL_NAME}\n\nThis is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.## Usage (Sentence-Transformers)\n\nUsing this model becomes easy when you have sentence-transformers installed:\n\n\n\nThen you can use the model like this:## Evaluation Results\n\n\n\nFor an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: URL## Training\nThe model was trained with the parameters:\n\nDataLoader:\n\n'URL.dataloader.DataLoader' of length 27371 with parameters:\n\n\nLoss:\n\n'sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss' with parameters:\n \n\nParameters of the fit()-Method:## Full Model Architecture## Citing & Authors" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-RawEmerald-7B - bnb 4bits - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B/ Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-RawEmerald-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard --- # KangalKhan-RawEmerald-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF KangalKhan-RawEmerald-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: teknium/OpenHermes-2.5-Mistral-7B # no parameters necessary for base model - model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 merge_method: ties base_model: teknium/OpenHermes-2.5-Mistral-7B parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-RawEmerald-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-RawEmerald-7B) | Metric |Value| |---------------------------------|----:| |Avg. |69.09| |AI2 Reasoning Challenge (25-Shot)|66.89| |HellaSwag (10-Shot) |85.75| |MMLU (5-Shot) |63.23| |TruthfulQA (0-shot) |57.58| |Winogrande (5-shot) |78.22| |GSM8k (5-shot) |62.85|
{}
RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-4bits
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T19:32:42+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-RawEmerald-7B - bnb 4bits * Model creator: URL * Original model: URL Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-RawEmerald-7B results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 66.89 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.75 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 57.58 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-RawEmerald-7B ======================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-RawEmerald-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n" ]
[ 41 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # llava-1.5-7b-hf-ft-mix-vsft-1 This model is a fine-tuned version of [llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
{"library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "llava-hf/llava-1.5-7b-hf", "model-index": [{"name": "llava-1.5-7b-hf-ft-mix-vsft-1", "results": []}]}
Shiv34/llava-1.5-7b-hf-ft-mix-vsft-1
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:llava-hf/llava-1.5-7b-hf", "region:us" ]
null
2024-05-01T19:33:35+00:00
[]
[]
TAGS #peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-llava-hf/llava-1.5-7b-hf #region-us
# llava-1.5-7b-hf-ft-mix-vsft-1 This model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.4e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.19.1
[ "# llava-1.5-7b-hf-ft-mix-vsft-1\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-llava-hf/llava-1.5-7b-hf #region-us \n", "# llava-1.5-7b-hf-ft-mix-vsft-1\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP", "### Training results", "### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1" ]
[ 50, 55, 7, 9, 9, 4, 104, 5, 48 ]
[ "TAGS\n#peft #tensorboard #safetensors #trl #sft #generated_from_trainer #base_model-llava-hf/llava-1.5-7b-hf #region-us \n# llava-1.5-7b-hf-ft-mix-vsft-1\n\nThis model is a fine-tuned version of llava-hf/llava-1.5-7b-hf on an unknown dataset.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1.4e-05\n- train_batch_size: 2\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- num_epochs: 1\n- mixed_precision_training: Native AMP### Training results### Framework versions\n\n- PEFT 0.10.0\n- Transformers 4.40.1\n- Pytorch 2.1.2\n- Datasets 2.18.0\n- Tokenizers 0.19.1" ]
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nash_dpo_rank4_iter_2 This model is a fine-tuned version of [YYYYYYibo/nash_dpo_iter_1](https://huggingface.co/YYYYYYibo/nash_dpo_iter_1) on the updated and the original datasets. It achieves the following results on the evaluation set: - Loss: 0.6181 - Rewards/chosen: -0.4066 - Rewards/rejected: -0.6115 - Rewards/accuracies: 0.6680 - Rewards/margins: 0.2049 - Logps/rejected: -350.9844 - Logps/chosen: -339.0614 - Logits/rejected: -2.1508 - Logits/chosen: -2.2761 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6232 | 0.51 | 100 | 0.6181 | -0.4066 | -0.6115 | 0.6680 | 0.2049 | -350.9844 | -339.0614 | -2.1508 | -2.2761 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo"], "datasets": ["updated", "original"], "base_model": "alignment-handbook/zephyr-7b-sft-full", "model-index": [{"name": "nash_dpo_rank4_iter_2", "results": []}]}
YYYYYYibo/nash_dpo_rank4_iter_2
null
[ "peft", "safetensors", "mistral", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "dataset:updated", "dataset:original", "base_model:alignment-handbook/zephyr-7b-sft-full", "license:apache-2.0", "region:us" ]
null
2024-05-01T19:35:48+00:00
[]
[]
TAGS #peft #safetensors #mistral #alignment-handbook #generated_from_trainer #trl #dpo #dataset-updated #dataset-original #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #region-us
nash\_dpo\_rank4\_iter\_2 ========================= This model is a fine-tuned version of YYYYYYibo/nash\_dpo\_iter\_1 on the updated and the original datasets. It achieves the following results on the evaluation set: * Loss: 0.6181 * Rewards/chosen: -0.4066 * Rewards/rejected: -0.6115 * Rewards/accuracies: 0.6680 * Rewards/margins: 0.2049 * Logps/rejected: -350.9844 * Logps/chosen: -339.0614 * Logits/rejected: -2.1508 * Logits/chosen: -2.2761 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-06 * train\_batch\_size: 2 * eval\_batch\_size: 2 * seed: 42 * distributed\_type: multi-GPU * num\_devices: 4 * gradient\_accumulation\_steps: 16 * total\_train\_batch\_size: 128 * total\_eval\_batch\_size: 8 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: cosine * lr\_scheduler\_warmup\_ratio: 0.1 * num\_epochs: 1 ### Training results ### Framework versions * PEFT 0.7.1 * Transformers 4.36.2 * Pytorch 2.1.2+cu121 * Datasets 2.14.6 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.2" ]
[ "TAGS\n#peft #safetensors #mistral #alignment-handbook #generated_from_trainer #trl #dpo #dataset-updated #dataset-original #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1", "### Training results", "### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.2" ]
[ 69, 176, 5, 52 ]
[ "TAGS\n#peft #safetensors #mistral #alignment-handbook #generated_from_trainer #trl #dpo #dataset-updated #dataset-original #base_model-alignment-handbook/zephyr-7b-sft-full #license-apache-2.0 #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-06\n* train\\_batch\\_size: 2\n* eval\\_batch\\_size: 2\n* seed: 42\n* distributed\\_type: multi-GPU\n* num\\_devices: 4\n* gradient\\_accumulation\\_steps: 16\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 8\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: cosine\n* lr\\_scheduler\\_warmup\\_ratio: 0.1\n* num\\_epochs: 1### Training results### Framework versions\n\n\n* PEFT 0.7.1\n* Transformers 4.36.2\n* Pytorch 2.1.2+cu121\n* Datasets 2.14.6\n* Tokenizers 0.15.2" ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-Ruby-7B-Fixed - GGUF - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed/ | Name | Quant method | Size | | ---- | ---- | ---- | | [KangalKhan-Ruby-7B-Fixed.Q2_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q2_K.gguf) | Q2_K | 2.53GB | | [KangalKhan-Ruby-7B-Fixed.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [KangalKhan-Ruby-7B-Fixed.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.IQ3_S.gguf) | IQ3_S | 2.96GB | | [KangalKhan-Ruby-7B-Fixed.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [KangalKhan-Ruby-7B-Fixed.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.IQ3_M.gguf) | IQ3_M | 3.06GB | | [KangalKhan-Ruby-7B-Fixed.Q3_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q3_K.gguf) | Q3_K | 3.28GB | | [KangalKhan-Ruby-7B-Fixed.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [KangalKhan-Ruby-7B-Fixed.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [KangalKhan-Ruby-7B-Fixed.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [KangalKhan-Ruby-7B-Fixed.Q4_0.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q4_0.gguf) | Q4_0 | 3.83GB | | [KangalKhan-Ruby-7B-Fixed.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [KangalKhan-Ruby-7B-Fixed.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [KangalKhan-Ruby-7B-Fixed.Q4_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q4_K.gguf) | Q4_K | 4.07GB | | [KangalKhan-Ruby-7B-Fixed.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [KangalKhan-Ruby-7B-Fixed.Q4_1.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q4_1.gguf) | Q4_1 | 4.24GB | | [KangalKhan-Ruby-7B-Fixed.Q5_0.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q5_0.gguf) | Q5_0 | 4.65GB | | [KangalKhan-Ruby-7B-Fixed.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [KangalKhan-Ruby-7B-Fixed.Q5_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q5_K.gguf) | Q5_K | 4.78GB | | [KangalKhan-Ruby-7B-Fixed.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [KangalKhan-Ruby-7B-Fixed.Q5_1.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q5_1.gguf) | Q5_1 | 5.07GB | | [KangalKhan-Ruby-7B-Fixed.Q6_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf/blob/main/KangalKhan-Ruby-7B-Fixed.Q6_K.gguf) | Q6_K | 5.53GB | Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-Ruby-7B-Fixed results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 67.24 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.22 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 56.49 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-Ruby-7B-Fixed name: Open LLM Leaderboard --- # KangalKhan-Ruby-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF KangalKhan-Ruby-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml slices: - sources: - model: argilla/CapybaraHermes-2.5-Mistral-7B layer_range: [0, 32] - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B layer_range: [0, 32] merge_method: slerp base_model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: t: - filter: self_attn value: [1, 0.5, 0.7, 0.3, 0] - filter: mlp value: [0, 0.5, 0.3, 0.7, 1] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-Ruby-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-Ruby-7B-Fixed) | Metric |Value| |---------------------------------|----:| |Avg. |68.68| |AI2 Reasoning Challenge (25-Shot)|67.24| |HellaSwag (10-Shot) |85.22| |MMLU (5-Shot) |63.21| |TruthfulQA (0-shot) |56.49| |Winogrande (5-shot) |77.98| |GSM8k (5-shot) |61.94|
{}
RichardErkhov/Yuma42_-_KangalKhan-Ruby-7B-Fixed-gguf
null
[ "gguf", "region:us" ]
null
2024-05-01T19:37:26+00:00
[]
[]
TAGS #gguf #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-Ruby-7B-Fixed - GGUF * Model creator: URL * Original model: URL Name: KangalKhan-Ruby-7B-Fixed.Q2\_K.gguf, Quant method: Q2\_K, Size: 2.53GB Name: KangalKhan-Ruby-7B-Fixed.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 2.81GB Name: KangalKhan-Ruby-7B-Fixed.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 2.96GB Name: KangalKhan-Ruby-7B-Fixed.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 2.95GB Name: KangalKhan-Ruby-7B-Fixed.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 3.06GB Name: KangalKhan-Ruby-7B-Fixed.Q3\_K.gguf, Quant method: Q3\_K, Size: 3.28GB Name: KangalKhan-Ruby-7B-Fixed.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 3.28GB Name: KangalKhan-Ruby-7B-Fixed.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 3.56GB Name: KangalKhan-Ruby-7B-Fixed.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 3.67GB Name: KangalKhan-Ruby-7B-Fixed.Q4\_0.gguf, Quant method: Q4\_0, Size: 3.83GB Name: KangalKhan-Ruby-7B-Fixed.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 3.87GB Name: KangalKhan-Ruby-7B-Fixed.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 3.86GB Name: KangalKhan-Ruby-7B-Fixed.Q4\_K.gguf, Quant method: Q4\_K, Size: 4.07GB Name: KangalKhan-Ruby-7B-Fixed.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 4.07GB Name: KangalKhan-Ruby-7B-Fixed.Q4\_1.gguf, Quant method: Q4\_1, Size: 4.24GB Name: KangalKhan-Ruby-7B-Fixed.Q5\_0.gguf, Quant method: Q5\_0, Size: 4.65GB Name: KangalKhan-Ruby-7B-Fixed.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 4.65GB Name: KangalKhan-Ruby-7B-Fixed.Q5\_K.gguf, Quant method: Q5\_K, Size: 4.78GB Name: KangalKhan-Ruby-7B-Fixed.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 4.78GB Name: KangalKhan-Ruby-7B-Fixed.Q5\_1.gguf, Quant method: Q5\_1, Size: 5.07GB Name: KangalKhan-Ruby-7B-Fixed.Q6\_K.gguf, Quant method: Q6\_K, Size: 5.53GB Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-Ruby-7B-Fixed results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 67.24 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.22 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.21 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 56.49 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 77.98 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 61.94 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-Ruby-7B ================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-Ruby-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#gguf #region-us \n" ]
[ 9 ]
[ "TAGS\n#gguf #region-us \n" ]
null
null
this is training model
{}
HoodySi/treningowe
null
[ "region:us" ]
null
2024-05-01T19:37:52+00:00
[]
[]
TAGS #region-us
this is training model
[]
[ "TAGS\n#region-us \n" ]
[ 5 ]
[ "TAGS\n#region-us \n" ]
text-generation
transformers
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-RawEmerald-7B - bnb 8bits - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B/ Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-RawEmerald-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard --- # KangalKhan-RawEmerald-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF KangalKhan-RawEmerald-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: teknium/OpenHermes-2.5-Mistral-7B # no parameters necessary for base model - model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 merge_method: ties base_model: teknium/OpenHermes-2.5-Mistral-7B parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-RawEmerald-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-RawEmerald-7B) | Metric |Value| |---------------------------------|----:| |Avg. |69.09| |AI2 Reasoning Challenge (25-Shot)|66.89| |HellaSwag (10-Shot) |85.75| |MMLU (5-Shot) |63.23| |TruthfulQA (0-shot) |57.58| |Winogrande (5-shot) |78.22| |GSM8k (5-shot) |62.85|
{}
RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-8bits
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "8-bit", "region:us" ]
null
2024-05-01T19:38:06+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-RawEmerald-7B - bnb 8bits * Model creator: URL * Original model: URL Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-RawEmerald-7B results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 66.89 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.75 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 57.58 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-RawEmerald-7B ======================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-RawEmerald-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n" ]
[ 41 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #conversational #autotrain_compatible #endpoints_compatible #text-generation-inference #8-bit #region-us \n" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_opus_books_model This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.5191 - Bleu: 6.3813 - Gen Len: 17.539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.8456 | 1.0 | 6355 | 1.6112 | 5.7972 | 17.5672 | | 1.7857 | 2.0 | 12710 | 1.5620 | 6.1557 | 17.5515 | | 1.7359 | 3.0 | 19065 | 1.5358 | 6.2797 | 17.5462 | | 1.7219 | 4.0 | 25420 | 1.5226 | 6.3581 | 17.5427 | | 1.7219 | 5.0 | 31775 | 1.5191 | 6.3813 | 17.539 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["bleu"], "base_model": "google-t5/t5-small", "model-index": [{"name": "my_awesome_opus_books_model", "results": []}]}
sakt90/my_awesome_opus_books_model
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google-t5/t5-small", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:39:27+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
my\_awesome\_opus\_books\_model =============================== This model is a fine-tuned version of google-t5/t5-small on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 1.5191 * Bleu: 6.3813 * Gen Len: 17.539 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 2e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 * mixed\_precision\_training: Native AMP ### Training results ### Framework versions * Transformers 4.40.1 * Pytorch 2.2.1+cu121 * Datasets 2.19.0 * Tokenizers 0.19.1
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP", "### Training results", "### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
[ 67, 112, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google-t5/t5-small #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 2e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5\n* mixed\\_precision\\_training: Native AMP### Training results### Framework versions\n\n\n* Transformers 4.40.1\n* Pytorch 2.2.1+cu121\n* Datasets 2.19.0\n* Tokenizers 0.19.1" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_withdpo_4iters_bs256_432lr_iter_4 This model is a fine-tuned version of [ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3](https://huggingface.co/ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
{"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3", "model-index": [{"name": "0.001_withdpo_4iters_bs256_432lr_iter_4", "results": []}]}
ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_4
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "generated_from_trainer", "trl", "dpo", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:41:53+00:00
[]
[]
TAGS #transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# 0.001_withdpo_4iters_bs256_432lr_iter_4 This model is a fine-tuned version of ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.2
[ "# 0.001_withdpo_4iters_bs256_432lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# 0.001_withdpo_4iters_bs256_432lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 on the updated and the original datasets.", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1", "### Training results", "### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
[ 100, 72, 7, 9, 9, 4, 155, 5, 44 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #alignment-handbook #generated_from_trainer #trl #dpo #conversational #dataset-updated #dataset-original #base_model-ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# 0.001_withdpo_4iters_bs256_432lr_iter_4\n\nThis model is a fine-tuned version of ShenaoZ/0.001_withdpo_4iters_bs256_432lr_iter_3 on the updated and the original datasets.## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 2e-07\n- train_batch_size: 8\n- eval_batch_size: 8\n- seed: 42\n- distributed_type: multi-GPU\n- num_devices: 8\n- gradient_accumulation_steps: 4\n- total_train_batch_size: 256\n- total_eval_batch_size: 64\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: cosine\n- lr_scheduler_warmup_ratio: 0.1\n- num_epochs: 1### Training results### Framework versions\n\n- Transformers 4.36.2\n- Pytorch 2.1.2+cu121\n- Datasets 2.14.6\n- Tokenizers 0.15.2" ]
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"license": "mit", "library_name": "transformers", "tags": []}
shramay-palta/test-demo-t5-large-qa
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:43:38+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 50, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #t5 #text2text-generation #arxiv-1910.09700 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-to-image
diffusers
<!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # SDXL LoRA DreamBooth - embracellm/sushi24_LoRA <Gallery /> ## Model description These are embracellm/sushi24_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using [DreamBooth](https://dreambooth.github.io/). LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Vegeterian Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](embracellm/sushi24_LoRA/tree/main) them in the Files & versions tab. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
{"license": "openrail++", "library_name": "diffusers", "tags": ["text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "text-to-image", "text-to-image", "diffusers-training", "diffusers", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers"], "base_model": "stabilityai/stable-diffusion-xl-base-1.0", "instance_prompt": "a photo of Vegeterian Roll", "widget": []}
embracellm/sushi24_LoRA
null
[ "diffusers", "tensorboard", "text-to-image", "diffusers-training", "dora", "template:sd-lora", "stable-diffusion-xl", "stable-diffusion-xl-diffusers", "base_model:stabilityai/stable-diffusion-xl-base-1.0", "license:openrail++", "region:us" ]
null
2024-05-01T19:46:49+00:00
[]
[]
TAGS #diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us
# SDXL LoRA DreamBooth - embracellm/sushi24_LoRA <Gallery /> ## Model description These are embracellm/sushi24_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0. The weights were trained using DreamBooth. LoRA for the text encoder was enabled: False. Special VAE used for training: madebyollin/sdxl-vae-fp16-fix. ## Trigger words You should use a photo of Vegeterian Roll to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. Download them in the Files & versions tab. ## Intended uses & limitations #### How to use #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
[ "# SDXL LoRA DreamBooth - embracellm/sushi24_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi24_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Vegeterian Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n", "# SDXL LoRA DreamBooth - embracellm/sushi24_LoRA\n\n<Gallery />", "## Model description\n\nThese are embracellm/sushi24_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.", "## Trigger words\n\nYou should use a photo of Vegeterian Roll to trigger the image generation.", "## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.", "## Intended uses & limitations", "#### How to use", "#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]", "## Training details\n\n[TODO: describe the data used to train the model]" ]
[ 72, 24, 84, 20, 25, 6, 7, 23, 17 ]
[ "TAGS\n#diffusers #tensorboard #text-to-image #diffusers-training #dora #template-sd-lora #stable-diffusion-xl #stable-diffusion-xl-diffusers #base_model-stabilityai/stable-diffusion-xl-base-1.0 #license-openrail++ #region-us \n# SDXL LoRA DreamBooth - embracellm/sushi24_LoRA\n\n<Gallery />## Model description\n\nThese are embracellm/sushi24_LoRA LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.\n\nThe weights were trained using DreamBooth.\n\nLoRA for the text encoder was enabled: False.\n\nSpecial VAE used for training: madebyollin/sdxl-vae-fp16-fix.## Trigger words\n\nYou should use a photo of Vegeterian Roll to trigger the image generation.## Download model\n\nWeights for this model are available in Safetensors format.\n\nDownload them in the Files & versions tab.## Intended uses & limitations#### How to use#### Limitations and bias\n\n[TODO: provide examples of latent issues and potential remediations]## Training details\n\n[TODO: describe the data used to train the model]" ]
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper_fintuned This model is a fine-tuned version of [openai/whisper-tiny.en](https://huggingface.co/openai/whisper-tiny.en) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2894 - eval_wer: 13.9949 - eval_runtime: 54.8883 - eval_samples_per_second: 9.109 - eval_steps_per_second: 1.148 - epoch: 16.3889 - step: 590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1.dev0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "openai/whisper-tiny.en", "model-index": [{"name": "whisper_fintuned", "results": []}]}
laalays/whisper_fintuned
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "base_model:openai/whisper-tiny.en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:47:30+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us
# whisper_fintuned This model is a fine-tuned version of openai/URL on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2894 - eval_wer: 13.9949 - eval_runtime: 54.8883 - eval_samples_per_second: 9.109 - eval_steps_per_second: 1.148 - epoch: 16.3889 - step: 590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1000 ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.1.dev0 - Tokenizers 0.19.1
[ "# whisper_fintuned\n\nThis model is a fine-tuned version of openai/URL on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2894\n- eval_wer: 13.9949\n- eval_runtime: 54.8883\n- eval_samples_per_second: 9.109\n- eval_steps_per_second: 1.148\n- epoch: 16.3889\n- step: 590", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 128\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- training_steps: 1000", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.1.dev0\n- Tokenizers 0.19.1" ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n", "# whisper_fintuned\n\nThis model is a fine-tuned version of openai/URL on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2894\n- eval_wer: 13.9949\n- eval_runtime: 54.8883\n- eval_samples_per_second: 9.109\n- eval_steps_per_second: 1.148\n- epoch: 16.3889\n- step: 590", "## Model description\n\nMore information needed", "## Intended uses & limitations\n\nMore information needed", "## Training and evaluation data\n\nMore information needed", "## Training procedure", "### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 128\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- training_steps: 1000", "### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.1.dev0\n- Tokenizers 0.19.1" ]
[ 54, 108, 7, 9, 9, 4, 104, 47 ]
[ "TAGS\n#transformers #tensorboard #safetensors #whisper #automatic-speech-recognition #generated_from_trainer #base_model-openai/whisper-tiny.en #license-apache-2.0 #endpoints_compatible #region-us \n# whisper_fintuned\n\nThis model is a fine-tuned version of openai/URL on an unknown dataset.\nIt achieves the following results on the evaluation set:\n- eval_loss: 0.2894\n- eval_wer: 13.9949\n- eval_runtime: 54.8883\n- eval_samples_per_second: 9.109\n- eval_steps_per_second: 1.148\n- epoch: 16.3889\n- step: 590## Model description\n\nMore information needed## Intended uses & limitations\n\nMore information needed## Training and evaluation data\n\nMore information needed## Training procedure### Training hyperparameters\n\nThe following hyperparameters were used during training:\n- learning_rate: 1e-05\n- train_batch_size: 128\n- eval_batch_size: 8\n- seed: 42\n- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n- lr_scheduler_type: linear\n- lr_scheduler_warmup_steps: 500\n- training_steps: 1000### Framework versions\n\n- Transformers 4.40.1\n- Pytorch 2.2.1+cu121\n- Datasets 2.19.1.dev0\n- Tokenizers 0.19.1" ]
null
transformers
# Uploaded model - **Developed by:** MR-Eder - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/Phi-3-mini-4k-instruct"}
MR-Eder/phi3-wiki-de-single-pairs-LoRA
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mistral", "trl", "en", "base_model:unsloth/Phi-3-mini-4k-instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:47:39+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #endpoints_compatible #region-us
# Uploaded model - Developed by: MR-Eder - License: apache-2.0 - Finetuned from model : unsloth/Phi-3-mini-4k-instruct This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 62, 79 ]
[ "TAGS\n#transformers #safetensors #text-generation-inference #unsloth #mistral #trl #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
null
null
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) KangalKhan-RawEmerald-7B - GGUF - Model creator: https://huggingface.co/Yuma42/ - Original model: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [KangalKhan-RawEmerald-7B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q2_K.gguf) | Q2_K | 2.53GB | | [KangalKhan-RawEmerald-7B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.IQ3_XS.gguf) | IQ3_XS | 2.81GB | | [KangalKhan-RawEmerald-7B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.IQ3_S.gguf) | IQ3_S | 2.96GB | | [KangalKhan-RawEmerald-7B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q3_K_S.gguf) | Q3_K_S | 2.95GB | | [KangalKhan-RawEmerald-7B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.IQ3_M.gguf) | IQ3_M | 3.06GB | | [KangalKhan-RawEmerald-7B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q3_K.gguf) | Q3_K | 3.28GB | | [KangalKhan-RawEmerald-7B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q3_K_M.gguf) | Q3_K_M | 3.28GB | | [KangalKhan-RawEmerald-7B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q3_K_L.gguf) | Q3_K_L | 3.56GB | | [KangalKhan-RawEmerald-7B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.IQ4_XS.gguf) | IQ4_XS | 3.67GB | | [KangalKhan-RawEmerald-7B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q4_0.gguf) | Q4_0 | 3.83GB | | [KangalKhan-RawEmerald-7B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.IQ4_NL.gguf) | IQ4_NL | 3.87GB | | [KangalKhan-RawEmerald-7B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q4_K_S.gguf) | Q4_K_S | 3.86GB | | [KangalKhan-RawEmerald-7B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q4_K.gguf) | Q4_K | 4.07GB | | [KangalKhan-RawEmerald-7B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q4_K_M.gguf) | Q4_K_M | 4.07GB | | [KangalKhan-RawEmerald-7B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q4_1.gguf) | Q4_1 | 4.24GB | | [KangalKhan-RawEmerald-7B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q5_0.gguf) | Q5_0 | 4.65GB | | [KangalKhan-RawEmerald-7B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q5_K_S.gguf) | Q5_K_S | 4.65GB | | [KangalKhan-RawEmerald-7B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q5_K.gguf) | Q5_K | 4.78GB | | [KangalKhan-RawEmerald-7B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q5_K_M.gguf) | Q5_K_M | 4.78GB | | [KangalKhan-RawEmerald-7B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q5_1.gguf) | Q5_1 | 5.07GB | | [KangalKhan-RawEmerald-7B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf/blob/main/KangalKhan-RawEmerald-7B.Q6_K.gguf) | Q6_K | 5.53GB | Original model description: --- language: - en license: apache-2.0 tags: - merge - mergekit - lazymergekit - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B base_model: - argilla/CapybaraHermes-2.5-Mistral-7B - argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: - name: KangalKhan-RawEmerald-7B results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 66.89 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.75 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 57.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Yuma42/KangalKhan-RawEmerald-7B name: Open LLM Leaderboard --- # KangalKhan-RawEmerald-7B I suggest using ChatML (Use whatever system prompt you like, this is just an example!): ``` <|im_start|>system You are a friendly assistant.<|im_end|> <|im_start|>user Hello, what are you?<|im_end|> <|im_start|>assistant I am an AI language model designed to assist users with information and answer their questions. How can I help you today?<|im_end|> ``` Q4_K_S GGUF: https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B-GGUF More GGUF variants by [mradermacher](https://huggingface.co/mradermacher): WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4_K_S GGUF above. https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF KangalKhan-RawEmerald-7B is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [argilla/CapybaraHermes-2.5-Mistral-7B](https://huggingface.co/argilla/CapybaraHermes-2.5-Mistral-7B) * [argilla/distilabeled-OpenHermes-2.5-Mistral-7B](https://huggingface.co/argilla/distilabeled-OpenHermes-2.5-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: teknium/OpenHermes-2.5-Mistral-7B # no parameters necessary for base model - model: argilla/CapybaraHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 - model: argilla/distilabeled-OpenHermes-2.5-Mistral-7B parameters: density: 0.6 weight: 0.5 merge_method: ties base_model: teknium/OpenHermes-2.5-Mistral-7B parameters: normalize: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Yuma42/KangalKhan-RawEmerald-7B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Yuma42__KangalKhan-RawEmerald-7B) | Metric |Value| |---------------------------------|----:| |Avg. |69.09| |AI2 Reasoning Challenge (25-Shot)|66.89| |HellaSwag (10-Shot) |85.75| |MMLU (5-Shot) |63.23| |TruthfulQA (0-shot) |57.58| |Winogrande (5-shot) |78.22| |GSM8k (5-shot) |62.85|
{}
RichardErkhov/Yuma42_-_KangalKhan-RawEmerald-7B-gguf
null
[ "gguf", "region:us" ]
null
2024-05-01T19:48:07+00:00
[]
[]
TAGS #gguf #region-us
Quantization made by Richard Erkhov. Github Discord Request more models KangalKhan-RawEmerald-7B - GGUF * Model creator: URL * Original model: URL Name: KangalKhan-RawEmerald-7B.Q2\_K.gguf, Quant method: Q2\_K, Size: 2.53GB Name: KangalKhan-RawEmerald-7B.IQ3\_XS.gguf, Quant method: IQ3\_XS, Size: 2.81GB Name: KangalKhan-RawEmerald-7B.IQ3\_S.gguf, Quant method: IQ3\_S, Size: 2.96GB Name: KangalKhan-RawEmerald-7B.Q3\_K\_S.gguf, Quant method: Q3\_K\_S, Size: 2.95GB Name: KangalKhan-RawEmerald-7B.IQ3\_M.gguf, Quant method: IQ3\_M, Size: 3.06GB Name: KangalKhan-RawEmerald-7B.Q3\_K.gguf, Quant method: Q3\_K, Size: 3.28GB Name: KangalKhan-RawEmerald-7B.Q3\_K\_M.gguf, Quant method: Q3\_K\_M, Size: 3.28GB Name: KangalKhan-RawEmerald-7B.Q3\_K\_L.gguf, Quant method: Q3\_K\_L, Size: 3.56GB Name: KangalKhan-RawEmerald-7B.IQ4\_XS.gguf, Quant method: IQ4\_XS, Size: 3.67GB Name: KangalKhan-RawEmerald-7B.Q4\_0.gguf, Quant method: Q4\_0, Size: 3.83GB Name: KangalKhan-RawEmerald-7B.IQ4\_NL.gguf, Quant method: IQ4\_NL, Size: 3.87GB Name: KangalKhan-RawEmerald-7B.Q4\_K\_S.gguf, Quant method: Q4\_K\_S, Size: 3.86GB Name: KangalKhan-RawEmerald-7B.Q4\_K.gguf, Quant method: Q4\_K, Size: 4.07GB Name: KangalKhan-RawEmerald-7B.Q4\_K\_M.gguf, Quant method: Q4\_K\_M, Size: 4.07GB Name: KangalKhan-RawEmerald-7B.Q4\_1.gguf, Quant method: Q4\_1, Size: 4.24GB Name: KangalKhan-RawEmerald-7B.Q5\_0.gguf, Quant method: Q5\_0, Size: 4.65GB Name: KangalKhan-RawEmerald-7B.Q5\_K\_S.gguf, Quant method: Q5\_K\_S, Size: 4.65GB Name: KangalKhan-RawEmerald-7B.Q5\_K.gguf, Quant method: Q5\_K, Size: 4.78GB Name: KangalKhan-RawEmerald-7B.Q5\_K\_M.gguf, Quant method: Q5\_K\_M, Size: 4.78GB Name: KangalKhan-RawEmerald-7B.Q5\_1.gguf, Quant method: Q5\_1, Size: 5.07GB Name: KangalKhan-RawEmerald-7B.Q6\_K.gguf, Quant method: Q6\_K, Size: 5.53GB Original model description: --------------------------- language: * en license: apache-2.0 tags: * merge * mergekit * lazymergekit * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B base\_model: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B model-index: * name: KangalKhan-RawEmerald-7B results: + task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2\_arc config: ARC-Challenge split: test args: num\_few\_shot: 25 metrics: - type: acc\_norm value: 66.89 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num\_few\_shot: 10 metrics: - type: acc\_norm value: 85.75 name: normalized accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num\_few\_shot: 5 metrics: - type: acc value: 63.23 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful\_qa config: multiple\_choice split: validation args: num\_few\_shot: 0 metrics: - type: mc2 value: 57.58 source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande\_xl split: validation args: num\_few\_shot: 5 metrics: - type: acc value: 78.22 name: accuracy source: url: URL name: Open LLM Leaderboard + task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num\_few\_shot: 5 metrics: - type: acc value: 62.85 name: accuracy source: url: URL name: Open LLM Leaderboard --- KangalKhan-RawEmerald-7B ======================== I suggest using ChatML (Use whatever system prompt you like, this is just an example!): Q4\_K\_S GGUF: URL More GGUF variants by mradermacher: WARNING: I have observed that these versions output typos in rare cases. If you have the same problem, use my Q4\_K\_S GGUF above. URL KangalKhan-RawEmerald-7B is a merge of the following models using LazyMergekit: * argilla/CapybaraHermes-2.5-Mistral-7B * argilla/distilabeled-OpenHermes-2.5-Mistral-7B Configuration ------------- Usage ----- Open LLM Leaderboard Evaluation Results ======================================= Detailed results can be found here
[]
[ "TAGS\n#gguf #region-us \n" ]
[ 9 ]
[ "TAGS\n#gguf #region-us \n" ]
text-generation
transformers
# Uploaded model - **Developed by:** MR-Eder - **License:** apache-2.0 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl", "sft"], "base_model": "unsloth/Phi-3-mini-4k-instruct"}
MR-Eder/phi3-wiki-de-single-pairs-16bit
null
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:unsloth/Phi-3-mini-4k-instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:48:39+00:00
[]
[ "en" ]
TAGS #transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us
# Uploaded model - Developed by: MR-Eder - License: apache-2.0 - Finetuned from model : unsloth/Phi-3-mini-4k-instruct This mistral model was trained 2x faster with Unsloth and Huggingface's TRL library. <img src="URL width="200"/>
[ "# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n", "# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
[ 77, 79 ]
[ "TAGS\n#transformers #safetensors #mistral #text-generation #text-generation-inference #unsloth #trl #sft #conversational #en #base_model-unsloth/Phi-3-mini-4k-instruct #license-apache-2.0 #autotrain_compatible #endpoints_compatible #region-us \n# Uploaded model\n\n- Developed by: MR-Eder\n- License: apache-2.0\n- Finetuned from model : unsloth/Phi-3-mini-4k-instruct\n\nThis mistral model was trained 2x faster with Unsloth and Huggingface's TRL library.\n\n<img src=\"URL width=\"200\"/>" ]
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flant5_offensive_translation_de_en_wmt This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0011 - Precision: 0.6551 - Recall: 0.5516 - F1: 0.5989 - Total Predictions: 3532 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Total Predictions | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:-----------------:| | 0.3687 | 1.0 | 3003 | 0.0012 | 0.5471 | 0.5366 | 0.5418 | 3532 | | 0.0166 | 2.0 | 6006 | 0.0011 | 0.6454 | 0.4542 | 0.5332 | 3532 | | 0.0145 | 3.0 | 9009 | 0.0010 | 0.6111 | 0.6065 | 0.6088 | 3532 | | 0.013 | 4.0 | 12012 | 0.0011 | 0.6904 | 0.4767 | 0.5640 | 3532 | | 0.0121 | 5.0 | 15015 | 0.0011 | 0.6551 | 0.5516 | 0.5989 | 3532 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.0.0+cu118 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["precision", "recall", "f1"], "base_model": "google/flan-t5-base", "model-index": [{"name": "flant5_offensive_translation_de_en_wmt", "results": []}]}
JenniferHJF/flant5_offensive_translation_de_en_wmt
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:google/flan-t5-base", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:49:32+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
flant5\_offensive\_translation\_de\_en\_wmt =========================================== This model is a fine-tuned version of google/flan-t5-base on an unknown dataset. It achieves the following results on the evaluation set: * Loss: 0.0011 * Precision: 0.6551 * Recall: 0.5516 * F1: 0.5989 * Total Predictions: 3532 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 4 * eval\_batch\_size: 4 * seed: 42 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 5 ### Training results ### Framework versions * Transformers 4.39.3 * Pytorch 2.0.0+cu118 * Datasets 2.18.0 * Tokenizers 0.15.2
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.0+cu118\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5", "### Training results", "### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.0+cu118\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
[ 67, 101, 5, 44 ]
[ "TAGS\n#transformers #tensorboard #safetensors #t5 #text2text-generation #generated_from_trainer #base_model-google/flan-t5-base #license-apache-2.0 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 4\n* eval\\_batch\\_size: 4\n* seed: 42\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 5### Training results### Framework versions\n\n\n* Transformers 4.39.3\n* Pytorch 2.0.0+cu118\n* Datasets 2.18.0\n* Tokenizers 0.15.2" ]
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # stage1 This model is a fine-tuned version of [jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1](https://huggingface.co/jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2469 - Accuracy: 0.9158 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 1 - distributed_type: multi-GPU - num_devices: 8 - total_train_batch_size: 128 - total_eval_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.3374 | 1.0 | 16956 | 0.2982 | 0.9016 | | 0.2955 | 2.0 | 33912 | 0.2682 | 0.9104 | | 0.2795 | 3.0 | 50868 | 0.2593 | 0.9126 | | 0.2713 | 4.0 | 67824 | 0.2549 | 0.9137 | | 0.2661 | 5.0 | 84780 | 0.2522 | 0.9144 | | 0.2626 | 6.0 | 101736 | 0.2501 | 0.9150 | | 0.2602 | 7.0 | 118692 | 0.2488 | 0.9153 | | 0.2585 | 8.0 | 135648 | 0.2478 | 0.9156 | | 0.2574 | 9.0 | 152604 | 0.2471 | 0.9158 | | 0.2569 | 10.0 | 169560 | 0.2469 | 0.9158 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "base_model": "jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1", "model-index": [{"name": "stage1", "results": []}]}
jarod0411/stage1
null
[ "transformers", "tensorboard", "safetensors", "gpt2", "text-generation", "generated_from_trainer", "base_model:jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:51:24+00:00
[]
[]
TAGS #transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
stage1 ====== This model is a fine-tuned version of jarod0411/zinc10M\_gpt2\_SMILES\_bpe\_combined\_step1 on the None dataset. It achieves the following results on the evaluation set: * Loss: 0.2469 * Accuracy: 0.9158 Model description ----------------- More information needed Intended uses & limitations --------------------------- More information needed Training and evaluation data ---------------------------- More information needed Training procedure ------------------ ### Training hyperparameters The following hyperparameters were used during training: * learning\_rate: 5e-05 * train\_batch\_size: 16 * eval\_batch\_size: 16 * seed: 1 * distributed\_type: multi-GPU * num\_devices: 8 * total\_train\_batch\_size: 128 * total\_eval\_batch\_size: 128 * optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 * lr\_scheduler\_type: linear * num\_epochs: 10.0 ### Training results ### Framework versions * Transformers 4.36.0.dev0 * Pytorch 2.1.1+cu121 * Datasets 2.15.0 * Tokenizers 0.15.0
[ "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0", "### Training results", "### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
[ 76, 148, 5, 47 ]
[ "TAGS\n#transformers #tensorboard #safetensors #gpt2 #text-generation #generated_from_trainer #base_model-jarod0411/zinc10M_gpt2_SMILES_bpe_combined_step1 #license-mit #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n### Training hyperparameters\n\n\nThe following hyperparameters were used during training:\n\n\n* learning\\_rate: 5e-05\n* train\\_batch\\_size: 16\n* eval\\_batch\\_size: 16\n* seed: 1\n* distributed\\_type: multi-GPU\n* num\\_devices: 8\n* total\\_train\\_batch\\_size: 128\n* total\\_eval\\_batch\\_size: 128\n* optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08\n* lr\\_scheduler\\_type: linear\n* num\\_epochs: 10.0### Training results### Framework versions\n\n\n* Transformers 4.36.0.dev0\n* Pytorch 2.1.1+cu121\n* Datasets 2.15.0\n* Tokenizers 0.15.0" ]
text2text-generation
transformers
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size S.
{"license": "mit"}
perkan/shortS-opus-mt-tc-base-en-sr
null
[ "transformers", "pytorch", "marian", "text2text-generation", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T19:54:16+00:00
[]
[]
TAGS #transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us
Model for English to Serbian translation. Base model is HelsinkiNLP sh model. Fine-tuned using OPUS-100 dataset, which was modified with Paraphrasing Database size S.
[]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
[ 34 ]
[ "TAGS\n#transformers #pytorch #marian #text2text-generation #license-mit #autotrain_compatible #endpoints_compatible #region-us \n" ]
text-generation
transformers
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <a href="https://www.pruna.ai/" target="_blank" rel="noopener noreferrer"> <img src="https://i.imgur.com/eDAlcgk.png" alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> <!-- header end --> [![Twitter](https://img.shields.io/twitter/follow/PrunaAI?style=social)](https://twitter.com/PrunaAI) [![GitHub](https://img.shields.io/github/followers/PrunaAI?label=Follow%20%40PrunaAI&style=social)](https://github.com/PrunaAI) [![LinkedIn](https://img.shields.io/badge/LinkedIn-Connect-blue)](https://www.linkedin.com/company/93832878/admin/feed/posts/?feedType=following) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-blue?style=social&logo=discord)](https://discord.gg/CP4VSgck) # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your *own* AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - Read the documentations to know more [here](https://pruna-ai-pruna.readthedocs-hosted.com/en/latest/) - Join Pruna AI community on Discord [here](https://discord.gg/CP4VSgck) to share feedback/suggestions or get help. ## Results ![image info](./plots.png) **Frequently Asked Questions** - ***How does the compression work?*** The model is compressed with awq. - ***How does the model quality change?*** The quality of the model output might vary compared to the base model. - ***How is the model efficiency evaluated?*** These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in `model/smash_config.json` and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - ***What is the model format?*** We use safetensors. - ***What calibration data has been used?*** If needed by the compression method, we used WikiText as the calibration data. - ***What is the naming convention for Pruna Huggingface models?*** We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - ***How to compress my own models?*** You can request premium access to more compression methods and tech support for your specific use-cases [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai). - ***What are "first" metrics?*** Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - ***What are "Sync" and "Async" metrics?*** "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo gradientai/Llama-3-8B-Instruct-Gradient-1048k installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. ```bash pip install autoawq ``` 2. Load & run the model. ```python from transformers import AutoModelForCausalLM, AutoTokenizer from awq import AutoAWQForCausalLM model = AutoAWQForCausalLM.from_quantized("PrunaAI/gradientai-Llama-3-8B-Instruct-1048k-AWQ-4bit-smashed", trust_remote_code=True, device_map='auto') tokenizer = AutoTokenizer.from_pretrained("gradientai/Llama-3-8B-Instruct-Gradient-1048k") input_ids = tokenizer("What is the color of prunes?,", return_tensors='pt').to(model.device)["input_ids"] outputs = model.generate(input_ids, max_new_tokens=216) tokenizer.decode(outputs[0]) ``` ## Configurations The configuration info are in `smash_config.json`. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model gradientai/Llama-3-8B-Instruct-Gradient-1048k before using this model which provided the base model. The license of the `pruna-engine` is [here](https://pypi.org/project/pruna-engine/) on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next [here](https://www.pruna.ai/contact). - Request access to easily compress your own AI models [here](https://z0halsaff74.typeform.com/pruna-access?typeform-source=www.pruna.ai).
{"tags": ["pruna-ai"], "metrics": ["memory_disk", "memory_inference", "inference_latency", "inference_throughput", "inference_CO2_emissions", "inference_energy_consumption"], "thumbnail": "https://assets-global.website-files.com/646b351987a8d8ce158d1940/64ec9e96b4334c0e1ac41504_Logo%20with%20white%20text.svg", "base_model": "gradientai/Llama-3-8B-Instruct-Gradient-1048k"}
PrunaAI/gradientai-Llama-3-8B-Instruct-Gradient-1048k-AWQ-4bit-smashed
null
[ "transformers", "safetensors", "llama", "text-generation", "pruna-ai", "conversational", "base_model:gradientai/Llama-3-8B-Instruct-Gradient-1048k", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-05-01T19:58:24+00:00
[]
[]
TAGS #transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-gradientai/Llama-3-8B-Instruct-Gradient-1048k #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us
<div style="width: auto; margin-left: auto; margin-right: auto"> <a href="URL target="_blank" rel="noopener noreferrer"> <img src="https://i.URL alt="PrunaAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </a> </div> ![Twitter](URL ![GitHub](URL ![LinkedIn](URL ![Discord](URL # Simply make AI models cheaper, smaller, faster, and greener! - Give a thumbs up if you like this model! - Contact us and tell us which model to compress next here. - Request access to easily compress your *own* AI models here. - Read the documentations to know more here - Join Pruna AI community on Discord here to share feedback/suggestions or get help. ## Results !image info Frequently Asked Questions - *How does the compression work?* The model is compressed with awq. - *How does the model quality change?* The quality of the model output might vary compared to the base model. - *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you. - *What is the model format?* We use safetensors. - *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data. - *What is the naming convention for Pruna Huggingface models?* We take the original model name and append "turbo", "tiny", or "green" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model. - *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here. - *What are "first" metrics?* Results mentioning "first" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads. - *What are "Sync" and "Async" metrics?* "Sync" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. "Async" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases. ## Setup You can run the smashed model with these steps: 0. Check requirements from the original repo gradientai/Llama-3-8B-Instruct-Gradient-1048k installed. In particular, check python, cuda, and transformers versions. 1. Make sure that you have installed quantization related packages. 2. Load & run the model. ## Configurations The configuration info are in 'smash_config.json'. ## Credits & License The license of the smashed model follows the license of the original model. Please check the license of the original model gradientai/Llama-3-8B-Instruct-Gradient-1048k before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi. ## Want to compress other models? - Contact us and tell us which model to compress next here. - Request access to easily compress your own AI models here.
[ "# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.", "## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.", "## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo gradientai/Llama-3-8B-Instruct-Gradient-1048k installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.", "## Configurations\n\nThe configuration info are in 'smash_config.json'.", "## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model gradientai/Llama-3-8B-Instruct-Gradient-1048k before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.", "## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here." ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-gradientai/Llama-3-8B-Instruct-Gradient-1048k #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n", "# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.", "## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.", "## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo gradientai/Llama-3-8B-Instruct-Gradient-1048k installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.", "## Configurations\n\nThe configuration info are in 'smash_config.json'.", "## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model gradientai/Llama-3-8B-Instruct-Gradient-1048k before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.", "## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here." ]
[ 70, 83, 451, 78, 19, 73, 36 ]
[ "TAGS\n#transformers #safetensors #llama #text-generation #pruna-ai #conversational #base_model-gradientai/Llama-3-8B-Instruct-Gradient-1048k #autotrain_compatible #endpoints_compatible #text-generation-inference #4-bit #region-us \n# Simply make AI models cheaper, smaller, faster, and greener!\n\n- Give a thumbs up if you like this model!\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your *own* AI models here.\n- Read the documentations to know more here\n- Join Pruna AI community on Discord here to share feedback/suggestions or get help.## Results\n\n!image info\n\nFrequently Asked Questions\n- *How does the compression work?* The model is compressed with awq.\n- *How does the model quality change?* The quality of the model output might vary compared to the base model.\n- *How is the model efficiency evaluated?* These results were obtained on NVIDIA A100-PCIE-40GB with configuration described in 'model/smash_config.json' and are obtained after a hardware warmup. The smashed model is directly compared to the original base model. Efficiency results may vary in other settings (e.g. other hardware, image size, batch size, ...). We recommend to directly run them in the use-case conditions to know if the smashed model can benefit you.\n- *What is the model format?* We use safetensors.\n- *What calibration data has been used?* If needed by the compression method, we used WikiText as the calibration data.\n- *What is the naming convention for Pruna Huggingface models?* We take the original model name and append \"turbo\", \"tiny\", or \"green\" if the smashed model has a measured inference speed, inference memory, or inference energy consumption which is less than 90% of the original base model.\n- *How to compress my own models?* You can request premium access to more compression methods and tech support for your specific use-cases here.\n- *What are \"first\" metrics?* Results mentioning \"first\" are obtained after the first run of the model. The first run might take more memory or be slower than the subsequent runs due cuda overheads.\n- *What are \"Sync\" and \"Async\" metrics?* \"Sync\" metrics are obtained by syncing all GPU processes and stop measurement when all of them are executed. \"Async\" metrics are obtained without syncing all GPU processes and stop when the model output can be used by the CPU. We provide both metrics since both could be relevant depending on the use-case. We recommend to test the efficiency gains directly in your use-cases.## Setup\n\nYou can run the smashed model with these steps:\n\n0. Check requirements from the original repo gradientai/Llama-3-8B-Instruct-Gradient-1048k installed. In particular, check python, cuda, and transformers versions.\n1. Make sure that you have installed quantization related packages.\n \n2. Load & run the model.## Configurations\n\nThe configuration info are in 'smash_config.json'.## Credits & License\n\nThe license of the smashed model follows the license of the original model. Please check the license of the original model gradientai/Llama-3-8B-Instruct-Gradient-1048k before using this model which provided the base model. The license of the 'pruna-engine' is here on Pypi.## Want to compress other models?\n\n- Contact us and tell us which model to compress next here.\n- Request access to easily compress your own AI models here." ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Vexemous/distilgpt2-finetuned-general-stories-pos
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T19:59:48+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 45, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/oghz8fg
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T20:01:10+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
quickstep3621/igqe128
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-05-01T20:01:16+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 41, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #stablelm #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Weathers/DialoGPT-small-cartman
null
[ "transformers", "safetensors", "gpt2", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-05-01T20:02:18+00:00
[ "1910.09700" ]
[]
TAGS #transformers #safetensors #gpt2 #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us
# Model Card for Model ID ## Model Details ### Model Description This is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated. - Developed by: - Funded by [optional]: - Shared by [optional]: - Model type: - Language(s) (NLP): - License: - Finetuned from model [optional]: ### Model Sources [optional] - Repository: - Paper [optional]: - Demo [optional]: ## Uses ### Direct Use ### Downstream Use [optional] ### Out-of-Scope Use ## Bias, Risks, and Limitations ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ## Training Details ### Training Data ### Training Procedure #### Preprocessing [optional] #### Training Hyperparameters - Training regime: #### Speeds, Sizes, Times [optional] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data #### Factors #### Metrics ### Results #### Summary ## Model Examination [optional] ## Environmental Impact Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019). - Hardware Type: - Hours used: - Cloud Provider: - Compute Region: - Carbon Emitted: ## Technical Specifications [optional] ### Model Architecture and Objective ### Compute Infrastructure #### Hardware #### Software [optional] BibTeX: APA: ## Glossary [optional] ## More Information [optional] ## Model Card Authors [optional] ## Model Card Contact
[ "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n", "# Model Card for Model ID", "## Model Details", "### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:", "### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:", "## Uses", "### Direct Use", "### Downstream Use [optional]", "### Out-of-Scope Use", "## Bias, Risks, and Limitations", "### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.", "## How to Get Started with the Model\n\nUse the code below to get started with the model.", "## Training Details", "### Training Data", "### Training Procedure", "#### Preprocessing [optional]", "#### Training Hyperparameters\n\n- Training regime:", "#### Speeds, Sizes, Times [optional]", "## Evaluation", "### Testing Data, Factors & Metrics", "#### Testing Data", "#### Factors", "#### Metrics", "### Results", "#### Summary", "## Model Examination [optional]", "## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:", "## Technical Specifications [optional]", "### Model Architecture and Objective", "### Compute Infrastructure", "#### Hardware", "#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:", "## Glossary [optional]", "## More Information [optional]", "## Model Card Authors [optional]", "## Model Card Contact" ]
[ 48, 6, 4, 75, 23, 3, 5, 8, 9, 8, 34, 20, 4, 5, 5, 11, 13, 12, 3, 10, 6, 5, 6, 4, 5, 7, 49, 7, 7, 5, 5, 15, 7, 7, 8, 5 ]
[ "TAGS\n#transformers #safetensors #gpt2 #text-generation #conversational #arxiv-1910.09700 #autotrain_compatible #endpoints_compatible #text-generation-inference #region-us \n# Model Card for Model ID## Model Details### Model Description\n\n\n\nThis is the model card of a transformers model that has been pushed on the Hub. This model card has been automatically generated.\n\n- Developed by: \n- Funded by [optional]: \n- Shared by [optional]: \n- Model type: \n- Language(s) (NLP): \n- License: \n- Finetuned from model [optional]:### Model Sources [optional]\n\n\n\n- Repository: \n- Paper [optional]: \n- Demo [optional]:## Uses### Direct Use### Downstream Use [optional]### Out-of-Scope Use## Bias, Risks, and Limitations### Recommendations\n\n\n\nUsers (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.## How to Get Started with the Model\n\nUse the code below to get started with the model.## Training Details### Training Data### Training Procedure#### Preprocessing [optional]#### Training Hyperparameters\n\n- Training regime:#### Speeds, Sizes, Times [optional]## Evaluation### Testing Data, Factors & Metrics#### Testing Data#### Factors#### Metrics### Results#### Summary## Model Examination [optional]## Environmental Impact\n\n\n\nCarbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).\n\n- Hardware Type: \n- Hours used: \n- Cloud Provider: \n- Compute Region: \n- Carbon Emitted:## Technical Specifications [optional]### Model Architecture and Objective### Compute Infrastructure#### Hardware#### Software\n\n\n\n[optional]\n\n\n\nBibTeX:\n\n\n\nAPA:## Glossary [optional]## More Information [optional]## Model Card Authors [optional]## Model Card Contact" ]
reinforcement-learning
null
# **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="bcama/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
{"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
bcama/q-FrozenLake-v1-4x4-noSlippery
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
null
2024-05-01T20:05:19+00:00
[]
[]
TAGS #FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us
# Q-Learning Agent playing1 FrozenLake-v1 This is a trained model of a Q-Learning agent playing FrozenLake-v1 . ## Usage
[ "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n", "# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]
[ 35, 33 ]
[ "TAGS\n#FrozenLake-v1-4x4-no_slippery #q-learning #reinforcement-learning #custom-implementation #model-index #region-us \n# Q-Learning Agent playing1 FrozenLake-v1\n This is a trained model of a Q-Learning agent playing FrozenLake-v1 .\n\n ## Usage" ]