Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
feature-extraction
transformers
{}
camille/bert-base-pruned-voc-esw0.5-40000-en-fr-cased
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
camille/bert-base-pruned-voc-esw0.7-40000-en-de-cased
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
camille/bert-base-pruned-voc-esw0.7-40000-en-fr-cased
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
camille/bert-base-pruned-voc-esw0.9-40000-en-de-cased
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
camille/bert-base-pruned-voc-esw0.9-40000-en-fr-cased
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
camilodefelipe/t5_squad_v1
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
camilodefelipe/t5_squad_v1_es
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-earlystop This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9095 - Rouge1: 27.9262 - Rouge2: 11.895 - Rougel: 21.4029 - Rougelsum: 24.7805 - Gen Len: 67.68 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.502 | 1.0 | 1000 | 1.7405 | 26.5705 | 11.4807 | 20.1226 | 23.6827 | 66.73 | | 0.7337 | 2.0 | 2000 | 1.9095 | 27.9262 | 11.895 | 21.4029 | 24.7805 | 67.68 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000-earlystop", "results": []}]}
cammy/bart-large-cnn-finetuned-weaksup-1000-earlystop
null
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000-pad This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4168 - Rouge1: 26.2506 - Rouge2: 10.7802 - Rougel: 19.2236 - Rougelsum: 22.6883 - Gen Len: 68.74 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.1434 | 1.0 | 1000 | 0.4168 | 26.2506 | 10.7802 | 19.2236 | 22.6883 | 68.74 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000-pad", "results": []}]}
cammy/bart-large-cnn-finetuned-weaksup-1000-pad
null
[ "transformers", "pytorch", "tensorboard", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-1000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6325 - Rouge1: 26.1954 - Rouge2: 10.7128 - Rougel: 19.3873 - Rougelsum: 22.785 - Gen Len: 66.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.3896 | 1.0 | 1000 | 1.6325 | 26.1954 | 10.7128 | 19.3873 | 22.785 | 66.85 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-1000", "results": []}]}
cammy/bart-large-cnn-finetuned-weaksup-1000
null
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000-pad-early This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 0.3541 - eval_rouge1: 27.8229 - eval_rouge2: 12.9484 - eval_rougeL: 21.4909 - eval_rougeLsum: 24.7737 - eval_gen_len: 67.365 - eval_runtime: 1162.9446 - eval_samples_per_second: 0.86 - eval_steps_per_second: 0.86 - epoch: 2.0 - step: 20000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-10000-pad-early", "results": []}]}
cammy/bart-large-cnn-finetuned-weaksup-10000-pad-early
null
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bart-large-cnn-finetuned-weaksup-10000 This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6031 - Rouge1: 28.3912 - Rouge2: 13.655 - Rougel: 22.287 - Rougelsum: 25.4794 - Gen Len: 67.995 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:------:|:---------:|:-------:| | 1.2991 | 1.0 | 10000 | 1.6031 | 28.3912 | 13.655 | 22.287 | 25.4794 | 67.995 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "bart-large-cnn-finetuned-weaksup-10000", "results": []}]}
cammy/bart-large-cnn-finetuned-weaksup-10000
null
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-cnn-12-6-finetuned-weaksup-1000 This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6818 - Rouge1: 25.9199 - Rouge2: 11.2697 - Rougel: 20.3598 - Rougelsum: 22.8242 - Gen Len: 66.44 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.644 | 1.0 | 1000 | 1.6818 | 25.9199 | 11.2697 | 20.3598 | 22.8242 | 66.44 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "distilbart-cnn-12-6-finetuned-weaksup-1000", "results": []}]}
cammy/distilbart-cnn-12-6-finetuned-weaksup-1000
null
[ "transformers", "pytorch", "bart", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-multi_news-finetuned-weaksup-1000-pegasus This model is a fine-tuned version of [google/pegasus-multi_news](https://huggingface.co/google/pegasus-multi_news) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.1309 - Rouge1: 23.342 - Rouge2: 8.67 - Rougel: 17.2865 - Rougelsum: 19.8228 - Gen Len: 69.79 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:-------:|:---------:|:-------:| | 2.4526 | 1.0 | 1000 | 2.1309 | 23.342 | 8.67 | 17.2865 | 19.8228 | 69.79 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "pegasus-multi_news-finetuned-weaksup-1000-pegasus", "results": []}]}
cammy/pegasus-multi_news-finetuned-weaksup-1000-pegasus
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
cammy/pegasus-xsum-finetuned-weaksup-1000
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
cammy/prophetnet-large-uncased-finetuned-weaksup-1000-earlystop-pad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-base-finetuned-weaksup-1000 This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "roberta-base-finetuned-weaksup-1000", "results": []}]}
cammy/roberta-base-finetuned-weaksup-1000
null
[ "transformers", "pytorch", "tensorboard", "encoder-decoder", "text2text-generation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-weaksup-1000 This model is a fine-tuned version of [cammy/t5-base-finetuned-weaksup-1000](https://huggingface.co/cammy/t5-base-finetuned-weaksup-1000) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.6699 - Rouge1: 22.2079 - Rouge2: 9.54 - Rougel: 19.9593 - Rougelsum: 20.2524 - Gen Len: 18.17 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 1.6257 | 1.0 | 1000 | 1.6699 | 22.2079 | 9.54 | 19.9593 | 20.2524 | 18.17 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.2 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-base-finetuned-weaksup-1000", "results": []}]}
cammy/t5-base-finetuned-weaksup-1000
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
cammy/xlnet-base-cased-finetuned-weaksup-1000-earlystop-pad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
cammy/xlnet-large-cased-finetuned-weaksup-1000-earlystop-pad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
campac/hhh
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
news generator dummy
{}
candra/gpt2-newgen-test
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
small gpt2 headline
{}
candra/headline-small-gpt2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
candra/test-dummy-model
null
[ "transformers", "tf", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-to-audio
asteroid
## Asteroid model `cankeles/ConvTasNet_WHAMR_enhsingle_16k` Description: This model was fine tuned on a modified version of WHAMR! where the speakers were taken from audiobook recordings and reverb was added by Pedalboard, Spotify. The initial model was taken from here: https://huggingface.co/JorisCos/ConvTasNet_Libri1Mix_enhsingle_16k This model was trained by M. Can Keles using the WHAM recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the WHAM dataset. Training config: ```yml data: mode: min nondefault_nsrc: null sample_rate: 16000 task: enh_single train_dir: wav16k/min/tr/ valid_dir: wav16k/min/cv/ filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/tmp help: null masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 1 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: {} training: batch_size: 2 early_stop: true epochs: 10 half_lr: true num_workers: 4 ``` Results: ``` 'sar': 13.612368475881558, 'sar_imp': 9.709316571584433, 'sdr': 13.612368475881558, 'sdr_imp': 9.709316571584433, 'si_sdr': 12.978640274976373, 'si_sdr_imp': 9.161273840297232, 'sir': inf, 'sir_imp': nan, 'stoi': 0.9214516928197306, 'stoi_imp': 0.11657488247668318 ```
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "ConvTasNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
cankeles/ConvTasNet_WHAMR_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "ConvTasNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-to-audio
asteroid
## Asteroid model `cankeles/DPTNet_WHAMR_enhsignle_16k` Description: This model was trained by M. Can Keleş using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `enh_single` task of the Libri1Mix dataset. Training config: ```yml data: mode: min nondefault_nsrc: null sample_rate: 16000 segment: 2.0 task: enh_single train_dir: wav16k/min/tr/ valid_dir: wav16k/min/cv/ filterbank: kernel_size: 16 n_filters: 64 stride: 8 main_args: exp_dir: exp/tmp help: null masknet: bidirectional: true chunk_size: 100 dropout: 0 ff_activation: relu ff_hid: 256 hop_size: 50 in_chan: 64 mask_act: sigmoid n_repeats: 2 n_src: 1 norm_type: gLN out_chan: 64 optim: lr: 0.001 optimizer: adam weight_decay: 1.0e-05 positional arguments: {} scheduler: d_model: 64 steps_per_epoch: 10000 training: batch_size: 4 early_stop: true epochs: 60 gradient_clipping: 5 half_lr: true num_workers: 4 ``` Results: On custom min test set : ```yml 'sar': 12.853384266251018, 'sar_imp': 8.950332361953906, 'sdr': 12.853384266251018, 'sdr_imp': 8.950332361953906, 'si_sdr': 12.247012621312548, 'si_sdr_imp': 8.429646186633407, 'sir': inf, 'sir_imp': nan, 'stoi': 0.9022338865380519, 'stoi_imp': 0.09735707619500522 ```
{"license": "cc-by-sa-4.0", "tags": ["asteroid", "audio", "DPTNet", "audio-to-audio"], "datasets": ["Libri1Mix", "enh_single"]}
cankeles/DPTNet_WHAMR_enhsingle_16k
null
[ "asteroid", "pytorch", "audio", "DPTNet", "audio-to-audio", "dataset:Libri1Mix", "dataset:enh_single", "license:cc-by-sa-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
# BERT-of-Theseus See our paper ["BERT-of-Theseus: Compressing BERT by Progressive Module Replacing"](http://arxiv.org/abs/2002.02925). BERT-of-Theseus is a new compressed BERT by progressively replacing the components of the original BERT. ![BERT of Theseus](https://github.com/JetRunner/BERT-of-Theseus/blob/master/bert-of-theseus.png?raw=true) ## Load Pretrained Model on MNLI We provide a 6-layer pretrained model on MNLI as a general-purpose model, which can transfer to other sentence classification tasks, outperforming DistillBERT (with the same 6-layer structure) on six tasks of GLUE (dev set). | Method | MNLI | MRPC | QNLI | QQP | RTE | SST-2 | STS-B | |-----------------|------|------|------|------|------|-------|-------| | BERT-base | 83.5 | 89.5 | 91.2 | 89.8 | 71.1 | 91.5 | 88.9 | | DistillBERT | 79.0 | 87.5 | 85.3 | 84.9 | 59.9 | 90.7 | 81.2 | | BERT-of-Theseus | 82.1 | 87.5 | 88.8 | 88.8 | 70.1 | 91.8 | 87.8 | Please Note: this checkpoint is for [Intermediate-Task Transfer Learning](https://arxiv.org/abs/2005.00628) so it does not include the classification head for MNLI! Please fine-tune it before use (like DistilBERT).
{"datasets": ["multi_nli"], "thumbnail": "https://raw.githubusercontent.com/JetRunner/BERT-of-Theseus/master/bert-of-theseus.png"}
canwenxu/BERT-of-Theseus-MNLI
null
[ "transformers", "pytorch", "jax", "bert", "feature-extraction", "dataset:multi_nli", "arxiv:2002.02925", "arxiv:2005.00628", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
canwenxu/ssr-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
caowei/23
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
caowei/44
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
caoxu/BERT-4layer-en
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Chris DialoGPT Model
{"tags": ["conversational"]}
caps1994/DialoGPT-small-chrisbot-caps1994
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Chris DialoGPT Model
{"tags": ["conversational"]}
caps1994/DialoGPT-small-chrisbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
caps1994/DialoGPT-small-harrypotter-caps1994
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
capstonedubtrack/wav2vec2-large-xls-r-ta-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
capstonedubtrack/wav2vec2-large-xls-r-tamil-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
caramelapple/name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-emoji
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-emotion
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-hate
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-irony
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-offensive
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-sentiment
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-stance-abortion
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-stance-atheism
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-stance-climate
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-stance-feminist
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/bertweet-base-stance-hillary
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter 2021 90M (RoBERTa-base) This is a RoBERTa-base model trained on 90M tweets until the end of 2019. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.28870 getting 2) 0.28611 not 3) 0.15485 fully 4) 0.07357 self 5) 0.01812 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.12194 book 2) 0.04396 pillow 3) 0.04202 bag 4) 0.03038 wallet 5) 0.02729 charger ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.65505 End 2) 0.19230 The 3) 0.03856 the 4) 0.01223 end 5) 0.00978 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99078 The movie was great 2) 0.96701 Just finished reading 'Embeddings in NLP' 3) 0.96037 I just ordered fried chicken 🐣 4) 0.95919 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-2019-90m" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-2019-90m
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter 2021 124M (RoBERTa-base) This is a RoBERTa-base model trained on 123.86M tweets until the end of 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.39613 fully 2) 0.26333 getting 3) 0.18988 not 4) 0.02312 still 5) 0.02099 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.08356 mask 2) 0.05696 book 3) 0.03505 bag 4) 0.02983 backpack 5) 0.02847 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.46618 the 2) 0.24042 The 3) 0.03216 End 4) 0.02925 Squid 5) 0.02610 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.98969 The movie was great 2) 0.96102 Just finished reading 'Embeddings in NLP' 3) 0.95565 I just ordered fried chicken 🐣 4) 0.95041 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-2021-124m" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-2021-124m
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter December 2020 (RoBERTa-base, 107M) This is a RoBERTa-base model trained on 107.06M tweets until the end of December 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-dec2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.42239 not 2) 0.23834 getting 3) 0.10684 fully 4) 0.07550 being 5) 0.02097 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.08145 mask 2) 0.05051 laptop 3) 0.04620 book 4) 0.03910 bag 5) 0.03824 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.57602 the 2) 0.25120 The 3) 0.02610 End 4) 0.02324 this 5) 0.00690 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-dec2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99084 The movie was great 2) 0.96618 Just finished reading 'Embeddings in NLP' 3) 0.96127 I just ordered fried chicken 🐣 4) 0.95315 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-dec2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-dec2020
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter December 2021 (RoBERTa-base, 124M) This is a RoBERTa-base model trained on 123.86M tweets until the end of December 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-dec2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.33211 fully 2) 0.26205 not 3) 0.22305 getting 4) 0.03790 still 5) 0.01817 all ------------------------------ I keep forgetting to bring a <mask>. 1) 0.04808 mask 2) 0.04628 book 3) 0.03597 lighter 4) 0.03391 pen 5) 0.02982 knife ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.34191 Squid 2) 0.23768 the 3) 0.15699 The 4) 0.02766 End 5) 0.01233 this ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-dec2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99004 The movie was great 2) 0.96320 Just finished reading 'Embeddings in NLP' 3) 0.95858 I just ordered fried chicken 🐣 4) 0.95356 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-dec2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-dec2021
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Emoji prediction This is a roBERTa-base model trained on ~58M tweets and finetuned for emoji prediction with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emoji' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Looking forward to Christmas" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Looking forward to Christmas" # text = preprocess(text) # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) 🎄 0.5457 2) 😊 0.1417 3) 😁 0.0649 4) 😍 0.0395 5) ❤️ 0.03 6) 😜 0.028 7) ✨ 0.0263 8) 😉 0.0237 9) 😂 0.0177 10) 😎 0.0166 11) 😘 0.0143 12) 💕 0.014 13) 💙 0.0076 14) 💜 0.0068 15) 🔥 0.0065 16) 💯 0.004 17) 🇺🇸 0.0037 18) 📷 0.0034 19) ☀ 0.0033 20) 📸 0.0021 ```
{}
cardiffnlp/twitter-roberta-base-emoji
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Emotion Recognition This is a RoBERTa-base model trained on ~58M tweets and finetuned for emotion recognition with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). <b>New!</b> We just released a new emotion recognition model trained with more emotion types and with a newer RoBERTa-based model. See [twitter-roberta-base-emotion-multilabel-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-emotion-multilabel-latest) and [TweetNLP](https://github.com/cardiffnlp/tweetnlp) for more details. ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='emotion' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Celebrating my promotion 😎" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Celebrating my promotion 😎" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) joy 0.9382 2) optimism 0.0362 3) anger 0.0145 4) sadness 0.0112 ```
{}
cardiffnlp/twitter-roberta-base-emotion
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Hate Speech Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for hate speech detection with the TweetEval benchmark. This model is specialized to detect hate speech against women and immigrants. **NEW!** We have made available a more recent and robust hate speech detection model here: [https://huggingface.co/cardiffnlp/twitter-roberta-base-hate-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-hate-latest) - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='hate' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-hate 0.9168 2) hate 0.0832 ```
{}
cardiffnlp/twitter-roberta-base-hate
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Irony Detection This is a roBERTa-base model trained on ~58M tweets and finetuned for irony detection with the TweetEval benchmark. This model has integrated into the [TweetNLP Python library](https://github.com/cardiffnlp/tweetnlp/). - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [ ] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='irony' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Great, it broke the first day..." text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Great, it broke the first day..." # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) irony 0.914 2) non_irony 0.086 ``` ### Reference Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model. ```bibtex @inproceedings{barbieri-etal-2020-tweeteval, title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification", author = "Barbieri, Francesco and Camacho-Collados, Jose and Espinosa Anke, Luis and Neves, Leonardo", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.148", doi = "10.18653/v1/2020.findings-emnlp.148", pages = "1644--1650" } ```
{"language": ["en"], "datasets": ["tweet_eval"]}
cardiffnlp/twitter-roberta-base-irony
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:tweet_eval", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter June 2020 (RoBERTa-base, 99M) This is a RoBERTa-base model trained on 98.66M tweets until the end of June 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-jun2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.52684 not 2) 0.18349 getting 3) 0.07971 fully 4) 0.05598 being 5) 0.02347 self ------------------------------ I keep forgetting to bring a <mask>. 1) 0.13266 mask 2) 0.04859 book 3) 0.04851 laptop 4) 0.03123 pillow 5) 0.02747 blanket ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.35750 The 2) 0.32703 the 3) 0.13048 End 4) 0.02261 this 5) 0.01066 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-jun2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99078 The movie was great 2) 0.96610 Just finished reading 'Embeddings in NLP' 3) 0.96095 What time is the next game? 4) 0.95855 I just ordered fried chicken 🐣 ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-jun2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-jun2020
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter June 2021 (RoBERTa-base, 115M) This is a RoBERTa-base model trained on 115.46M tweets until the end of June 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-jun2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.45169 fully 2) 0.22353 getting 3) 0.18540 not 4) 0.02392 still 5) 0.02231 already ------------------------------ I keep forgetting to bring a <mask>. 1) 0.06331 mask 2) 0.05423 book 3) 0.04505 knife 4) 0.03742 laptop 5) 0.03456 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.69811 the 2) 0.14435 The 3) 0.02396 this 4) 0.00932 Championship 5) 0.00785 End ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-jun2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99014 The movie was great 2) 0.96346 Just finished reading 'Embeddings in NLP' 3) 0.95836 I just ordered fried chicken 🐣 4) 0.95051 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-jun2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-jun2021
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter March 2020 (RoBERTa-base, 94M) This is a RoBERTa-base model trained on 94.46M tweets until the end of March 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-mar2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.57291 not 2) 0.14380 getting 3) 0.06983 self 4) 0.06813 fully 5) 0.02965 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.05637 book 2) 0.04557 laptop 3) 0.03842 wallet 4) 0.03824 pillow 5) 0.03485 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.59311 the 2) 0.18969 The 3) 0.04493 this 4) 0.02133 End 5) 0.00796 This ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-mar2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.98956 The movie was great 2) 0.96389 Just finished reading 'Embeddings in NLP' 3) 0.95678 I just ordered fried chicken 🐣 4) 0.95588 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-mar2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-mar2020
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter March 2021 (RoBERTa-base, 111M) This is a RoBERTa-base model trained on 111.26M tweets until the end of March 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-mar2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.42688 getting 2) 0.30230 not 3) 0.07375 fully 4) 0.03619 already 5) 0.03055 being ------------------------------ I keep forgetting to bring a <mask>. 1) 0.07603 mask 2) 0.04933 book 3) 0.04029 knife 4) 0.03461 laptop 5) 0.03069 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.53945 the 2) 0.27647 The 3) 0.03881 End 4) 0.01711 this 5) 0.00831 Championship ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-mar2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99106 The movie was great 2) 0.96662 Just finished reading 'Embeddings in NLP' 3) 0.96150 I just ordered fried chicken 🐣 4) 0.95560 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-mar2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-mar2021
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Offensive Language Identification This is a roBERTa-base model trained on ~58M tweets and finetuned for offensive language identification with the TweetEval benchmark. - Paper: [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='offensive' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) not-offensive 0.9073 2) offensive 0.0927 ```
{}
cardiffnlp/twitter-roberta-base-offensive
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Twitter-roBERTa-base for Sentiment Analysis This is a roBERTa-base model trained on ~58M tweets and finetuned for sentiment analysis with the TweetEval benchmark. This model is suitable for English (for a similar multilingual model, see [XLM-T](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment)). - Reference Paper: [_TweetEval_ (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). - Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). <b>Labels</b>: 0 -> Negative; 1 -> Neutral; 2 -> Positive <b>New!</b> We just released a new sentiment analysis model trained on more recent and a larger quantity of tweets. See [twitter-roberta-base-sentiment-latest](https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment-latest) and [TweetNLP](https://tweetnlp.org) for more details. ## Example of classification ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer import numpy as np from scipy.special import softmax import csv import urllib.request # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) # Tasks: # emoji, emotion, hate, irony, offensive, sentiment # stance/abortion, stance/atheism, stance/climate, stance/feminist, stance/hillary task='sentiment' MODEL = f"cardiffnlp/twitter-roberta-base-{task}" tokenizer = AutoTokenizer.from_pretrained(MODEL) # download label mapping labels=[] mapping_link = f"https://raw.githubusercontent.com/cardiffnlp/tweeteval/main/datasets/{task}/mapping.txt" with urllib.request.urlopen(mapping_link) as f: html = f.read().decode('utf-8').split("\n") csvreader = csv.reader(html, delimiter='\t') labels = [row[1] for row in csvreader if len(row) > 1] # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = labels[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) positive 0.8466 2) neutral 0.1458 3) negative 0.0076 ``` ### BibTeX entry and citation info Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model. ```bibtex @inproceedings{barbieri-etal-2020-tweeteval, title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification", author = "Barbieri, Francesco and Camacho-Collados, Jose and Espinosa Anke, Luis and Neves, Leonardo", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.148", doi = "10.18653/v1/2020.findings-emnlp.148", pages = "1644--1650" } ```
{"language": ["en"], "datasets": ["tweet_eval"]}
cardiffnlp/twitter-roberta-base-sentiment
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "en", "dataset:tweet_eval", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter September 2020 (RoBERTa-base, 103M) This is a RoBERTa-base model trained on 102.86M tweets until the end of September 2020. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-sep2020" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.55215 not 2) 0.16466 getting 3) 0.08991 fully 4) 0.05542 being 5) 0.01733 still ------------------------------ I keep forgetting to bring a <mask>. 1) 0.18145 mask 2) 0.04476 book 3) 0.03751 knife 4) 0.03713 laptop 5) 0.02873 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.53243 the 2) 0.24435 The 3) 0.04717 End 4) 0.02421 this 5) 0.00958 Championship ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-sep2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99045 The movie was great 2) 0.96650 Just finished reading 'Embeddings in NLP' 3) 0.95947 I just ordered fried chicken 🐣 4) 0.95707 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-sep2020" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-sep2020
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter September 2021 (RoBERTa-base, 120M) This is a RoBERTa-base model trained on 119.66M tweets until the end of September 2021. More details and performance scores are available in the [TimeLMs paper](https://arxiv.org/abs/2202.03829). Below, we provide some usage examples using the standard Transformers interface. For another interface more suited to comparing predictions and perplexity scores between models trained at different temporal intervals, check the [TimeLMs repository](https://github.com/cardiffnlp/timelms). For other models trained until different periods, check this [table](https://github.com/cardiffnlp/timelms#released-models). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". If you're interested in retaining verified users which were also retained during training, you may keep the users listed [here](https://github.com/cardiffnlp/timelms/tree/main/data). ```python def preprocess(text): preprocessed_text = [] for t in text.split(): if len(t) > 1: t = '@user' if t[0] == '@' and t.count('@') == 1 else t t = 'http' if t.startswith('http') else t preprocessed_text.append(t) return ' '.join(preprocessed_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer MODEL = "cardiffnlp/twitter-roberta-base-sep2021" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def pprint(candidates, n): for i in range(n): token = tokenizer.decode(candidates[i]['token']) score = candidates[i]['score'] print("%d) %.5f %s" % (i+1, score, token)) texts = [ "So glad I'm <mask> vaccinated.", "I keep forgetting to bring a <mask>.", "Looking forward to watching <mask> Game tonight!", ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) pprint(candidates, 5) ``` Output: ``` ------------------------------ So glad I'm <mask> vaccinated. 1) 0.39329 fully 2) 0.26694 getting 3) 0.17438 not 4) 0.03422 still 5) 0.01845 all ------------------------------ I keep forgetting to bring a <mask>. 1) 0.06773 mask 2) 0.04548 book 3) 0.03826 charger 4) 0.03506 backpack 5) 0.02997 bag ------------------------------ Looking forward to watching <mask> Game tonight! 1) 0.63009 the 2) 0.16154 The 3) 0.02110 this 4) 0.01903 End 5) 0.00810 Championship ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import Counter def get_embedding(text): # naive approach for demonstration text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() return np.mean(features[0], axis=0) MODEL = "cardiffnlp/twitter-roberta-base-sep2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] sims = Counter() for tweet in tweets: sim = 1 - cosine(get_embedding(query), get_embedding(tweet)) sims[tweet] = sim print('Most similar to: ', query) print(f"{'-'*30}") for idx, (tweet, sim) in enumerate(sims.most_common()): print("%d) %.5f %s" % (idx+1, sim, tweet)) ``` Output: ``` Most similar to: The book was awesome ------------------------------ 1) 0.99022 The movie was great 2) 0.96274 Just finished reading 'Embeddings in NLP' 3) 0.96006 I just ordered fried chicken 🐣 4) 0.95725 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base-sep2021" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ```
{"language": "en", "license": "mit", "tags": ["timelms", "twitter"], "datasets": ["twitter-api"]}
cardiffnlp/twitter-roberta-base-sep2021
null
[ "transformers", "pytorch", "roberta", "fill-mask", "timelms", "twitter", "en", "dataset:twitter-api", "arxiv:2202.03829", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/twitter-roberta-base-stance-abortion
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/twitter-roberta-base-stance-atheism
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/twitter-roberta-base-stance-climate
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/twitter-roberta-base-stance-feminist
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
cardiffnlp/twitter-roberta-base-stance-hillary
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter-roBERTa-base This is a RoBERTa-base model trained on ~58M tweets on top of the original RoBERTa-base checkpoint, as described and evaluated in the [_TweetEval_ benchmark (Findings of EMNLP 2020)](https://arxiv.org/pdf/2010.12421.pdf). To evaluate this and other LMs on Twitter-specific data, please refer to the [Tweeteval official repository](https://github.com/cardiffnlp/tweeteval). ## Preprocess Text Replace usernames and links for placeholders: "@user" and "http". ```python def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) ``` ## Example Masked Language Model ```python from transformers import pipeline, AutoTokenizer import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" fill_mask = pipeline("fill-mask", model=MODEL, tokenizer=MODEL) tokenizer = AutoTokenizer.from_pretrained(MODEL) def print_candidates(): for i in range(5): token = tokenizer.decode(candidates[i]['token']) score = np.round(candidates[i]['score'], 4) print(f"{i+1}) {token} {score}") texts = [ "I am so <mask> 😊", "I am so <mask> 😢" ] for text in texts: t = preprocess(text) print(f"{'-'*30}\n{t}") candidates = fill_mask(t) print_candidates() ``` Output: ``` ------------------------------ I am so <mask> 😊 1) happy 0.402 2) excited 0.1441 3) proud 0.143 4) grateful 0.0669 5) blessed 0.0334 ------------------------------ I am so <mask> 😢 1) sad 0.2641 2) sorry 0.1605 3) tired 0.138 4) sick 0.0278 5) hungry 0.0232 ``` ## Example Tweet Embeddings ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np from scipy.spatial.distance import cosine from collections import defaultdict tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModel.from_pretrained(MODEL) def get_embedding(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) return features_mean MODEL = "cardiffnlp/twitter-roberta-base" query = "The book was awesome" tweets = ["I just ordered fried chicken 🐣", "The movie was great", "What time is the next game?", "Just finished reading 'Embeddings in NLP'"] d = defaultdict(int) for tweet in tweets: sim = 1-cosine(get_embedding(query),get_embedding(tweet)) d[tweet] = sim print('Most similar to: ',query) print('----------------------------------------') for idx,x in enumerate(sorted(d.items(), key=lambda x:x[1], reverse=True)): print(idx+1,x[0]) ``` Output: ``` Most similar to: The book was awesome ---------------------------------------- 1 The movie was great 2 Just finished reading 'Embeddings in NLP' 3 I just ordered fried chicken 🐣 4 What time is the next game? ``` ## Example Feature Extraction ```python from transformers import AutoTokenizer, AutoModel, TFAutoModel import numpy as np MODEL = "cardiffnlp/twitter-roberta-base" tokenizer = AutoTokenizer.from_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) # Pytorch model = AutoModel.from_pretrained(MODEL) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().cpu().numpy() features_mean = np.mean(features[0], axis=0) #features_max = np.max(features[0], axis=0) # # Tensorflow # model = TFAutoModel.from_pretrained(MODEL) # encoded_input = tokenizer(text, return_tensors='tf') # features = model(encoded_input) # features = features[0].numpy() # features_mean = np.mean(features[0], axis=0) # #features_max = np.max(features[0], axis=0) ``` ### BibTeX entry and citation info Please cite the [reference paper](https://aclanthology.org/2020.findings-emnlp.148/) if you use this model. ```bibtex @inproceedings{barbieri-etal-2020-tweeteval, title = "{T}weet{E}val: Unified Benchmark and Comparative Evaluation for Tweet Classification", author = "Barbieri, Francesco and Camacho-Collados, Jose and Espinosa Anke, Luis and Neves, Leonardo", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.findings-emnlp.148", doi = "10.18653/v1/2020.findings-emnlp.148", pages = "1644--1650" } ```
{}
cardiffnlp/twitter-roberta-base
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2010.12421", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# twitter-XLM-roBERTa-base for Sentiment Analysis This is a multilingual XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details). - Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://arxiv.org/abs/2104.12250). - Git Repo: [XLM-T official repository](https://github.com/cardiffnlp/xlm-t). This model has been integrated into the [TweetNLP library](https://github.com/cardiffnlp/tweetnlp). ## Example Pipeline ```python from transformers import pipeline model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment" sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path) sentiment_task("T'estimo!") ``` ``` [{'label': 'Positive', 'score': 0.6600581407546997}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import TFAutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment" tokenizer = AutoTokenizer.from_pretrained(MODEL) config = AutoConfig.from_pretrained(MODEL) # PT model = AutoModelForSequenceClassification.from_pretrained(MODEL) model.save_pretrained(MODEL) text = "Good night 😊" text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # # TF # model = TFAutoModelForSequenceClassification.from_pretrained(MODEL) # model.save_pretrained(MODEL) # text = "Good night 😊" # encoded_input = tokenizer(text, return_tensors='tf') # output = model(encoded_input) # scores = output[0][0].numpy() # scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` 1) Positive 0.7673 2) Neutral 0.2015 3) Negative 0.0313 ``` ### Reference ``` @inproceedings{barbieri-etal-2022-xlm, title = "{XLM}-{T}: Multilingual Language Models in {T}witter for Sentiment Analysis and Beyond", author = "Barbieri, Francesco and Espinosa Anke, Luis and Camacho-Collados, Jose", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.27", pages = "258--266" } ```
{"language": "multilingual", "widget": [{"text": "\ud83e\udd17"}, {"text": "T'estimo! \u2764\ufe0f"}, {"text": "I love you!"}, {"text": "I hate you \ud83e\udd2e"}, {"text": "Mahal kita!"}, {"text": "\uc0ac\ub791\ud574!"}, {"text": "\ub09c \ub108\uac00 \uc2eb\uc5b4"}, {"text": "\ud83d\ude0d\ud83d\ude0d\ud83d\ude0d"}]}
cardiffnlp/twitter-xlm-roberta-base-sentiment
null
[ "transformers", "pytorch", "tf", "xlm-roberta", "text-classification", "multilingual", "arxiv:2104.12250", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# Twitter-XLM-Roberta-base This is a XLM-Roberta-base model trained on ~198M multilingual tweets, described and evaluated in the [reference paper](https://arxiv.org/abs/2104.12250). To evaluate this and other LMs on Twitter-specific data, please refer to the [main repository](https://github.com/cardiffnlp/xlm-t). A usage example is provided below. ## Computing tweet similarity ```python def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) def get_embedding(text): text = preprocess(text) encoded_input = tokenizer(text, return_tensors='pt') features = model(**encoded_input) features = features[0].detach().numpy() features_mean = np.mean(features[0], axis=0) return features_mean query = "Acabo de pedir pollo frito 🐣" #spanish tweets = ["We had a great time! ⚽️", # english "We hebben een geweldige tijd gehad! ⛩", # dutch "Nous avons passé un bon moment! 🎥", # french "Ci siamo divertiti! 🍝"] # italian d = defaultdict(int) for tweet in tweets: sim = 1-cosine(get_embedding(query),get_embedding(tweet)) d[tweet] = sim print('Most similar to: ',query) print('----------------------------------------') for idx,x in enumerate(sorted(d.items(), key=lambda x:x[1], reverse=True)): print(idx+1,x[0]) ``` ``` Most similar to: Acabo de pedir pollo frito 🐣 ---------------------------------------- 1 Ci siamo divertiti! 🍝 2 Nous avons passé un bon moment! 🎥 3 We had a great time! ⚽️ 4 We hebben een geweldige tijd gehad! ⛩ ``` ### BibTeX entry and citation info Please cite the [reference paper](https://aclanthology.org/2022.lrec-1.27/) if you use this model. ```bibtex @inproceedings{barbieri-etal-2022-xlm, title = "{XLM}-{T}: Multilingual Language Models in {T}witter for Sentiment Analysis and Beyond", author = "Barbieri, Francesco and Espinosa Anke, Luis and Camacho-Collados, Jose", booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", month = jun, year = "2022", address = "Marseille, France", publisher = "European Language Resources Association", url = "https://aclanthology.org/2022.lrec-1.27", pages = "258--266", abstract = "Language models are ubiquitous in current NLP, and their multilingual capacity has recently attracted considerable attention. However, current analyses have almost exclusively focused on (multilingual variants of) standard benchmarks, and have relied on clean pre-training and task-specific corpora as multilingual signals. In this paper, we introduce XLM-T, a model to train and evaluate multilingual language models in Twitter. In this paper we provide: (1) a new strong multilingual baseline consisting of an XLM-R (Conneau et al. 2020) model pre-trained on millions of tweets in over thirty languages, alongside starter code to subsequently fine-tune on a target task; and (2) a set of unified sentiment analysis Twitter datasets in eight different languages and a XLM-T model trained on this dataset.", }
{"language": "multilingual", "widget": [{"text": "\ud83e\udd17\ud83e\udd17\ud83e\udd17<mask>"}, {"text": "\ud83d\udd25The goal of life is <mask> . \ud83d\udd25"}, {"text": "Il segreto della vita \u00e8 l\u2019<mask> . \u2764\ufe0f"}, {"text": "Hasta <mask> \ud83d\udc4b!"}]}
cardiffnlp/twitter-xlm-roberta-base
null
[ "transformers", "pytorch", "tf", "xlm-roberta", "fill-mask", "multilingual", "arxiv:2104.12250", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
cariai/meds
null
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
Med Labs Cariai
{}
cariai/medslabs
null
[ "transformers", "pytorch", "jax", "roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
reinforcement-learning
stable-baselines3
# TODO: Fill this model card
{"tags": ["deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"]}
carlosaguayo/Simonini-ppo-LunarLander-v2
null
[ "stable-baselines3", "deep-reinforcement-learning", "reinforcement-learning", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
carlosaguayo/autoencoder-keras-mnist-demo
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
keras
# Classify Cats and Dogs VGG16 fine tuned to classify cats and dogs Notebook https://www.kaggle.com/carlosaguayo/cats-vs-dogs-transfer-learning-pre-trained-vgg16 ### How to use Here is how to use this model to classify an image as a cat or dog: ```python from skimage import io import cv2 import matplotlib.pyplot as plt from huggingface_hub import from_pretrained_keras %matplotlib inline ROWS, COLS = 150, 150 model = from_pretrained_keras("carlosaguayo/cats_vs_dogs") img_url = 'https://upload.wikimedia.org/wikipedia/commons/0/0c/About_The_Dog.jpg' # img_url = 'https://upload.wikimedia.org/wikipedia/commons/c/c7/Tabby_cat_with_blue_eyes-3336579.jpg' img = io.imread(img_url) img = cv2.resize(img, (ROWS, COLS), interpolation=cv2.INTER_CUBIC) img = img / 255.0 img = img.reshape(1,ROWS,COLS,3) prediction = model.predict(img)[0][0] if prediction >= 0.5: print('I am {:.2%} sure this is a Cat'.format(prediction)) else: print('I am {:.2%} sure this is a Dog'.format(1-prediction)) plt.imshow(img[0], 'Blues') plt.axis("off") plt.show() ```
{"tags": ["image-classification"], "widget": [{"src": "https://upload.wikimedia.org/wikipedia/commons/0/0c/About_The_Dog.jpg", "example_title": "Dog-1"}, {"src": "https://yt3.ggpht.com/ytc/AKedOLRvxGYSdEHqu0X4EYcJ2kq7BttRKBNpfwdHJf3FSg=s900-c-k-c0x00ffffff-no-rj", "example_title": "Dog-2"}, {"src": "https://upload.wikimedia.org/wikipedia/commons/c/c7/Tabby_cat_with_blue_eyes-3336579.jpg", "example_title": "Cat-1"}, {"src": "https://pixabay.com/get/g31cf3b945cf9b9144eb6c1ecf514b4db668875b75d0c615e0330aec74bef5edde11567ef4a6f5fdb61a828b8086a39d3a0e72fb326d78467786dcdde4e6fa23c5c4c309d0abc089a8663809c175aee22_1920.jpg", "example_title": "Cat-2"}]}
carlosaguayo/cats_vs_dogs
null
[ "keras", "image-classification", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1689 - Accuracy: 0.9295 - F1: 0.9300 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.2853 | 1.0 | 250 | 0.1975 | 0.9235 | 0.9233 | | 0.1568 | 2.0 | 500 | 0.1689 | 0.9295 | 0.9300 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9295, "name": "Accuracy"}, {"type": "f1", "value": 0.9299984897610097, "name": "F1"}]}]}]}
carlosaguayo/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
carlosaguayo/keras-dummy-functional-demo
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
carlosaguayo/keras-dummy-model-mixin-demo
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
carlosaguayo/keras-dummy-sequential-demo
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4842 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7197 | 0.54 | 500 | 1.4842 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["samsum"], "model-index": [{"name": "pegasus-samsum", "results": []}]}
carlosaguayo/pegasus-samsum
null
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
carlosaguayo/vit-base-patch16-224-in21k-euroSat
null
[ "keras", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/vokenization-bert-small-k-10-v1-epoch0039
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/vokenization-bert-small-v1-epoch0039
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_final_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_k1000_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_k10_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_non_visual_only_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_visual_context_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
carlosejimenez/wiki103_bert_small_visual_only_e27
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
carlosserquen/abc
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
carlosserquen/abcd
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
carlosserquen/dummy
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
carlosserquen/electrafp
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
carlota/foreclosure_test_1
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
carlsonhoo/Bert_Multi-Mood-Classification-Social-Movement
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
carolEileen/bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry Potter Bot
{"tags": ["conversational"]}
cartyparty/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Iteration 1
{"tags": ["conversational"]}
cartyparty/DialoGPT-small-iteration1
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00