Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text2text-generation
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
danny911kr/calm-mix-base
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
## CALM This model is for ICLR2021 paper: [Pre-training Text-to-Text Transformers for Concept-centric Common Sense](https://openreview.net/forum?id=3k20LAiHYL2). Checkout our [Project website](https://inklab.usc.edu/calm-project) for details! ```bibtex @inproceedings{CALM2021, title={Pre-training Text-to-Text Transformers for Concept-centric Common Sense}, author={Wangchunshu Zhou and Dong-Ho Lee and Ravi Kiran Selvam and Seyeon Lee and Bill Yuchen Lin and Xiang Ren}, booktitle={ICLR}, year={2021} } ```
{}
danny911kr/calm-mix-large
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
danny911kr/tapas_simsiam_mlm_1
null
[ "transformers", "pytorch", "tapas", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
danny911kr/tapas_simsiam_mlm_2
null
[ "transformers", "pytorch", "tapas", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
dansbecker/my-test-repo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/Eddie_neo_1.3train
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/Eddie_neo_j11
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/Eddie_neo_j6
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/RuGPT3_german20
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex-gpt-L
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex-gpt-doc2text
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex-gpt-finetune
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex-gpt2000
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
danurahul/alex-gpt3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
danurahul/alex-gptn125
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex_gpt3_Doctextfull
null
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex_gpt3_Doctextfull2
null
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/alex_gpt3_endoftext
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/distil
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
danurahul/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/doc2txt_model2
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/german_gpt_4g
null
[ "transformers", "pytorch", "jax", "safetensors", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/ghosh_dentist
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/ghosh_dentist_med
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/gptneo_tarot
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-or Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on odia using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "or", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the odia test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "or", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-or") model.to("cuda") chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\"\\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \tbatch["speech"] = resampler(speech_array).squeeze().numpy() \treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \twith torch.no_grad(): \t\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \tpred_ids = torch.argmax(logits, dim=-1) \tbatch["pred_strings"] = processor.batch_decode(pred_ids) \treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 54.6 % ## Training The Common Voice `train`, `validation`, and test datasets were used for training as well as prediction and testing The script used for training can be found [https://github.com/rahul-art/wav2vec2_or]
{"language": "or", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "odia XLSR Wav2Vec2 Large 2000", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice or", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 54.6, "name": "Test WER"}]}]}]}
danurahul/wav2vec2-large-xlsr-or
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "or", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Punjabi Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Punjabi using the [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "pa-IN", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Punjabi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "pa-IN", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model = Wav2Vec2ForCTC.from_pretrained("danurahul/wav2vec2-large-xlsr-pa-IN") model.to("cuda") chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\“\\\\\\\\\\\\\\\\%\\\\\\\\\\\\\\\\‘\\\\\\\\\\\\\\\\”\\\\\\\\\\\\\\\\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100 % ## Training The Common Voice `train`, `validation` was used for training as well as validation and testing # The script used for training can be found https://github.com/rahul-art/huggingface_wav2vec2_punjabi/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Punjabi_ASR_with_%F0%9F%A4%97_Transformers.ipynb
{"language": "pa-IN", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "danurahul/wav2vec2-large-xlsr-pa-IN", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice pa-IN", "type": "common_voice", "args": "pa-IN"}, "metrics": [{"type": "wer", "value": 54.86, "name": "Test WER"}]}]}]}
danurahul/wav2vec2-large-xlsr-pa-IN
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/yoav_gpt_neo1.3B
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/yoav_gpt_neo1.3B_delimiter
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
danurahul/yoav_neo_spaces
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9302 - Mae: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1253 | 1.0 | 235 | 0.9756 | 0.5488 | | 0.9465 | 2.0 | 470 | 0.9302 | 0.5 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
danwilbury/xlm-roberta-base-finetuned-marc-en
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_answering_squad2") input_ids = tokenizer.encode("There are two apples on the counter. Q: How many apples? A:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. Q: How many apples? A: two ```
{}
danyaljj/gpt2_question_answering_squad2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph") input_ids = tokenizer.encode("There are two apples on the counter. Q:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. Q: What is the name of the counter that is on ```
{}
danyaljj/gpt2_question_generation_given_paragraph
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
Sample usage: ```python tokenizer = GPT2Tokenizer.from_pretrained("gpt2") model = GPT2LMHeadModel.from_pretrained("danyaljj/gpt2_question_generation_given_paragraph_answer") input_ids = tokenizer.encode("There are two apples on the counter. A: apples Q:", return_tensors="pt") outputs = model.generate(input_ids) print("Generated:", tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Which should produce this: ``` Generated: There are two apples on the counter. A: apples Q: What is the name of the counter ```
{}
danyaljj/gpt2_question_generation_given_paragraph_answer
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
West et al.'s model from their "reflective decoding" paper. Sample usage: ```python import torch from modeling_opengpt2 import OpenGPT2LMHeadModel from padded_encoder import Encoder path_to_backward = 'danyaljj/opengpt2_pytorch_backward' encoder = Encoder() model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_backward) input = "until she finally won." input_ids = encoder.encode(input) input_ids = torch.tensor([input_ids[::-1] ], dtype=torch.int) print(input_ids) output = model_backward.generate(input_ids) output_text = encoder.decode(output.tolist()[0][::-1]) print(output_text) ``` Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
{}
danyaljj/opengpt2_pytorch_backward
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
West et al.'s model from their "reflective decoding" paper. Sample usage: ```python import torch from modeling_opengpt2 import OpenGPT2LMHeadModel from padded_encoder import Encoder path_to_forward = 'danyaljj/opengpt2_pytorch_forward' encoder = Encoder() model_backward = OpenGPT2LMHeadModel.from_pretrained(path_to_forward) input = "She tried to win but" input_ids = encoder.encode(input) input_ids = torch.tensor([input_ids ], dtype=torch.int) print(input_ids) output = model_backward.generate(input_ids) output_text = encoder.decode(output.tolist()[0]) print(output_text) ``` Download the additional files from here: https://github.com/peterwestuw/GPT2ForwardBackward
{}
danyaljj/opengpt2_pytorch_forward
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Framework versions - Transformers 4.12.3 - Pytorch 1.10.0+cu111 - Datasets 1.15.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilgpt2-finetuned-wikitext2", "results": []}]}
daqiao202/distilgpt2-finetuned-wikitext2
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
daquarti/umita
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
dark-knight/output_dir_radiology_data
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
dark-knight/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
darknesses/crowd-counting
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
darkzara/results
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Chicken Bot's Jon Snow DialoGPT Model
{"tags": ["conversational"]}
darkzek/chickenbot-jon-snow
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Pickle Rick DialoGPT Model
{"tags": ["conversational"]}
darthboii/DialoGPT-small-PickleRick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick DialoGPT Model
{"tags": ["conversational"]}
darthboii/DialoGPT-small-Rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
Hi
{}
darubramha/hi-LyricsGPT2
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
dasdk350/Deepak
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
dash/dgs
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
https://github.com/monologg/JointBERT
{}
databuzzword/JointBERT-atis
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
https://github.com/monologg/JointBERT
{}
databuzzword/JointBERT-snips
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/aliostad-programming-language-detection
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/bringing-old-photos-back-to-life
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/deoldify-artistic
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/deoldify-stable
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/esrgan
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/mobile-net
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
databuzzword/xception
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
datashadi/wav2vec2-large-xls-r-300m-fa-colab
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
datawhales/korean-relation-extraction
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-to-speech
tensorflowtts
# Tacotron 2 with Guided Attention trained on Synpaflex (Fr) This repository provides a pretrained [Tacotron2](https://arxiv.org/abs/1712.05884) trained with [Guided Attention](https://arxiv.org/abs/1710.08969) on Synpaflex dataset (Fr). For a detail of the model, we encourage you to read more about [TensorFlowTTS](https://github.com/TensorSpeech/TensorFlowTTS). ## Install TensorFlowTTS First of all, please install TensorFlowTTS with the following command: ``` pip install TensorFlowTTS ``` ### Converting your Text to Mel Spectrogram ```python import numpy as np import soundfile as sf import yaml import tensorflow as tf from tensorflow_tts.inference import AutoProcessor from tensorflow_tts.inference import TFAutoModel processor = AutoProcessor.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") tacotron2 = TFAutoModel.from_pretrained("tensorspeech/tts-tacotron2-synpaflex-fr") text = "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous étions amis" input_ids = processor.text_to_sequence(text) decoder_output, mel_outputs, stop_token_prediction, alignment_history = tacotron2.inference( input_ids=tf.expand_dims(tf.convert_to_tensor(input_ids, dtype=tf.int32), 0), input_lengths=tf.convert_to_tensor([len(input_ids)], tf.int32), speaker_ids=tf.convert_to_tensor([0], dtype=tf.int32), ) ``` #### Referencing Tacotron 2 ``` @article{DBLP:journals/corr/abs-1712-05884, author = {Jonathan Shen and Ruoming Pang and Ron J. Weiss and Mike Schuster and Navdeep Jaitly and Zongheng Yang and Zhifeng Chen and Yu Zhang and Yuxuan Wang and R. J. Skerry{-}Ryan and Rif A. Saurous and Yannis Agiomyrgiannakis and Yonghui Wu}, title = {Natural {TTS} Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions}, journal = {CoRR}, volume = {abs/1712.05884}, year = {2017}, url = {http://arxiv.org/abs/1712.05884}, archivePrefix = {arXiv}, eprint = {1712.05884}, timestamp = {Thu, 28 Nov 2019 08:59:52 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-1712-05884.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` #### Referencing TensorFlowTTS ``` @misc{TFTTS, author = {Minh Nguyen, Alejandro Miguel Velasquez, Erogol, Kuan Chen, Dawid Kobus, Takuya Ebata, Trinh Le and Yunchao He}, title = {TensorflowTTS}, year = {2020}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\\url{https://github.com/TensorSpeech/TensorFlowTTS}}, } ```
{"language": "fr", "license": "apache-2.0", "tags": ["tensorflowtts", "audio", "text-to-speech", "text-to-mel"], "datasets": ["synpaflex"], "widget": [{"text": "Oh, je voudrais tant que tu te souviennes Des jours heureux quand nous \u00e9tions amis"}]}
dathudeptrai/tts-tacotron2-synpaflex-fr
null
[ "tensorflowtts", "audio", "text-to-speech", "text-to-mel", "fr", "dataset:synpaflex", "arxiv:1712.05884", "arxiv:1710.08969", "license:apache-2.0", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
La descripción en Español se encuentra después de la descripción en Inglés. # (English) GPT2-small-spanish: a Language Model for Spanish text generation (and more NLP tasks...) GPT2-small-spanish is a state-of-the-art language model for Spanish based on the GPT-2 small model. It was trained on Spanish Wikipedia using **Transfer Learning and Fine-tuning techniques**. The training took around 70 hours with four GPU NVIDIA GTX 1080-Ti with 11GB of DDR5 and with around 3GB of (processed) training data. It was fine-tuned from the [English pre-trained GPT-2 small](https://huggingface.co/gpt2) using the Hugging Face libraries (Transformers and Tokenizers) wrapped into the [fastai v2](https://dev.fast.ai/) Deep Learning framework. All the fine-tuning fastai v2 techniques were used. The training is purely based on the [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) model developed by Pierre Guillou. The training details are in this article: "[Faster than training from scratch — Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)". This preliminary version is now available on Hugging Face. ## Limitations and bias (Copied from original GPorTuguese-2 model)The training data used for this model come from Spanish Wikipedia. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Authors The model was trained and evaluated by [Josué Obregon](https://www.linkedin.com/in/josue-obregon/) and [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), founders of [Datificate](https://datificate.com), a space for learning Machine Learning in Spanish. The training was possible thanks to the computing power of several GPUs (GPU NVIDIA GTX1080-Ti) of the [IAI Lab](http://iai.khu.ac.kr/) (Kyung Hee University) from which Josué is attached as a Postdoctoral Researcher in Industrial Artificial Intelligence. As stated before, this work is mainly based in the work of [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/). # (Español) GPT2-small-spanish: un modelo de lenguaje para generación de texto en Español (y algunas otras tareas de NLP...) GPT2-small-spanish es un modelo de lenguaje de vanguardia en Español basado en el modelo pequeño GPT-2. Fué entrenado con la Wikipedia en Español usando **técnicas de Aprendizaje por Transferencia y afinación de modelos**. El entrenamiento del modelo tomó alrededor 70 horas con cuatro GPUs NVIDIA GTX 1080-Ti con 11GB de DDR5 y con aproximadamente 3GB de datos de entrenamiento preprocesados. Fue afinado del modelo en Inglés [English pre-trained GPT-2 small](https://huggingface.co/gpt2) utilizando las librerías de Hugging Face (Transformers y Tokenizers) integradas con el framework de Deep Learning [fastai v2](https://dev.fast.ai/). Se usaron técnicas de afinamiento fino de fastai v2. El entrenamiento está enteramente basado en el modelo en Portugués [GPorTuguese-2](https://huggingface.co/pierreguillou/gpt2-small-portuguese) desarrollado por Pierre Guillou. Los detalles del entrenamiento se encuentran en este articulo: "[Faster than training from scratch — Fine-tuning the English GPT-2 in any language with Hugging Face and fastai v2 (practical case with Portuguese)](https://medium.com/@pierre_guillou/faster-than-training-from-scratch-fine-tuning-the-english-gpt-2-in-any-language-with-hugging-f2ec05c98787)". La versión preliminar del modelo se encuentra en Hugging Face. ## Limitaciones y sesgos (Copiado del modelo original GPorTuguese-2 model)Los datos de entrenamiento provienen de la Wikipedia en Español. Se sabe que contiene bastante contenido no filtrado del internet, lo cual está lejos de ser neutral. Esto es señalado por el equipo desarrollador de openAI en su propia tarjeta de modelo: > Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true. Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes. ## Autores El modelo fue entreando y evaluado por [Josué Obregon](https://www.linkedin.com/in/josue-obregon/) y [Berny Carrera](https://www.linkedin.com/in/bernycarrera/), fundadores de [Datificate](https://datificate.com), un espacio para aprender Machine Learning en Español. El entrenamiento fue posible gracias al poder computacional de varias GPUs (GPU NVIDIA GTX1080-Ti) del Laboratorio de Inteligencia Artificial Industrial [IAI Lab](http://iai.khu.ac.kr/) (Universidad de Kyung Hee) al cual Josué pertenece como investigador postdoctoral en Inteligencia Artificial Industrial. Como fue mencionado anteriormente, este trabajo está basado en el trabajo de [Pierre GUILLOU](https://www.linkedin.com/in/pierreguillou/).
{"language": "es", "license": "apache-2.0", "datasets": ["wikipedia"], "widget": [{"text": "La inteligencia artificial en lationoam\u00e9rica se ha desarrollado "}]}
datificate/gpt2-small-spanish
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "es", "dataset:wikipedia", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# <a name="introduction"></a> PhoBERT: Pre-trained language models for Vietnamese Pre-trained PhoBERT models are the state-of-the-art language models for Vietnamese ([Pho](https://en.wikipedia.org/wiki/Pho), i.e. "Phở", is a popular food in Vietnam): - Two PhoBERT versions of "base" and "large" are the first public large-scale monolingual language models pre-trained for Vietnamese. PhoBERT pre-training approach is based on [RoBERTa](https://github.com/pytorch/fairseq/blob/master/examples/roberta/README.md) which optimizes the [BERT](https://github.com/google-research/bert) pre-training procedure for more robust performance. - PhoBERT outperforms previous monolingual and multilingual approaches, obtaining new state-of-the-art performances on four downstream Vietnamese NLP tasks of Part-of-speech tagging, Dependency parsing, Named-entity recognition and Natural language inference. The general architecture and experimental results of PhoBERT can be found in our EMNLP-2020 Findings [paper](https://arxiv.org/abs/2003.00744): @article{phobert, title = {{PhoBERT: Pre-trained language models for Vietnamese}}, author = {Dat Quoc Nguyen and Anh Tuan Nguyen}, journal = {Findings of EMNLP}, year = {2020} } **Please CITE** our paper when PhoBERT is used to help produce published results or is incorporated into other software. For further information or requests, please go to [PhoBERT's homepage](https://github.com/VinAIResearch/PhoBERT)! ### Installation <a name="install2"></a> - Python 3.6+, and PyTorch 1.1.0+ (or TensorFlow 2.0+) - Install `transformers`: - `git clone https://github.com/huggingface/transformers.git` - `cd transformers` - `pip3 install --upgrade .` ### Pre-trained models <a name="models2"></a> Model | #params | Arch. | Pre-training data ---|---|---|--- `vinai/phobert-base` | 135M | base | 20GB of texts `vinai/phobert-large` | 370M | large | 20GB of texts ### Example usage <a name="usage2"></a> ```python import torch from transformers import AutoModel, AutoTokenizer phobert = AutoModel.from_pretrained("vinai/phobert-base") tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base") # INPUT TEXT MUST BE ALREADY WORD-SEGMENTED! line = "Tôi là sinh_viên trường đại_học Công_nghệ ." input_ids = torch.tensor([tokenizer.encode(line)]) with torch.no_grad(): features = phobert(input_ids) # Models outputs are now tuples ## With TensorFlow 2.0+: # from transformers import TFAutoModel # phobert = TFAutoModel.from_pretrained("vinai/phobert-base") ```
{}
datnth1709/Phobert-classifier
null
[ "transformers", "pytorch", "tf", "jax", "roberta", "fill-mask", "arxiv:2003.00744", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
datoad4510/nn-classifier-test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Harry Potter DialoGPT Model
{"tags": ["conversational"]}
dats/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tony Stark DialoGPT model Invite me to your discord server : https://discord.com/api/oauth2/authorize?client_id=885065886787063848&permissions=137439365184&scope=bot
{"tags": ["conversational"]}
dattam/DialoGPT-medium-TonyStarkBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus along with selected pubtator annotations from LitCOVID dataset This was fine-tuned in order to use it in a datummd/bionlp system which is available at: https://github.com/datummd/bionlp
{"language": ["en"], "license": "apache-2.0", "tags": ["BioBERT", "Diseases", "NER"], "datasets": ["ncbi_disease", "BC5CDR-diseases", "LitCOVID-pubtator"]}
datummd/NCBI_BC5CDR_disease
null
[ "transformers", "pytorch", "bert", "token-classification", "BioBERT", "Diseases", "NER", "en", "dataset:ncbi_disease", "dataset:BC5CDR-diseases", "dataset:LitCOVID-pubtator", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/albert_1700_tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
fastai
## Model description This model is intended to predict, from the title of a book, whether it is 'fiction' or 'non-fiction'. This model was trained on data created from the Digitised printed books (18th-19th Century) book collection. The datasets in this collection are comprised and derived from 49,455 digitised books (65,227 volumes), mainly from the 19th Century. This dataset is dominated by English language books and includes books in several other languages in much smaller numbers. This model was originally developed for use as part of the Living with Machines project to be able to 'segment' this large dataset of books into different categories based on a 'crude' classification of genre i.e. whether the title was `fiction` or `non-fiction`. The model's training data (discussed more below) primarily consists of 19th Century book titles from the British Library Digitised printed books (18th-19th century) collection. These books have been catalogued according to British Library cataloguing practices. The model is likely to perform worse on any book titles from earlier or later periods. While the model is multilingual, it has training data in non-English book titles; these appear much less frequently. ## How to use To use this within fastai, first [install](https://docs.fast.ai/#Installing) version 2 of the fastai library. You can load directly from the Hugging Face hub using the [`huggingface_hub`](https://github.com/huggingface/huggingface_hub) library. ```python from fastai import load_learner from huggingface_hub import hf_hub_download learn = load_learner( hf_hub_download('davanstrien/bl-books-genre-fastai', filename="model.pkl") ) learn.predict("Oliver Twist") ``` ## Limitations and bias The model was developed based on data from the British Library's Digitised printed books (18th-19th Century) collection. This dataset is not representative of books from the period covered with biases towards certain types (travel) and a likely absence of books that were difficult to digitise. The formatting of the British Library books corpus titles may differ from other collections, resulting in worse performance on other collections. It is recommended to evaluate the performance of the model before applying it to your own data. Likely, this model won't perform well for contemporary book titles without further fine-tuning. ## Training data The training data was created using the Zooniverse platform. British Library cataloguers carried out the majority of the annotations used as training data. More information on the process of creating the training data will be available soon. ### Training procedure Model training was carried out using the fastai library version 2.5.2. The notebook using for training the model is available at: https://github.com/Living-with-machines/genre-classification ## Eval result The model was evaluated on a held out test set: ``` precision recall f1-score support Fiction 0.91 0.88 0.90 296 Non-fiction 0.94 0.95 0.95 554 accuracy 0.93 850 macro avg 0.93 0.92 0.92 850 weighted avg 0.93 0.93 0.93 850 ```
{"library_name": "fastai", "tags": ["text-classification", "fastai"], "datasets": ["blbooksgenre"], "widget": [{"text": "Poems on various subjects. Whereto is prefixed a short essay on the structure of English verse"}, {"text": "Two Centuries of Soho: its institutions, firms, and amusements. By the Clergy of St. Anne's, Soho, J. H. Cardwell ... H. B. Freeman ... G. C. Wilton ... assisted by other contributors, etc"}, {"text": "The Adventures of Oliver Twist. [With plates.]"}]}
TheBritishLibrary/bl-books-genre-fastai
null
[ "fastai", "text-classification", "dataset:blbooksgenre", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/blbooks-bad-ocr-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/blbooks-good-ocr-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
adapter-transformers
# Adapter `davanstrien/book-genre-classification` for bert-base-cased An [adapter](https://adapterhub.ml) for the `bert-base-cased` model that was trained on the [text-classification](https://adapterhub.ml/explore/text-classification/) dataset and includes a prediction head for classification. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoModelWithHeads model = AutoModelWithHeads.from_pretrained("bert-base-cased") adapter_name = model.load_adapter("davanstrien/book-genre-classification", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"tags": ["bert", "adapterhub:text-classification", "adapter-transformers"]}
davanstrien/book-genre-classification
null
[ "adapter-transformers", "bert", "adapterhub:text-classification", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_flyswot This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - F1: 0.9592 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 0.6833 | 0.7484 | | No log | 2.0 | 104 | 0.3666 | 0.8750 | | No log | 3.0 | 156 | 0.2090 | 0.9321 | | No log | 4.0 | 208 | 0.1478 | 0.9449 | | No log | 5.0 | 260 | 0.1002 | 0.9518 | | No log | 6.0 | 312 | 0.1053 | 0.9506 | | No log | 7.0 | 364 | 0.1182 | 0.9616 | | No log | 8.0 | 416 | 0.1102 | 0.9592 | | No log | 9.0 | 468 | 0.1262 | 0.9616 | | 0.203 | 10.0 | 520 | 0.1286 | 0.9616 | | 0.203 | 11.0 | 572 | 0.1355 | 0.9592 | | 0.203 | 12.0 | 624 | 0.1299 | 0.9592 | | 0.203 | 13.0 | 676 | 0.1154 | 0.9592 | | 0.203 | 14.0 | 728 | 0.1385 | 0.9580 | | 0.203 | 15.0 | 780 | 0.1330 | 0.9592 | | 0.203 | 16.0 | 832 | 0.1390 | 0.9592 | | 0.203 | 17.0 | 884 | 0.1386 | 0.9592 | | 0.203 | 18.0 | 936 | 0.1390 | 0.9592 | | 0.203 | 19.0 | 988 | 0.1409 | 0.9592 | | 0.0006 | 20.0 | 1040 | 0.1411 | 0.9592 | | 0.0006 | 21.0 | 1092 | 0.1413 | 0.9592 | | 0.0006 | 22.0 | 1144 | 0.1415 | 0.9592 | | 0.0006 | 23.0 | 1196 | 0.1426 | 0.9592 | | 0.0006 | 24.0 | 1248 | 0.1435 | 0.9592 | | 0.0006 | 25.0 | 1300 | 0.1438 | 0.9592 | | 0.0006 | 26.0 | 1352 | 0.1434 | 0.9592 | | 0.0006 | 27.0 | 1404 | 0.1437 | 0.9592 | | 0.0006 | 28.0 | 1456 | 0.1441 | 0.9592 | | 0.0002 | 29.0 | 1508 | 0.1440 | 0.9592 | | 0.0002 | 30.0 | 1560 | 0.1441 | 0.9592 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_flyswot", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.959245529738118, "name": "F1"}]}]}]}
davanstrien/convnext_flyswot
null
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # convnext_manuscript_iiif This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the davanstrien/iiif_manuscripts_label_ge_50 dataset. It achieves the following results on the evaluation set: - Loss: 5.5856 - F1: 0.0037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 6.5753 | 1.0 | 2038 | 6.4121 | 0.0016 | | 5.9865 | 2.0 | 4076 | 5.9466 | 0.0021 | | 5.6521 | 3.0 | 6114 | 5.7645 | 0.0029 | | 5.3123 | 4.0 | 8152 | 5.6890 | 0.0033 | | 5.0337 | 5.0 | 10190 | 5.6692 | 0.0034 | | 4.743 | 6.0 | 12228 | 5.5856 | 0.0037 | | 4.4387 | 7.0 | 14266 | 5.5969 | 0.0042 | | 4.1422 | 8.0 | 16304 | 5.6711 | 0.0043 | | 3.8372 | 9.0 | 18342 | 5.6761 | 0.0044 | | 3.5244 | 10.0 | 20380 | 5.8469 | 0.0042 | | 3.2321 | 11.0 | 22418 | 5.8774 | 0.0045 | | 2.9004 | 12.0 | 24456 | 6.1186 | 0.0047 | | 2.5937 | 13.0 | 26494 | 6.2398 | 0.0046 | | 2.2983 | 14.0 | 28532 | 6.3732 | 0.0049 | | 2.0611 | 15.0 | 30570 | 6.5024 | 0.0045 | | 1.8153 | 16.0 | 32608 | 6.6585 | 0.0047 | | 1.6075 | 17.0 | 34646 | 6.8333 | 0.0043 | | 1.4342 | 18.0 | 36684 | 6.9529 | 0.0044 | | 1.2614 | 19.0 | 38722 | 7.1129 | 0.0046 | | 1.1463 | 20.0 | 40760 | 7.1977 | 0.0039 | | 1.0387 | 21.0 | 42798 | 7.2700 | 0.0044 | | 0.9635 | 22.0 | 44836 | 7.3375 | 0.0040 | | 0.8872 | 23.0 | 46874 | 7.4003 | 0.0039 | | 0.8156 | 24.0 | 48912 | 7.4884 | 0.0039 | | 0.7544 | 25.0 | 50950 | 7.4764 | 0.0039 | | 0.6893 | 26.0 | 52988 | 7.5153 | 0.0042 | | 0.6767 | 27.0 | 55026 | 7.5427 | 0.0043 | | 0.6098 | 28.0 | 57064 | 7.5547 | 0.0042 | | 0.5871 | 29.0 | 59102 | 7.5533 | 0.0041 | | 0.5696 | 30.0 | 61140 | 7.5595 | 0.0041 | ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["image-classification", "generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "convnext_manuscript_iiif", "results": []}]}
davanstrien/convnext_manuscript_iiif
null
[ "transformers", "pytorch", "safetensors", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
object-detection
transformers
# detr_beyond_words (WIP) [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) fine tuned on [Beyond Words](https://github.com/LibraryOfCongress/newspaper-navigator/tree/master/beyond_words_data).
{"license": "mit", "tags": ["object-detection"], "widget": [{"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/19.jpg", "example_title": "page"}, {"src": "https://huggingface.co/davanstrien/detr_beyond_words/resolve/main/65.jpg", "example_title": "page2"}]}
davanstrien/detr_beyond_words
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "detr", "object-detection", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/distilbert-base-cased_tokenizer_1700_1799
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/distilroberta-base-finetuned-blbooks-1700s
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/distilroberta_1700_tok
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/distilroberta_1700_tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/eighteenth-century-albert-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
davanstrien/eighteenth-century-distilbert
null
[ "transformers", "pytorch", "distilbert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# flyswot ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... #### Limitations and bias Not currently intended for public consumption... ## Training data TODO ## Eval results
{}
davanstrien/flyswot-test
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
TODO ## Model description In progress model for detecting 'fake' flysheets ## Intended uses & limitations Not currently intended for public consumption... ## Limitations and bias Not currently intended for public consumption... ## Training data ## Eval results
{}
davanstrien/flyswot
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot_iiif This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 6.1280 - F1: 0.0034 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 8.5184 | 0.26 | 500 | 7.9280 | 0.0005 | | 7.7409 | 0.52 | 1000 | 7.5824 | 0.0007 | | 7.4649 | 0.78 | 1500 | 7.3841 | 0.0010 | | 7.3285 | 1.04 | 2000 | 7.2652 | 0.0012 | | 7.1404 | 1.3 | 2500 | 7.1559 | 0.0014 | | 7.0322 | 1.56 | 3000 | 7.0551 | 0.0016 | | 6.9197 | 1.82 | 3500 | 6.9449 | 0.0019 | | 6.7822 | 2.09 | 4000 | 6.8773 | 0.0018 | | 6.6506 | 2.35 | 4500 | 6.7980 | 0.0020 | | 6.5811 | 2.61 | 5000 | 6.7382 | 0.0022 | | 6.538 | 2.87 | 5500 | 6.6582 | 0.0022 | | 6.4136 | 3.13 | 6000 | 6.6013 | 0.0024 | | 6.3325 | 3.39 | 6500 | 6.5369 | 0.0024 | | 6.2566 | 3.65 | 7000 | 6.4875 | 0.0025 | | 6.2285 | 3.91 | 7500 | 6.4342 | 0.0027 | | 6.1281 | 4.17 | 8000 | 6.4066 | 0.0027 | | 6.0762 | 4.43 | 8500 | 6.3674 | 0.0027 | | 6.0309 | 4.69 | 9000 | 6.3336 | 0.0027 | | 6.0123 | 4.95 | 9500 | 6.2932 | 0.0030 | | 5.9089 | 5.21 | 10000 | 6.2835 | 0.0029 | | 5.8901 | 5.47 | 10500 | 6.2481 | 0.0030 | | 5.86 | 5.74 | 11000 | 6.2295 | 0.0030 | | 5.8586 | 6.0 | 11500 | 6.2068 | 0.0033 | | 5.7768 | 6.26 | 12000 | 6.1937 | 0.0031 | | 5.7591 | 6.52 | 12500 | 6.1916 | 0.0032 | | 5.7443 | 6.78 | 13000 | 6.1579 | 0.0033 | | 5.7125 | 7.04 | 13500 | 6.1478 | 0.0033 | | 5.6751 | 7.3 | 14000 | 6.1379 | 0.0035 | | 5.6648 | 7.56 | 14500 | 6.1304 | 0.0035 | | 5.6644 | 7.82 | 15000 | 6.1280 | 0.0034 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_iiif", "results": []}]}
davanstrien/flyswot_iiif
null
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # flyswot_test This model is a fine-tuned version of [facebook/convnext-base-224-22k](https://huggingface.co/facebook/convnext-base-224-22k) on the image_folder dataset. It achieves the following results on the evaluation set: - eval_loss: 0.1518 - eval_f1: 0.9595 - eval_runtime: 5.9337 - eval_samples_per_second: 69.603 - eval_steps_per_second: 2.191 - epoch: 7.0 - step: 364 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 40 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["image_folder"], "base_model": "facebook/convnext-base-224-22k", "model-index": [{"name": "flyswot_test", "results": []}]}
davanstrien/flyswot_test
null
[ "transformers", "pytorch", "convnext", "image-classification", "generated_from_trainer", "dataset:image_folder", "base_model:facebook/convnext-base-224-22k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # iiif_manuscript_vit This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5684 - F1: 0.5996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 0.5639 | 1.0 | 2269 | 0.5822 | 0.5516 | | 0.5834 | 2.0 | 4538 | 0.5825 | 0.5346 | | 0.5778 | 3.0 | 6807 | 0.5794 | 0.6034 | | 0.5735 | 4.0 | 9076 | 0.5742 | 0.5713 | | 0.5731 | 5.0 | 11345 | 0.5745 | 0.6008 | | 0.5701 | 6.0 | 13614 | 0.5729 | 0.5499 | | 0.5696 | 7.0 | 15883 | 0.5717 | 0.5952 | | 0.5683 | 8.0 | 18152 | 0.5680 | 0.6005 | | 0.5648 | 9.0 | 20421 | 0.5679 | 0.5967 | | 0.564 | 10.0 | 22690 | 0.5684 | 0.5996 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["f1"], "base_model": "google/vit-base-patch16-224-in21k", "model-index": [{"name": "iiif_manuscript_vit", "results": []}]}
davanstrien/iiif_manuscript_vit
null
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "base_model:google/vit-base-patch16-224-in21k", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
generic
# TODO - - - -
{"library_name": "generic", "tags": ["chemistry"]}
davanstrien/test
null
[ "generic", "chemistry", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/testgpt2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit-manuscripts This model is a fine-tuned version of [facebook/vit-mae-base](https://huggingface.co/facebook/vit-mae-base) on the davanstrien/manuscript_iiif_test dataset. It achieves the following results on the evaluation set: - Loss: 0.5177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 1337 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.5303 | 1.0 | 34 | 0.5134 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.2 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["masked-auto-encoding", "generated_from_trainer"], "base_model": "facebook/vit-mae-base", "model-index": [{"name": "vit-manuscripts", "results": []}]}
davanstrien/vit-manuscripts
null
[ "transformers", "pytorch", "tensorboard", "vit_mae", "pretraining", "masked-auto-encoding", "generated_from_trainer", "base_model:facebook/vit-mae-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davanstrien/vit_flyswot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # vit_flyswot_test This model is a fine-tuned version of [](https://huggingface.co/) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.4777 - F1: 0.8492 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 666 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 52 | 1.2007 | 0.3533 | | No log | 2.0 | 104 | 1.0037 | 0.5525 | | No log | 3.0 | 156 | 0.8301 | 0.6318 | | No log | 4.0 | 208 | 0.7224 | 0.6946 | | No log | 5.0 | 260 | 0.7298 | 0.7145 | | No log | 6.0 | 312 | 0.6328 | 0.7729 | | No log | 7.0 | 364 | 0.6010 | 0.7992 | | No log | 8.0 | 416 | 0.5174 | 0.8364 | | No log | 9.0 | 468 | 0.5084 | 0.8479 | | 0.6372 | 10.0 | 520 | 0.4777 | 0.8492 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.6
{"tags": ["generated_from_trainer"], "datasets": ["image_folder"], "metrics": ["f1"], "model-index": [{"name": "vit_flyswot_test", "results": [{"task": {"type": "image-classification", "name": "Image Classification"}, "dataset": {"name": "image_folder", "type": "image_folder", "args": "default"}, "metrics": [{"type": "f1", "value": 0.849172221610369, "name": "F1"}]}]}]}
davanstrien/vit_flyswot_test
null
[ "transformers", "pytorch", "vit", "image-classification", "generated_from_trainer", "dataset:image_folder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc-en This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9199 - Mae: 0.4756 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1705 | 1.0 | 235 | 0.9985 | 0.5854 | | 0.9721 | 2.0 | 470 | 0.9199 | 0.4756 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc-en", "results": []}]}
daveccampbell/xlm-roberta-base-finetuned-marc-en
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
**Note**: This model & model card are based on the [finetuned XLM-T for Sentiment Analysis](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment) # twitter-XLM-roBERTa-base for Emotion Analysis This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for emotion analysis on Spanish language. This model was presented to EmoEvalEs competition, part of [IberLEF 2021 Conference](https://sites.google.com/view/iberlef2021/), where the proposed task was the classification of Spanish tweets between seven different classes: *anger*, *disgust*, *fear*, *joy*, *sadness*, *surprise*, and *other*. We achieved the first position in the competition with a macro-averaged F1 score of 71.70%. - [Our code for EmoEvalEs submission](https://github.com/gsi-upm/emoevales-iberlef2021). - [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) ## Example Pipeline with a [Tweet from @JaSantaolalla](https://twitter.com/JaSantaolalla/status/1398383243645177860) ```python from transformers import pipeline model_path = "daveni/twitter-xlm-roberta-emotion-es" emotion_analysis = pipeline("text-classification", framework="pt", model=model_path, tokenizer=model_path) emotion_analysis("Einstein dijo: Solo hay dos cosas infinitas, el universo y los pinches anuncios de bitcoin en Twitter. Paren ya carajo aaaaaaghhgggghhh me quiero murir") ``` ``` [{'label': 'anger', 'score': 0.48307016491889954}] ``` ## Full classification example ```python from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer, AutoConfig import numpy as np from scipy.special import softmax # Preprocess text (username and link placeholders) def preprocess(text): new_text = [] for t in text.split(" "): t = '@user' if t.startswith('@') and len(t) > 1 else t t = 'http' if t.startswith('http') else t new_text.append(t) return " ".join(new_text) model_path = "daveni/twitter-xlm-roberta-emotion-es" tokenizer = AutoTokenizer.from_pretrained(model_path ) config = AutoConfig.from_pretrained(model_path ) # PT model = AutoModelForSequenceClassification.from_pretrained(model_path ) text = "Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal." text = preprocess(text) print(text) encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) scores = output[0][0].detach().numpy() scores = softmax(scores) # Print labels and scores ranking = np.argsort(scores) ranking = ranking[::-1] for i in range(scores.shape[0]): l = config.id2label[ranking[i]] s = scores[ranking[i]] print(f"{i+1}) {l} {np.round(float(s), 4)}") ``` Output: ``` Se ha quedao bonito día para publicar vídeo, ¿no? Hoy del tema más diferente que hemos tocado en el canal. 1) joy 0.7887 2) others 0.1679 3) surprise 0.0152 4) sadness 0.0145 5) anger 0.0077 6) disgust 0.0033 7) fear 0.0027 ``` #### Limitations and bias - The dataset we used for finetuning was unbalanced, where almost half of the records belonged to the *other* class so there might be bias towards this class. ## Training data Pretrained weights were left identical to the original model released by [cardiffnlp](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base). We used the [EmoEvalEs Dataset](https://github.com/pendrag/EmoEvalEs) for finetuning. ### BibTeX entry and citation info ```bibtex @inproceedings{vera2021gsi, title={GSI-UPM at IberLEF2021: Emotion Analysis of Spanish Tweets by Fine-tuning the XLM-RoBERTa Language Model}, author={Vera, D and Araque, O and Iglesias, CA}, booktitle={Proceedings of the Iberian Languages Evaluation Forum (IberLEF 2021). CEUR Workshop Proceedings, CEUR-WS, M{\'a}laga, Spain}, year={2021} } ```
{"language": ["es"], "tags": ["Emotion Analysis"]}
daveni/twitter-xlm-roberta-emotion-es
null
[ "transformers", "pytorch", "xlm-roberta", "text-classification", "Emotion Analysis", "es", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
daveripper0020/essaygpt2
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
daveynkanta/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
daveynkanta/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
davidcechak/CDNA_bert_6
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
davidcechak/tss_bert_6
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
davidcechak/tss_bert_6_v1
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
davidsun/bert_finetuned
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00