Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
howey/electra-base-mrpc
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-base-qnli
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-base-qqp
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
howey/electra-base-squad2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-base-sst2
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-base-stsb
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-cola
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-mnli
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-mrpc
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-qnli
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-qqp
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-rte
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
howey/electra-large-squad
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
{}
howey/electra-large-squad2
null
[ "transformers", "pytorch", "electra", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-sst2
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-large-stsb
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-small-mnli
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/electra-small-qqp
null
[ "transformers", "pytorch", "electra", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
howey/electra-small-squad2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
howey/electra-small-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-cola
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-mnli
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-mrpc
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-qnli
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-qqp
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-rte
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
howey/roberta-large-squad2
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-sst2
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
howey/roberta-large-stsb
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrc/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/banga-command-finetuning
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/wav2vec-word-level-bangla-command
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4241 - Wer: 0.3381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.7749 | 4.0 | 500 | 2.0639 | 1.0018 | | 0.9252 | 8.0 | 1000 | 0.4853 | 0.4821 | | 0.3076 | 12.0 | 1500 | 0.4507 | 0.4044 | | 0.1732 | 16.0 | 2000 | 0.4315 | 0.3688 | | 0.1269 | 20.0 | 2500 | 0.4481 | 0.3559 | | 0.1087 | 24.0 | 3000 | 0.4354 | 0.3464 | | 0.0832 | 28.0 | 3500 | 0.4241 | 0.3381 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
hrdipto/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/wav2vec2-large-xls-r-300m-bn-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/wav2vec2-large-xls-r-300m-en-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
hrdipto/wav2vec2-xls-r-300m-bangla-command-data
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-bangla-command-generated-data-finetune This model is a fine-tuned version of [hrdipto/wav2vec2-xls-r-300m-bangla-command-data](https://huggingface.co/hrdipto/wav2vec2-xls-r-300m-bangla-command-data) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0099 - eval_wer: 0.0208 - eval_runtime: 2.5526 - eval_samples_per_second: 75.217 - eval_steps_per_second: 9.402 - epoch: 71.43 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-300m-bangla-command-generated-data-finetune", "results": []}]}
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data-finetune
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-shuru-word-level This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0504 - Wer: 0.6859 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 23.217 | 23.81 | 500 | 1.3437 | 0.6859 | | 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 | | 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 | | 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru-word-level", "results": []}]}
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-shuru This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0921 - Wer: 1.2628 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.5528 | 23.81 | 500 | 0.5509 | 1.9487 | | 0.2926 | 47.62 | 1000 | 0.1306 | 1.2756 | | 0.1171 | 71.43 | 1500 | 0.1189 | 1.2628 | | 0.0681 | 95.24 | 2000 | 0.0921 | 1.2628 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru", "results": []}]}
hrdipto/wav2vec2-xls-r-tf-left-right-shuru
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-tf-left-right-trainer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0090 - eval_wer: 0.0037 - eval_runtime: 11.2686 - eval_samples_per_second: 71.703 - eval_steps_per_second: 8.963 - epoch: 21.05 - step: 4000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-trainer", "results": []}]}
hrdipto/wav2vec2-xls-r-tf-left-right-trainer
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/wav2vec2-xls-r-timit-tokenizer-1b
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer-base This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.0828 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---:| | 3.3134 | 4.03 | 500 | 3.0814 | 1.0 | | 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 | | 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 | | 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 | | 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 | | 2.957 | 24.19 | 3000 | 3.0921 | 1.0 | | 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer-base", "results": []}]}
hrdipto/wav2vec2-xls-r-timit-tokenizer-base
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-timit-tokenizer This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4285 - Wer: 0.3662 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 | | 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 | | 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 | | 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 | | 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 | | 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 | | 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer", "results": []}]}
hrdipto/wav2vec2-xls-r-timit-tokenizer
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrdipto/wav2vec2-xls-r-timit-trainer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrugved06/DiscbotGPT
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `sdk_version` : _string_ Only applicable for `streamlit` SDK. See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions. `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "First Order Motion Model", "emoji": "\ud83d\udc22", "colorFrom": "blue", "colorTo": "yellow", "sdk": "gradio", "app_file": "app.py", "pinned": false}
hrushikute/DanceOnTune
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Rick and Morty DialoGPT Model
{"tags": ["conversational"]}
hrv/DialoGPT-small-rick-morty
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrxorxm/distill-mbart-en-ro-12-6-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrxorxm/mbart-large-en-ro-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hrxorxm/opus-mt-en-ro-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4125 - Wer: 0.3607 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 | | 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 | | 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
hs788/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hs788/wav2vec2-large-xls-basque-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsekhalilian/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsekhalilian/wav2vec2-large-xls-r-300m-persian-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsekhalilian/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsekol/mt5-small-finetuned-amazon-en-es
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsiehpinghan/illegal_ad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
keras
{}
hsiehpinghan/pretrained_model
null
[ "keras", "tf", "electra", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsk/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hsr/hsr
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
hsxjzy/elmo_2x4096_512_2048cnn_2xhighway_5.5B
null
[ "transformers", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
htorrresjr/ementalyzer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
huaen/question_detection
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
huaen/question_detection_user_utter
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
Hi, this is Taiwan_House_Prediction.
{}
huang0624/Taiwan_House_Prediction
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
{}
huawei-noah/DynaBERT_MNLI
null
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
## DynaBERT: Dynamic BERT with Adaptive Width and Depth * DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and the subnetworks of it have competitive performances as other similar-sized compressed models. The training process of DynaBERT includes first training a width-adaptive BERT and then allowing both adaptive width and depth using knowledge distillation. * This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT). ### Reference Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu. [DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037). ``` @inproceedings{hou2020dynabert, title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth}, author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu}, booktitle = {Advances in Neural Information Processing Systems}, year = {2020} } ```
{}
huawei-noah/DynaBERT_SST-2
null
[ "transformers", "pytorch", "jax", "bert", "arxiv:2004.04037", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Overview <p align="center"> <img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150"> </p> <!-- -------------------------------------------------------------------------------- --> JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model. JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`. This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library) ## Citation Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model: ``` bibtex @misc{ghaddar2021jaber, title={JABER: Junior Arabic BERt}, author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais}, year={2021}, eprint={2112.04329}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{}
huawei-noah/JABER
null
[ "pytorch", "arxiv:2112.04329", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
huawei-noah/TernaryBERT_MNLI
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
huawei-noah/TernaryBERT_SST-2
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
huawei-noah/TinyBERT_4L_zh
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
huawei-noah/TinyBERT_6L_zh
null
[ "transformers", "pytorch", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
TinyBERT: Distilling BERT for Natural Language Understanding ======== TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand. For more details about the techniques of TinyBERT, refer to our paper: [TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351) Citation ======== If you find TinyBERT useful in your research, please cite the following paper: ``` @article{jiao2019tinybert, title={Tinybert: Distilling bert for natural language understanding}, author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun}, journal={arXiv preprint arXiv:1909.10351}, year={2019} } ```
{}
huawei-noah/TinyBERT_General_4L_312D
null
[ "transformers", "pytorch", "jax", "bert", "arxiv:1909.10351", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
huawei-noah/TinyBERT_General_6L_768D
null
[ "transformers", "pytorch", "jax", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
huchenxu/timit_phoneme
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugbump/bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugbump/just-a-dir-4-bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugbump/just-a-dir-bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
This is an Audacity wrapper for the model, forked from the repository `groadabike/ConvTasNet_DAMP-VSEP_enhboth`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `groadabike/ConvTasNet_DAMP-VSEP_enhboth`: ### Description: This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset. ### Training config: ```yaml data: channels: 1 n_src: 2 root_path: data sample_rate: 16000 samples_per_track: 10 segment: 3.0 task: enh_both filterbank: kernel_size: 20 n_filters: 256 stride: 10 main_args: exp_dir: exp/train_convtasnet help: None masknet: bn_chan: 256 conv_kernel_size: 3 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 4 n_src: 2 norm_type: gLN skip_chan: 256 optim: lr: 0.0003 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 12 early_stop: True epochs: 50 half_lr: True num_workers: 12 ``` ### Results: ```yaml si_sdr: 14.018196157142519 si_sdr_imp: 14.017103133809577 sdr: 14.498517291333885 sdr_imp: 14.463389151567865 sir: 24.149634529133372 sir_imp: 24.11450638936735 sar: 15.338597389045935 sar_imp: -137.30634122401517 stoi: 0.7639416744417206 stoi_imp: 0.1843383526963759 ``` ### License notice: This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
{"tags": ["audacity"], "inference": false, "sample_rate": 8000}
hugggof/ConvTasNet-DAMP-Vocals
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugggof/ConvTasNet_Libri1Mix_enhsignle_16k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugggof/ConvTasNet_Libri2Mix_sepnoisy_16k
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
This is an Audacity wrapper for the model, forked from the repository `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied directly from `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`: Description: This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_noisy` task of the Libri3Mix dataset. Training config: ```yml data: n_src: 3 sample_rate: 16000 segment: 3 task: sep_noisy train_dir: data/wav16k/min/train-360 valid_dir: data/wav16k/min/dev filterbank: kernel_size: 32 n_filters: 512 stride: 16 masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 3 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 training: batch_size: 8 early_stop: true epochs: 200 half_lr: true num_workers: 4 ``` Results: On Libri3Mix min test set : ```yml si_sdr: 5.926151147554517 si_sdr_imp: 10.282912158535625 sdr: 6.700975236867358 sdr_imp: 10.882972447337504 sir: 15.364110064569388 sir_imp: 18.574476587171688 sar: 7.918866830474568 sar_imp: -0.9638973409971135 stoi: 0.7713777027310713 stoi_imp: 0.2078696167973911 ``` License notice: This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov, used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/). "ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
{"tags": ["audacity"], "inference": false}
hugggof/ConvTasNet_Libri3Mix_sepnoisy_16k
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean, This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid. The following info was copied from `mpariente/ConvTasNet_WHAM_sepclean`: ### Description: This model was trained by Manuel Pariente using the wham/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid). It was trained on the `sep_clean` task of the WHAM! dataset. ### Training config: ```yaml data: n_src: 2 mode: min nondefault_nsrc: None sample_rate: 8000 segment: 3 task: sep_clean train_dir: data/wav8k/min/tr/ valid_dir: data/wav8k/min/cv/ filterbank: kernel_size: 16 n_filters: 512 stride: 8 main_args: exp_dir: exp/wham gpus: -1 help: None masknet: bn_chan: 128 hid_chan: 512 mask_act: relu n_blocks: 8 n_repeats: 3 n_src: 2 skip_chan: 128 optim: lr: 0.001 optimizer: adam weight_decay: 0.0 positional arguments: training: batch_size: 24 early_stop: True epochs: 200 half_lr: True num_workers: 4 ``` ### Results: ```yaml si_sdr: 16.21326632846293 si_sdr_imp: 16.21441705664987 sdr: 16.615180021738933 sdr_imp: 16.464137807433435 sir: 26.860503975131923 sir_imp: 26.709461760826414 sar: 17.18312813480803 sar_imp: -131.99332048277296 stoi: 0.9619940905157323 stoi_imp: 0.2239480672473015 ``` ### License notice: This work "ConvTasNet_WHAM!_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A) by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only). "ConvTasNet_WHAM!_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Manuel Pariente.
{"tags": ["audacity"], "inference": false}
hugggof/ConvTasNet_WHAM_sepclean
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugggof/audacity-models
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
## Music Source Separation in the Waveform Domain This is the Demucs model, serialized from Facebook Research's pretrained models. From Facebook research: Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder. This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data. See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
{"tags": "audacity"}
hugggof/demucs_extra
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Labeler With Timestamps ## Being used for the `Audio Labeler` effect in Audacity This is a audio labeler model which is used in Audacity's labeler effect. metadata: ``` { "sample_rate": 48000, "domain_tags": ["Music"], "tags": ["Audio Labeler"], "effect_type": "waveform-to-labels", "multichannel": false, "labels": ["Acoustic Guitar", "Auxiliary Percussion", "Brass", "Clean Electric Guitar", "Distorted Electric Guitar", "Double Bass", "Drum Set", "Electric Bass", "Flute", "piano", "Reeds", "Saxophone", "Strings", "Trumpet", "Voice"], "short_description": "Use me to label some instruments!", "long_description": "An audio labeler, which outputs label predictions and time ranges for the labels. This model can label various instruments listed in the labels section." } ```
{"tags": ["audacity"], "inference": false}
hugggof/openl3-labeler-w-timestamps
null
[ "audacity", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
hugggof/violin-ddsp
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div> <a href="https://genius.com/artists/100-gecs"> <div style="text-align: center; font-size: 14px;">@100-gecs</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 100 gecs. Dataset is available [here](https://huggingface.co/datasets/huggingartists/100-gecs). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/100-gecs") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3c9j4tvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 100 gecs's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/100-gecs') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/100-gecs") model = AutoModelWithLMHead.from_pretrained("huggingartists/100-gecs") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/100-gecs"], "widget": [{"text": "I am"}]}
huggingartists/100-gecs
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/100-gecs", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/aa32202cc20d1dde62e57940a8b278b2.770x770x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">21 Savage</div> <a href="https://genius.com/artists/21-savage"> <div style="text-align: center; font-size: 14px;">@21-savage</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 21 Savage. Dataset is available [here](https://huggingface.co/datasets/huggingartists/21-savage). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/21-savage") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3lbkznnf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 21 Savage's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/21-savage') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/21-savage") model = AutoModelWithLMHead.from_pretrained("huggingartists/21-savage") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/21-savage"], "widget": [{"text": "I am"}]}
huggingartists/21-savage
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/21-savage", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div> <a href="https://genius.com/artists/25-17"> <div style="text-align: center; font-size: 14px;">@25-17</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 25/17. Dataset is available [here](https://huggingface.co/datasets/huggingartists/25-17). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/25-17") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1iuytbjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 25/17's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/25-17') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/25-17") model = AutoModelWithLMHead.from_pretrained("huggingartists/25-17") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/25-17"], "widget": [{"text": "I am"}]}
huggingartists/25-17
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/25-17", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/10f98dca7bcd1a31222e36374544cad5.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">50 Cent</div> <a href="https://genius.com/artists/50-cent"> <div style="text-align: center; font-size: 14px;">@50-cent</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 50 Cent. Dataset is available [here](https://huggingface.co/datasets/huggingartists/50-cent). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/50-cent") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1291qx5n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 50 Cent's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/50-cent') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/50-cent") model = AutoModelWithLMHead.from_pretrained("huggingartists/50-cent") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/50-cent"], "widget": [{"text": "I am"}]}
huggingartists/50-cent
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/50-cent", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/289ded19d51d41798be99217d6059eb3.458x458x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div> <a href="https://genius.com/artists/5nizza"> <div style="text-align: center; font-size: 14px;">@5nizza</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 5’Nizza. Dataset is available [here](https://huggingface.co/datasets/huggingartists/5nizza). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5nizza") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zcp1grf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5’Nizza's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/5nizza') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/5nizza") model = AutoModelWithLMHead.from_pretrained("huggingartists/5nizza") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5nizza"], "widget": [{"text": "I am"}]}
huggingartists/5nizza
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/5nizza", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/c56dce03a151e17a9626e55e6c295bb1.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div> <a href="https://genius.com/artists/5opka"> <div style="text-align: center; font-size: 14px;">@5opka</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 5opka. Dataset is available [here](https://huggingface.co/datasets/huggingartists/5opka). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/5opka") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1o2s4fw8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5opka's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/5opka') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/5opka") model = AutoModelWithLMHead.from_pretrained("huggingartists/5opka") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5opka"], "widget": [{"text": "I am"}]}
huggingartists/5opka
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/5opka", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/b2b164a7c6c02dd0843ad597df5dbf4b.1000x1000x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div> <a href="https://genius.com/artists/6ix9ine"> <div style="text-align: center; font-size: 14px;">@6ix9ine</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from 6ix9ine. Dataset is available [here](https://huggingface.co/datasets/huggingartists/6ix9ine). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/6ix9ine") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/eqmcaj0r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 6ix9ine's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/6ix9ine') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/6ix9ine") model = AutoModelWithLMHead.from_pretrained("huggingartists/6ix9ine") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/6ix9ine"], "widget": [{"text": "I am"}]}
huggingartists/6ix9ine
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/6ix9ine", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div> <a href="https://genius.com/artists/aaron-watson"> <div style="text-align: center; font-size: 14px;">@aaron-watson</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Aaron Watson. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aaron-watson). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aaron-watson") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14ha1tnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aaron Watson's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aaron-watson') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aaron-watson") model = AutoModelWithLMHead.from_pretrained("huggingartists/aaron-watson") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aaron-watson"], "widget": [{"text": "I am"}]}
huggingartists/aaron-watson
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aaron-watson", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/2fa03267661cbc8112b4ef31685e2721.220x220x1.png&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">ABBA</div> <a href="https://genius.com/artists/abba"> <div style="text-align: center; font-size: 14px;">@abba</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ABBA. Dataset is available [here](https://huggingface.co/datasets/huggingartists/abba). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/abba") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3pc6wfre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ABBA's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/abba') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/abba") model = AutoModelWithLMHead.from_pretrained("huggingartists/abba") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/abba"], "widget": [{"text": "I am"}]}
huggingartists/abba
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/abba", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div> <a href="https://genius.com/artists/adele"> <div style="text-align: center; font-size: 14px;">@adele</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Adele. Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/adele") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/adele') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele") model = AutoModelWithLMHead.from_pretrained("huggingartists/adele") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/adele"], "widget": [{"text": "I am"}]}
huggingartists/adele
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/adele", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/61b6b0a0b7f6587d1b33542d5c18ad3c.489x489x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div> <a href="https://genius.com/artists/agata-christie"> <div style="text-align: center; font-size: 14px;">@agata-christie</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from Агата Кристи (Agata Christie). Dataset is available [here](https://huggingface.co/datasets/huggingartists/agata-christie). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/agata-christie") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1dtf6ia5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/agata-christie') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/agata-christie") model = AutoModelWithLMHead.from_pretrained("huggingartists/agata-christie") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/agata-christie"], "widget": [{"text": "I am"}]}
huggingartists/agata-christie
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/agata-christie", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<div class="inline-flex flex-col" style="line-height: 1.5;"> <div class="flex"> <div style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url(&#39;https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg&#39;)"> </div> </div> <div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div> <div style="text-align: center; font-size: 16px; font-weight: 800">⁣aikko</div> <a href="https://genius.com/artists/aikko"> <div style="text-align: center; font-size: 14px;">@aikko</div> </a> </div> I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists). Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)! ## How does it work? To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist). ## Training data The model was trained on lyrics from ⁣aikko. Dataset is available [here](https://huggingface.co/datasets/huggingartists/aikko). And can be used with: ```python from datasets import load_dataset dataset = load_dataset("huggingartists/aikko") ``` [Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1cfdpsrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline. ## Training procedure The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ⁣aikko's lyrics. Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g) for full transparency and reproducibility. At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g/artifacts) is logged and versioned. ## How to use You can use this model directly with a pipeline for text generation: ```python from transformers import pipeline generator = pipeline('text-generation', model='huggingartists/aikko') generator("I am", num_return_sequences=5) ``` Or with Transformers library: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("huggingartists/aikko") model = AutoModelWithLMHead.from_pretrained("huggingartists/aikko") ``` ## Limitations and bias The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias). In addition, the data present in the user's tweets further affects the text generated by the model. ## About *Built by Aleksey Korshuk* [![Follow](https://img.shields.io/github/followers/AlekseyKorshuk?style=social)](https://github.com/AlekseyKorshuk) [![Follow](https://img.shields.io/twitter/follow/alekseykorshuk?style=social)](https://twitter.com/intent/follow?screen_name=alekseykorshuk) [![Follow](https://img.shields.io/badge/dynamic/json?color=blue&label=Telegram%20Channel&query=%24.result&url=https%3A%2F%2Fapi.telegram.org%2Fbot1929545866%3AAAFGhV-KKnegEcLiyYJxsc4zV6C-bdPEBtQ%2FgetChatMemberCount%3Fchat_id%3D-1001253621662&style=social&logo=telegram)](https://t.me/joinchat/_CQ04KjcJ-4yZTky) For more details, visit the project repository. [![GitHub stars](https://img.shields.io/github/stars/AlekseyKorshuk/huggingartists?style=social)](https://github.com/AlekseyKorshuk/huggingartists)
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aikko"], "widget": [{"text": "I am"}]}
huggingartists/aikko
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "huggingartists", "lyrics", "lm-head", "causal-lm", "en", "dataset:huggingartists/aikko", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00