Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
listlengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
text-classification
|
transformers
|
{}
|
howey/electra-base-mrpc
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-base-qnli
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-base-qqp
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
howey/electra-base-squad2
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-base-sst2
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-base-stsb
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-cola
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-mnli
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-mrpc
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-qnli
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-qqp
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-rte
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
question-answering
|
transformers
|
{}
|
howey/electra-large-squad
| null |
[
"transformers",
"pytorch",
"electra",
"question-answering",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
question-answering
|
transformers
|
{}
|
howey/electra-large-squad2
| null |
[
"transformers",
"pytorch",
"electra",
"question-answering",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-sst2
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-large-stsb
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-small-mnli
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/electra-small-qqp
| null |
[
"transformers",
"pytorch",
"electra",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
howey/electra-small-squad2
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
howey/electra-small-sst2
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-cola
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-mnli
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-mrpc
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-qnli
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-qqp
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-rte
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
{}
|
howey/roberta-large-squad2
| null |
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-sst2
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
howey/roberta-large-stsb
| null |
[
"transformers",
"pytorch",
"roberta",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrc/distilbert-base-uncased-finetuned-squad
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrdipto/banga-command-finetuning
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrdipto/wav2vec-word-level-bangla-command
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4241
- Wer: 0.3381
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7749 | 4.0 | 500 | 2.0639 | 1.0018 |
| 0.9252 | 8.0 | 1000 | 0.4853 | 0.4821 |
| 0.3076 | 12.0 | 1500 | 0.4507 | 0.4044 |
| 0.1732 | 16.0 | 2000 | 0.4315 | 0.3688 |
| 0.1269 | 20.0 | 2500 | 0.4481 | 0.3559 |
| 0.1087 | 24.0 | 3000 | 0.4354 | 0.3464 |
| 0.0832 | 28.0 | 3500 | 0.4241 | 0.3381 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
|
hrdipto/wav2vec2-base-timit-demo-colab
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hrdipto/wav2vec2-large-xls-r-300m-bn-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrdipto/wav2vec2-large-xls-r-300m-en-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
{}
|
hrdipto/wav2vec2-xls-r-300m-bangla-command-data
| null |
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-300m-bangla-command-generated-data-finetune
This model is a fine-tuned version of [hrdipto/wav2vec2-xls-r-300m-bangla-command-data](https://huggingface.co/hrdipto/wav2vec2-xls-r-300m-bangla-command-data) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0099
- eval_wer: 0.0208
- eval_runtime: 2.5526
- eval_samples_per_second: 75.217
- eval_steps_per_second: 9.402
- epoch: 71.43
- step: 2000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu111
- Datasets 1.18.3
- Tokenizers 0.11.0
|
{"tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-300m-bangla-command-generated-data-finetune", "results": []}]}
|
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data-finetune
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
automatic-speech-recognition
|
transformers
|
{}
|
hrdipto/wav2vec2-xls-r-300m-bangla-command-generated-data
| null |
[
"transformers",
"pytorch",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru-word-level
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0504
- Wer: 0.6859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 23.217 | 23.81 | 500 | 1.3437 | 0.6859 |
| 1.1742 | 47.62 | 1000 | 1.0397 | 0.6859 |
| 1.0339 | 71.43 | 1500 | 1.0155 | 0.6859 |
| 0.9909 | 95.24 | 2000 | 1.0504 | 0.6859 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru-word-level", "results": []}]}
|
hrdipto/wav2vec2-xls-r-tf-left-right-shuru-word-level
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-shuru
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0921
- Wer: 1.2628
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 6.5528 | 23.81 | 500 | 0.5509 | 1.9487 |
| 0.2926 | 47.62 | 1000 | 0.1306 | 1.2756 |
| 0.1171 | 71.43 | 1500 | 0.1189 | 1.2628 |
| 0.0681 | 95.24 | 2000 | 0.0921 | 1.2628 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-shuru", "results": []}]}
|
hrdipto/wav2vec2-xls-r-tf-left-right-shuru
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-tf-left-right-trainer
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- eval_loss: 0.0090
- eval_wer: 0.0037
- eval_runtime: 11.2686
- eval_samples_per_second: 71.703
- eval_steps_per_second: 8.963
- epoch: 21.05
- step: 4000
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-tf-left-right-trainer", "results": []}]}
|
hrdipto/wav2vec2-xls-r-tf-left-right-trainer
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hrdipto/wav2vec2-xls-r-timit-tokenizer-1b
| null |
[
"tensorboard",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-timit-tokenizer-base
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0828
- Wer: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:---:|
| 3.3134 | 4.03 | 500 | 3.0814 | 1.0 |
| 2.9668 | 8.06 | 1000 | 3.0437 | 1.0 |
| 2.9604 | 12.1 | 1500 | 3.0337 | 1.0 |
| 2.9619 | 16.13 | 2000 | 3.0487 | 1.0 |
| 2.9588 | 20.16 | 2500 | 3.0859 | 1.0 |
| 2.957 | 24.19 | 3000 | 3.0921 | 1.0 |
| 2.9555 | 28.22 | 3500 | 3.0828 | 1.0 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer-base", "results": []}]}
|
hrdipto/wav2vec2-xls-r-timit-tokenizer-base
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-xls-r-timit-tokenizer
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4285
- Wer: 0.3662
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.1571 | 4.03 | 500 | 0.5235 | 0.5098 |
| 0.2001 | 8.06 | 1000 | 0.4172 | 0.4375 |
| 0.0968 | 12.1 | 1500 | 0.4562 | 0.4016 |
| 0.0607 | 16.13 | 2000 | 0.4640 | 0.4050 |
| 0.0409 | 20.16 | 2500 | 0.4688 | 0.3914 |
| 0.0273 | 24.19 | 3000 | 0.4414 | 0.3763 |
| 0.0181 | 28.22 | 3500 | 0.4285 | 0.3662 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-xls-r-timit-tokenizer", "results": []}]}
|
hrdipto/wav2vec2-xls-r-timit-tokenizer
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hrdipto/wav2vec2-xls-r-timit-trainer
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrugved06/DiscbotGPT
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
# Configuration
`title`: _string_
Display title for the Space
`emoji`: _string_
Space emoji (emoji-only character allowed)
`colorFrom`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`colorTo`: _string_
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
`sdk`: _string_
Can be either `gradio` or `streamlit`
`sdk_version` : _string_
Only applicable for `streamlit` SDK.
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
`app_file`: _string_
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
Path is relative to the root of the repository.
`pinned`: _boolean_
Whether the Space stays on top of your list.
|
{"title": "First Order Motion Model", "emoji": "\ud83d\udc22", "colorFrom": "blue", "colorTo": "yellow", "sdk": "gradio", "app_file": "app.py", "pinned": false}
|
hrushikute/DanceOnTune
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
# Rick and Morty DialoGPT Model
|
{"tags": ["conversational"]}
|
hrv/DialoGPT-small-rick-morty
| null |
[
"transformers",
"pytorch",
"gpt2",
"text-generation",
"conversational",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hrxorxm/distill-mbart-en-ro-12-6-finetuned-en-to-ro
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrxorxm/mbart-large-en-ro-finetuned-en-to-ro
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hrxorxm/opus-mt-en-ro-finetuned-en-to-ro
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-timit-demo-colab
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4125
- Wer: 0.3607
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.2018 | 7.94 | 500 | 1.3144 | 0.8508 |
| 0.4671 | 15.87 | 1000 | 0.4737 | 0.4160 |
| 0.1375 | 23.81 | 1500 | 0.4125 | 0.3607 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.10.0+cu111
- Datasets 1.13.3
- Tokenizers 0.10.3
|
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
|
hs788/wav2vec2-base-timit-demo-colab
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"generated_from_trainer",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hs788/wav2vec2-large-xls-basque-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsekhalilian/wav2vec2-base-timit-demo-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsekhalilian/wav2vec2-large-xls-r-300m-persian-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsekhalilian/wav2vec2-large-xls-r-300m-turkish-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsekol/mt5-small-finetuned-amazon-en-es
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsiehpinghan/illegal_ad
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
keras
|
{}
|
hsiehpinghan/pretrained_model
| null |
[
"keras",
"tf",
"electra",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsk/wav2vec2-large-xls-r-300m-turkish-colab
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hsr/hsr
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
{}
|
hsxjzy/elmo_2x4096_512_2048cnn_2xhighway_5.5B
| null |
[
"transformers",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
htorrresjr/ementalyzer
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
huaen/question_detection
| null |
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-classification
|
transformers
|
{}
|
huaen/question_detection_user_utter
| null |
[
"transformers",
"pytorch",
"bert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
Hi, this is Taiwan_House_Prediction.
|
{}
|
huang0624/Taiwan_House_Prediction
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null |
transformers
|
## DynaBERT: Dynamic BERT with Adaptive Width and Depth
* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and
the subnetworks of it have competitive performances as other similar-sized compressed models.
The training process of DynaBERT includes first training a width-adaptive BERT and then
allowing both adaptive width and depth using knowledge distillation.
* This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT).
### Reference
Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.
[DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037).
```
@inproceedings{hou2020dynabert,
title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth},
author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu},
booktitle = {Advances in Neural Information Processing Systems},
year = {2020}
}
```
|
{}
|
huawei-noah/DynaBERT_MNLI
| null |
[
"transformers",
"pytorch",
"jax",
"bert",
"arxiv:2004.04037",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null |
transformers
|
## DynaBERT: Dynamic BERT with Adaptive Width and Depth
* DynaBERT can flexibly adjust the size and latency by selecting adaptive width and depth, and
the subnetworks of it have competitive performances as other similar-sized compressed models.
The training process of DynaBERT includes first training a width-adaptive BERT and then
allowing both adaptive width and depth using knowledge distillation.
* This code is modified based on the repository developed by Hugging Face: [Transformers v2.1.1](https://github.com/huggingface/transformers/tree/v2.1.1), and is released in [GitHub](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/DynaBERT).
### Reference
Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu.
[DynaBERT: Dynamic BERT with Adaptive Width and Depth](https://arxiv.org/abs/2004.04037).
```
@inproceedings{hou2020dynabert,
title = {DynaBERT: Dynamic BERT with Adaptive Width and Depth},
author = {Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, Qun Liu},
booktitle = {Advances in Neural Information Processing Systems},
year = {2020}
}
```
|
{}
|
huawei-noah/DynaBERT_SST-2
| null |
[
"transformers",
"pytorch",
"jax",
"bert",
"arxiv:2004.04037",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
# Overview
<p align="center">
<img src="https://avatars.githubusercontent.com/u/12619994?s=200&v=4" width="150">
</p>
<!-- -------------------------------------------------------------------------------- -->
JABER (Junior Arabic BERt) is a 12-layer Arabic pretrained Language Model.
JABER obtained rank one on [ALUE leaderboard](https://www.alue.org/leaderboard) at `01/09/2021`.
This model is **only compatible** with the code in [this github repo](https://github.com/huawei-noah/Pretrained-Language-Model/tree/master/JABER-PyTorch) (not supported by the [Transformers](https://github.com/huggingface/transformers) library)
## Citation
Please cite the following [paper](https://arxiv.org/abs/2112.04329) when using our code and model:
``` bibtex
@misc{ghaddar2021jaber,
title={JABER: Junior Arabic BERt},
author={Abbas Ghaddar and Yimeng Wu and Ahmad Rashid and Khalil Bibi and Mehdi Rezagholizadeh and Chao Xing and Yasheng Wang and Duan Xinyu and Zhefeng Wang and Baoxing Huai and Xin Jiang and Qun Liu and Philippe Langlais},
year={2021},
eprint={2112.04329},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
|
{}
|
huawei-noah/JABER
| null |
[
"pytorch",
"arxiv:2112.04329",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null |
transformers
|
{}
|
huawei-noah/TernaryBERT_MNLI
| null |
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
{}
|
huawei-noah/TernaryBERT_SST-2
| null |
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
{}
|
huawei-noah/TinyBERT_4L_zh
| null |
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
{}
|
huawei-noah/TinyBERT_6L_zh
| null |
[
"transformers",
"pytorch",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null |
transformers
|
TinyBERT: Distilling BERT for Natural Language Understanding
========
TinyBERT is 7.5x smaller and 9.4x faster on inference than BERT-base and achieves competitive performances in the tasks of natural language understanding. It performs a novel transformer distillation at both the pre-training and task-specific learning stages. In general distillation, we use the original BERT-base without fine-tuning as the teacher and a large-scale text corpus as the learning data. By performing the Transformer distillation on the text from general domain, we obtain a general TinyBERT which provides a good initialization for the task-specific distillation. We here provide the general TinyBERT for your tasks at hand.
For more details about the techniques of TinyBERT, refer to our paper:
[TinyBERT: Distilling BERT for Natural Language Understanding](https://arxiv.org/abs/1909.10351)
Citation
========
If you find TinyBERT useful in your research, please cite the following paper:
```
@article{jiao2019tinybert,
title={Tinybert: Distilling bert for natural language understanding},
author={Jiao, Xiaoqi and Yin, Yichun and Shang, Lifeng and Jiang, Xin and Chen, Xiao and Li, Linlin and Wang, Fang and Liu, Qun},
journal={arXiv preprint arXiv:1909.10351},
year={2019}
}
```
|
{}
|
huawei-noah/TinyBERT_General_4L_312D
| null |
[
"transformers",
"pytorch",
"jax",
"bert",
"arxiv:1909.10351",
"endpoints_compatible",
"has_space",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null |
transformers
|
{}
|
huawei-noah/TinyBERT_General_6L_768D
| null |
[
"transformers",
"pytorch",
"jax",
"bert",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
automatic-speech-recognition
|
transformers
|
{}
|
huchenxu/timit_phoneme
| null |
[
"transformers",
"pytorch",
"tensorboard",
"wav2vec2",
"automatic-speech-recognition",
"endpoints_compatible",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hugbump/bert-finetuned-ner
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hugbump/just-a-dir-4-bert-finetuned-ner
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hugbump/just-a-dir-bert-finetuned-ner
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
This is an Audacity wrapper for the model, forked from the repository `groadabike/ConvTasNet_DAMP-VSEP_enhboth`,
This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid.
The following info was copied directly from `groadabike/ConvTasNet_DAMP-VSEP_enhboth`:
### Description:
This model was trained by Gerardo Roa Dabike using Asteroid. It was trained on the enh_both task of the DAMP-VSEP dataset.
### Training config:
```yaml
data:
channels: 1
n_src: 2
root_path: data
sample_rate: 16000
samples_per_track: 10
segment: 3.0
task: enh_both
filterbank:
kernel_size: 20
n_filters: 256
stride: 10
main_args:
exp_dir: exp/train_convtasnet
help: None
masknet:
bn_chan: 256
conv_kernel_size: 3
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 4
n_src: 2
norm_type: gLN
skip_chan: 256
optim:
lr: 0.0003
optimizer: adam
weight_decay: 0.0
positional arguments:
training:
batch_size: 12
early_stop: True
epochs: 50
half_lr: True
num_workers: 12
```
### Results:
```yaml
si_sdr: 14.018196157142519
si_sdr_imp: 14.017103133809577
sdr: 14.498517291333885
sdr_imp: 14.463389151567865
sir: 24.149634529133372
sir_imp: 24.11450638936735
sar: 15.338597389045935
sar_imp: -137.30634122401517
stoi: 0.7639416744417206
stoi_imp: 0.1843383526963759
```
### License notice:
This work "ConvTasNet_DAMP-VSEP_enhboth" is a derivative of DAMP-VSEP: Smule Digital Archive of Mobile Performances - Vocal Separation (Version 1.0.1) by Smule, Inc, used under Smule's Research Data License Agreement (Research only). "ConvTasNet_DAMP-VSEP_enhboth" is licensed under Attribution-ShareAlike 3.0 Unported by Gerardo Roa Dabike.
|
{"tags": ["audacity"], "inference": false, "sample_rate": 8000}
|
hugggof/ConvTasNet-DAMP-Vocals
| null |
[
"audacity",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hugggof/ConvTasNet_Libri1Mix_enhsignle_16k
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
{}
|
hugggof/ConvTasNet_Libri2Mix_sepnoisy_16k
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
This is an Audacity wrapper for the model, forked from the repository `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`,
This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid.
The following info was copied directly from `JorisCos/ConvTasNet_Libri3Mix_sepnoisy_16k`:
Description:
This model was trained by Joris Cosentino using the librimix recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_noisy` task of the Libri3Mix dataset.
Training config:
```yml
data:
n_src: 3
sample_rate: 16000
segment: 3
task: sep_noisy
train_dir: data/wav16k/min/train-360
valid_dir: data/wav16k/min/dev
filterbank:
kernel_size: 32
n_filters: 512
stride: 16
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 3
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
training:
batch_size: 8
early_stop: true
epochs: 200
half_lr: true
num_workers: 4
```
Results:
On Libri3Mix min test set :
```yml
si_sdr: 5.926151147554517
si_sdr_imp: 10.282912158535625
sdr: 6.700975236867358
sdr_imp: 10.882972447337504
sir: 15.364110064569388
sir_imp: 18.574476587171688
sar: 7.918866830474568
sar_imp: -0.9638973409971135
stoi: 0.7713777027310713
stoi_imp: 0.2078696167973911
```
License notice:
This work "ConvTasNet_Libri3Mix_sepnoisy_16k" is a derivative of [LibriSpeech ASR corpus](http://www.openslr.org/12) by Vassil Panayotov,
used under [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/); of The WSJ0 Hipster Ambient Mixtures
dataset by [Whisper.ai](http://wham.whisper.ai/), used under [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/).
"ConvTasNet_Libri3Mix_sepnoisy_16k" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/) by Joris Cosentino
|
{"tags": ["audacity"], "inference": false}
|
hugggof/ConvTasNet_Libri3Mix_sepnoisy_16k
| null |
[
"audacity",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
This is an Audacity wrapper for the model, forked from the repository mpariente/ConvTasNet_WHAM_sepclean,
This model was trained using the Asteroid library: https://github.com/asteroid-team/asteroid.
The following info was copied from `mpariente/ConvTasNet_WHAM_sepclean`:
### Description:
This model was trained by Manuel Pariente
using the wham/ConvTasNet recipe in [Asteroid](https://github.com/asteroid-team/asteroid).
It was trained on the `sep_clean` task of the WHAM! dataset.
### Training config:
```yaml
data:
n_src: 2
mode: min
nondefault_nsrc: None
sample_rate: 8000
segment: 3
task: sep_clean
train_dir: data/wav8k/min/tr/
valid_dir: data/wav8k/min/cv/
filterbank:
kernel_size: 16
n_filters: 512
stride: 8
main_args:
exp_dir: exp/wham
gpus: -1
help: None
masknet:
bn_chan: 128
hid_chan: 512
mask_act: relu
n_blocks: 8
n_repeats: 3
n_src: 2
skip_chan: 128
optim:
lr: 0.001
optimizer: adam
weight_decay: 0.0
positional arguments:
training:
batch_size: 24
early_stop: True
epochs: 200
half_lr: True
num_workers: 4
```
### Results:
```yaml
si_sdr: 16.21326632846293
si_sdr_imp: 16.21441705664987
sdr: 16.615180021738933
sdr_imp: 16.464137807433435
sir: 26.860503975131923
sir_imp: 26.709461760826414
sar: 17.18312813480803
sar_imp: -131.99332048277296
stoi: 0.9619940905157323
stoi_imp: 0.2239480672473015
```
### License notice:
This work "ConvTasNet_WHAM!_sepclean" is a derivative of [CSR-I (WSJ0) Complete](https://catalog.ldc.upenn.edu/LDC93S6A)
by [LDC](https://www.ldc.upenn.edu/), used under [LDC User Agreement for
Non-Members](https://catalog.ldc.upenn.edu/license/ldc-non-members-agreement.pdf) (Research only).
"ConvTasNet_WHAM!_sepclean" is licensed under [Attribution-ShareAlike 3.0 Unported](https://creativecommons.org/licenses/by-sa/3.0/)
by Manuel Pariente.
|
{"tags": ["audacity"], "inference": false}
|
hugggof/ConvTasNet_WHAM_sepclean
| null |
[
"audacity",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hugggof/audacity-models
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
null | null |
## Music Source Separation in the Waveform Domain
This is the Demucs model, serialized from Facebook Research's pretrained models.
From Facebook research:
Demucs is based on U-Net convolutional architecture inspired by Wave-U-Net and SING, with GLUs, a BiLSTM between the encoder and decoder, specific initialization of weights and transposed convolutions in the decoder.
This is the `demucs_extra` version, meaning that is was trained on the MusDB dataset, along with 150 extra songs of data.
See [facebookresearch's repository](https://github.com/facebookresearch/demucs) for more information on Demucs.
|
{"tags": "audacity"}
|
hugggof/demucs_extra
| null |
[
"audacity",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
# Labeler With Timestamps
## Being used for the `Audio Labeler` effect in Audacity
This is a audio labeler model which is used in Audacity's labeler effect.
metadata:
```
{
"sample_rate": 48000,
"domain_tags": ["Music"],
"tags": ["Audio Labeler"],
"effect_type": "waveform-to-labels",
"multichannel": false,
"labels": ["Acoustic Guitar", "Auxiliary Percussion", "Brass", "Clean Electric Guitar", "Distorted Electric Guitar", "Double Bass", "Drum Set", "Electric Bass", "Flute", "piano", "Reeds", "Saxophone", "Strings", "Trumpet", "Voice"],
"short_description": "Use me to label some instruments!",
"long_description": "An audio labeler, which outputs label predictions and time ranges for the labels. This model can label various instruments listed in the labels section."
}
```
|
{"tags": ["audacity"], "inference": false}
|
hugggof/openl3-labeler-w-timestamps
| null |
[
"audacity",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
null | null |
{}
|
hugggof/violin-ddsp
| null |
[
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/9fd98af9a817af8cd78636f71895b6ad.500x500x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">100 gecs</div>
<a href="https://genius.com/artists/100-gecs">
<div style="text-align: center; font-size: 14px;">@100-gecs</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 100 gecs.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/100-gecs).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/100-gecs")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3c9j4tvq/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 100 gecs's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1v0ffa4e/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/100-gecs')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/100-gecs")
model = AutoModelWithLMHead.from_pretrained("huggingartists/100-gecs")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/100-gecs"], "widget": [{"text": "I am"}]}
|
huggingartists/100-gecs
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/100-gecs",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/aa32202cc20d1dde62e57940a8b278b2.770x770x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">21 Savage</div>
<a href="https://genius.com/artists/21-savage">
<div style="text-align: center; font-size: 14px;">@21-savage</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 21 Savage.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/21-savage).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/21-savage")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3lbkznnf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 21 Savage's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1fw9b6m4/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/21-savage')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/21-savage")
model = AutoModelWithLMHead.from_pretrained("huggingartists/21-savage")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/21-savage"], "widget": [{"text": "I am"}]}
|
huggingartists/21-savage
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/21-savage",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/4fedc5dd2830a874a5274bf1cac62002.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">25/17</div>
<a href="https://genius.com/artists/25-17">
<div style="text-align: center; font-size: 14px;">@25-17</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 25/17.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/25-17).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/25-17")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1iuytbjp/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 25/17's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/knv4l4gw/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/25-17')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/25-17")
model = AutoModelWithLMHead.from_pretrained("huggingartists/25-17")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/25-17"], "widget": [{"text": "I am"}]}
|
huggingartists/25-17
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/25-17",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/10f98dca7bcd1a31222e36374544cad5.1000x1000x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">50 Cent</div>
<a href="https://genius.com/artists/50-cent">
<div style="text-align: center; font-size: 14px;">@50-cent</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 50 Cent.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/50-cent).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/50-cent")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1291qx5n/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 50 Cent's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/1igwpphq/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/50-cent')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/50-cent")
model = AutoModelWithLMHead.from_pretrained("huggingartists/50-cent")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/50-cent"], "widget": [{"text": "I am"}]}
|
huggingartists/50-cent
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/50-cent",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/289ded19d51d41798be99217d6059eb3.458x458x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">5’Nizza</div>
<a href="https://genius.com/artists/5nizza">
<div style="text-align: center; font-size: 14px;">@5nizza</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 5’Nizza.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/5nizza).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/5nizza")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1zcp1grf/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5’Nizza's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/2zg6pzw7/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/5nizza')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/5nizza")
model = AutoModelWithLMHead.from_pretrained("huggingartists/5nizza")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5nizza"], "widget": [{"text": "I am"}]}
|
huggingartists/5nizza
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/5nizza",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/c56dce03a151e17a9626e55e6c295bb1.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">5opka</div>
<a href="https://genius.com/artists/5opka">
<div style="text-align: center; font-size: 14px;">@5opka</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 5opka.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/5opka).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/5opka")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1o2s4fw8/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 5opka's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3vitposx/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/5opka')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/5opka")
model = AutoModelWithLMHead.from_pretrained("huggingartists/5opka")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/5opka"], "widget": [{"text": "I am"}]}
|
huggingartists/5opka
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/5opka",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/b2b164a7c6c02dd0843ad597df5dbf4b.1000x1000x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">6ix9ine</div>
<a href="https://genius.com/artists/6ix9ine">
<div style="text-align: center; font-size: 14px;">@6ix9ine</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from 6ix9ine.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/6ix9ine).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/6ix9ine")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/eqmcaj0r/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on 6ix9ine's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/s5dpg3h2/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/6ix9ine')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/6ix9ine")
model = AutoModelWithLMHead.from_pretrained("huggingartists/6ix9ine")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/6ix9ine"], "widget": [{"text": "I am"}]}
|
huggingartists/6ix9ine
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/6ix9ine",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/894021d09a748eef8c6d63ad898b814b.650x430x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Aaron Watson</div>
<a href="https://genius.com/artists/aaron-watson">
<div style="text-align: center; font-size: 14px;">@aaron-watson</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Aaron Watson.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/aaron-watson).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/aaron-watson")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/14ha1tnc/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Aaron Watson's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/34e4zb2v/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/aaron-watson')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/aaron-watson")
model = AutoModelWithLMHead.from_pretrained("huggingartists/aaron-watson")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aaron-watson"], "widget": [{"text": "I am"}]}
|
huggingartists/aaron-watson
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/aaron-watson",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/2fa03267661cbc8112b4ef31685e2721.220x220x1.png')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">ABBA</div>
<a href="https://genius.com/artists/abba">
<div style="text-align: center; font-size: 14px;">@abba</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from ABBA.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/abba).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/abba")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/3pc6wfre/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on ABBA's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3b7wqd1w/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/abba')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/abba")
model = AutoModelWithLMHead.from_pretrained("huggingartists/abba")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/abba"], "widget": [{"text": "I am"}]}
|
huggingartists/abba
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/abba",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/4c3ac1f1d845d251671a892309b5f9b5.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Adele</div>
<a href="https://genius.com/artists/adele">
<div style="text-align: center; font-size: 14px;">@adele</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Adele.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/adele).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/adele")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1yyqw6ss/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Adele's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/3qruwjpr/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/adele')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/adele")
model = AutoModelWithLMHead.from_pretrained("huggingartists/adele")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/adele"], "widget": [{"text": "I am"}]}
|
huggingartists/adele
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/adele",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/61b6b0a0b7f6587d1b33542d5c18ad3c.489x489x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">Агата Кристи (Agata Christie)</div>
<a href="https://genius.com/artists/agata-christie">
<div style="text-align: center; font-size: 14px;">@agata-christie</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from Агата Кристи (Agata Christie).
Dataset is available [here](https://huggingface.co/datasets/huggingartists/agata-christie).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/agata-christie")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1dtf6ia5/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on Агата Кристи (Agata Christie)'s lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/q27fvz1h/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/agata-christie')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/agata-christie")
model = AutoModelWithLMHead.from_pretrained("huggingartists/agata-christie")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/agata-christie"], "widget": [{"text": "I am"}]}
|
huggingartists/agata-christie
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/agata-christie",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
text-generation
|
transformers
|
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%; background-size: cover; background-image: url('https://images.genius.com/a1a40316d1405fa83df2a21923d64168.1000x1000x1.jpg')">
</div>
</div>
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">🤖 HuggingArtists Model 🤖</div>
<div style="text-align: center; font-size: 16px; font-weight: 800">aikko</div>
<a href="https://genius.com/artists/aikko">
<div style="text-align: center; font-size: 14px;">@aikko</div>
</a>
</div>
I was made with [huggingartists](https://github.com/AlekseyKorshuk/huggingartists).
Create your own bot based on your favorite artist with [the demo](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb)!
## How does it work?
To understand how the model was developed, check the [W&B report](https://wandb.ai/huggingartists/huggingartists/reportlist).
## Training data
The model was trained on lyrics from aikko.
Dataset is available [here](https://huggingface.co/datasets/huggingartists/aikko).
And can be used with:
```python
from datasets import load_dataset
dataset = load_dataset("huggingartists/aikko")
```
[Explore the data](https://wandb.ai/huggingartists/huggingartists/runs/1cfdpsrg/artifacts), which is tracked with [W&B artifacts](https://docs.wandb.com/artifacts) at every step of the pipeline.
## Training procedure
The model is based on a pre-trained [GPT-2](https://huggingface.co/gpt2) which is fine-tuned on aikko's lyrics.
Hyperparameters and metrics are recorded in the [W&B training run](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g) for full transparency and reproducibility.
At the end of training, [the final model](https://wandb.ai/huggingartists/huggingartists/runs/oesyn53g/artifacts) is logged and versioned.
## How to use
You can use this model directly with a pipeline for text generation:
```python
from transformers import pipeline
generator = pipeline('text-generation',
model='huggingartists/aikko')
generator("I am", num_return_sequences=5)
```
Or with Transformers library:
```python
from transformers import AutoTokenizer, AutoModelWithLMHead
tokenizer = AutoTokenizer.from_pretrained("huggingartists/aikko")
model = AutoModelWithLMHead.from_pretrained("huggingartists/aikko")
```
## Limitations and bias
The model suffers from [the same limitations and bias as GPT-2](https://huggingface.co/gpt2#limitations-and-bias).
In addition, the data present in the user's tweets further affects the text generated by the model.
## About
*Built by Aleksey Korshuk*
[](https://github.com/AlekseyKorshuk)
[](https://twitter.com/intent/follow?screen_name=alekseykorshuk)
[](https://t.me/joinchat/_CQ04KjcJ-4yZTky)
For more details, visit the project repository.
[](https://github.com/AlekseyKorshuk/huggingartists)
|
{"language": "en", "tags": ["huggingartists", "lyrics", "lm-head", "causal-lm"], "datasets": ["huggingartists/aikko"], "widget": [{"text": "I am"}]}
|
huggingartists/aikko
| null |
[
"transformers",
"pytorch",
"jax",
"gpt2",
"text-generation",
"huggingartists",
"lyrics",
"lm-head",
"causal-lm",
"en",
"dataset:huggingartists/aikko",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null |
2022-03-02T23:29:05+00:00
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.