Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
sequencelengths
1
1.84k
sha
null
created_at
stringlengths
25
25
null
null
{}
HJHGJGHHG/paddle-fnet-large
null
[ "paddlepaddle", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
basically, it makes pickup lines https://huggingface.co/gpt2
{}
HJK/PickupLineGenerator
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HOmoikane/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
The model that generates the My little pony script Fine tuning data: [Kaggle](https://www.kaggle.com/liury123/my-little-pony-transcript?select=clean_dialog.csv) API page: [Ainize](https://ainize.ai/fpem123/GPT2-MyLittlePony) Demo page: [End point](https://master-gpt2-my-little-pony-fpem123.endpoint.ainize.ai/) ### Model information Base model: gpt-2 large Epoch: 30 Train runtime: 4943.9641 secs Loss: 0.0291 ###===Teachable NLP=== To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp)
{}
HScomcom/gpt2-MyLittlePony
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
### Model information Fine tuning data: https://www.kaggle.com/cuddlefish/fairy-tales License: CC0: Public Domain Base model: gpt-2 large Epoch: 30 Train runtime: 17861.6048 secs Loss: 0.0412 API page: [Ainize](https://ainize.ai/fpem123/GPT2-FairyTales?branch=master) Demo page: [End-point](https://master-gpt2-fairy-tales-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== ### To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp) And my other fairytale model: [showcase](https://forum.ainetwork.ai/t/teachable-nlp-gpt-2-fairy-tales/68)
{}
HScomcom/gpt2-fairytales
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
HScomcom/gpt2-friends
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
HScomcom/gpt2-game-of-thrones
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
### Model information Fine tuning data: https://www.kaggle.com/bennijesus/lovecraft-fiction License: CC0: Public Domain Base model: gpt-2 large Epoch: 30 Train runtime: 10307.3488 secs Loss: 0.0292 API page: [Ainize](https://ainize.ai/fpem123/GPT2-LoveCraft?branch=master) Demo page: [End-point](https://master-gpt2-love-craft-fpem123.endpoint.ainize.ai/) ### ===Teachable NLP=== To train a GPT-2 model, write code and require GPU resources, but can easily fine-tune and get an API to use the model here for free. Teachable NLP: [Teachable NLP](https://ainize.ai/teachable-nlp) Tutorial: [Tutorial](https://forum.ainetwork.ai/t/teachable-nlp-how-to-use-teachable-nlp/65?utm_source=community&utm_medium=huggingface&utm_campaign=model&utm_content=teachable%20nlp) And my other lovecraft model: [showcase](https://forum.ainetwork.ai/t/teachable-nlp-gpt-2-lovecraft/71)
{}
HScomcom/gpt2-lovecraft
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
{}
HScomcom/gpt2-theoffice
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HUNGPHAM/NewModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HUNGPHAM/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
This is a RainGAN model
{}
HVH/RainGAN
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
HackMIT/double-agent
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Harry Potter DialoGPT Model
{"tags": ["conversational"]}
HackyHackyMan/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
Hadron/DialoGPT-medium-nino
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
hchang/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
HaitaoYang/bert_cn_bi-classification
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HaitaoYang/bert_cn_finetuning
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hakar/Funny
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hakun/TestModeel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hal9000/12
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Haley/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Half-cup-of-tea/bert-base-uncased-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Half-cup-of-tea/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Peter from Your Boyfriend Game.
{"tags": ["conversational"]}
Hallzy/Peterbot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jake DialoGPT-large-jake
{"tags": ["conversational"]}
Hamas/DialoGPT-large-jake
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jake DialoGPT-large-jake2
{"tags": ["conversational"]}
Hamas/DialoGPT-large-jake2
null
[ "transformers", "pytorch", "safetensors", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jake DialoGPT-large-jake
{"tags": ["conversational"]}
Hamas/DialoGPT-large-jake3
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jake DialoGPT-large-jake
{"tags": ["conversational"]}
Hamas/DialoGPT-large-jake4
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Rick DialoGPT Model
{"tags": ["conversational"]}
Hamhams/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
## GPT2-Home This model is fine-tuned using GPT-2 on amazon home products metadata. It can generate descriptions for your **home** products by getting a text prompt. ### Model description [GPT-2](https://openai.com/blog/better-language-models/) is a large [transformer](https://arxiv.org/abs/1706.03762)-based language model with 1.5 billion parameters, trained on a dataset of 8 million web pages. GPT-2 is trained with a simple objective: predict the next word, given all of the previous words within some text. The diversity of the dataset causes this simple goal to contain naturally occurring demonstrations of many tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X the parameters and trained on more than 10X the amount of data. ### Live Demo For testing model with special configuration, please visit [Demo](https://huggingface.co/spaces/HamidRezaAttar/gpt2-home) ### Blog Post For more detailed information about project development please refer to my [blog post](https://hamidrezaattar.github.io/blog/markdown/2022/02/17/gpt2-home.html). ### How to use For best experience and clean outputs, you can use Live Demo mentioned above, also you can use the notebook mentioned in my [GitHub](https://github.com/HamidRezaAttar/GPT2-Home) You can use this model directly with a pipeline for text generation. ```python >>> from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline >>> tokenizer = AutoTokenizer.from_pretrained("HamidRezaAttar/gpt2-product-description-generator") >>> model = AutoModelForCausalLM.from_pretrained("HamidRezaAttar/gpt2-product-description-generator") >>> generator = pipeline('text-generation', model, tokenizer=tokenizer, config={'max_length':100}) >>> generated_text = generator("This bed is very comfortable.") ``` ### Citation info ```bibtex @misc{GPT2-Home, author = {HamidReza Fatollah Zadeh Attar}, title = {GPT2-Home the English home product description generator}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/HamidRezaAttar/GPT2-Home}}, } ```
{"language": "en", "license": "apache-2.0", "tags": ["text-generation"], "widget": [{"text": "Maximize your bedroom space without sacrificing style with the storage bed."}, {"text": "Handcrafted of solid acacia in weathered gray, our round Jozy drop-leaf dining table is a space-saving."}, {"text": "Our plush and luxurious Emmett modular sofa brings custom comfort to your living space."}]}
HamidRezaAttar/gpt2-product-description-generator
null
[ "transformers", "pytorch", "gpt2", "text-generation", "en", "arxiv:1706.03762", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Han11/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HanJing/test_model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hanaa98/Hana
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hanchen/roberta-large
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
Model Description
{}
Hanchen/testRepo
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0612 - Precision: 0.9259 - Recall: 0.9369 - F1: 0.9314 - Accuracy: 0.9839 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.243 | 1.0 | 878 | 0.0703 | 0.9134 | 0.9181 | 0.9158 | 0.9806 | | 0.0515 | 2.0 | 1756 | 0.0609 | 0.9214 | 0.9343 | 0.9278 | 0.9832 | | 0.0305 | 3.0 | 2634 | 0.0612 | 0.9259 | 0.9369 | 0.9314 | 0.9839 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model_index": [{"name": "distilbert-base-uncased-finetuned-ner", "results": [{"task": {"name": "Token Classification", "type": "token-classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metric": {"name": "Accuracy", "type": "accuracy", "value": 0.9839229828268226}}]}]}
Hank/distilbert-base-uncased-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hano/Asher
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Rick from Rick & Morty DialoGPT Model
{"tags": ["conversational"]}
HansAnonymous/DialoGPT-medium-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Shrek from Shrek DialoGPT Model
{"tags": ["conversational"]}
HansAnonymous/DialoGPT-small-shrek
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilgpt2-finetuned-wikitext2 This model is a fine-tuned version of [distilgpt2](https://huggingface.co/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.6424 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 3.7608 | 1.0 | 2334 | 3.6655 | | 3.6335 | 2.0 | 4668 | 3.6455 | | 3.6066 | 3.0 | 7002 | 3.6424 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.12.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"]}
Haotian/distilgpt2-finetuned-wikitext2
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HarjyotSahni/personal
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.9613 - Wer: 0.5376 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.3118 | 1.96 | 100 | 2.9093 | 0.9982 | | 2.2071 | 3.92 | 200 | 1.1737 | 0.7779 | | 1.6098 | 5.88 | 300 | 0.9984 | 0.7015 | | 1.4333 | 7.84 | 400 | 0.9800 | 0.6705 | | 1.2859 | 9.8 | 500 | 0.9582 | 0.6487 | | 1.2073 | 11.76 | 600 | 0.8841 | 0.6077 | | 1.1417 | 13.73 | 700 | 0.9118 | 0.6343 | | 1.0988 | 15.69 | 800 | 0.9217 | 0.6196 | | 1.0279 | 17.65 | 900 | 0.9165 | 0.5867 | | 0.9765 | 19.61 | 1000 | 0.9306 | 0.5978 | | 0.9161 | 21.57 | 1100 | 0.9305 | 0.5768 | | 0.8395 | 23.53 | 1200 | 0.9828 | 0.5819 | | 0.8306 | 25.49 | 1300 | 0.9397 | 0.5760 | | 0.7819 | 27.45 | 1400 | 0.9544 | 0.5742 | | 0.7509 | 29.41 | 1500 | 0.9278 | 0.5690 | | 0.7218 | 31.37 | 1600 | 0.9003 | 0.5587 | | 0.6725 | 33.33 | 1700 | 0.9659 | 0.5554 | | 0.6287 | 35.29 | 1800 | 0.9522 | 0.5561 | | 0.6077 | 37.25 | 1900 | 0.9154 | 0.5465 | | 0.5873 | 39.22 | 2000 | 0.9331 | 0.5469 | | 0.5621 | 41.18 | 2100 | 0.9335 | 0.5491 | | 0.5168 | 43.14 | 2200 | 0.9632 | 0.5458 | | 0.5114 | 45.1 | 2300 | 0.9349 | 0.5387 | | 0.4986 | 47.06 | 2400 | 0.9364 | 0.5380 | | 0.4761 | 49.02 | 2500 | 0.9584 | 0.5391 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 44.13, "name": "Test WER"}]}]}]}
HarrisDePerceptron/xls-r-1b-ur
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.2924 - Wer: 0.7201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 200.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 11.2783 | 4.17 | 100 | 4.6409 | 1.0 | | 3.5578 | 8.33 | 200 | 3.1649 | 1.0 | | 3.1279 | 12.5 | 300 | 3.0335 | 1.0 | | 2.9944 | 16.67 | 400 | 2.9526 | 0.9983 | | 2.9275 | 20.83 | 500 | 2.9291 | 1.0009 | | 2.8077 | 25.0 | 600 | 2.5633 | 0.9895 | | 2.4438 | 29.17 | 700 | 1.9045 | 0.9564 | | 1.9659 | 33.33 | 800 | 1.4114 | 0.7960 | | 1.7092 | 37.5 | 900 | 1.2584 | 0.7637 | | 1.517 | 41.67 | 1000 | 1.2040 | 0.7507 | | 1.3966 | 45.83 | 1100 | 1.1273 | 0.7463 | | 1.3197 | 50.0 | 1200 | 1.1054 | 0.6957 | | 1.2476 | 54.17 | 1300 | 1.1035 | 0.7001 | | 1.1796 | 58.33 | 1400 | 1.0890 | 0.7097 | | 1.1237 | 62.5 | 1500 | 1.0883 | 0.7167 | | 1.0777 | 66.67 | 1600 | 1.1067 | 0.7219 | | 1.0051 | 70.83 | 1700 | 1.1115 | 0.7236 | | 0.9521 | 75.0 | 1800 | 1.0867 | 0.7132 | | 0.9147 | 79.17 | 1900 | 1.0852 | 0.7210 | | 0.8798 | 83.33 | 2000 | 1.1411 | 0.7097 | | 0.8317 | 87.5 | 2100 | 1.1634 | 0.7018 | | 0.7946 | 91.67 | 2200 | 1.1621 | 0.7201 | | 0.7594 | 95.83 | 2300 | 1.1482 | 0.7036 | | 0.729 | 100.0 | 2400 | 1.1493 | 0.7062 | | 0.7055 | 104.17 | 2500 | 1.1726 | 0.6931 | | 0.6622 | 108.33 | 2600 | 1.1938 | 0.7001 | | 0.6583 | 112.5 | 2700 | 1.1832 | 0.7149 | | 0.6299 | 116.67 | 2800 | 1.1996 | 0.7175 | | 0.5903 | 120.83 | 2900 | 1.1986 | 0.7132 | | 0.5816 | 125.0 | 3000 | 1.1909 | 0.7010 | | 0.5583 | 129.17 | 3100 | 1.2079 | 0.6870 | | 0.5392 | 133.33 | 3200 | 1.2109 | 0.7228 | | 0.5412 | 137.5 | 3300 | 1.2353 | 0.7245 | | 0.5136 | 141.67 | 3400 | 1.2390 | 0.7254 | | 0.5007 | 145.83 | 3500 | 1.2273 | 0.7123 | | 0.4883 | 150.0 | 3600 | 1.2773 | 0.7289 | | 0.4835 | 154.17 | 3700 | 1.2678 | 0.7289 | | 0.4568 | 158.33 | 3800 | 1.2592 | 0.7350 | | 0.4525 | 162.5 | 3900 | 1.2705 | 0.7254 | | 0.4379 | 166.67 | 4000 | 1.2717 | 0.7306 | | 0.4198 | 170.83 | 4100 | 1.2618 | 0.7219 | | 0.4216 | 175.0 | 4200 | 1.2909 | 0.7158 | | 0.4305 | 179.17 | 4300 | 1.2808 | 0.7167 | | 0.399 | 183.33 | 4400 | 1.2750 | 0.7193 | | 0.3937 | 187.5 | 4500 | 1.2719 | 0.7149 | | 0.3905 | 191.67 | 4600 | 1.2816 | 0.7158 | | 0.3892 | 195.83 | 4700 | 1.2951 | 0.7210 | | 0.3932 | 200.0 | 4800 | 1.2924 | 0.7201 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
HarrisDePerceptron/xls-r-300m-ur-cv7
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3](https://huggingface.co/DrishtiSharma/wav2vec2-large-xls-r-300m-hi-d3) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.5443 - Wer: 0.7030 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.000388 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 750 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.7052 | 1.96 | 100 | 3.4683 | 1.0 | | 3.2395 | 3.92 | 200 | 3.1489 | 1.0 | | 2.9951 | 5.88 | 300 | 2.9823 | 1.0007 | | 2.3574 | 7.84 | 400 | 1.2614 | 0.7598 | | 1.7287 | 9.8 | 500 | 1.1817 | 0.7421 | | 1.6144 | 11.76 | 600 | 1.1315 | 0.7321 | | 1.5598 | 13.73 | 700 | 1.2322 | 0.7550 | | 1.5418 | 15.69 | 800 | 1.2721 | 0.7819 | | 1.4578 | 17.65 | 900 | 1.1710 | 0.7531 | | 1.4311 | 19.61 | 1000 | 1.2042 | 0.7491 | | 1.3483 | 21.57 | 1100 | 1.1702 | 0.7465 | | 1.3078 | 23.53 | 1200 | 1.1963 | 0.7421 | | 1.2576 | 25.49 | 1300 | 1.1501 | 0.7280 | | 1.2173 | 27.45 | 1400 | 1.2526 | 0.7299 | | 1.2217 | 29.41 | 1500 | 1.2479 | 0.7310 | | 1.1536 | 31.37 | 1600 | 1.2567 | 0.7432 | | 1.0939 | 33.33 | 1700 | 1.2801 | 0.7247 | | 1.0745 | 35.29 | 1800 | 1.2340 | 0.7151 | | 1.0454 | 37.25 | 1900 | 1.2372 | 0.7151 | | 1.0101 | 39.22 | 2000 | 1.2461 | 0.7376 | | 0.9833 | 41.18 | 2100 | 1.2553 | 0.7269 | | 0.9314 | 43.14 | 2200 | 1.2372 | 0.7015 | | 0.9147 | 45.1 | 2300 | 1.3035 | 0.7358 | | 0.8758 | 47.06 | 2400 | 1.2598 | 0.7092 | | 0.8356 | 49.02 | 2500 | 1.2557 | 0.7144 | | 0.8105 | 50.98 | 2600 | 1.2619 | 0.7236 | | 0.7947 | 52.94 | 2700 | 1.3994 | 0.7491 | | 0.7623 | 54.9 | 2800 | 1.2932 | 0.7133 | | 0.7282 | 56.86 | 2900 | 1.2799 | 0.7089 | | 0.7108 | 58.82 | 3000 | 1.3615 | 0.7148 | | 0.6896 | 60.78 | 3100 | 1.3129 | 0.7041 | | 0.6496 | 62.75 | 3200 | 1.4050 | 0.6934 | | 0.6075 | 64.71 | 3300 | 1.3571 | 0.7026 | | 0.6242 | 66.67 | 3400 | 1.3369 | 0.7063 | | 0.5865 | 68.63 | 3500 | 1.4368 | 0.7140 | | 0.5721 | 70.59 | 3600 | 1.4224 | 0.7066 | | 0.5475 | 72.55 | 3700 | 1.4798 | 0.7118 | | 0.5086 | 74.51 | 3800 | 1.5107 | 0.7232 | | 0.4958 | 76.47 | 3900 | 1.4849 | 0.7089 | | 0.5046 | 78.43 | 4000 | 1.4451 | 0.7114 | | 0.4694 | 80.39 | 4100 | 1.4674 | 0.7089 | | 0.4386 | 82.35 | 4200 | 1.5245 | 0.7103 | | 0.4516 | 84.31 | 4300 | 1.5032 | 0.7103 | | 0.4113 | 86.27 | 4400 | 1.5246 | 0.7196 | | 0.3972 | 88.24 | 4500 | 1.5318 | 0.7114 | | 0.4006 | 90.2 | 4600 | 1.5543 | 0.6982 | | 0.4014 | 92.16 | 4700 | 1.5442 | 0.7048 | | 0.3672 | 94.12 | 4800 | 1.5542 | 0.7137 | | 0.3666 | 96.08 | 4900 | 1.5414 | 0.7018 | | 0.3574 | 98.04 | 5000 | 1.5465 | 0.7059 | | 0.3428 | 100.0 | 5100 | 1.5443 | 0.7030 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
HarrisDePerceptron/xls-r-300m-ur-cv8-hi
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [HarrisDePerceptron/xls-r-300m-ur](https://huggingface.co/HarrisDePerceptron/xls-r-300m-ur) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.0517 - WER: 0.5151291512915129 - CER: 0.23689640940982254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.2991 | 1.96 | 100 | 0.9769 | 0.6627 | | 1.3415 | 3.92 | 200 | 0.9701 | 0.6594 | | 1.2998 | 5.88 | 300 | 0.9678 | 0.6668 | | 1.2881 | 7.84 | 400 | 0.9650 | 0.6613 | | 1.2369 | 9.8 | 500 | 0.9392 | 0.6502 | | 1.2293 | 11.76 | 600 | 0.9536 | 0.6480 | | 1.1709 | 13.73 | 700 | 0.9265 | 0.6402 | | 1.1492 | 15.69 | 800 | 0.9636 | 0.6506 | | 1.1044 | 17.65 | 900 | 0.9305 | 0.6351 | | 1.0704 | 19.61 | 1000 | 0.9329 | 0.6280 | | 1.0039 | 21.57 | 1100 | 0.9413 | 0.6295 | | 0.9756 | 23.53 | 1200 | 0.9718 | 0.6185 | | 0.9633 | 25.49 | 1300 | 0.9731 | 0.6133 | | 0.932 | 27.45 | 1400 | 0.9659 | 0.6199 | | 0.9252 | 29.41 | 1500 | 0.9766 | 0.6196 | | 0.9172 | 31.37 | 1600 | 1.0052 | 0.6199 | | 0.8733 | 33.33 | 1700 | 0.9955 | 0.6203 | | 0.868 | 35.29 | 1800 | 1.0069 | 0.6240 | | 0.8547 | 37.25 | 1900 | 0.9783 | 0.6258 | | 0.8451 | 39.22 | 2000 | 0.9845 | 0.6052 | | 0.8374 | 41.18 | 2100 | 0.9496 | 0.6137 | | 0.8153 | 43.14 | 2200 | 0.9756 | 0.6122 | | 0.8134 | 45.1 | 2300 | 0.9712 | 0.6096 | | 0.8019 | 47.06 | 2400 | 0.9565 | 0.5970 | | 0.7746 | 49.02 | 2500 | 0.9864 | 0.6096 | | 0.7664 | 50.98 | 2600 | 0.9988 | 0.6092 | | 0.7708 | 52.94 | 2700 | 1.0181 | 0.6255 | | 0.7468 | 54.9 | 2800 | 0.9918 | 0.6148 | | 0.7241 | 56.86 | 2900 | 1.0150 | 0.6018 | | 0.7165 | 58.82 | 3000 | 1.0439 | 0.6063 | | 0.7104 | 60.78 | 3100 | 1.0016 | 0.6037 | | 0.6954 | 62.75 | 3200 | 1.0117 | 0.5970 | | 0.6753 | 64.71 | 3300 | 1.0191 | 0.6037 | | 0.6803 | 66.67 | 3400 | 1.0190 | 0.6033 | | 0.661 | 68.63 | 3500 | 1.0284 | 0.6007 | | 0.6597 | 70.59 | 3600 | 1.0060 | 0.5967 | | 0.6398 | 72.55 | 3700 | 1.0372 | 0.6048 | | 0.6105 | 74.51 | 3800 | 1.0048 | 0.6044 | | 0.6164 | 76.47 | 3900 | 1.0398 | 0.6148 | | 0.6354 | 78.43 | 4000 | 1.0272 | 0.6133 | | 0.5952 | 80.39 | 4100 | 1.0364 | 0.6081 | | 0.5814 | 82.35 | 4200 | 1.0418 | 0.6092 | | 0.6079 | 84.31 | 4300 | 1.0277 | 0.5967 | | 0.5748 | 86.27 | 4400 | 1.0362 | 0.6041 | | 0.5624 | 88.24 | 4500 | 1.0427 | 0.6007 | | 0.5767 | 90.2 | 4600 | 1.0370 | 0.5919 | | 0.5793 | 92.16 | 4700 | 1.0442 | 0.6011 | | 0.547 | 94.12 | 4800 | 1.0516 | 0.5982 | | 0.5513 | 96.08 | 4900 | 1.0461 | 0.5989 | | 0.5429 | 98.04 | 5000 | 1.0504 | 0.5996 | | 0.5404 | 100.0 | 5100 | 1.0517 | 0.5967 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 47.38, "name": "Test WER"}]}]}]}
HarrisDePerceptron/xls-r-300m-ur
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 0.8888 - Wer: 0.6642 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 10.1224 | 1.96 | 100 | 3.5429 | 1.0 | | 3.2411 | 3.92 | 200 | 3.1786 | 1.0 | | 3.1283 | 5.88 | 300 | 3.0571 | 1.0 | | 3.0044 | 7.84 | 400 | 2.9560 | 0.9996 | | 2.9388 | 9.8 | 500 | 2.8977 | 1.0011 | | 2.86 | 11.76 | 600 | 2.6944 | 0.9952 | | 2.5538 | 13.73 | 700 | 2.0967 | 0.9435 | | 2.1214 | 15.69 | 800 | 1.4816 | 0.8428 | | 1.8136 | 17.65 | 900 | 1.2459 | 0.8048 | | 1.6795 | 19.61 | 1000 | 1.1232 | 0.7649 | | 1.5571 | 21.57 | 1100 | 1.0510 | 0.7432 | | 1.4975 | 23.53 | 1200 | 1.0298 | 0.6963 | | 1.4485 | 25.49 | 1300 | 0.9775 | 0.7074 | | 1.3924 | 27.45 | 1400 | 0.9798 | 0.6956 | | 1.3604 | 29.41 | 1500 | 0.9345 | 0.7092 | | 1.3224 | 31.37 | 1600 | 0.9535 | 0.6830 | | 1.2816 | 33.33 | 1700 | 0.9178 | 0.6679 | | 1.2623 | 35.29 | 1800 | 0.9249 | 0.6679 | | 1.2421 | 37.25 | 1900 | 0.9124 | 0.6734 | | 1.2208 | 39.22 | 2000 | 0.8962 | 0.6664 | | 1.2145 | 41.18 | 2100 | 0.8903 | 0.6734 | | 1.1888 | 43.14 | 2200 | 0.8883 | 0.6708 | | 1.1933 | 45.1 | 2300 | 0.8928 | 0.6723 | | 1.1838 | 47.06 | 2400 | 0.8868 | 0.6679 | | 1.1634 | 49.02 | 2500 | 0.8886 | 0.6657 | ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.3 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_8_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 62.47, "name": "Test WER"}]}]}]}
HarrisDePerceptron/xlsr-large-53-ur
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_8_0", "generated_from_trainer", "ur", "robust-speech-event", "hf-asr-leaderboard", "dataset:mozilla-foundation/common_voice_8_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HarryPotter09/hubert-base-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DailogGPT Model
{"tags": ["conversational"]}
HarryPuttar/HarryPotterDC
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HarryWizard/cuad-large
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Harshal/transformers
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Jack Sparrow GPT
{"tags": ["conversational"]}
Harshal6927/Jack_Sparrow_GPT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Tony Stark GPT My first AI model still learning, used small dataset so don't expect much
{"tags": ["conversational"]}
Harshal6927/Tony_Stark_GPT
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Harshil7652/code_search
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Single Column Regression - Model ID: 32597818 - CO2 Emissions (in grams): 8.655894631203154 ## Validation Metrics - Loss: 0.5410276651382446 - MSE: 0.5410276651382446 - MAE: 0.5694561004638672 - R2: 0.6830431129198475 - RMSE: 0.735545814037323 - Explained Variance: 0.6834385395050049 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/Harshveer/autonlp-formality_scoring_2-32597818 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("Harshveer/autonlp-formality_scoring_2-32597818", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "en", "tags": "autonlp", "datasets": ["Harshveer/autonlp-data-formality_scoring_2"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 8.655894631203154}
Harshveer/autonlp-formality_scoring_2-32597818
null
[ "transformers", "pytorch", "roberta", "text-classification", "autonlp", "en", "dataset:Harshveer/autonlp-data-formality_scoring_2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
# hindi_base_wav2vec2
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["Harveenchadha/indic-voice"], "model-index": [{"name": "Hindi Large", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "hi"}, "metrics": [{"type": "wer", "value": 22.62, "name": "Test WER"}, {"type": "cer", "value": 7.42, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 19.47, "name": "Test WER"}, {"type": "cer", "value": 8.05, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 20.87, "name": "Test WER"}, {"type": "cer", "value": 9.47, "name": "Test CER"}]}]}]}
Harveenchadha/hindi_base_wav2vec2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["Harveenchadha/indic-voice"], "model-index": [{"name": "Hindi Large", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "hi"}, "metrics": [{"type": "wer", "value": 23.08, "name": "Test WER"}, {"type": "cer", "value": 8.11, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 23.36, "name": "Test WER"}, {"type": "cer", "value": 8.94, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 24.85, "name": "Test WER"}, {"type": "cer", "value": 9.99, "name": "Test CER"}]}]}]}
Harveenchadha/hindi_large_wav2vec2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{"language": ["hi"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event"], "datasets": ["Harveenchadha/indic-voice"], "model-index": [{"name": "Hindi Large", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "hi"}, "metrics": [{"type": "wer", "value": 19.14, "name": "Test WER"}, {"type": "cer", "value": 5.93, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 17.4, "name": "Test WER"}, {"type": "cer", "value": 7.13, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "hi"}, "metrics": [{"type": "wer", "value": 18.99, "name": "Test WER"}, {"type": "cer", "value": 8.91, "name": "Test CER"}]}]}]}
Harveenchadha/hindi_model_with_lm_vakyansh
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "hi", "model_for_talk", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
**Work in progress**
{}
Harveenchadha/indictrans
null
[ "transformers", "pytorch", "m2m_100", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
keras
## Multimodal entailment Author: Sayak Paul Date created: 2021/08/08 Last modified: 2021/08/15 Description: Training a multimodal model for predicting entailment. ### What is multimodal entailment? On social media platforms, to audit and moderate content we may want to find answers to the following questions in near real-time: Does a given piece of information contradict the other? Does a given piece of information imply the other? In NLP, this task is called analyzing textual entailment. However, that's only when the information comes from text content. In practice, it's often the case the information available comes not just from text content, but from a multimodal combination of text, images, audio, video, etc. Multimodal entailment is simply the extension of textual entailment to a variety of new input modalities.
{"library_name": "keras", "tags": ["nlp"]}
Harveenchadha/model-entailment
null
[ "keras", "nlp", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{"language": ["or"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event"], "datasets": ["Harveenchadha/indic-voice"], "model-index": [{"name": "Hindi Large", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice", "type": "common_voice", "args": "or"}, "metrics": [{"type": "wer", "value": 54.26, "name": "Test WER"}, {"type": "cer", "value": 11.36, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-7.0", "type": "mozilla-foundation/common_voice_7_0", "args": "or"}, "metrics": [{"type": "wer", "value": 53.58, "name": "Test WER"}, {"type": "cer", "value": 11.26, "name": "Test CER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice-8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "or"}, "metrics": [{"type": "wer", "value": 55.26, "name": "Test WER"}, {"type": "cer", "value": 13.01, "name": "Test CER"}]}]}]}
Harveenchadha/odia_large_wav2vec2
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "hf-asr-leaderboard", "model_for_talk", "mozilla-foundation/common_voice_7_0", "or", "robust-speech-event", "dataset:Harveenchadha/indic-voice", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-assamese-asm-8
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-bengali-bnm-200
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-bhojpuri-bhom-60
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-dogri-doi-55
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-gujarati-gnm-100
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
## Spaces Demo Check the spaces demo [here](https://huggingface.co/spaces/Harveenchadha/wav2vec2-vakyansh-hindi/tree/main) ## Pretrained Model Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz. **Note: The result from this model is without a language model so you may witness a higher WER in some cases.** ## Dataset This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now. ## Training Script Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation). In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/hindi_finetuning_multilingual?workspace=user-harveenchadha). ## [Colab Demo](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_hindi_him_4200_demo.ipynb) ## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ``` ## Evaluation The model can be evaluated as follows on the hindi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "hi", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-hindi-him-4200") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 33.17 % [**Colab Evaluation**](https://colab.research.google.com/github/harveenchadha/bol/blob/main/demos/hf/hindi/hf_vakyansh_hindi_him_4200_evaluation_common_voice.ipynb) ## Credits Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages.
{"language": "hi", "license": "mit", "tags": ["audio", "automatic-speech-recognition", "speech"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Vakyansh Hindi Model by Harveen Chadha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hi", "type": "common_voice", "args": "hi"}, "metrics": [{"type": "wer", "value": 33.17, "name": "Test WER"}]}]}]}
Harveenchadha/vakyansh-wav2vec2-hindi-him-4200
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "hi", "arxiv:2107.07402", "license:mit", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-indian-english-enm-700
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-kannada-knm-560
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-maithili-maim-50
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-malayalam-mlm-8
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-marathi-mrm-100
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-nepali-nem-130
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-odia-orm-100
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz. **Note: The result from this model is without a language model so you may witness a higher WER in some cases.**
{"language": "pa", "license": "mit", "tags": ["audio", "automatic-speech-recognition", "speech"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Vakyansh Punjabi Model by Harveen Chadha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice hi", "type": "common_voice", "args": "pa"}, "metrics": [{"type": "wer", "value": 33.17, "name": "Test WER"}]}]}]}
Harveenchadha/vakyansh-wav2vec2-punjabi-pam-10
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "pa", "arxiv:2107.07402", "license:mit", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-rajasthani-raj-45
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-sanskrit-sam-60
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
## Pretrained Model Fine-tuned on Multilingual Pretrained Model [CLSRIL-23](https://arxiv.org/abs/2107.07402). The original fairseq checkpoint is present [here](https://github.com/Open-Speech-EkStep/vakyansh-models). When using this model, make sure that your speech input is sampled at 16kHz. **Note: The result from this model is without a language model so you may witness a higher WER in some cases.** ## Dataset This model was trained on 4200 hours of Hindi Labelled Data. The labelled data is not present in public domain as of now. ## Training Script Models were trained using experimental platform setup by Vakyansh team at Ekstep. Here is the [training repository](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation). In case you want to explore training logs on wandb they are [here](https://wandb.ai/harveenchadha/tamil-finetuning-multilingual). ## [Colab Demo](https://github.com/harveenchadha/bol/blob/main/demos/hf/tamil/hf_tamil_tnm_4200_demo.ipynb) ## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ``` ## Evaluation The model can be evaluated as follows on the hindi test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ta", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") model = Wav2Vec2ForCTC.from_pretrained("Harveenchadha/vakyansh-wav2vec2-tamil-tam-250") model.to("cuda") resampler = torchaudio.transforms.Resample(48_000, 16_000) chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids, skip_special_tokens=True) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 53.64 % [**Colab Evaluation**](https://github.com/harveenchadha/bol/blob/main/demos/hf/tamil/hf_vakyansh_tamil_tnm_4200_evaluation_common_voice.ipynb) ## Credits Thanks to Ekstep Foundation for making this possible. The vakyansh team will be open sourcing speech models in all the Indic Languages.
{"language": "ta", "license": "mit", "tags": ["audio", "automatic-speech-recognition", "speech"], "metrics": ["wer"], "model-index": [{"name": "Wav2Vec2 Vakyansh Tamil Model by Harveen Chadha", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 53.64, "name": "Test WER"}]}]}]}
Harveenchadha/vakyansh-wav2vec2-tamil-tam-250
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "ta", "arxiv:2107.07402", "license:mit", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-telugu-tem-100
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
{}
Harveenchadha/vakyansh-wav2vec2-urdu-urm-60
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
Hindi Pretrained model on 4200 hours. [Link](https://arxiv.org/abs/2107.07402)
{"language": "hi", "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "hi", "model_for_talk", "pretrained", "robust-speech-event", "speech"]}
Harveenchadha/vakyansh_hindi_base_pretrained
null
[ "transformers", "pytorch", "wav2vec2", "pretraining", "hf-asr-leaderboard", "hi", "model_for_talk", "pretrained", "robust-speech-event", "speech", "arxiv:2107.07402", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
## Overview We present a CLSRIL-23 (Cross Lingual Speech Representations on Indic Languages), a self supervised learning based audio pre-trained model which learns cross lingual speech representations from raw audio across **23 Indic languages**. It is built on top of wav2vec 2.0 which is solved by training a contrastive task over masked latent speech representations and jointly learns the quantization of latents shared across all languages. [Arxiv Link](https://arxiv.org/pdf/2107.07402.pdf) [Original Repo](https://github.com/Open-Speech-EkStep/vakyansh-models) contains models in fairseq format. ## Languages in the pretraining dataset | Language | Data (In Hrs) | |-----------|---------------| | Assamese | 254.9 | | Bengali | 331.3 | | Bodo | 26.9 | | Dogri | 17.1 | | English | 819.7 | | Gujarati | 336.7 | | Hindi | 4563.7 | | Kannada | 451.8 | | Kashmiri | 67.8 | | Konkani | 36.8 | | Maithili | 113.8 | | Malayalam | 297.7 | | Manipuri | 171.9 | | Marathi | 458.2 | | Nepali | 31.6 | | Odia | 131.4 | | Punjabi | 486.05 | | Sanskrit | 58.8 | | Santali | 6.56 | | Sindhi | 16 | | Tamil | 542.6 | | Telugu | 302.8 | | Urdu | 259.68 | ## Repo for training: [Experimentation](https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation) platform built on top of fairseq.
{}
Harveenchadha/wav2vec2-pretrained-clsril-23-10k
null
[ "transformers", "pytorch", "wav2vec2", "feature-extraction", "arxiv:2107.07402", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HarveyBWest/DialoGPT-small-sheldon
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hasan/Test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hasanmuradbuet/bert-finetuned-mrpc
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Hasanmuradbuet/dummy-model
null
[ "transformers", "tf", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
notabota/DialoGPT-Large-Lelouch
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hassan6678/wav2vec2-base-urdu-demo
null
[ "tensorboard", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hassene/DialoGPT-medium-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
## Table of Contents - [Model Details](#model-details) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Technical Specifications](#technical-specifications) - [Citation Information](#citation-information) ## Model Details **Model Description:** The model is used for classifying a text as Abusive (Hatespeech and Offensive) or Normal. The model is trained using data from Gab and Twitter and Human Rationales were included as part of the training data to boost the performance. The model also has a rationale predictor head that can predict the rationales given an abusive sentence - **Developed by:** Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee - **Model Type:** Text Classification - **Language(s):** English - **License:** Apache-2.0 - **Parent Model:** See the [BERT base uncased model](https://huggingface.co/bert-base-uncased) for more information about the BERT base model. - **Resources for more information:** - [Research Paper](https://arxiv.org/abs/2012.10289) Accepted at AAAI 2021. - [GitHub Repo with datatsets and models](https://github.com/punyajoy/HateXplain) ## How to Get Started with the Model **Details of usage** Please use the **Model_Rational_Label** class inside [models.py](models.py) to load the models. The default prediction in this hosted inference API may be wrong due to the use of different class initialisations. ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification ### from models.py from models import * tokenizer = AutoTokenizer.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two") model = Model_Rational_Label.from_pretrained("Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two") inputs = tokenizer('He is a great guy", return_tensors="pt") prediction_logits, _ = model(input_ids=inputs['input_ids'],attention_mask=inputs['attention_mask']) ``` ## Uses #### Direct Use This model can be used for Text Classification #### Downstream Use [More information needed] #### Misuse and Out-of-scope Use The model should not be used to intentionally create hostile or alienating environments for people. In addition, the model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). (and if you can generate an example of a biased prediction, also something like this): Predictions generated by the model can include disturbing and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and occupational groups. For ![example:](https://github.com/hate-alert/HateXplain/blob/master/Figures/dataset_example.png) The model author's also note in their HateXplain paper that they > *have not considered any external context such as profile bio, user gender, history of posts etc., which might be helpful in the classification task. Also, in this work we have focused on the English language. It does not consider multilingual hate speech into account.* #### Training Procedure ##### Preprocessing The authors detail their preprocessing procedure in the [Github repository](https://github.com/hate-alert/HateXplain/tree/master/Preprocess) ## Evaluation The mode authors detail the Hidden layer size and attention for the HateXplain fien tuned models in the [associated paper](https://arxiv.org/pdf/2012.10289.pdf) #### Results The model authors both in their paper and in the git repository provide the illustrative output of the BERT - HateXplain in comparison to BERT and and other HateXplain fine tuned ![models]( https://github.com/hate-alert/HateXplain/blob/master/Figures/bias-subgroup.pdf) ## Citation Information ```bibtex @article{mathew2020hatexplain, title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection}, author={Mathew, Binny and Saha, Punyajoy and Yimam, Seid Muhie and Biemann, Chris and Goyal, Pawan and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2012.10289}, year={2020} } ```
{"language": "en", "license": "apache-2.0", "datasets": ["hatexplain"]}
Hate-speech-CNERG/bert-base-uncased-hatexplain-rationale-two
null
[ "transformers", "pytorch", "bert", "text-classification", "en", "dataset:hatexplain", "arxiv:2012.10289", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
The model is used for classifying a text as **Hatespeech**, **Offensive**, or **Normal**. The model is trained using data from Gab and Twitter and *Human Rationales* were included as part of the training data to boost the performance. The dataset and models are available here: https://github.com/punyajoy/HateXplain **For more details about our paper** Binny Mathew, Punyajoy Saha, Seid Muhie Yimam, Chris Biemann, Pawan Goyal, and Animesh Mukherjee "[HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection)". Accepted at AAAI 2021. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{mathew2020hatexplain, title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection}, author={Mathew, Binny and Saha, Punyajoy and Yimam, Seid Muhie and Biemann, Chris and Goyal, Pawan and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2012.10289}, year={2020} } ~~~
{"language": "en", "license": "apache-2.0", "datasets": ["hatexplain"]}
Hate-speech-CNERG/bert-base-uncased-hatexplain
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "en", "dataset:hatexplain", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Arabic language**. The mono in the name refers to the monolingual setting, where the model is trained using only Arabic language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.877609 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "ar", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-arabic
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "ar", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **English language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.726030 for a learning rate of 2e-5. Training code can be found here https://github.com/punyajoy/DE-LIMIT ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "en", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-english
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "en", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **French language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.692094 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "fr", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-french
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "fr", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **German language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.649794 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "de", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-german
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "de", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Indonesian language**. The mono in the name refers to the monolingual setting, where the model is trained using only Arabic language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.844494 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{}
Hate-speech-CNERG/dehatebert-mono-indonesian
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "arxiv:2004.06465", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Italian language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.837288 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "it", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-italian
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "it", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Polish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.723254 for a learning rate of 2e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "pl", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-polish
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "pl", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Portuguese language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.716119 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "pt", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-portugese
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "pt", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model is used detecting **hatespeech** in **Spanish language**. The mono in the name refers to the monolingual setting, where the model is trained using only English language data. It is finetuned on multilingual bert model. The model is trained with different learning rates and the best validation score achieved is 0.740287 for a learning rate of 3e-5. Training code can be found at this [url](https://github.com/punyajoy/DE-LIMIT) ### For more details about our paper Sai Saketh Aluru, Binny Mathew, Punyajoy Saha and Animesh Mukherjee. "[Deep Learning Models for Multilingual Hate Speech Detection](https://arxiv.org/abs/2004.06465)". Accepted at ECML-PKDD 2020. ***Please cite our paper in any published work that uses any of these resources.*** ~~~ @article{aluru2020deep, title={Deep Learning Models for Multilingual Hate Speech Detection}, author={Aluru, Sai Saket and Mathew, Binny and Saha, Punyajoy and Mukherjee, Animesh}, journal={arXiv preprint arXiv:2004.06465}, year={2020} } ~~~
{"language": "es", "license": "apache-2.0"}
Hate-speech-CNERG/dehatebert-mono-spanish
null
[ "transformers", "pytorch", "jax", "bert", "text-classification", "es", "arxiv:2004.06465", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00