Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
translation
transformers
### vie-eng * source group: Vietnamese * target group: English * OPUS readme: [vie-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-eng/README.md) * model: transformer-align * source language(s): vie vie_Hani * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-eng/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-eng/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-eng/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.eng | 42.8 | 0.608 | ### System Info: - hf_name: vie-eng - source_languages: vie - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'en'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-eng/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-eng/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: eng - short_pair: vi-en - chrF2_score: 0.608 - bleu: 42.8 - brevity_penalty: 0.955 - ref_len: 20241.0 - src_name: Vietnamese - tgt_name: English - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: en - prefer_old: False - long_pair: vie-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### vie-epo * source group: Vietnamese * target group: Esperanto * OPUS readme: [vie-epo](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-epo/README.md) * model: transformer-align * source language(s): vie * target language(s): epo * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-epo/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-epo/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-epo/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.epo | 12.2 | 0.332 | ### System Info: - hf_name: vie-epo - source_languages: vie - target_languages: epo - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-epo/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'eo'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'epo'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-epo/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-epo/opus-2020-06-16.test.txt - src_alpha3: vie - tgt_alpha3: epo - short_pair: vi-eo - chrF2_score: 0.332 - bleu: 12.2 - brevity_penalty: 0.99 - ref_len: 13637.0 - src_name: Vietnamese - tgt_name: Esperanto - train_date: 2020-06-16 - src_alpha2: vi - tgt_alpha2: eo - prefer_old: False - long_pair: vie-epo - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "eo"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-eo
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "eo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### vie-spa * source group: Vietnamese * target group: Spanish * OPUS readme: [vie-spa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-spa/README.md) * model: transformer-align * source language(s): vie * target language(s): spa * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-spa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-spa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-spa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.spa | 32.9 | 0.540 | ### System Info: - hf_name: vie-spa - source_languages: vie - target_languages: spa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-spa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'es'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'spa'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-spa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-spa/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: spa - short_pair: vi-es - chrF2_score: 0.54 - bleu: 32.9 - brevity_penalty: 0.953 - ref_len: 3832.0 - src_name: Vietnamese - tgt_name: Spanish - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: es - prefer_old: False - long_pair: vie-spa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "es"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### vie-fra * source group: Vietnamese * target group: French * OPUS readme: [vie-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-fra/README.md) * model: transformer-align * source language(s): vie * target language(s): fra * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.fra | 34.2 | 0.544 | ### System Info: - hf_name: vie-fra - source_languages: vie - target_languages: fra - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-fra/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'fr'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'fra'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-fra/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: fra - short_pair: vi-fr - chrF2_score: 0.544 - bleu: 34.2 - brevity_penalty: 0.955 - ref_len: 11519.0 - src_name: Vietnamese - tgt_name: French - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: fr - prefer_old: False - long_pair: vie-fra - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "fr"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### vie-ita * source group: Vietnamese * target group: Italian * OPUS readme: [vie-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-ita/README.md) * model: transformer-align * source language(s): vie * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.ita | 31.2 | 0.548 | ### System Info: - hf_name: vie-ita - source_languages: vie - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'it'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-ita/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: ita - short_pair: vi-it - chrF2_score: 0.5479999999999999 - bleu: 31.2 - brevity_penalty: 0.932 - ref_len: 1774.0 - src_name: Vietnamese - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: it - prefer_old: False - long_pair: vie-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-it
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### vie-rus * source group: Vietnamese * target group: Russian * OPUS readme: [vie-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-rus/README.md) * model: transformer-align * source language(s): vie * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.vie.rus | 16.9 | 0.331 | ### System Info: - hf_name: vie-rus - source_languages: vie - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/vie-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['vi', 'ru'] - src_constituents: {'vie', 'vie_Hani'} - tgt_constituents: {'rus'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/vie-rus/opus-2020-06-17.test.txt - src_alpha3: vie - tgt_alpha3: rus - short_pair: vi-ru - chrF2_score: 0.331 - bleu: 16.9 - brevity_penalty: 0.878 - ref_len: 2207.0 - src_name: Vietnamese - tgt_name: Russian - train_date: 2020-06-17 - src_alpha2: vi - tgt_alpha2: ru - prefer_old: False - long_pair: vie-rus - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["vi", "ru"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vi-ru
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vi", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-vsl-es * source languages: vsl * target languages: es * OPUS readme: [vsl-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/vsl-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/vsl-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.vsl.es | 91.9 | 0.944 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-vsl-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "vsl", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-wa-en * source languages: wa * target languages: en * OPUS readme: [wa-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wa-en/README.md) * dataset: opus-enwa * model: transformer * pre-processing: normalization + SentencePiece * download original weights: [opus-enwa-2020-03-21.zip](https://object.pouta.csc.fi/OPUS-MT-models/wa-en/opus-enwa-2020-03-21.zip) * test set translations: [opus-enwa-2020-03-21.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wa-en/opus-enwa-2020-03-21.test.txt) * test set scores: [opus-enwa-2020-03-21.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wa-en/opus-enwa-2020-03-21.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | enwa.fr.en | 42.6 | 0.564 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-wa-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "wa", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-wal-en * source languages: wal * target languages: en * OPUS readme: [wal-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wal-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wal-en/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wal.en | 22.5 | 0.386 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-wal-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "wal", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### war-eng * source group: Waray (Philippines) * target group: English * OPUS readme: [war-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/war-eng/README.md) * model: transformer-align * source language(s): war * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm4k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.war.eng | 12.3 | 0.308 | ### System Info: - hf_name: war-eng - source_languages: war - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/war-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['war', 'en'] - src_constituents: {'war'} - tgt_constituents: {'eng'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm4k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/war-eng/opus-2020-06-16.test.txt - src_alpha3: war - tgt_alpha3: eng - short_pair: war-en - chrF2_score: 0.308 - bleu: 12.3 - brevity_penalty: 1.0 - ref_len: 11345.0 - src_name: Waray (Philippines) - tgt_name: English - train_date: 2020-06-16 - src_alpha2: war - tgt_alpha2: en - prefer_old: False - long_pair: war-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["war", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-war-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "war", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-war-es * source languages: war * target languages: es * OPUS readme: [war-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.es | 28.7 | 0.470 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-war-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "war", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-war-fi * source languages: war * target languages: fi * OPUS readme: [war-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-24.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.zip) * test set translations: [opus-2020-01-24.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.test.txt) * test set scores: [opus-2020-01-24.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fi/opus-2020-01-24.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.fi | 26.9 | 0.507 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-war-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "war", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-war-fr * source languages: war * target languages: fr * OPUS readme: [war-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.fr | 30.2 | 0.482 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-war-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "war", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-war-sv * source languages: war * target languages: sv * OPUS readme: [war-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/war-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/war-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/war-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.war.sv | 31.4 | 0.505 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-war-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "war", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-wls-en * source languages: wls * target languages: en * OPUS readme: [wls-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wls-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wls.en | 31.8 | 0.471 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-wls-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "wls", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-wls-fr * source languages: wls * target languages: fr * OPUS readme: [wls-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wls-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/wls-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wls.fr | 22.6 | 0.389 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-wls-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "wls", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-wls-sv * source languages: wls * target languages: sv * OPUS readme: [wls-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/wls-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/wls-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.wls.sv | 23.8 | 0.408 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-wls-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "wls", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-xh-en * source languages: xh * target languages: en * OPUS readme: [xh-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/xh-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.xh.en | 45.8 | 0.610 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-xh-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "xh", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-xh-es * source languages: xh * target languages: es * OPUS readme: [xh-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/xh-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/xh-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.xh.es | 32.3 | 0.505 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-xh-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "xh", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-xh-fr * source languages: xh * target languages: fr * OPUS readme: [xh-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/xh-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/xh-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.xh.fr | 30.6 | 0.487 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-xh-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "xh", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-xh-sv * source languages: xh * target languages: sv * OPUS readme: [xh-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/xh-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/xh-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/xh-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.xh.sv | 33.1 | 0.522 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-xh-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "xh", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yap-en * source languages: yap * target languages: en * OPUS readme: [yap-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.en | 30.2 | 0.452 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yap-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yap", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yap-fr * source languages: yap * target languages: fr * OPUS readme: [yap-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.fr | 22.2 | 0.381 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yap-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yap", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yap-sv * source languages: yap * target languages: sv * OPUS readme: [yap-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yap-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yap-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yap-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yap.sv | 22.6 | 0.399 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yap-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yap", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yo-en * source languages: yo * target languages: en * OPUS readme: [yo-en](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-en/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-en/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-en/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-en/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.en | 33.8 | 0.496 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yo-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yo", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yo-es * source languages: yo * target languages: es * OPUS readme: [yo-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.es | 22.0 | 0.393 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yo-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yo", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yo-fi * source languages: yo * target languages: fi * OPUS readme: [yo-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.fi | 21.5 | 0.434 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yo-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yo", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yo-fr * source languages: yo * target languages: fr * OPUS readme: [yo-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.fr | 24.1 | 0.408 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yo-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yo", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-yo-sv * source languages: yo * target languages: sv * OPUS readme: [yo-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/yo-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/yo-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/yo-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.yo.sv | 25.2 | 0.434 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-yo-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "yo", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-zai-es * source languages: zai * target languages: es * OPUS readme: [zai-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zai-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zai-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zai-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zai-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zai.es | 20.8 | 0.372 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zai-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zai", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-bul * source group: Chinese * target group: Bulgarian * OPUS readme: [zho-bul](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-bul/README.md) * model: transformer * source language(s): cmn cmn_Hans cmn_Hant zho zho_Hans zho_Hant * target language(s): bul * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-07-03.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.zip) * test set translations: [opus-2020-07-03.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.test.txt) * test set scores: [opus-2020-07-03.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.cmn_Hani.bul | 29.6 | 0.497 | | Tatoeba-test.zho.bul | 29.6 | 0.497 | ### System Info: - hf_name: zho-bul - source_languages: zho - target_languages: bul - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-bul/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'bg'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'bul', 'bul_Latn'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-bul/opus-2020-07-03.test.txt - src_alpha3: zho - tgt_alpha3: bul - short_pair: zh-bg - chrF2_score: 0.49700000000000005 - bleu: 29.6 - brevity_penalty: 0.883 - ref_len: 3113.0 - src_name: Chinese - tgt_name: Bulgarian - train_date: 2020-07-03 - src_alpha2: zh - tgt_alpha2: bg - prefer_old: False - long_pair: zho-bul - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "bg"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-bg
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "bg", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-deu * source group: Chinese * target group: German * OPUS readme: [zho-deu](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-deu/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Hira cmn_Kana cmn_Latn lzh_Hani wuu_Hani yue_Hani * target language(s): deu * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-deu/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-deu/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-deu/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.deu | 32.1 | 0.522 | ### System Info: - hf_name: zho-deu - source_languages: zho - target_languages: deu - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-deu/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'de'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'deu'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-deu/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-deu/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: deu - short_pair: zh-de - chrF2_score: 0.522 - bleu: 32.1 - brevity_penalty: 0.9540000000000001 - ref_len: 19102.0 - src_name: Chinese - tgt_name: German - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: de - prefer_old: False - long_pair: zho-deu - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "de"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-de
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "de", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-eng ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [How to Get Started With the Model](#how-to-get-started-with-the-model) ## Model Details - **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation - **Language(s):** - Source Language: Chinese - Target Language: English - **License:** CC-BY-4.0 - **Resources for more information:** - [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Uses #### Direct Use This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware this section contains content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). Further details about the dataset for this model can be found in the OPUS readme: [zho-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-eng/README.md) ## Training #### System Information * helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 * transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b * port_machine: brutasse * port_time: 2020-08-21-14:41 * src_multilingual: False * tgt_multilingual: False #### Training Data ##### Preprocessing * pre-processing: normalization + SentencePiece (spm32k,spm32k) * ref_len: 82826.0 * dataset: [opus](https://github.com/Helsinki-NLP/Opus-MT) * download original weights: [opus-2020-07-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.zip) * test set translations: [opus-2020-07-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.test.txt) ## Evaluation #### Results * test set scores: [opus-2020-07-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-eng/opus-2020-07-17.eval.txt) * brevity_penalty: 0.948 ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.eng | 36.1 | 0.548 | ## Citation Information ```bibtex @InProceedings{TiedemannThottingal:EAMT2020, author = {J{\"o}rg Tiedemann and Santhosh Thottingal}, title = {{OPUS-MT} — {B}uilding open translation services for the {W}orld}, booktitle = {Proceedings of the 22nd Annual Conferenec of the European Association for Machine Translation (EAMT)}, year = {2020}, address = {Lisbon, Portugal} } ``` ## How to Get Started With the Model ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-zh-en") model = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-zh-en") ```
{"language": ["zh", "en"], "license": "cc-by-4.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-en
null
[ "transformers", "pytorch", "tf", "rust", "marian", "text2text-generation", "translation", "zh", "en", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-fin * source group: Chinese * target group: Finnish * OPUS readme: [zho-fin](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-fin/README.md) * model: transformer-align * source language(s): cmn_Bopo cmn_Hani cmn_Latn nan_Hani yue yue_Hani * target language(s): fin * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-fin/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-fin/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-fin/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.fin | 35.1 | 0.579 | ### System Info: - hf_name: zho-fin - source_languages: zho - target_languages: fin - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-fin/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'fi'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'fin'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-fin/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-fin/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: fin - short_pair: zh-fi - chrF2_score: 0.579 - bleu: 35.1 - brevity_penalty: 0.935 - ref_len: 1847.0 - src_name: Chinese - tgt_name: Finnish - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: fi - prefer_old: False - long_pair: zho-fin - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "fi"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-heb * source group: Chinese * target group: Hebrew * OPUS readme: [zho-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-heb/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Hira cmn_Kana cmn_Latn cmn_Yiii lzh lzh_Bopo lzh_Hang lzh_Hani lzh_Hira lzh_Kana lzh_Yiii * target language(s): heb * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-heb/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-heb/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-heb/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.heb | 28.5 | 0.469 | ### System Info: - hf_name: zho-heb - source_languages: zho - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'he'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'heb'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-heb/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-heb/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: heb - short_pair: zh-he - chrF2_score: 0.469 - bleu: 28.5 - brevity_penalty: 0.986 - ref_len: 3654.0 - src_name: Chinese - tgt_name: Hebrew - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: he - prefer_old: False - long_pair: zho-heb - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "he"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-he
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "he", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-ita * source group: Chinese * target group: Italian * OPUS readme: [zho-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ita/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Hira cmn_Kana cmn_Latn lzh lzh_Hang lzh_Hani lzh_Hira lzh_Yiii wuu_Bopo wuu_Hani wuu_Latn yue_Hani * target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.ita | 27.9 | 0.508 | ### System Info: - hf_name: zho-ita - source_languages: zho - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'it'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'ita'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ita/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: ita - short_pair: zh-it - chrF2_score: 0.508 - bleu: 27.9 - brevity_penalty: 0.935 - ref_len: 19684.0 - src_name: Chinese - tgt_name: Italian - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: it - prefer_old: False - long_pair: zho-ita - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-it
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-msa * source group: Chinese * target group: Malay (macrolanguage) * OPUS readme: [zho-msa](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-msa/README.md) * model: transformer-align * source language(s): cmn_Bopo cmn_Hani cmn_Latn hak_Hani yue_Bopo yue_Hani * target language(s): ind zsm_Latn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-msa/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-msa/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-msa/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.msa | 13.9 | 0.390 | ### System Info: - hf_name: zho-msa - source_languages: zho - target_languages: msa - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-msa/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'ms'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'zsm_Latn', 'ind', 'max_Latn', 'zlm_Latn', 'min'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-msa/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-msa/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: msa - short_pair: zh-ms - chrF2_score: 0.39 - bleu: 13.9 - brevity_penalty: 0.9229999999999999 - ref_len: 2762.0 - src_name: Chinese - tgt_name: Malay (macrolanguage) - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: ms - prefer_old: False - long_pair: zho-msa - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "ms"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-ms
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "ms", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-nld * source group: Chinese * target group: Dutch * OPUS readme: [zho-nld](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-nld/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hani cmn_Hira cmn_Kana cmn_Latn * target language(s): nld * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.nld | 31.5 | 0.525 | ### System Info: - hf_name: zho-nld - source_languages: zho - target_languages: nld - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-nld/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'nl'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'nld'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-nld/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: nld - short_pair: zh-nl - chrF2_score: 0.525 - bleu: 31.5 - brevity_penalty: 0.9309999999999999 - ref_len: 13575.0 - src_name: Chinese - tgt_name: Dutch - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: nl - prefer_old: False - long_pair: zho-nld - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "nl"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-nl
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "nl", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-swe * source group: Chinese * target group: Swedish * OPUS readme: [zho-swe](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-swe/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hani cmn_Latn * target language(s): swe * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-swe/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-swe/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-swe/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.swe | 46.1 | 0.621 | ### System Info: - hf_name: zho-swe - source_languages: zho - target_languages: swe - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-swe/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'sv'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'swe'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-swe/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-swe/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: swe - short_pair: zh-sv - chrF2_score: 0.621 - bleu: 46.1 - brevity_penalty: 0.956 - ref_len: 6223.0 - src_name: Chinese - tgt_name: Swedish - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: sv - prefer_old: False - long_pair: zho-swe - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "sv"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-ukr * source group: Chinese * target group: Ukrainian * OPUS readme: [zho-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ukr/README.md) * model: transformer-align * source language(s): cmn cmn_Bopo cmn_Hang cmn_Hani cmn_Kana cmn_Latn cmn_Yiii yue_Bopo yue_Hang yue_Hani yue_Hira yue_Kana * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm4k) * download original weights: [opus-2020-06-16.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.zip) * test set translations: [opus-2020-06-16.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.test.txt) * test set scores: [opus-2020-06-16.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.ukr | 10.4 | 0.259 | ### System Info: - hf_name: zho-ukr - source_languages: zho - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'uk'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm4k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-ukr/opus-2020-06-16.test.txt - src_alpha3: zho - tgt_alpha3: ukr - short_pair: zh-uk - chrF2_score: 0.259 - bleu: 10.4 - brevity_penalty: 0.9059999999999999 - ref_len: 9193.0 - src_name: Chinese - tgt_name: Ukrainian - train_date: 2020-06-16 - src_alpha2: zh - tgt_alpha2: uk - prefer_old: False - long_pair: zho-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "uk"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-uk
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "uk", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zho-vie * source group: Chinese * target group: Vietnamese * OPUS readme: [zho-vie](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-vie/README.md) * model: transformer-align * source language(s): cmn_Hani cmn_Latn * target language(s): vie * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-vie/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-vie/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zho-vie/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.zho.vie | 20.0 | 0.385 | ### System Info: - hf_name: zho-vie - source_languages: zho - target_languages: vie - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zho-vie/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['zh', 'vi'] - src_constituents: {'cmn_Hans', 'nan', 'nan_Hani', 'gan', 'yue', 'cmn_Kana', 'yue_Hani', 'wuu_Bopo', 'cmn_Latn', 'yue_Hira', 'cmn_Hani', 'cjy_Hans', 'cmn', 'lzh_Hang', 'lzh_Hira', 'cmn_Hant', 'lzh_Bopo', 'zho', 'zho_Hans', 'zho_Hant', 'lzh_Hani', 'yue_Hang', 'wuu', 'yue_Kana', 'wuu_Latn', 'yue_Bopo', 'cjy_Hant', 'yue_Hans', 'lzh', 'cmn_Hira', 'lzh_Yiii', 'lzh_Hans', 'cmn_Bopo', 'cmn_Hang', 'hak_Hani', 'cmn_Yiii', 'yue_Hant', 'lzh_Kana', 'wuu_Hani'} - tgt_constituents: {'vie', 'vie_Hani'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-vie/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zho-vie/opus-2020-06-17.test.txt - src_alpha3: zho - tgt_alpha3: vie - short_pair: zh-vi - chrF2_score: 0.385 - bleu: 20.0 - brevity_penalty: 0.917 - ref_len: 4667.0 - src_name: Chinese - tgt_name: Vietnamese - train_date: 2020-06-17 - src_alpha2: zh - tgt_alpha2: vi - prefer_old: False - long_pair: zho-vie - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["zh", "vi"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zh-vi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zh", "vi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zle-eng * source group: East Slavic languages * target group: English * OPUS readme: [zle-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-eng/README.md) * model: transformer * source language(s): bel bel_Latn orv_Cyrl rue rus ukr * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newstest2012-ruseng.rus.eng | 31.1 | 0.579 | | newstest2013-ruseng.rus.eng | 24.9 | 0.522 | | newstest2014-ruen-ruseng.rus.eng | 27.9 | 0.563 | | newstest2015-enru-ruseng.rus.eng | 26.8 | 0.541 | | newstest2016-enru-ruseng.rus.eng | 25.8 | 0.535 | | newstest2017-enru-ruseng.rus.eng | 29.1 | 0.561 | | newstest2018-enru-ruseng.rus.eng | 25.4 | 0.537 | | newstest2019-ruen-ruseng.rus.eng | 26.8 | 0.545 | | Tatoeba-test.bel-eng.bel.eng | 38.3 | 0.569 | | Tatoeba-test.multi.eng | 50.1 | 0.656 | | Tatoeba-test.orv-eng.orv.eng | 6.9 | 0.217 | | Tatoeba-test.rue-eng.rue.eng | 15.4 | 0.345 | | Tatoeba-test.rus-eng.rus.eng | 52.5 | 0.674 | | Tatoeba-test.ukr-eng.ukr.eng | 52.1 | 0.673 | ### System Info: - hf_name: zle-eng - source_languages: zle - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['be', 'ru', 'uk', 'zle', 'en'] - src_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-eng/opus2m-2020-08-01.test.txt - src_alpha3: zle - tgt_alpha3: eng - short_pair: zle-en - chrF2_score: 0.6559999999999999 - bleu: 50.1 - brevity_penalty: 0.97 - ref_len: 69599.0 - src_name: East Slavic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: zle - tgt_alpha2: en - prefer_old: False - long_pair: zle-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["be", "ru", "uk", "zle", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zle-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "be", "ru", "uk", "zle", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zle-zle * source group: East Slavic languages * target group: East Slavic languages * OPUS readme: [zle-zle](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zle/README.md) * model: transformer * source language(s): bel bel_Latn orv_Cyrl rus ukr * target language(s): bel bel_Latn orv_Cyrl rus ukr * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bel-rus.bel.rus | 57.1 | 0.758 | | Tatoeba-test.bel-ukr.bel.ukr | 55.5 | 0.751 | | Tatoeba-test.multi.multi | 58.0 | 0.742 | | Tatoeba-test.orv-rus.orv.rus | 5.8 | 0.226 | | Tatoeba-test.orv-ukr.orv.ukr | 2.5 | 0.161 | | Tatoeba-test.rus-bel.rus.bel | 50.5 | 0.714 | | Tatoeba-test.rus-orv.rus.orv | 0.3 | 0.129 | | Tatoeba-test.rus-ukr.rus.ukr | 63.9 | 0.794 | | Tatoeba-test.ukr-bel.ukr.bel | 51.3 | 0.719 | | Tatoeba-test.ukr-orv.ukr.orv | 0.3 | 0.106 | | Tatoeba-test.ukr-rus.ukr.rus | 68.7 | 0.825 | ### System Info: - hf_name: zle-zle - source_languages: zle - target_languages: zle - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zle-zle/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['be', 'ru', 'uk', 'zle'] - src_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - tgt_constituents: {'bel', 'orv_Cyrl', 'bel_Latn', 'rus', 'ukr', 'rue'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zle-zle/opus-2020-07-27.test.txt - src_alpha3: zle - tgt_alpha3: zle - short_pair: zle-zle - chrF2_score: 0.742 - bleu: 58.0 - brevity_penalty: 1.0 - ref_len: 62731.0 - src_name: East Slavic languages - tgt_name: East Slavic languages - train_date: 2020-07-27 - src_alpha2: zle - tgt_alpha2: zle - prefer_old: False - long_pair: zle-zle - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["be", "ru", "uk", "zle"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zle-zle
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "be", "ru", "uk", "zle", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zls-eng * source group: South Slavic languages * target group: English * OPUS readme: [zls-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-eng/README.md) * model: transformer * source language(s): bos_Latn bul bul_Latn hrv mkd slv srp_Cyrl srp_Latn * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul-eng.bul.eng | 54.9 | 0.693 | | Tatoeba-test.hbs-eng.hbs.eng | 55.7 | 0.700 | | Tatoeba-test.mkd-eng.mkd.eng | 54.6 | 0.681 | | Tatoeba-test.multi.eng | 53.6 | 0.676 | | Tatoeba-test.slv-eng.slv.eng | 25.6 | 0.407 | ### System Info: - hf_name: zls-eng - source_languages: zls - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hr', 'mk', 'bg', 'sl', 'zls', 'en'] - src_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-eng/opus2m-2020-08-01.test.txt - src_alpha3: zls - tgt_alpha3: eng - short_pair: zls-en - chrF2_score: 0.6759999999999999 - bleu: 53.6 - brevity_penalty: 0.98 - ref_len: 68623.0 - src_name: South Slavic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: zls - tgt_alpha2: en - prefer_old: False - long_pair: zls-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hr", "mk", "bg", "sl", "zls", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zls-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "mk", "bg", "sl", "zls", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zls-zls * source group: South Slavic languages * target group: South Slavic languages * OPUS readme: [zls-zls](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zls/README.md) * model: transformer * source language(s): bul mkd srp_Cyrl * target language(s): bul mkd srp_Cyrl * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.bul-hbs.bul.hbs | 19.3 | 0.514 | | Tatoeba-test.bul-mkd.bul.mkd | 31.9 | 0.669 | | Tatoeba-test.hbs-bul.hbs.bul | 18.0 | 0.636 | | Tatoeba-test.hbs-mkd.hbs.mkd | 19.4 | 0.322 | | Tatoeba-test.mkd-bul.mkd.bul | 44.6 | 0.679 | | Tatoeba-test.mkd-hbs.mkd.hbs | 5.5 | 0.152 | | Tatoeba-test.multi.multi | 26.5 | 0.563 | ### System Info: - hf_name: zls-zls - source_languages: zls - target_languages: zls - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zls-zls/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['hr', 'mk', 'bg', 'sl', 'zls'] - src_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - tgt_constituents: {'hrv', 'mkd', 'srp_Latn', 'srp_Cyrl', 'bul_Latn', 'bul', 'bos_Latn', 'slv'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zls-zls/opus-2020-07-27.test.txt - src_alpha3: zls - tgt_alpha3: zls - short_pair: zls-zls - chrF2_score: 0.563 - bleu: 26.5 - brevity_penalty: 1.0 - ref_len: 58.0 - src_name: South Slavic languages - tgt_name: South Slavic languages - train_date: 2020-07-27 - src_alpha2: zls - tgt_alpha2: zls - prefer_old: False - long_pair: zls-zls - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["hr", "mk", "bg", "sl", "zls"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zls-zls
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "hr", "mk", "bg", "sl", "zls", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zlw-eng * source group: West Slavic languages * target group: English * OPUS readme: [zlw-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-eng/README.md) * model: transformer * source language(s): ces csb_Latn dsb hsb pol * target language(s): eng * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newssyscomb2009-ceseng.ces.eng | 25.7 | 0.536 | | newstest2009-ceseng.ces.eng | 24.6 | 0.530 | | newstest2010-ceseng.ces.eng | 25.0 | 0.540 | | newstest2011-ceseng.ces.eng | 25.9 | 0.539 | | newstest2012-ceseng.ces.eng | 24.8 | 0.533 | | newstest2013-ceseng.ces.eng | 27.8 | 0.551 | | newstest2014-csen-ceseng.ces.eng | 30.3 | 0.585 | | newstest2015-encs-ceseng.ces.eng | 27.5 | 0.542 | | newstest2016-encs-ceseng.ces.eng | 29.1 | 0.564 | | newstest2017-encs-ceseng.ces.eng | 26.0 | 0.537 | | newstest2018-encs-ceseng.ces.eng | 27.3 | 0.544 | | Tatoeba-test.ces-eng.ces.eng | 53.3 | 0.691 | | Tatoeba-test.csb-eng.csb.eng | 10.2 | 0.313 | | Tatoeba-test.dsb-eng.dsb.eng | 11.7 | 0.296 | | Tatoeba-test.hsb-eng.hsb.eng | 24.6 | 0.426 | | Tatoeba-test.multi.eng | 51.8 | 0.680 | | Tatoeba-test.pol-eng.pol.eng | 50.4 | 0.667 | ### System Info: - hf_name: zlw-eng - source_languages: zlw - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'cs', 'zlw', 'en'] - src_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - tgt_constituents: {'eng'} - src_multilingual: True - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-eng/opus2m-2020-08-01.test.txt - src_alpha3: zlw - tgt_alpha3: eng - short_pair: zlw-en - chrF2_score: 0.68 - bleu: 51.8 - brevity_penalty: 0.9620000000000001 - ref_len: 75742.0 - src_name: West Slavic languages - tgt_name: English - train_date: 2020-08-01 - src_alpha2: zlw - tgt_alpha2: en - prefer_old: False - long_pair: zlw-eng - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["pl", "cs", "zlw", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zlw-en
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "pl", "cs", "zlw", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zlw-fiu * source language name: West Slavic languages * target language name: Finno-Ugrian languages * OPUS readme: [README.md](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/README.md) * model: transformer * source language codes: dsb, cs, csb_Latn, hsb, pl, zlw * target language codes: hu, vro, fi, liv_Latn, mdf, krl, fkv_Latn, mhr, et, sma, udm, vep, myv, kpv, se, izh, fiu * dataset: opus * release date: 2021-02-18 * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2021-02-18.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.zip) * a sentence-initial language token is required in the form of >>id<<(id = valid, usually three-letter target language ID) * Training data: * ces-fin: Tatoeba-train (1000000) * ces-hun: Tatoeba-train (1000000) * pol-est: Tatoeba-train (1000000) * pol-fin: Tatoeba-train (1000000) * pol-hun: Tatoeba-train (1000000) * Validation data: * ces-fin: Tatoeba-dev, 1000 * ces-hun: Tatoeba-dev, 1000 * est-pol: Tatoeba-dev, 1000 * fin-pol: Tatoeba-dev, 1000 * hun-pol: Tatoeba-dev, 1000 * mhr-pol: Tatoeba-dev, 461 * total-size-shuffled: 5426 * devset-selected: top 5000 lines of Tatoeba-dev.src.shuffled! * Test data: * newssyscomb2009.ces-hun: 502/9733 * newstest2009.ces-hun: 2525/54965 * Tatoeba-test.ces-fin: 88/408 * Tatoeba-test.ces-hun: 1911/10336 * Tatoeba-test.multi-multi: 4562/25497 * Tatoeba-test.pol-chm: 5/36 * Tatoeba-test.pol-est: 15/98 * Tatoeba-test.pol-fin: 609/3293 * Tatoeba-test.pol-hun: 1934/11285 * test set translations file: [test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.test.txt) * test set scores file: [eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/zlw-fiu/opus-2021-02-18.eval.txt) * BLEU-scores |Test set|score| |---|---| |Tatoeba-test.ces-fin|57.2| |Tatoeba-test.ces-hun|42.6| |Tatoeba-test.multi-multi|39.4| |Tatoeba-test.pol-hun|36.6| |Tatoeba-test.pol-fin|36.1| |Tatoeba-test.pol-est|20.9| |newssyscomb2009.ces-hun|13.9| |newstest2009.ces-hun|13.9| |Tatoeba-test.pol-chm|2.0| * chr-F-scores |Test set|score| |---|---| |Tatoeba-test.ces-fin|0.71| |Tatoeba-test.ces-hun|0.637| |Tatoeba-test.multi-multi|0.616| |Tatoeba-test.pol-hun|0.605| |Tatoeba-test.pol-fin|0.592| |newssyscomb2009.ces-hun|0.449| |newstest2009.ces-hun|0.443| |Tatoeba-test.pol-est|0.372| |Tatoeba-test.pol-chm|0.007| ### System Info: * hf_name: zlw-fiu * source_languages: dsb,cs,csb_Latn,hsb,pl,zlw * target_languages: hu,vro,fi,liv_Latn,mdf,krl,fkv_Latn,mhr,et,sma,udm,vep,myv,kpv,se,izh,fiu * opus_readme_url: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-fiu/opus-2021-02-18.zip/README.md * original_repo: Tatoeba-Challenge * tags: ['translation'] * languages: ['dsb', 'cs', 'csb_Latn', 'hsb', 'pl', 'zlw', 'hu', 'vro', 'fi', 'liv_Latn', 'mdf', 'krl', 'fkv_Latn', 'mhr', 'et', 'sma', 'udm', 'vep', 'myv', 'kpv', 'se', 'izh', 'fiu'] * src_constituents: ['dsb', 'ces', 'csb_Latn', 'hsb', 'pol'] * tgt_constituents: ['hun', 'vro', 'fin', 'liv_Latn', 'mdf', 'krl', 'fkv_Latn', 'mhr', 'est', 'sma', 'udm', 'vep', 'myv', 'kpv', 'sme', 'izh'] * src_multilingual: True * tgt_multilingual: True * helsinki_git_sha: a0966db6db0ae616a28471ff0faf461b36fec07d * transformers_git_sha: 3857f2b4e34912c942694489c2b667d9476e55f5 * port_machine: bungle * port_time: 2021-06-29-15:24
{"language": ["dsb", "cs", "csb_Latn", "hsb", "pl", "zlw", "hu", "vro", "fi", "liv_Latn", "mdf", "krl", "fkv_Latn", "mhr", "et", "sma", "udm", "vep", "myv", "kpv", "se", "izh", "fiu"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zlw-fiu
null
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "zlw", "fiu", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### zlw-zlw * source group: West Slavic languages * target group: West Slavic languages * OPUS readme: [zlw-zlw](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-zlw/README.md) * model: transformer * source language(s): ces dsb hsb pol * target language(s): ces dsb hsb pol * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2020-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.zip) * test set translations: [opus-2020-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.test.txt) * test set scores: [opus-2020-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ces-hsb.ces.hsb | 2.6 | 0.167 | | Tatoeba-test.ces-pol.ces.pol | 44.0 | 0.649 | | Tatoeba-test.dsb-pol.dsb.pol | 8.5 | 0.250 | | Tatoeba-test.hsb-ces.hsb.ces | 9.6 | 0.276 | | Tatoeba-test.multi.multi | 38.8 | 0.580 | | Tatoeba-test.pol-ces.pol.ces | 43.4 | 0.620 | | Tatoeba-test.pol-dsb.pol.dsb | 2.1 | 0.159 | ### System Info: - hf_name: zlw-zlw - source_languages: zlw - target_languages: zlw - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/zlw-zlw/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['pl', 'cs', 'zlw'] - src_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - tgt_constituents: {'csb_Latn', 'dsb', 'hsb', 'pol', 'ces'} - src_multilingual: True - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/zlw-zlw/opus-2020-07-27.test.txt - src_alpha3: zlw - tgt_alpha3: zlw - short_pair: zlw-zlw - chrF2_score: 0.58 - bleu: 38.8 - brevity_penalty: 0.99 - ref_len: 7792.0 - src_name: West Slavic languages - tgt_name: West Slavic languages - train_date: 2020-07-27 - src_alpha2: zlw - tgt_alpha2: zlw - prefer_old: False - long_pair: zlw-zlw - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["pl", "cs", "zlw"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zlw-zlw
null
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "pl", "cs", "zlw", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-zne-es * source languages: zne * target languages: es * OPUS readme: [zne-es](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-es/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-es/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.es | 21.1 | 0.382 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zne-es
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zne", "es", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-zne-fi * source languages: zne * target languages: fi * OPUS readme: [zne-fi](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-fi/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fi/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.fi | 22.8 | 0.432 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zne-fi
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zne", "fi", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-zne-fr * source languages: zne * target languages: fr * OPUS readme: [zne-fr](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-fr/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-fr/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fr/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-fr/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.fr | 25.3 | 0.416 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zne-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zne", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### opus-mt-zne-sv * source languages: zne * target languages: sv * OPUS readme: [zne-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/zne-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/zne-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.zne.sv | 25.2 | 0.425 |
{"license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-mt-zne-sv
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "zne", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### af-ru * source group: Afrikaans * target group: Russian * OPUS readme: [afr-rus](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-rus/README.md) * model: transformer-align * source language(s): afr * target language(s): rus * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-09-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-09-10.zip) * test set translations: [opus-2020-09-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-09-10.test.txt) * test set scores: [opus-2020-09-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-09-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.afr.rus | 38.2 | 0.580 | ### System Info: - hf_name: af-ru - source_languages: afr - target_languages: rus - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/afr-rus/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['af', 'ru'] - src_constituents: ('Afrikaans', {'afr'}) - tgt_constituents: ('Russian', {'rus'}) - src_multilingual: False - tgt_multilingual: False - long_pair: afr-rus - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-09-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/afr-rus/opus-2020-09-10.test.txt - src_alpha3: afr - tgt_alpha3: rus - chrF2_score: 0.58 - bleu: 38.2 - brevity_penalty: 0.992 - ref_len: 1213 - src_name: Afrikaans - tgt_name: Russian - train_date: 2020-01-01 00:00:00 - src_alpha2: af - tgt_alpha2: ru - prefer_old: False - short_pair: af-ru - helsinki_git_sha: e8c308a96c1bd0b4ca6a8ce174783f93c3e30f25 - transformers_git_sha: 31245775e5772fbded1ac07ed89fbba3b5af0cb9 - port_machine: LM0-400-22516.local - port_time: 2021-02-12-14:52
{"language": ["af", "ru"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-af-ru
null
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "af", "ru", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### de-ro * source group: German * target group: Romanian * OPUS readme: [deu-ron](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-ron/README.md) * model: transformer-align * source language(s): deu * target language(s): mol ron * raw source language(s): deu * raw target language(s): mol ron * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * valid language labels: >>mol<< >>ron<< * download original weights: [opusTCv20210807-2021-10-22.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.zip) * test set translations: [opusTCv20210807-2021-10-22.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.test.txt) * test set scores: [opusTCv20210807-2021-10-22.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test-v2021-08-07.deu-ron | 42.0 | 0.636 | 1141 | 7432 | 0.976 | ### System Info: - hf_name: de-ro - source_languages: deu - target_languages: ron - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/deu-ron/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['de', 'ro'] - src_constituents: ('German', {'deu'}) - tgt_constituents: ('Romanian', {'ron'}) - src_multilingual: False - tgt_multilingual: False - long_pair: deu-ron - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/deu-ron/opusTCv20210807-2021-10-22.test.txt - src_alpha3: deu - tgt_alpha3: ron - chrF2_score: 0.636 - bleu: 42.0 - src_name: German - tgt_name: Romanian - train_date: 2021-10-22 00:00:00 - src_alpha2: de - tgt_alpha2: ro - prefer_old: False - short_pair: de-ro - helsinki_git_sha: 2ef219d5b67f0afb0c6b732cd07001d84181f002 - transformers_git_sha: df1f94eb4a18b1a27d27e32040b60a17410d516e - port_machine: LM0-400-22516.local - port_time: 2021-11-08-16:45
{"language": ["de", "ro"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-de-ro
null
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "de", "ro", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### en-ja * source group: English * target group: Japanese * OPUS readme: [eng-jpn](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-jpn/README.md) * model: transformer-align * source language(s): eng * target language(s): jpn * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-jpn/opus+bt-2021-04-10.zip) * test set translations: [opus+bt-2021-04-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-jpn/opus+bt-2021-04-10.test.txt) * test set scores: [opus+bt-2021-04-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-jpn/opus+bt-2021-04-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test.eng-jpn | 15.2 | 0.258 | 10000 | 99206 | 1.000 | ### System Info: - hf_name: en-ja - source_languages: eng - target_languages: jpn - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-jpn/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'ja'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Japanese', {'jpn', 'jpn_Latn', 'jpn_Yiii', 'jpn_Kana', 'jpn_Hira', 'jpn_Hang', 'jpn_Bopo', 'jpn_Hani'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-jpn - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-jpn/opus+bt-2021-04-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-jpn/opus+bt-2021-04-10.test.txt - src_alpha3: eng - tgt_alpha3: jpn - chrF2_score: 0.258 - bleu: 15.2 - src_name: English - tgt_name: Japanese - train_date: 2021-04-10 00:00:00 - src_alpha2: en - tgt_alpha2: ja - prefer_old: False - short_pair: en-ja - helsinki_git_sha: 70b0a9621f054ef1d8ea81f7d55595d7f64d19ff - transformers_git_sha: 12b4d66a80419db30a15e7b9d4208ceb9887c03b - port_machine: LM0-400-22516.local - port_time: 2021-10-12-11:13
{"language": ["en", "ja"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-en-ja
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "en", "ja", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### en-ro * source group: English * target group: Romanian * OPUS readme: [eng-ron](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ron/README.md) * model: transformer-align * source language(s): eng * target language(s): mol ron * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * valid language labels: * download original weights: [opus+bt-2021-03-07.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opus+bt-2021-03-07.zip) * test set translations: [opus+bt-2021-03-07.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opus+bt-2021-03-07.test.txt) * test set scores: [opus+bt-2021-03-07.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opus+bt-2021-03-07.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newsdev2016-enro.eng-ron | 33.5 | 0.610 | 1999 | 51566 | 0.984 | | newstest2016-enro.eng-ron | 31.7 | 0.591 | 1999 | 49094 | 0.998 | | Tatoeba-test.eng-ron | 46.9 | 0.678 | 5000 | 36851 | 0.983 | ### System Info: - hf_name: en-ro - source_languages: eng - target_languages: ron - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-ron/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'ro'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Romanian', {'ron'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-ron - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opus+bt-2021-03-07.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-ron/opus+bt-2021-03-07.test.txt - src_alpha3: eng - tgt_alpha3: ron - chrF2_score: 0.678 - bleu: 46.9 - src_name: English - tgt_name: Romanian - train_date: 2021-03-07 00:00:00 - src_alpha2: en - tgt_alpha2: ro - prefer_old: False - short_pair: en-ro - helsinki_git_sha: 2ef219d5b67f0afb0c6b732cd07001d84181f002 - transformers_git_sha: 12b4d66a80419db30a15e7b9d4208ceb9887c03b - port_machine: LM0-400-22516.local - port_time: 2021-11-08-09:31
{"language": ["en", "ro"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-en-ro
null
[ "transformers", "pytorch", "safetensors", "marian", "text2text-generation", "translation", "en", "ro", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### en-tr * source group: English * target group: Turkish * OPUS readme: [eng-tur](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tur/README.md) * model: transformer-align * source language(s): eng * target language(s): tur * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus+bt-2021-04-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opus+bt-2021-04-10.zip) * test set translations: [opus+bt-2021-04-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opus+bt-2021-04-10.test.txt) * test set scores: [opus+bt-2021-04-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opus+bt-2021-04-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newsdev2016-entr.eng-tur | 21.5 | 0.575 | 1001 | 16127 | 1.000 | | newstest2016-entr.eng-tur | 21.4 | 0.558 | 3000 | 50782 | 0.986 | | newstest2017-entr.eng-tur | 22.8 | 0.572 | 3007 | 51977 | 0.960 | | newstest2018-entr.eng-tur | 20.8 | 0.561 | 3000 | 53731 | 0.963 | | Tatoeba-test.eng-tur | 41.5 | 0.684 | 10000 | 60469 | 0.932 | ### System Info: - hf_name: en-tr - source_languages: eng - target_languages: tur - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-tur/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'tr'] - src_constituents: ('English', {'eng'}) - tgt_constituents: ('Turkish', {'tur'}) - src_multilingual: False - tgt_multilingual: False - long_pair: eng-tur - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opus+bt-2021-04-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-tur/opus+bt-2021-04-10.test.txt - src_alpha3: eng - tgt_alpha3: tur - chrF2_score: 0.684 - bleu: 41.5 - src_name: English - tgt_name: Turkish - train_date: 2021-04-10 00:00:00 - src_alpha2: en - tgt_alpha2: tr - prefer_old: False - short_pair: en-tr - helsinki_git_sha: a6bd0607aec9603811b2b635aec3f566f3add79d - transformers_git_sha: 12b4d66a80419db30a15e7b9d4208ceb9887c03b - port_machine: LM0-400-22516.local - port_time: 2021-10-05-12:13
{"language": ["en", "tr"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-en-tr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "en", "tr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### es-zh * source group: Spanish * target group: Chinese * OPUS readme: [spa-zho](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-zho/README.md) * model: transformer * source language(s): spa * target language(s): cjy_Hans cjy_Hant cmn cmn_Hans cmn_Hant hsn hsn_Hani lzh nan wuu yue_Hans yue_Hant * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus-2021-01-04.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zho/opus-2021-01-04.zip) * test set translations: [opus-2021-01-04.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zho/opus-2021-01-04.test.txt) * test set scores: [opus-2021-01-04.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zho/opus-2021-01-04.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.spa.zho | 38.8 | 0.324 | ### System Info: - hf_name: es-zh - source_languages: spa - target_languages: zho - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/spa-zho/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['es', 'zh'] - src_constituents: ('Spanish', {'spa'}) - tgt_constituents: ('Chinese', {'wuu_Bopo', 'wuu', 'cmn_Hang', 'lzh_Kana', 'lzh', 'wuu_Hani', 'lzh_Yiii', 'yue_Hans', 'cmn_Hani', 'cjy_Hans', 'cmn_Hans', 'cmn_Kana', 'zho_Hans', 'zho_Hant', 'yue', 'cmn_Bopo', 'yue_Hang', 'lzh_Hans', 'wuu_Latn', 'yue_Hant', 'hak_Hani', 'lzh_Bopo', 'cmn_Hant', 'lzh_Hani', 'lzh_Hang', 'cmn', 'lzh_Hira', 'yue_Bopo', 'yue_Hani', 'gan', 'zho', 'cmn_Yiii', 'yue_Hira', 'cmn_Latn', 'yue_Kana', 'cjy_Hant', 'cmn_Hira', 'nan_Hani', 'nan'}) - src_multilingual: False - tgt_multilingual: False - long_pair: spa-zho - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zho/opus-2021-01-04.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/spa-zho/opus-2021-01-04.test.txt - src_alpha3: spa - tgt_alpha3: zho - chrF2_score: 0.324 - bleu: 38.8 - brevity_penalty: 0.878 - ref_len: 22762.0 - src_name: Spanish - tgt_name: Chinese - train_date: 2021-01-04 00:00:00 - src_alpha2: es - tgt_alpha2: zh - prefer_old: False - short_pair: es-zh - helsinki_git_sha: dfdcef114ffb8a8dbb7a3fcf84bde5af50309500 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2021-01-04-18:53
{"language": ["es", "zh"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-es-zh
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "es", "zh", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### fi-en * source group: Finnish * target group: English * OPUS readme: [fin-eng](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md) * model: transformer-align * source language(s): fin * target language(s): eng * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807+bt-2021-08-25.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-08-25.zip) * test set translations: [opusTCv20210807+bt-2021-08-25.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-08-25.test.txt) * test set scores: [opusTCv20210807+bt-2021-08-25.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-08-25.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | newsdev2015-enfi.fin-eng | 27.1 | 0.550 | 1500 | 32104 | 0.988 | | newstest2015-enfi.fin-eng | 28.5 | 0.560 | 1370 | 27356 | 0.980 | | newstest2016-enfi.fin-eng | 31.7 | 0.586 | 3000 | 63043 | 1.000 | | newstest2017-enfi.fin-eng | 34.6 | 0.610 | 3002 | 61936 | 0.988 | | newstest2018-enfi.fin-eng | 25.4 | 0.530 | 3000 | 62325 | 0.981 | | newstest2019-fien.fin-eng | 30.6 | 0.577 | 1996 | 36227 | 0.994 | | newstestB2016-enfi.fin-eng | 25.8 | 0.538 | 3000 | 63043 | 0.987 | | newstestB2017-enfi.fin-eng | 29.6 | 0.572 | 3002 | 61936 | 0.999 | | newstestB2017-fien.fin-eng | 29.6 | 0.572 | 3002 | 61936 | 0.999 | | Tatoeba-test-v2021-08-07.fin-eng | 54.1 | 0.700 | 10000 | 75212 | 0.988 | ### System Info: - hf_name: fi-en - source_languages: fin - target_languages: eng - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fin-eng/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fi', 'en'] - src_constituents: ('Finnish', {'fin'}) - tgt_constituents: ('English', {'eng'}) - src_multilingual: False - tgt_multilingual: False - long_pair: fin-eng - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-08-25.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fin-eng/opusTCv20210807+bt-2021-08-25.test.txt - src_alpha3: fin - tgt_alpha3: eng - chrF2_score: 0.7 - bleu: 54.1 - src_name: Finnish - tgt_name: English - train_date: 2021-08-25 00:00:00 - src_alpha2: fi - tgt_alpha2: en - prefer_old: False - short_pair: fi-en - helsinki_git_sha: 2ef219d5b67f0afb0c6b732cd07001d84181f002 - transformers_git_sha: 12b4d66a80419db30a15e7b9d4208ceb9887c03b - port_machine: LM0-400-22516.local - port_time: 2021-11-04-21:36
{"language": ["fi", "en"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-fi-en
null
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "fi", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### fr-it * source group: French * target group: Italian * OPUS readme: [fra-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-ita/README.md) * model: transformer-align * source language(s): fra * target language(s): ita * raw source language(s): fra * raw target language(s): ita * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opusTCv20210807-2021-11-11.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.zip) * test set translations: [opusTCv20210807-2021-11-11.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.test.txt) * test set scores: [opusTCv20210807-2021-11-11.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.eval.txt) ## Benchmarks | testset | BLEU | chr-F | #sent | #words | BP | |---------|-------|-------|-------|--------|----| | Tatoeba-test-v2021-08-07.fra-ita | 54.8 | 0.737 | 10000 | 61517 | 0.953 | ### System Info: - hf_name: fr-it - source_languages: fra - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/fra-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['fr', 'it'] - src_constituents: ('French', {'fra'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: fra-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/fra-ita/opusTCv20210807-2021-11-11.test.txt - src_alpha3: fra - tgt_alpha3: ita - chrF2_score: 0.737 - bleu: 54.8 - src_name: French - tgt_name: Italian - train_date: 2021-11-11 00:00:00 - src_alpha2: fr - tgt_alpha2: it - prefer_old: False - short_pair: fr-it - helsinki_git_sha: 7ab0c987850187e0b10342bfc616cd47c027ba18 - transformers_git_sha: df1f94eb4a18b1a27d27e32040b60a17410d516e - port_machine: LM0-400-22516.local - port_time: 2021-11-11-19:40
{"language": ["fr", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-fr-it
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "fr", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### he-fr * source group: Hebrew * target group: French * OPUS readme: [heb-fra](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-fra/README.md) * model: transformer * source language(s): heb * target language(s): fra * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.fra | 47.3 | 0.644 | ### System Info: - hf_name: he-fr - source_languages: heb - target_languages: fra - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-fra/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'fr'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('French', {'fra'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-fra - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-fra/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: fra - chrF2_score: 0.644 - bleu: 47.3 - brevity_penalty: 0.9740000000000001 - ref_len: 26123.0 - src_name: Hebrew - tgt_name: French - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: fr - prefer_old: False - short_pair: he-fr - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:03
{"language": ["he", "fr"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-he-fr
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "he", "fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### he-it * source group: Hebrew * target group: Italian * OPUS readme: [heb-ita](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md) * model: transformer * source language(s): heb * target language(s): ita * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.heb.ita | 41.1 | 0.643 | ### System Info: - hf_name: he-it - source_languages: heb - target_languages: ita - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/heb-ita/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['he', 'it'] - src_constituents: ('Hebrew', {'heb'}) - tgt_constituents: ('Italian', {'ita'}) - src_multilingual: False - tgt_multilingual: False - long_pair: heb-ita - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/heb-ita/opus-2020-12-10.test.txt - src_alpha3: heb - tgt_alpha3: ita - chrF2_score: 0.643 - bleu: 41.1 - brevity_penalty: 0.997 - ref_len: 11464.0 - src_name: Hebrew - tgt_name: Italian - train_date: 2020-12-10 00:00:00 - src_alpha2: he - tgt_alpha2: it - prefer_old: False - short_pair: he-it - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:01
{"language": ["he", "it"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-he-it
null
[ "transformers", "pytorch", "marian", "text2text-generation", "translation", "he", "it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
translation
transformers
### it-he * source group: Italian * target group: Hebrew * OPUS readme: [ita-heb](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-heb/README.md) * model: transformer * source language(s): ita * target language(s): heb * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-12-10.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.zip) * test set translations: [opus-2020-12-10.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.test.txt) * test set scores: [opus-2020-12-10.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.ita.heb | 38.5 | 0.593 | ### System Info: - hf_name: it-he - source_languages: ita - target_languages: heb - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/ita-heb/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['it', 'he'] - src_constituents: ('Italian', {'ita'}) - tgt_constituents: ('Hebrew', {'heb'}) - src_multilingual: False - tgt_multilingual: False - long_pair: ita-heb - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/ita-heb/opus-2020-12-10.test.txt - src_alpha3: ita - tgt_alpha3: heb - chrF2_score: 0.593 - bleu: 38.5 - brevity_penalty: 0.985 - ref_len: 9796.0 - src_name: Italian - tgt_name: Hebrew - train_date: 2020-12-10 00:00:00 - src_alpha2: it - tgt_alpha2: he - prefer_old: False - short_pair: it-he - helsinki_git_sha: b317f78a3ec8a556a481b6a53dc70dc11769ca96 - transformers_git_sha: 1310e1a758edc8e89ec363db76863c771fbeb1de - port_machine: LM0-400-22516.local - port_time: 2020-12-11-16:02
{"language": ["it", "he"], "license": "apache-2.0", "tags": ["translation"]}
Helsinki-NLP/opus-tatoeba-it-he
null
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "it", "he", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hemang/DialoGPT-small-mickeymousebot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
Thanks for checking this out! <br /> This video explains the ideas behind KerasBERT (still very much a work in progress) https://www.youtube.com/watch?v=J3P8WLAELqk
{}
HenryAI/KerasBERTv1
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-scitldr This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0232 - Rouge1: 35.2134 - Rouge2: 16.8919 - Rougel: 30.8442 - Rougelsum: 30.9316 - Gen Len: 18.7981 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 2.0533 | 1.0 | 996 | 2.0285 | 34.9774 | 16.6163 | 30.6177 | 30.7038 | 18.7981 | | 2.0994 | 2.0 | 1992 | 2.0232 | 35.2134 | 16.8919 | 30.8442 | 30.9316 | 18.7981 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model-index": [{"name": "t5-base-finetuned-scitldr", "results": []}]}
HenryHXR/t5-base-finetuned-scitldr
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model predicts the time period given a synopsis of about 200 Chinese characters. The model is trained on TV and Movie datasets and takes simplified Chinese as input. We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint. #### Sample Usage from transformers import BertTokenizer, BertForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") checkpoint = "Herais/pred_genre" tokenizer = BertTokenizer.from_pretrained(checkpoint, problem_type="single_label_classification") model = BertForSequenceClassification.from_pretrained(checkpoint).to(device) label2id_genre = {'涉案': 7, '都市': 10, '革命': 12, '农村': 4, '传奇': 0, '其它': 2, '传记': 1, '青少': 11, '军旅': 3, '武打': 6, '科幻': 9, '神话': 8, '宫廷': 5} id2label_genre = {7: '涉案', 10: '都市', 12: '革命', 4: '农村', 0: '传奇', 2: '其它', 1: '传记', 11: '青少', 3: '军旅', 6: '武打', 9: '科幻', 8: '神话', 5: '宫廷'} synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\ 他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\ 成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\ 为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\ 也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\ 继续为检察事业贡献自己的青春。 """ inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt') model.eval() outputs = model(**input) label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy() labels_pred = [id2label_timeperiod[label] for label in labels_pred] print(labels_pred) # ['涉案'] Citation TBA
{"language": ["zh"], "license": "apache-2.0", "tags": ["classification"], "datasets": ["Custom"], "metrics": ["rouge"]}
Herais/pred_genre
null
[ "transformers", "pytorch", "bert", "text-classification", "classification", "zh", "dataset:Custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
This model predicts the time period given a synopsis of about 200 Chinese characters. The model is trained on TV and Movie datasets and takes simplified Chinese as input. We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint. #### Sample Usage from transformers import BertTokenizer, BertForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") checkpoint = "Herais/pred_timeperiod" tokenizer = BertTokenizer.from_pretrained(checkpoint, problem_type="single_label_classification") model = BertForSequenceClassification.from_pretrained(checkpoint).to(device) label2id_timeperiod = {'古代': 0, '当代': 1, '现代': 2, '近代': 3, '重大': 4} id2label_timeperiod = {0: '古代', 1: '当代', 2: '现代', 3: '近代', 4: '重大'} synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\ 他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\ 成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\ 为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\ 也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\ 继续为检察事业贡献自己的青春。 """ inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt') model.eval() outputs = model(**input) label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy() labels_pred = [id2label_timeperiod[label] for label in labels_pred] print(labels_pred) # ['当代'] Citation {}
{"language": ["zh"], "license": "apache-2.0", "tags": ["classification"], "datasets": ["Custom"], "metrics": ["rouge"]}
Herais/pred_timeperiod
null
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "classification", "zh", "dataset:Custom", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-hi-hinglish This model is a fine-tuned version of [Helsinki-NLP/opus-mt-hi-en](https://huggingface.co/Helsinki-NLP/opus-mt-hi-en) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 4.1869 - Validation Loss: 4.0607 - Epoch: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 279, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 4.1869 | 4.0607 | 0 | ### Framework versions - Transformers 4.16.2 - TensorFlow 2.7.0 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "marian-finetuned-hi-hinglish", "results": []}]}
Hetarth/marian-finetuned-hi-hinglish
null
[ "transformers", "tf", "marian", "text2text-generation", "generated_from_keras_callback", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hexious/Jimrie
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
Create README.md ## ByT5 Base Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 Base by Google for Sentimental Analysis from Product Reviews in Portuguese. ##### Paper: https://arxiv.org/abs/2105.13626 #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/HeyLucasLeao/finetuning-byt5-model. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **1e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://drive.google.com/file/d/17TcaN52moq7i7TE2EbcVbwQEQuAIQU63/view?usp=sharing ##### Colab for Metrics: https://colab.research.google.com/drive/1wbTDfOsE45UL8Q3ZD1_FTUmdVOKCcJFf#scrollTo=S4nuLkAFrlZ6 #### Score: ```python Training Set: 'accuracy': 0.9019706922688226, 'f1': 0.9305820610687022, 'precision': 0.9596555965559656, 'recall': 0.9032183375781431 Test Set: 'accuracy': 0.9019409684035312, 'f1': 0.9303758732034697, 'precision': 0.9006660401258529, 'recall': 0.9621126145787866 Validation Set: 'accuracy': 0.9044948078526491, 'f1': 0.9321924443009364, 'precision': 0.9024426549173129, 'recall': 0.9639705531617191 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-base-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-base-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```
{}
HeyLucasLeao/byt5-base-pt-product-reviews
null
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2105.13626", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
Create README.md ## ByT5 Small Portuguese Product Reviews #### Model Description This is a finetuned version from ByT5 Small by Google for Sentimental Analysis from Product Reviews in Portuguese. ##### Paper: https://arxiv.org/abs/2105.13626 #### Training data It was trained from products reviews from a Americanas.com. You can found the data here: https://github.com/HeyLucasLeao/finetuning-byt5-model. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. For evaluation it was used accuracy, precision, recall and f1 score. ##### Learning Rate: **1e-4** ##### Epochs: **1** ##### Colab for Finetuning: https://colab.research.google.com/drive/1EChTeQkGeXi_52lClBNazHVuSNKEHN2f ##### Colab for Metrics: https://colab.research.google.com/drive/1o4tcsP3lpr1TobtE3Txhp9fllxPWXxlw#scrollTo=PXAoog5vQaTn #### Score: ```python Training Set: 'accuracy': 0.8974239585927603, 'f1': 0.927229848590765, 'precision': 0.9580290812115055, 'recall': 0.8983492356469835 Test Set: 'accuracy': 0.8957881282882026, 'f1': 0.9261366030421776, 'precision': 0.9559431131213848, 'recall': 0.8981326359661668 Validation Set: 'accuracy': 0.8925383190163382, 'f1': 0.9239208204149773, 'precision': 0.9525448733710351, 'recall': 0.8969668904839083 ``` #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model = AutoModelForSeq2SeqLM.from_pretrained("HeyLucasLeao/byt5-small-pt-product-reviews") model.to(device) def classificar_review(review): inputs = tokenizer([review], padding='max_length', truncation=True, max_length=512, return_tensors='pt') input_ids = inputs.input_ids.to(device) attention_mask = inputs.attention_mask.to(device) output = model.generate(input_ids, attention_mask=attention_mask) pred = np.argmax(output.cpu(), axis=1) dici = {0: 'Review Negativo', 1: 'Review Positivo'} return dici[pred.item()] classificar_review(review) ```
{}
HeyLucasLeao/byt5-small-pt-product-reviews
null
[ "transformers", "pytorch", "t5", "text2text-generation", "arxiv:2105.13626", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
Create README.md ## Emo Bot #### Model Description This is a finetuned version from GPT-Neo-125M for Generating Music Lyrics by Emo Genre. #### Training data It was trained with 2381 songs by 15 bands that were important to emo culture in the early 2000s, not necessary directly playing on the genre. #### Training Procedure It was finetuned using the Trainer Class available on the Hugging Face library. ##### Learning Rate: **2e-4** ##### Epochs: **40** ##### Colab for Finetuning: https://colab.research.google.com/drive/1jwTYI1AygQf7FV9vCHTWA4Gf5i--sjsD?usp=sharing ##### Colab for Testing: https://colab.research.google.com/drive/1wSP4Wyr1-DTTNQbQps_RCO3ThhH-eeZc?usp=sharing #### Goals My true intention was totally educational, thus making available a this version of the model as a example for future proposes. How to use ``` python from transformers import AutoTokenizer, AutoModelForCausalLM import re if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') print(device) tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/gpt-neo-small-emo-lyrics") model = AutoModelForCausalLM.from_pretrained("HeyLucasLeao/gpt-neo-small-emo-lyrics") model.to('cuda') generated = tokenizer('I miss you',return_tensors='pt').input_ids.cuda() #Generating texts sample_outputs = model.generate(generated, # Use sampling instead of greedy decoding do_sample=True, # Keep only top 3 token with the highest probability top_k=10, # Maximum sequence length max_length=200, # Keep only the most probable tokens with cumulative probability of 95% top_p=0.95, # Changes randomness of generated sequences temperature=2., # Number of sequences to generate num_return_sequences=3) # Decoding and printing sequences for i, sample_output in enumerate(sample_outputs): texto = tokenizer.decode(sample_output.tolist()) regex_padding = re.sub('<|pad|>', '', texto) regex_barra = re.sub('[|+]', '', regex_padding) espaço = re.sub('[ +]', ' ', regex_barra) resultado = re.sub('[\n](2, )', '\n', espaço) print(">> Text {}: {}".format(i+1, resultado + '\n')) """>> Texto 1: I miss you I miss you more than anything And if you change your mind I do it like a change of mind I always do it like theeah Everybody wants a surprise Everybody needs to stay collected I keep your locked and numbered Use this instead: Run like the wind Use this instead: Run like the sun And come back down: You've been replaced Don't want to be the same Tomorrow I don't even need your name The message is on the way make it while you're holding on It's better than it is Everything more security than a parade Im getting security angs the world like a damned soul We're hanging on a queue and the truth is on the way Are you listening? We're getting security Send me your soldiers We're getting blood on""" """>> Texto 2: I miss you And I could forget your name All the words we'd hear You miss me I need you And I need you You were all by my side When we'd talk to no one And I Just to talk to you It's easier than it has to be Except for you You missed my know-all You meant to hug me And I Just want to feel you touch me We'll work up Something wild, just from the inside Just get closer to me I need you You were all by my side When we*d talk to you , you better admit That I'm too broken to be small You're part of me And I need you But I Don't know how But I know I need you Must""" """>> Texto 3: I miss you And I can't lie Inside my head All the hours you've been through If I could change your mind I would give it all away And I'd give it all away Just to give it away To you Now I wish that I could change Just to you I miss you so much If I could change So much I'm looking down At the road The one that's already been Searching for a better way to go So much I need to see it clear topk wish me an ehive I wish I wish I wish I knew I can give well In this lonely night The lonely night I miss you I wish it well If I could change So much I need you""" ```
{}
HeyLucasLeao/gpt-neo-small-emo-lyrics
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
## GPT-Neo Small Portuguese #### Model Description This is a finetuned version from GPT-Neo 125M by EletheurAI to Portuguese language. #### Training data It was trained from 227,382 selected texts from a PTWiki Dump. You can found all the data from here: https://archive.org/details/ptwiki-dump-20210520 #### Training Procedure Every text was passed through a GPT2-Tokenizer with bos and eos tokens to separate them, with max sequence length that the GPT-Neo could support. It was finetuned using the default metrics of the Trainer Class, available on the Hugging Face library. ##### Learning Rate: **2e-4** ##### Epochs: **1** #### Goals My true intention was totally educational, thus making available a Portuguese version of this model. How to use ``` python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("HeyLucasLeao/gpt-neo-small-portuguese") model = AutoModelForCausalLM.from_pretrained("HeyLucasLeao/gpt-neo-small-portuguese") text = 'eu amo o brasil.' generated = tokenizer(f'<|startoftext|> {text}', return_tensors='pt').input_ids.cuda() #Generating texts sample_outputs = model.generate(generated, # Use sampling instead of greedy decoding do_sample=True, # Keep only top 3 token with the highest probability top_k=3, # Maximum sequence length max_length=200, # Keep only the most probable tokens with cumulative probability of 95% top_p=0.95, # Changes randomness of generated sequences temperature=1.9, # Number of sequences to generate num_return_sequences=3) # Decoding and printing sequences for i, sample_output in enumerate(sample_outputs): print(">> Generated text {}\\\\ \\\\ {}".format(i+1, tokenizer.decode(sample_output.tolist()))) # >> Generated text #Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. #>> Generated text 1 #<|startoftext|> eu amo o brasil. O termo foi usado por alguns autores como uma forma de designar a formação do poder político do Brasil. A partir da década de 1960, o termo passou a ser usado para designar a formação política do Brasil. A partir de meados da década de 1970 e até o inicio dos anos 2000, o termo foi aplicado à formação político-administrativo do país, sendo utilizado por alguns autores como uma expressão de "política de direita". História Antecedentes O termo "político-administrário" foi usado pela primeira vez em 1891 por um gru #>> Generated text 2 #<|startoftext|> eu amo o brasil. É uma das muitas pessoas do mundo, ao contrário da maioria das pessoas, que são chamados de "pessoas do Brasil", que são chamados de "brincos do país" e que têm uma carreira de mais de um século. O termo "brincal de ouro" é usado em referências às pessoas que vivem no Brasil, e que são chamados "brincos do país", que são "cidade" e que vivem na cidade de Nova York e que vive em um país onde a maior parte das pessoas são chamados de "cidades". Hist #>> Generated text 3 #<|startoftext|> eu amo o brasil. É uma expressão que se refere ao uso de um instrumento musical em particular para se referir à qualidade musical, o que é uma expressão da qualidade da qualidade musical de uma pessoa. A expressão "amor" (em inglês, amo), é a expressão que pode ser usada com o intuito empregado em qualquer situação em que a vontade de uma pessoa de se sentir amado ou amoroso é mais do que um desejo de uma vontade. Em geral, a expressão "amoro" (do inglês, amo) pode também se referir tanto a uma pessoa como um instrumento de cordas ou de uma ```
{}
HeyLucasLeao/gpt-neo-small-portuguese
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
# Convert Fairseq Wav2Vec2 to HF This repo has two scripts that can show how to convert a fairseq checkpoint to HF Transformers. It's important to always check in a forward pass that the two checkpoints are the same. The procedure should be as follows: 1. Download original model 2. Create HF version of the model: ``` huggingface-cli repo create <name_of_model> --organization <org_of_model> git clone https://huggingface.co/<org_of_model>/<name_of_model> ``` 3. Convert the model ``` ./run_convert.sh <name_of_model> <path/to/orig/checkpoint/> 0 ``` The "0" means that checkpoint is **not** a fine-tuned one. 4. Verify that models are equal: ``` ./run_forward.py <name_of_model> <path/to/orig/checkpoint/> 0 ``` Check the scripts to better understand how they work or contact https://huggingface.co/patrickvonplaten
{}
HfSpeechUtils/convert_wav2vec2_to_hf
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
# Run any CTC model ```python ./run_ctc_model.py "yourModelId" "yourLanguageCode" "yourPhonemeLang" "NumSamplesToDecode" ```
{}
HfSpeechUtils/run_ctc_common_voice.py
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HfaceDevGl96/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hidde/iFlow
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
{}
HieuLV3/QA_UIT_xlm_roberta_large
null
[ "transformers", "pytorch", "roberta", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HighCWu/rudalle-paddle-utils
null
[ "paddlepaddle", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HighVoltage/imp
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8301 - Matthews Correlation: 0.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5252 | 1.0 | 535 | 0.5094 | 0.4268 | | 0.3515 | 2.0 | 1070 | 0.5040 | 0.4948 | | 0.2403 | 3.0 | 1605 | 0.5869 | 0.5449 | | 0.1731 | 4.0 | 2140 | 0.7338 | 0.5474 | | 0.1219 | 5.0 | 2675 | 0.8301 | 0.5481 | ### Framework versions - Transformers 4.9.2 - Pytorch 1.9.0 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model_index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"name": "Text Classification", "type": "text-classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metric": {"name": "Matthews Correlation", "type": "matthews_correlation", "value": 0.5481326292844919}}]}]}
Hinova/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hipanda/distilbert-base-uncased-finetuned-mnli
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hitham/FirstModel
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. It achieves the following results on the evaluation set: - Loss: 1.1582 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.2176 | 1.0 | 5533 | 1.1429 | | 0.9425 | 2.0 | 11066 | 1.1196 | | 0.7586 | 3.0 | 16599 | 1.1582 | ### Framework versions - Transformers 4.10.0 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"]}
Hoang/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hoang/my-new-shiny-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hoang/vn-tokenizer
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
KOD file
{}
HoeioUser/kod
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hokuto/testrinna
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
Testing NER
{}
Holako/NER_CAMELBERT
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
#### How to use You can use this model with Transformers *pipeline* for NER. ```python from transformers import AutoTokenizer, AutoModelForTokenClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("Holako/NER_model_holako") model = AutoModelForTokenClassification.from_pretrained("Holako/NER_model_holako") nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "اسمي احمد" ner_results = nlp(example) print(ner_results) ``` #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ======= #### Limitations and bias This model is limited by its training dataset of entity-annotated news articles from a specific span of time. This may not generalize well for all use cases in different domains. ## Training data Language|Dataset -|- Arabic | [ANERcorp](https://camel.abudhabi.nyu.edu/anercorp/)
{}
Holako/NER_model_holako
null
[ "transformers", "pytorch", "xlm-roberta", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
MagnusChase7/DialoGPT-medium-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
HolyFish/testing123
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Homerzz/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Hooray/housing
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# AlbertNER This model fine-tuned for the Named Entity Recognition (NER) task on a mixed NER dataset collected from [ARMAN](https://github.com/HaniehP/PersianNER), [PEYMA](http://nsurl.org/2019-2/tasks/task-7-named-entity-recognition-ner-for-farsi/), and [WikiANN](https://elisa-ie.github.io/wikiann/) that covered ten types of entities: - Date (DAT) - Event (EVE) - Facility (FAC) - Location (LOC) - Money (MON) - Organization (ORG) - Percent (PCT) - Person (PER) - Product (PRO) - Time (TIM) ## Dataset Information | | Records | B-DAT | B-EVE | B-FAC | B-LOC | B-MON | B-ORG | B-PCT | B-PER | B-PRO | B-TIM | I-DAT | I-EVE | I-FAC | I-LOC | I-MON | I-ORG | I-PCT | I-PER | I-PRO | I-TIM | |:------|----------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:|--------:| | Train | 29133 | 1423 | 1487 | 1400 | 13919 | 417 | 15926 | 355 | 12347 | 1855 | 150 | 1947 | 5018 | 2421 | 4118 | 1059 | 19579 | 573 | 7699 | 1914 | 332 | | Valid | 5142 | 267 | 253 | 250 | 2362 | 100 | 2651 | 64 | 2173 | 317 | 19 | 373 | 799 | 387 | 717 | 270 | 3260 | 101 | 1382 | 303 | 35 | | Test | 6049 | 407 | 256 | 248 | 2886 | 98 | 3216 | 94 | 2646 | 318 | 43 | 568 | 888 | 408 | 858 | 263 | 3967 | 141 | 1707 | 296 | 78 | ## Evaluation The following tables summarize the scores obtained by model overall and per each class. **Overall** | Model | accuracy | precision | recall | f1 | |:----------:|:--------:|:---------:|:--------:|:--------:| | Albert | 0.993405 | 0.938907 | 0.943966 | 0.941429 | **Per entities** | | number | precision | recall | f1 | |:---: |:------: |:---------: |:--------: |:--------: | | DAT | 407 | 0.820639 | 0.820639 | 0.820639 | | EVE | 256 | 0.936803 | 0.984375 | 0.960000 | | FAC | 248 | 0.925373 | 1.000000 | 0.961240 | | LOC | 2884 | 0.960818 | 0.960818 | 0.960818 | | MON | 98 | 0.913978 | 0.867347 | 0.890052 | | ORG | 3216 | 0.920892 | 0.937500 | 0.929122 | | PCT | 94 | 0.946809 | 0.946809 | 0.946809 | | PER | 2644 | 0.960000 | 0.944024 | 0.951945 | | PRO | 318 | 0.942943 | 0.987421 | 0.964670 | | TIM | 43 | 0.780488 | 0.744186 | 0.761905 | ## How To Use You use this model with Transformers pipeline for NER. ### Installing requirements ```bash pip install sentencepiece pip install transformers ``` ### How to predict using pipeline ```python from transformers import AutoTokenizer from transformers import AutoModelForTokenClassification # for pytorch from transformers import TFAutoModelForTokenClassification # for tensorflow from transformers import pipeline model_name_or_path = "HooshvareLab/albert-fa-zwnj-base-v2-ner" # Albert tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForTokenClassification.from_pretrained(model_name_or_path) # Pytorch # model = TFAutoModelForTokenClassification.from_pretrained(model_name_or_path) # Tensorflow nlp = pipeline("ner", model=model, tokenizer=tokenizer) example = "در سال ۲۰۱۳ درگذشت و آندرتیکر و کین برای او مراسم یادبود گرفتند." ner_results = nlp(example) print(ner_results) ``` ## Questions? Post a Github issue on the [ParsNER Issues](https://github.com/hooshvare/parsner/issues) repo.
{"language": "fa"}
HooshvareLab/albert-fa-zwnj-base-v2-ner
null
[ "transformers", "pytorch", "tf", "albert", "token-classification", "fa", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# ALBERT-Persian A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language > میتونی بهش بگی برت_کوچولو > Call it little_berty ### BibTeX entry and citation info Please cite in your publication as the following: ```bibtex @misc{ALBERTPersian, author = {Hooshvare Team}, title = {ALBERT-Persian: A Lite BERT for Self-supervised Learning of Language Representations for the Persian Language}, year = {2021}, publisher = {GitHub}, journal = {GitHub repository}, howpublished = {\url{https://github.com/m3hrdadfi/albert-persian}}, } ``` ## Questions? Post a Github issue on the [ALBERT-Persian](https://github.com/m3hrdadfi/albert-persian) repo.
{"language": "fa", "license": "apache-2.0"}
HooshvareLab/albert-fa-zwnj-base-v2
null
[ "transformers", "pytorch", "tf", "albert", "fill-mask", "fa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|----------|------------|--------------|----------|----------------|------------| | ARMAN | 93.10* | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
{"language": "fa", "license": "apache-2.0"}
HooshvareLab/bert-base-parsbert-armanner-uncased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### PEYMA PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes. 1. Organization 2. Money 3. Location 4. Date 5. Time 6. Person 7. Percent | Label | # | |:------------:|:-----:| | Organization | 16964 | | Money | 2037 | | Location | 8782 | | Date | 4259 | | Time | 732 | | Person | 7675 | | Percent | 699 | **Download** You can download the dataset from [here](http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/) --- ### ARMAN ARMAN dataset holds 7,682 sentences with 250,015 sentences tagged over six different classes. 1. Organization 2. Location 3. Facility 4. Event 5. Product 6. Person | Label | # | |:------------:|:-----:| | Organization | 30108 | | Location | 12924 | | Facility | 4458 | | Event | 7557 | | Product | 4389 | | Person | 15645 | **Download** You can download the dataset from [here](https://github.com/HaniehP/PersianNER) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |:---------------:|:--------:|:----------:|:--------------:|:----------:|:----------------:|:------------:| | ARMAN + PEYMA | 95.13* | - | - | - | - | - | | PEYMA | 98.79* | - | 90.59 | - | 84.00 | - | | ARMAN | 93.10* | 89.9 | 84.03 | 86.55 | - | 77.45 | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
{"language": "fa", "license": "apache-2.0"}
HooshvareLab/bert-base-parsbert-ner-uncased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
## ParsBERT: Transformer-based Model for Persian Language Understanding ParsBERT is a monolingual language model based on Google’s BERT architecture with the same configurations as BERT-Base. Paper presenting ParsBERT: [arXiv:2005.12515](https://arxiv.org/abs/2005.12515) All the models (downstream tasks) are uncased and trained with whole word masking. (coming soon stay tuned) ## Persian NER [ARMAN, PEYMA, ARMAN+PEYMA] This task aims to extract named entities in the text, such as names and label with appropriate `NER` classes such as locations, organizations, etc. The datasets used for this task contain sentences that are marked with `IOB` format. In this format, tokens that are not part of an entity are tagged as `”O”` the `”B”`tag corresponds to the first word of an object, and the `”I”` tag corresponds to the rest of the terms of the same entity. Both `”B”` and `”I”` tags are followed by a hyphen (or underscore), followed by the entity category. Therefore, the NER task is a multi-class token classification problem that labels the tokens upon being fed a raw text. There are two primary datasets used in Persian NER, `ARMAN`, and `PEYMA`. In ParsBERT, we prepared ner for both datasets as well as a combination of both datasets. ### PEYMA PEYMA dataset includes 7,145 sentences with a total of 302,530 tokens from which 41,148 tokens are tagged with seven different classes. 1. Organization 2. Money 3. Location 4. Date 5. Time 6. Person 7. Percent | Label | # | |:------------:|:-----:| | Organization | 16964 | | Money | 2037 | | Location | 8782 | | Date | 4259 | | Time | 732 | | Person | 7675 | | Percent | 699 | **Download** You can download the dataset from [here](http://nsurl.org/tasks/task-7-named-entity-recognition-ner-for-farsi/) ## Results The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures. | Dataset | ParsBERT | MorphoBERT | Beheshti-NER | LSTM-CRF | Rule-Based CRF | BiLSTM-CRF | |---------|----------|------------|--------------|----------|----------------|------------| | PEYMA | 98.79* | - | 90.59 | - | 84.00 | - | ## How to use :hugs: | Notebook | Description | | |:----------|:-------------|------:| | [How to use Pipelines](https://github.com/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | Simple and efficient way to use State-of-the-Art models on downstream tasks through transformers | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/hooshvare/parsbert-ner/blob/master/persian-ner-pipeline.ipynb) | ## Cite Please cite the following paper in your publication if you are using [ParsBERT](https://arxiv.org/abs/2005.12515) in your research: ```markdown @article{ParsBERT, title={ParsBERT: Transformer-based Model for Persian Language Understanding}, author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri}, journal={ArXiv}, year={2020}, volume={abs/2005.12515} } ``` ## Acknowledgments We hereby, express our gratitude to the [Tensorflow Research Cloud (TFRC) program](https://tensorflow.org/tfrc) for providing us with the necessary computation resources. We also thank [Hooshvare](https://hooshvare.com) Research Group for facilitating dataset gathering and scraping online text resources. ## Contributors - Mehrdad Farahani: [Linkedin](https://www.linkedin.com/in/m3hrdadfi/), [Twitter](https://twitter.com/m3hrdadfi), [Github](https://github.com/m3hrdadfi) - Mohammad Gharachorloo: [Linkedin](https://www.linkedin.com/in/mohammad-gharachorloo/), [Twitter](https://twitter.com/MGharachorloo), [Github](https://github.com/baarsaam) - Marzieh Farahani: [Linkedin](https://www.linkedin.com/in/marziehphi/), [Twitter](https://twitter.com/marziehphi), [Github](https://github.com/marziehphi) - Mohammad Manthouri: [Linkedin](https://www.linkedin.com/in/mohammad-manthouri-aka-mansouri-07030766/), [Twitter](https://twitter.com/mmanthouri), [Github](https://github.com/mmanthouri) - Hooshvare Team: [Official Website](https://hooshvare.com/), [Linkedin](https://www.linkedin.com/company/hooshvare), [Twitter](https://twitter.com/hooshvare), [Github](https://github.com/hooshvare), [Instagram](https://www.instagram.com/hooshvare/) + And a special thanks to Sara Tabrizi for her fantastic poster design. Follow her on: [Linkedin](https://www.linkedin.com/in/sara-tabrizi-64548b79/), [Behance](https://www.behance.net/saratabrizi), [Instagram](https://www.instagram.com/sara_b_tabrizi/) ## Releases ### Release v0.1 (May 29, 2019) This is the first version of our ParsBERT NER!
{"language": "fa", "license": "apache-2.0"}
HooshvareLab/bert-base-parsbert-peymaner-uncased
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "fa", "arxiv:2005.12515", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00