Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
Mael7307/bert-base-uncased-MRPC
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/bert-base-uncased-QQP
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
``` for i in range(len(predictions)): if predictions[i] == 0: predictions[i] = 2 elif predictions[i] == 1: predictions[i] = 0 elif predictions[i] == 2: predictions[i] = 1 ```
{}
Mael7307/bert-base-uncased-mnli
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
``` for i in range(len(predictions)): if predictions[i] == 0: predictions[i] = 2 elif predictions[i] == 1: predictions[i] = 0 elif predictions[i] == 2: predictions[i] = 1 ```
{}
Mael7307/bert-base-uncased-snli
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/roberta-large-mnli
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/roberta-large-mrpc
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/roberta-large-qqp
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/roberta-large-snli
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/roblclass
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/rtevib
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Mael7307/vibert
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # deberta-base-finetuned-squad This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.0001 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.0 | 2 | 5.3843 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "deberta-base-finetuned-squad", "results": []}]}
MaggieXM/deberta-base-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "deberta", "question-answering", "generated_from_trainer", "dataset:squad", "license:mit", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-squad This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the squad dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 0.01 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.01 | 56 | 4.8054 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.10.0+cu111 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["squad"], "model-index": [{"name": "distilbert-base-uncased-finetuned-squad", "results": []}]}
MaggieXM/distilbert-base-uncased-finetuned-squad
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "question-answering", "generated_from_trainer", "dataset:squad", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Maggieseeku/maggie
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{"license": "other"}
MagicalCat29/model_save_test2
null
[ "transformers", "pytorch", "bert", "token-classification", "license:other", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Rick Sanchez DialoGPT Model
{"tags": "conversational"}
MagmaCubes1133/DialoGPT-large-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Magolor/deepex-ranking-model
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Magolor/deepstruct
null
[ "transformers", "pytorch", "bert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-bert-hi-en-hasoc20a-fin
null
[ "transformers", "pytorch", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Maha/OGBV-gender-bert-hi-en-hasoc20a_fin
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-indicbert-ta-eacl_finals
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-indicbert-ta-fire20_fin
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-indicbert-ta-hasoc21_codemix
null
[ "transformers", "pytorch", "tensorboard", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-twtrobertabase-en-davidson
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-twtrobertabase-en-founta_final
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/OGBV-gender-twtrobertabase-en-trac1
null
[ "transformers", "pytorch", "tensorboard", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/hi-const21-hibert_final
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/hin-trac1_fin
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Maha/hin-trac2
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Mahalakshmi/RobustSpeechChallenge
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
#xlsr-large-53-tamil
{"language": ["ne"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard"], "datasets": ["openslr"], "model-index": [{"name": "wav2vec2-large-xlsr-53-tamil", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "openslr", "type": "openslr", "args": "ne"}, "metrics": [{"type": "wer", "value": 25.02, "name": "Test WER"}]}]}]}
Mahalakshmi/wav2vec2-large-xlsr-53-demo-colab
null
[ "transformers", "pytorch", "automatic-speech-recognition", "robust-speech-event", "hf-asr-leaderboard", "ne", "dataset:openslr", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-xls-r-300m-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - eval_loss: 0.9475 - eval_wer: 1.0377 - eval_runtime: 70.5646 - eval_samples_per_second: 25.239 - eval_steps_per_second: 3.16 - epoch: 21.05 - step: 2000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 300 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.17.0.dev0 - Pytorch 1.10.2+cu102 - Datasets 1.18.2.dev0 - Tokenizers 0.11.0
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-xls-r-300m-demo-colab", "results": []}]}
Mahalakshmi/wav2vec2-xls-r-300m-demo-colab
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{"license": "afl-3.0"}
Maheshwaranr/bert-analyzer
null
[ "transformers", "tf", "distilbert", "text-classification", "license:afl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MahiKavi/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MahmoodQa/1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
testing for nothing
{}
Mahmoud97/Temp
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MahmoudBustami/roberta-large-BoolQ
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Persian-Image-Captioning This model is a fine-tuned version of [Vision Encoder Decoder](https://huggingface.co/docs/transformers/model_doc/vision-encoder-decoder) on coco-flickr-farsi. ### Framework versions - Transformers 4.12.5 - Pytorch 1.9.1 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"]}
MahsaShahidi/Persian-Image-Captioning
null
[ "transformers", "pytorch", "vision-encoder-decoder", "generated_from_trainer", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
---- tags: - conversational --- #Peter Parker DialoGPT Model
{}
MaiaMaiaMaia/DialoGPT-medium-PeterParkerBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
{}
Majed/internet2
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MakarenkoMD/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Makesh/adelectra-large
null
[ "transformers", "pytorch", "electra", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malaika/distilbert-base-uncased-finetuned-emotion
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
{}
Malaina/mt5-large-spider
null
[ "transformers", "pytorch", "mt5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_PAGEEXT_211101164710
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_PAGEEXT_211101165218
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_PAGEEXT_211101173159
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_PAGEEXT_211101181015
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101153349
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101153505
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101153614
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101153729
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101153850
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101154137
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101154518
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101154818
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101155245
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101155603
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101155938
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101160104
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101160848
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/BM_MLM_XTR_211101164201
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/distilbert-base-uncased
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malar/layoutlmv2-finetuned-funsd-test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
This model trained on nyanja dataset in Longformer
{}
MalawiUniST/ISO6392.nya.ny
null
[ "transformers", "pytorch", "longformer", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Malek/wav2vectunisian
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
Ver-Online Malignant PELICULA completa En Espanol Latino HD
{}
Malignant/Malignant
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-cased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraCasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
Maltehb/aelaectra-danish-electra-small-cased-ner-dane
null
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/-l-ctra/blob/master/infrastructure/Dockerfile). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/pretraining/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/-l-ctra/blob/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5}
Maltehb/aelaectra-danish-electra-small-cased
null
[ "transformers", "pytorch", "tf", "electra", "pretraining", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# Ælæctra - Finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load the finetuned Ælæctra-uncased model for Named Entity Recognition in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/-l-ctra-danish-electra-small-uncased-ner-dane") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) without the *MISC-tag*, Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20ÆlæctraUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
Maltehb/aelaectra-danish-electra-small-uncased-ner-dane
null
[ "transformers", "pytorch", "tf", "electra", "token-classification", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
transformers
# Ælæctra - A Step Towards More Efficient Danish Natural Language Processing **Ælæctra** is a Danish Transformer-based language model created to enhance the variety of Danish NLP resources with a more efficient model compared to previous state-of-the-art (SOTA) models. Initially a cased and an uncased model are released. It was created as part of a Cognitive Science bachelor's thesis. Ælæctra was pretrained with the ELECTRA-Small (Clark et al., 2020) pretraining approach by using the Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020) and evaluated on Named Entity Recognition (NER) tasks. Since NER only presents a limited picture of Ælæctra's capabilities I am very interested in further evaluations. Therefore, if you employ it for any task, feel free to hit me up your findings! Ælæctra was, as mentioned, created to enhance the Danish NLP capabilties and please do note how this GitHub still does not support the Danish characters "*Æ, Ø and Å*" as the title of this repository becomes "*-l-ctra*". How ironic.🙂 Here is an example on how to load both the cased and the uncased Ælæctra model in [PyTorch](https://pytorch.org/) using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-cased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-cased") ``` ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/-l-ctra-uncased") model = AutoModelForPreTraining.from_pretrained("Maltehb/-l-ctra-uncased") ``` ### Evaluation of current Danish Language Models Ælæctra, Danish BERT (DaBERT) and multilingual BERT (mBERT) were evaluated: | Model | Layers | Hidden Size | Params | AVG NER micro-f1 (DaNE-testset) | Average Inference Time (Sec/Epoch) | Download | | --- | --- | --- | --- | --- | --- | --- | | Ælæctra Uncased | 12 | 256 | 13.7M | 78.03 (SD = 1.28) | 10.91 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | Ælæctra Cased | 12 | 256 | 14.7M | 80.08 (SD = 0.26) | 10.92 | [Link for model](https://www.dropbox.com/s/cag7prs1nvdchqs/%C3%86l%C3%A6ctra.zip?dl=0) | | DaBERT | 12 | 768 | 110M | 84.89 (SD = 0.64) | 43.03 | [Link for model](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1) | | mBERT Uncased | 12 | 768 | 167M | 80.44 (SD = 0.82) | 72.10 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip) | | mBERT Cased | 12 | 768 | 177M | 83.79 (SD = 0.91) | 70.56 | [Link for model](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip) | On [DaNE](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020), Ælæctra scores slightly worse than both cased and uncased Multilingual BERT (Devlin et al., 2019) and Danish BERT (Danish BERT, 2019/2020), however, Ælæctra is less than one third the size, and uses significantly fewer computational resources to pretrain and instantiate. For a full description of the evaluation and specification of the model read the thesis: 'Ælæctra - A Step Towards More Efficient Danish Natural Language Processing'. ### Pretraining To pretrain Ælæctra it is recommended to build a Docker Container from the [Dockerfile](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/). Next, simply follow the [pretraining notebooks](https://github.com/MalteHB/Ælæctra/tree/master/infrastructure/Dockerfile/) The pretraining was done by utilizing a single NVIDIA Tesla V100 GPU with 16 GiB, endowed by the Danish data company [KMD](https://www.kmd.dk/). The pretraining took approximately 4 days and 9.5 hours for both the cased and uncased model ### Fine-tuning To fine-tune any Ælæctra model follow the [fine-tuning notebooks](https://github.com/MalteHB/Ælæctra/tree/master/notebooks/fine-tuning/) ### References Clark, K., Luong, M.-T., Le, Q. V., & Manning, C. D. (2020). ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators. ArXiv:2003.10555 [Cs]. http://arxiv.org/abs/2003.10555 Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv:1810.04805 [Cs]. http://arxiv.org/abs/1810.04805 Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 Strømberg-Derczynski, L., Baglini, R., Christiansen, M. H., Ciosici, M. R., Dalsgaard, J. A., Fusaroli, R., Henrichsen, P. J., Hvingelby, R., Kirkedal, A., Kjeldsen, A. S., Ladefoged, C., Nielsen, F. Å., Petersen, M. L., Rystrøm, J. H., & Varab, D. (2020). The Danish Gigaword Project. ArXiv:2005.03521 [Cs]. http://arxiv.org/abs/2005.03521 #### Acknowledgements As the majority of this repository is build upon [the works](https://github.com/google-research/electra) by the team at Google who created ELECTRA, a HUGE thanks to them is in order. A Giga thanks also goes out to the incredible people who collected The Danish Gigaword Corpus (Strømberg-Derczynski et al., 2020). Furthermore, I would like to thank my supervisor [Riccardo Fusaroli](https://github.com/fusaroli) for the support with the thesis, and a special thanks goes out to [Kenneth Enevoldsen](https://github.com/KennethEnevoldsen) for his continuous feedback. Lastly, i would like to thank KMD, my colleagues from KMD, and my peers and co-students from Cognitive Science for encouriging me to keep on working hard and holding my head up high! #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20Ælæctra) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "mit", "tags": ["\u00e6l\u00e6ctra", "pytorch", "danish", "ELECTRA-Small", "replaced token detection"], "datasets": ["DAGW"], "metrics": ["f1"], "co2_eq_emissions": 4009.5}
Maltehb/aelaectra-danish-electra-small-uncased
null
[ "transformers", "pytorch", "electra", "pretraining", "ælæctra", "danish", "ELECTRA-Small", "replaced token detection", "da", "dataset:DAGW", "arxiv:2003.10555", "arxiv:1810.04805", "arxiv:2005.03521", "license:mit", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO) finetuned for Named Entity Recognition on the [DaNE dataset](https://danlp.alexandra.dk/304bd159d5de/datasets/ddt.zip) (Hvingelby et al., 2020) by Malte Højmark-Bertelsen. Humongous amounts of credit needs to go to [Certainly](https://certainly.io/) (previously known as BotXO), for pretraining the Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT for token classification in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") model = AutoModelForTokenClassification.from_pretrained("Maltehb/danish-bert-botxo-ner-dane") ``` ### References Danish BERT. (2020). BotXO. https://github.com/botxo/nordic_bert (Original work published 2019) Hvingelby, R., Pauli, A. B., Barrett, M., Rosted, C., Lidegaard, L. M., & Søgaard, A. (2020). DaNE: A Named Entity Resource for Danish. Proceedings of the 12th Language Resources and Evaluation Conference, 4597–4604. https://www.aclweb.org/anthology/2020.lrec-1.565 #### Contact For help or further information feel free to connect with the author Malte Højmark-Bertelsen on [[email protected]](mailto:[email protected]?subject=[GitHub]%20DanishBERTUncasedNER) or any of the following platforms: [<img align="left" alt="MalteHB | Twitter" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/twitter.svg" />][twitter] [<img align="left" alt="MalteHB | LinkedIn" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/linkedin.svg" />][linkedin] [<img align="left" alt="MalteHB | Instagram" width="22px" src="https://cdn.jsdelivr.net/npm/simple-icons@v3/icons/instagram.svg" />][instagram] <br /> </details> [twitter]: https://twitter.com/malteH_B [instagram]: https://www.instagram.com/maltemusen/ [linkedin]: https://www.linkedin.com/in/malte-h%C3%B8jmark-bertelsen-9a618017b/
{"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "botxo"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danish_OpenSubtitles"], "widget": [{"text": "Chili Jensen, som bor p\u00e5 Danmarksgade 12, k\u00f8ber chilifrugter fra Netto."}]}
Maltehb/danish-bert-botxo-ner-dane
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "danish", "masked-lm", "botxo", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danish_OpenSubtitles", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
# Danish BERT (version 2, uncased) by [Certainly](https://certainly.io/) (previously known as BotXO). All credit goes to [Certainly](https://certainly.io/) (previously known as BotXO), who developed Danish BERT. For data and training details see their [GitHub repository](https://github.com/certainlyio/nordic_bert) or [this article](https://www.certainly.io/blog/danish-bert-model/). You can also visit their [organization page](https://huggingface.co/Certainly) on Hugging Face. It is both available in TensorFlow and Pytorch format. The original TensorFlow version can be downloaded using [this link](https://www.dropbox.com/s/19cjaoqvv2jicq9/danish_bert_uncased_v2.zip?dl=1). Here is an example on how to load Danish BERT in PyTorch using the [🤗Transformers](https://github.com/huggingface/transformers) library: ```python from transformers import AutoTokenizer, AutoModelForPreTraining tokenizer = AutoTokenizer.from_pretrained("Maltehb/danish-bert-botxo") model = AutoModelForPreTraining.from_pretrained("Maltehb/danish-bert-botxo") ```
{"language": "da", "license": "cc-by-4.0", "tags": ["danish", "bert", "masked-lm", "Certainly"], "datasets": ["common_crawl", "wikipedia", "dindebat.dk", "hestenettet.dk", "danishOpenSubtitles"], "pipeline_tag": "fill-mask", "widget": [{"text": "K\u00f8benhavn er [MASK] i Danmark."}]}
Maltehb/danish-bert-botxo
null
[ "transformers", "pytorch", "tf", "jax", "bert", "token-classification", "danish", "masked-lm", "Certainly", "fill-mask", "da", "dataset:common_crawl", "dataset:wikipedia", "dataset:dindebat.dk", "dataset:hestenettet.dk", "dataset:danishOpenSubtitles", "license:cc-by-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Maltehb/roberta-base-scandinavian
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
hello
{}
Mamatha/agri-gpt2
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MandoNYC/love
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
#Mikasa Ackermann DialoGPT Model
{"tags": ["conversational"]}
Mandy/DialoGPT-small-Mikasa
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MangoMan12Bam/ricknmorte
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 3.8433 - Wer: 0.9852 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.468 | 166.67 | 500 | 3.0262 | 1.0035 | | 0.0572 | 333.33 | 1000 | 3.5352 | 0.9721 | | 0.0209 | 500.0 | 1500 | 3.7266 | 0.9834 | | 0.0092 | 666.67 | 2000 | 3.8433 | 0.9852 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "", "results": []}]}
Maniac/wav2vec2-xls-r-60-urdu
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "ur", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UR dataset. It achieves the following results on the evaluation set: - Loss: 1.5614 - Wer: 0.6765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.9115 | 20.83 | 500 | 1.5400 | 0.7280 | | 0.1155 | 41.67 | 1000 | 1.5614 | 0.6765 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.17.1.dev0 - Tokenizers 0.11.0
{"language": ["ur"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 8.0", "type": "mozilla-foundation/common_voice_8_0", "args": "ur"}, "metrics": [{"type": "wer", "value": 67.48, "name": "Test WER"}]}]}]}
Maniac/wav2vec2-xls-r-urdu
null
[ "transformers", "pytorch", "safetensors", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "sv", "robust-speech-event", "model_for_talk", "hf-asr-leaderboard", "ur", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-classification
transformers
Language Detection Model for Nepali, English, Hindi and Spanish Model fine tuned on xlm-roberta-large
{}
Manishl7/xlm-roberta-large-language-detection
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Manivarsh/Uni_Model
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Manivarsh/Uni_Model_2
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Manorama/sentiment_analysis
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Manthan/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Manuel1/test
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
return im def main(): st.title("Lowlight Enhancement") st.write("This is a simple lowlight enhancement app with great performance and does not require paired images to train.") st.write("The model runs at 1000/11 FPS on single GPU/CPU on images with a size of 1200*900*3") uploaded_file = st.file_uploader("Lowlight Image") if uploaded_file: data_lowlight = Image.open(uploaded_file) col1, col2 = st.columns(2) col1.write("Original (Lowlight)") col1.image(data_lowlight, caption="Lowlight Image", use_column_width=True)
{}
Manyman3231/lowlight-enhancement
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the samsum dataset. It achieves the following results on the evaluation set: - Loss: 1.4844 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.6936 | 0.54 | 500 | 1.4844 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"tags": ["generated_from_trainer"], "datasets": ["samsum"], "model-index": [{"name": "pegasus-samsum", "results": []}]}
Mapcar/pegasus-samsum
null
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "dataset:samsum", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
token-classification
transformers
{}
Mar-C/BERT-NER
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
fill-mask
transformers
{}
Mar-C/TwitterSentiment
null
[ "transformers", "tf", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
text-generation
transformers
# Harry Potter DialoGPT Model
{"tags": ["conversational"]}
Mara/DialoGPT-medium-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Mara/Discord_Chatbot
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
text2text-generation
transformers
# Pegasus XSUM Gigaword ## Model description Pegasus XSUM model finetuned to Gigaword Summarization task, significantly better performance than pegasus gigaword, but still doesn't match model paper performance. ## Intended uses & limitations Produces short summaries with the coherence of the XSUM Model #### How to use ```python # You can include sample code which will be formatted ``` #### Limitations and bias Still has all the biases of any of the abstractive models, but seems a little less prone to hallucination. ## Training data Initialized with pegasus-XSUM ## Training procedure Trained for 11500 iterations on Gigaword corpus using OOB seq2seq (from hugging face using the default parameters) ## Eval results Evaluated on Gigaword test set (from hugging face using the default parameters) run_summarization.py --model_name_or_path pegasus-xsum/checkpoint-11500/ --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 34.1958 | | eval_rouge2 | 15.4033 | | eval_rougeL | 31.4488 | run_summarization.py --model_name_or_path google/pegasus-gigaword --do_predict --dataset_name gigaword --dataset_config "3.0.0" --source_prefix "summarize: " --output_dir pegasus-xsum --per_device_train_batch_size=8 --per_device_eval_batch_size=8 --overwrite_output_dir --predict_with_generate | Metric | Score | | ----------- | ----------- | | eval_rouge1 | 20.8111 | | eval_rouge2 | 8.766 | | eval_rougeL | 18.4431 | ### BibTeX entry and citation info ```bibtex @inproceedings{..., year={2020} } ```
{"language": ["English"], "tags": [], "datasets": ["XSUM", "Gigaword"], "metrics": ["Rouge"]}
Marc/pegasus_xsum_gigaword
null
[ "transformers", "pytorch", "pegasus", "text2text-generation", "dataset:XSUM", "dataset:Gigaword", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1 and an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Eval data:** SQuAD v1.1 + experimental SQuAD1.1 in Basque * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu-en" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
MarcBrun/ixambert-finetuned-squad-eu-en
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "dataset:squad", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on an experimental version of SQuAD1.1 in Basque (1/3 size of original SQuAD1.1), that is able to answer basic factual questions. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** Experimental SQuAD1.1 in Basque * **Eval data:** Experimental SQuAD1.1 in Basque * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad-eu" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
MarcBrun/ixambert-finetuned-squad-eu
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
question-answering
transformers
# ixambert-base-cased finetuned for QA This is a basic implementation of the multilingual model ["ixambert-base-cased"](https://huggingface.co/ixa-ehu/ixambert-base-cased), fine-tuned on SQuAD v1.1, that is able to answer basic factual questions in English, Spanish and Basque. ## Overview * **Language model:** ixambert-base-cased * **Languages:** English, Spanish and Basque * **Downstream task:** Extractive QA * **Training data:** SQuAD v1.1 * **Eval data:** SQuAD v1.1 * **Infrastructure:** 1x GeForce RTX 2080 ## Outputs The model outputs the answer to the question, the start and end positions of the answer in the original context, and a score for the probability for that span of text to be the correct answer. For example: ```python {'score': 0.9667195081710815, 'start': 101, 'end': 105, 'answer': '1820'} ``` ## How to use ```python from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline model_name = "MarcBrun/ixambert-finetuned-squad" # To get predictions context = "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820" question = "When was Florence Nightingale born?" qa = pipeline("question-answering", model=model_name, tokenizer=model_name) pred = qa(question=question,context=context) # To load the model and tokenizer model = AutoModelForQuestionAnswering.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` ## Hyperparameters ``` batch_size = 8 n_epochs = 3 learning_rate = 2e-5 optimizer = AdamW lr_schedule = linear max_seq_len = 384 doc_stride = 128 ```
{"language": ["en", "es", "eu"], "datasets": ["squad"], "widget": [{"text": "When was Florence Nightingale born?", "context": "Florence Nightingale, known for being the founder of modern nursing, was born in Florence, Italy, in 1820.", "example_title": "English"}, {"text": "\u00bfPor qu\u00e9 provincias pasa el Tajo?", "context": "El Tajo es el r\u00edo m\u00e1s largo de la pen\u00ednsula ib\u00e9rica, a la que atraviesa en su parte central, siguiendo un rumbo este-oeste, con una leve inclinaci\u00f3n hacia el suroeste, que se acent\u00faa cuando llega a Portugal, donde recibe el nombre de Tejo.\nNace en los montes Universales, en la sierra de Albarrac\u00edn, sobre la rama occidental del sistema Ib\u00e9rico y, despu\u00e9s de recorrer 1007 km, llega al oc\u00e9ano Atl\u00e1ntico en la ciudad de Lisboa. En su desembocadura forma el estuario del mar de la Paja, en el que vierte un caudal medio de 456 m\u00b3/s. En sus primeros 816 km atraviesa Espa\u00f1a, donde discurre por cuatro comunidades aut\u00f3nomas (Arag\u00f3n, Castilla-La Mancha, Madrid y Extremadura) y un total de seis provincias (Teruel, Guadalajara, Cuenca, Madrid, Toledo y C\u00e1ceres).", "example_title": "Espa\u00f1ol"}, {"text": "Zer beste izenak ditu Tartalo?", "context": "Tartalo euskal mitologiako izaki begibakar artzain erraldoia da. Tartalo izena zenbait euskal hizkeratan herskari-bustidurarekin ahoskatu ohi denez, horrelaxe ere idazten da batzuetan: Ttarttalo. Euskal Herriko zenbait tokitan, Torto edo Anxo ere esaten diote.", "example_title": "Euskara"}]}
MarcBrun/ixambert-finetuned-squad
null
[ "transformers", "pytorch", "bert", "question-answering", "en", "es", "eu", "dataset:squad", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
MarcoUno77/mio
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
feature-extraction
transformers
{}
Margarita/ArmBERTa
null
[ "transformers", "pytorch", "roberta", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Margarita/ArmBERTa1
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00
null
null
{}
Margooooo/Q
null
[ "region:us" ]
null
2022-03-02T23:29:04+00:00