Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
# llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0 This repository provides large language models developed by [LLM-jp](https://llm-jp.nii.ac.jp/), a collaborative project launched in Japan. | Model Variant | | :--- | |**Instruction models**| | [llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | [llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | [llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-instruct-full-ac_001_16x-dolly-ichikara_004_001_single-oasst-oasst2-v2.0) | | | | :--- | |**Pre-trained models**| | [llm-jp-13b-v2.0](https://huggingface.co/llm-jp/llm-jp-13b-v2.0) | Checkpoints format: Hugging Face Transformers ## Required Libraries and Their Versions - torch>=2.3.0 - transformers>=4.40.1 - tokenizers>=0.19.1 - accelerate>=0.29.3 - flash-attn>=2.5.8 ## Usage ```python import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0") model = AutoModelForCausalLM.from_pretrained("llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0", device_map="auto", torch_dtype=torch.bfloat16) chat = [ {"role": "system", "content": "以下は、タスクを説明する指示です。要求を適切に満たす応答を書きなさい。"}, {"role": "user", "content": "自然言語処理とは何か"}, ] tokenized_input = tokenizer.apply_chat_template(chat, add_generation_prompt=True, tokenize=True, return_tensors="pt").to(model.device) with torch.no_grad(): output = model.generate( tokenized_input, max_new_tokens=100, do_sample=True, top_p=0.95, temperature=0.7, repetition_penalty=1.05, )[0] print(tokenizer.decode(output)) ``` ## Model Details - **Model type:** Transformer-based Language Model - **Total seen tokens:** 256B |Model|Params|Layers|Hidden size|Heads|Context length| |:---:|:---:|:---:|:---:|:---:|:---:| |13b model|13b|40|5120|40|4096| ## Training - **Pre-training:** - **Hardware:** 128 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** Megatron-LM - **Instruction tuning:** - **Hardware:** 8 A100 40GB GPUs ([mdx cluster](https://mdx.jp/en/)) - **Software:** [TRL](https://github.com/huggingface/trl) and [DeepSpeed](https://github.com/microsoft/DeepSpeed) ## Tokenizer The tokenizer of this model is based on [huggingface/tokenizers](https://github.com/huggingface/tokenizers) Unigram byte-fallback model. The vocabulary entries were converted from [`llm-jp-tokenizer v2.2 (100k: code20K_en40K_ja60K.ver2.2)`](https://github.com/llm-jp/llm-jp-tokenizer/releases/tag/v2.2). Please refer to [README.md](https://github.com/llm-jp/llm-jp-tokenizer) of `llm-ja-tokenizer` for details on the vocabulary construction procedure (the pure SentencePiece training does not reproduce our vocabulary). - **Model:** Hugging Face Fast Tokenizer using Unigram byte-fallback model - **Training algorithm:** Marging Code/English/Japanese vocabularies constructed with SentencePiece Unigram byte-fallback and reestimating scores with the EM-algorithm. - **Training data:** A subset of the datasets for model pre-training - **Vocabulary size:** 96,867 (mixed vocabulary of Japanese, English, and source code) - The acutal size of vocabulary in the pretrained model is 97,024 due to round-up to multiples of 256. ## Datasets ### Pre-training The models have been pre-trained using a blend of the following datasets. | Language | Dataset | Tokens| |:---|:---|---:| |Japanese|[Wikipedia](https://huggingface.co/datasets/wikipedia)|1.4B ||[Common Crawl](https://gitlab.llm-jp.nii.ac.jp/datasets/llm-jp-corpus-v2)|130.7B |English|[Wikipedia](https://huggingface.co/datasets/wikipedia)|4.7B ||[The Pile](https://huggingface.co/datasets/EleutherAI/pile)|110.3B |Codes|[The Stack](https://huggingface.co/datasets/bigcode/the-stack)|8.7B ### Instruction tuning The models have been fine-tuned on the following datasets. | Language | Dataset | description | |:---|:---|:---| |Japanese|[ichikara-instruction-004-001](https://liat-aip.sakura.ne.jp/wp/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf%e4%bd%9c%e6%88%90/llm%e3%81%ae%e3%81%9f%e3%82%81%e3%81%ae%e6%97%a5%e6%9c%ac%e8%aa%9e%e3%82%a4%e3%83%b3%e3%82%b9%e3%83%88%e3%83%a9%e3%82%af%e3%82%b7%e3%83%a7%e3%83%b3%e3%83%87%e3%83%bc%e3%82%bf-%e5%85%ac%e9%96%8b/)| A manually constructed Japanese instruction dataset | | |[answer-carefully-001](https://liat-aip.sakura.ne.jp/wp/answercarefully-dataset/)| A manually constructed Japanese instruction dataset focusing on LLMs' safety | | |[databricks-dolly-15k-ja](https://huggingface.co/datasets/llm-jp/databricks-dolly-15k-ja)| [databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) translated into Japanese using DeepL | | |[oasst1-21k-ja](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) translated into Japanese using DeepL | | |[oasst2-33k-ja](https://huggingface.co/datasets/llm-jp/oasst2-33k-ja)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) translated into Japanese using DeepL | |English |[databricks-dolly-15k](https://huggingface.co/datasets/databricks/databricks-dolly-15k) | - | | |[oasst1-21k-en](https://huggingface.co/datasets/llm-jp/oasst1-21k-en)| A subset of [oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) | | |[oasst2-33k-en](https://huggingface.co/datasets/llm-jp/oasst2-33k-en)| A subset of [oasst2](https://huggingface.co/datasets/OpenAssistant/oasst2) | ## Evaluation You can view the evaluation results of several LLMs on this [leaderboard](http://wandb.me/llm-jp-leaderboard). We used [llm-jp-eval](https://github.com/llm-jp/llm-jp-eval) (v1.3.0) for the evaluation. Besides, we used LLM-as-a-judge frameworks, [Japanese Vicuna QA Benchmark](https://github.com/ku-nlp/ja-vicuna-qa-benchmark/) and [Japanese MT Bench](https://github.com/Stability-AI/FastChat/tree/jp-stable/fastchat/llm_judge), for evaluation. For details, please refer to [our technical blog](https://llm-jp.nii.ac.jp/blog/2024/04/30/v2.0-release.html) (in Japanese). ## Risks and Limitations The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations. ## Send Questions to llm-jp(at)nii.ac.jp ## License [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Model Card Authors *The names are listed in alphabetical order.* Namgi Han, Tatsuya Hiraoka, Hirokazu Kiyomaru, Takashi Kodama, and Hiroshi Matsuda.
{"language": ["en", "ja"], "license": "apache-2.0", "library_name": "transformers", "datasets": ["databricks/databricks-dolly-15k", "llm-jp/databricks-dolly-15k-ja", "llm-jp/oasst1-21k-en", "llm-jp/oasst1-21k-ja", "llm-jp/oasst2-33k-en", "llm-jp/oasst2-33k-ja"], "programming_language": ["C", "C++", "C#", "Go", "Java", "JavaScript", "Lua", "PHP", "Python", "Ruby", "Rust", "Scala", "TypeScript"], "pipeline_tag": "text-generation", "inference": false}
llm-jp/llm-jp-13b-instruct-full-ac_001-dolly-ichikara_004_001_single-oasst-oasst2-v2.0
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "en", "ja", "dataset:databricks/databricks-dolly-15k", "dataset:llm-jp/databricks-dolly-15k-ja", "dataset:llm-jp/oasst1-21k-en", "dataset:llm-jp/oasst1-21k-ja", "dataset:llm-jp/oasst2-33k-en", "dataset:llm-jp/oasst2-33k-ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:19:29+00:00
text-generation
transformers
## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-70B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "license": "other", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "pipeline_tag": "text-generation", "license_name": "llama3", "license_link": "LICENSE", "extra_gated_prompt": "### META LLAMA 3 COMMUNITY LICENSE AGREEMENT\nMeta Llama 3 Version Release Date: April 18, 2024\n\"Agreement\" means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\"Documentation\" means the specifications, manuals and documentation accompanying Meta Llama 3 distributed by Meta at https://llama.meta.com/get-started/.\n\"Licensee\" or \"you\" means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity\u2019s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\"Meta Llama 3\" means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://llama.meta.com/llama-downloads.\n\"Llama Materials\" means, collectively, Meta\u2019s proprietary Meta Llama 3 and Documentation (and any portion thereof) made available under this Agreement.\n\"Meta\" or \"we\" means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland).\n \n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta\u2019s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials.\nb. Redistribution and Use.\ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service that uses any of them, including another AI model, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display \u201cBuilt with Meta Llama 3\u201d on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include \u201cLlama 3\u201d at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you.\niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a \u201cNotice\u201d text file distributed as a part of such copies: \u201cMeta Llama 3 is licensed under the Meta Llama 3 Community License, Copyright \u00a9 Meta Platforms, Inc. All Rights Reserved.\u201d\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://llama.meta.com/llama3/use-policy), which is hereby incorporated by reference into this Agreement.\nv. You will not use the Llama Materials or any output or results of the Llama Materials to improve any other large language model (excluding Meta Llama 3 or derivative works thereof).\n2. Additional Commercial Terms. If, on the Meta Llama 3 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee\u2019s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN \u201cAS IS\u201d BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use \u201cLlama 3\u201d (the \u201cMark\u201d) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta\u2019s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/ ). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta\u2019s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Meta Llama 3 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement.\n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement.\n### Meta Llama 3 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Meta Llama 3. If you access or use Meta Llama 3, you agree to this Acceptable Use Policy (\u201cPolicy\u201d). The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy](https://llama.meta.com/llama3/use-policy)\n#### Prohibited Uses\nWe want everyone to use Meta Llama 3 safely and responsibly. You agree you will not use, or allow others to use, Meta Llama 3 to: 1. Violate the law or others\u2019 rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 2. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 3. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 4. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 5. Collect, process, disclose, generate, or infer health, demographic, or other sensitive personal or private information about individuals without rights and consents required by applicable laws\n 6. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 7. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Meta Llama 3 related to the following:\n 1. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State\n 2. Guns and illegal weapons (including weapon development)\n 3. Illegal drugs and regulated/controlled substances\n 4. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 5. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 6. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Meta Llama 3 related to the following:\n 1. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 2. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 3. Generating, promoting, or further distributing spam\n 4. Impersonating another individual without consent, authorization, or legal right\n 5. Representing that the use of Meta Llama 3 or outputs are human-generated\n 6. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement\n4. Fail to appropriately disclose to end users any known dangers of your AI system\nPlease report any violation of this Policy, software \u201cbug,\u201d or other problems that could lead to a violation of this Policy through one of the following means:\n * Reporting issues with the model: [https://github.com/meta-llama/llama3](https://github.com/meta-llama/llama3)\n * Reporting risky content generated by the model:\n developers.facebook.com/llama_output_feedback\n * Reporting bugs and security concerns: facebook.com/whitehat/info\n * Reporting violations of the Acceptable Use Policy or unlicensed uses of Meta Llama 3: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit", "widget": [{"example_title": "Winter holidays", "messages": [{"role": "system", "content": "You are a helpful and honest assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Can you recommend a good destination for Winter holidays?"}]}, {"example_title": "Programming assistant", "messages": [{"role": "system", "content": "You are a helpful and honest code and programming assistant. Please, respond concisely and truthfully."}, {"role": "user", "content": "Write a function that computes the nth fibonacci number."}]}], "inference": {"parameters": {"max_new_tokens": 300, "stop": ["<|end_of_text|>", "<|eot_id|>"]}}}
Kotokin/Llama-3-70B-Instruct-exl2-4bpw-rpcal-32k
null
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "conversational", "en", "license:other", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-23T11:21:09+00:00
null
transformers
# Uploaded model - **Developed by:** BaunRobotics - **License:** apache-2.0 - **Finetuned from model :** BaunRobotics/baun-k12-50K-model-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "BaunRobotics/baun-k12-50K-model-4bit"}
BaunRobotics/baun-k12-200K-model-q4_k_m-gguf
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:BaunRobotics/baun-k12-50K-model-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:21:28+00:00
null
null
{"license": "bsd"}
sanaeha/hamdan
null
[ "license:bsd", "region:us" ]
null
2024-04-23T11:23:07+00:00
text-generation
transformers
# 魔搭Llama3 8b中文Agent智能体模型 本模型使用Llama3-8b-instruct基模型进行训练,适配中文通用场景,且支持ReACT格式的Agent调用。 ## 模型使用 ### 推理 ```shell # 安装依赖 pip install ms-swift -U ``` ```python # 推理 swift infer --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1 ``` ```shell # 部署 swift deploy --model_type llama3-8b-instruct --model_id_or_path swift/Llama3-Chinese-8B-Instruct-Agent-v1 ``` 本模型可以联合ModelScopeAgent框架使用,请参考: https://github.com/modelscope/swift/blob/main/docs/source/LLM/Agent%E5%BE%AE%E8%B0%83%E6%9C%80%E4%BD%B3%E5%AE%9E%E8%B7%B5.md#%E6%90%AD%E9%85%8Dmodelscope-agent%E4%BD%BF%E7%94%A8 ### 模型训练信息 为了适配中文及Agent场景,我们针对语料进行了一定混合配比,训练Llama3使用的语料如下: \- COIG-CQIA:https://modelscope.cn/datasets/AI-ModelScope/COIG-CQIA/summary 该数据集包含了中国传统知识、豆瓣、弱智吧、知乎等中文互联网信息 \- 魔搭通用Agent训练数据集: https://modelscope.cn/datasets/AI-ModelScope/ms-agent-for-agentfabric/summary \- alpaca-en: https://modelscope.cn/datasets/AI-ModelScope/alpaca-gpt4-data-en/summary \- ms-bench魔搭通用中文问答数据集: https://modelscope.cn/datasets/iic/ms_bench/summary | **超参数** | **值** | | --------------------------- | ------ | | lr | 5e-5 | | epoch | 2 | | lora_rank | 8 | | lora_alpha | 32 | | lora_target_modules | ALL | | batch_size | 2 | | gradient_accumulation_steps | 16 | ## 模型训练命令 ```shell NPROC_PER_NODE=8 \ swift sft \ --model_type llama3-8b-instruct \ --dataset ms-agent-for-agentfabric-default alpaca-en ms-bench ms-agent-for-agentfabric-addition coig-cqia-ruozhiba coig-cqia-zhihu coig-cqia-exam coig-cqia-chinese-traditional coig-cqia-logi-qa coig-cqia-segmentfault coig-cqia-wiki \ --batch_size 2 \ --max_length 2048 \ --use_loss_scale true \ --gradient_accumulation_steps 16 \ --learning_rate 5e-5 \ --use_flash_attn true \ --eval_steps 500 \ --save_steps 500 \ --train_dataset_sample -1 \ --dataset_test_ratio 0.1 \ --val_dataset_sample 10000 \ --num_train_epochs 2 \ --check_dataset_strategy none \ --gradient_checkpointing true \ --weight_decay 0.01 \ --warmup_ratio 0.03 \ --save_total_limit 2 \ --logging_steps 10 \ --sft_type lora \ --lora_target_modules ALL \ --lora_rank 8 \ --lora_alpha 32 ``` ## 模型评测信息 | 评测模型 | ARC | CEVAL | GSM8K | | ----------------------------------- | ------ | ------ | ------ | | Llama3-8b-instruct | 0.7645 | 0.5089 | 0.7475 | | Llama3-Chinese-8B-Instruct-Agent-v1 | 0.7577 | 0.4903 | 0.652 | GSM8K英文数学能力下降了8个点左右,经过消融实验我们发现去除alpaca-en语料会导致GSM8K下降至少十个点以上。
{"license": "llama3", "frameworks": ["Pytorch"], "tasks": ["text-generation"]}
modelscope/Llama3-Chinese-8B-Instruct-Agent-v1
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "license:llama3", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:24:25+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # intent-classify-global This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0841 - Accuracy: 0.9630 - Precision: 0.9637 - Recall: 0.9630 - F1: 0.9626 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | No log | 1.0 | 54 | 0.1051 | 0.9769 | 0.9784 | 0.9769 | 0.9770 | | No log | 2.0 | 108 | 0.1086 | 0.9583 | 0.9611 | 0.9583 | 0.9573 | | No log | 3.0 | 162 | 0.0819 | 0.9676 | 0.9685 | 0.9676 | 0.9673 | | No log | 4.0 | 216 | 0.0841 | 0.9630 | 0.9637 | 0.9630 | 0.9626 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "precision", "recall", "f1"], "base_model": "roberta-base", "model-index": [{"name": "intent-classify-global", "results": []}]}
Onebu/intent-classify-global
null
[ "transformers", "tensorboard", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:roberta-base", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:24:32+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
{"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"}
bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned-adapters_Aleatoric_tiny_0.0_Seed104
null
[ "peft", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-04-23T11:24:45+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
{"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"}
bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned_Aleatoric_tiny_0.0_Seed104
null
[ "peft", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-04-23T11:24:53+00:00
text-classification
transformers
{}
kwoncho/202404TechNewsRnD_FirmName
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:27:29+00:00
null
null
# XVERSE-V-13B ## 更新信息 - **[2024/04/28]** 发布 **XVERSE-V-13B** 多模态模型。 ## Update Information - **[2024/04/28]** release **XVERSE-V-13B** large multimodal model. ## 模型介绍 **XVERSE-V-13B** 是由深圳元象科技自主研发的支持图文问答的多模态大模型(Large Multimodal Model),其主要特点如下: - **模型结构**:视觉编码器采用了 **openai/clip-vit-large-patch14-224**,文本模型采用了自研的 **XVERSE-13B-Chat** 模型,图像—文本桥接层采用了高效且简洁的两层 **MLP** 结构。 - **训练数据**:图文数据采用的是完全公开的数据集,其中预训练阶段数据量为 2.1B 图文对,微调阶段采用了 8.2M 的指令数据。训练数据几乎全为英文数据,因此模型的能力主要体现在英文方面。 - **图像分辨率**:不同于其他固定图像分辨率的模型,**XVERSE-V-13B** 将图像切分成多个 **224×224** 的块,分别将他们送到视觉模块进行编码,因此能够处理更高分辨率或者不同宽高比的图像,这为我们模型保留了尽可能多的细节信息。 - **训练方式**: **XVERSE-V-13B** 采用了两阶段训练,分别为规模比较大的图文对预训练和规模比较小的指令数据微调。其中预训练阶段,我们冻结❄️视觉模块和 LLM 模块,只训练🔥桥接层部分; 指令微调阶段,我们依然冻结❄️视觉模块和LLM模块,但是微调🔥桥接层部分以及LLM的所有线性层的 LoRA 参数;另外,在指令微调阶段,我们对桥接层部分和 LoRA 部分采用了差分学习率。 ## Model Introduction **XVERSE-V-13B**, a large multimodal model, is independently developed by Shenzhen Yuanxiang Technology. Its key features are as follows: - **Model Structure**: The visual encoder adopts **openai/clip vit target patch14-224**, the text model adopts the self-developed **XVERSE-13B Chat** model, and the image bridging layer adopts an efficient and concise two-layer **MLP** structure. - **Training Data**: The multimodal data utilized in the training process is sourced from fully open datasets. During the pre-training stage, the dataset comprises 2.1 billion pairs of images and text, while the fine-tuning stage employs 8.2 million instruction data points. The training data is predominantly composed of English data, hence the model's proficiency primarily lies in the English domain. - **Image Resolution**: Unlike other models with fixed image resolutions, XVERSE-V-13B divides images into multiple 224×224 blocks, each sent to the visual module for encoding. This allows it to handle higher-resolution images without the need for cropping. - **Training Schedule**: **XVERSE-V-13B** adopts a two-stage training approach, consisting of a large-scale multimodal pre-training followed by fine-tuning on a smaller-scale instruction dataset. During the pre-training stage, we freeze ❄️ the visual and LLM modules and only train 🔥 the bridging layer; During the instruction fine-tuning stage, we still freeze ❄️ the visual and LLM modules, but fine-tune 🔥 the bridging layer as well as the LoRA parameters of all linear layers in the LLM. Additionally, during the instruction fine-tuning stage, we apply differential learning rates to the bridging layer and the LoRA components. ## 图像编码示例 对于 448*448 的图像,我们通过 Sliding Window 将其切分成4个局部图像块以及 Resize 得到一个包含全局信息的图像,如下图所示 For a 448×448 image, we split it into 4 local image blocks using Sliding Window and resize it to obtain a global information-containing image, as shown in the figure below. ![avatar](resources/2_2_Trans.drawio.svg) 对于更高分辨率的 448*672 的图像,我们通过 Sliding Window 将其切分成6个局部图像块以及 Resize 得到一个包含全局信息的图像,如下图所示 For a higher resolution 448×672 image, we split it into 6 local image blocks using Sliding Window and resize it to obtain a global information-containing image, as shown in the figure below. ![avatar](resources/2_3_Trans.drawio.svg) > <sup>1:Concate* 表示列向量按行进行拼接 </sup> > > <sup>2:对于其他不同分辨率以及不同宽高比的图像,也是同理进行切块编码 </sup> > <sup>1: Concate* represents concatenation of column vectors row-wise. </sup> > > <sup>2: For other images with different resolutions and aspect ratios, the same chunk encoding process applies. </sup> ## 评测结果 为了综合评估模型的性能,我们在一系列标准数据集上进行了全面测试,包括 MMBench、MMMU、SEEDBench_IMG、MMStar、LLaVABench、AI2D、ScienceQA、VizWiz、TextVQA、OKVQA 和 GQA 等数据集。这些评估覆盖了模型在多个领域的能力,具体包括 OCR,逻辑推理,关系推理,粗粒度感知和细粒度感知。评估结果如下: ### OpenCompass 榜单 [OpenCompass](https://opencompass.org.cn/home) 是面向大模型评测的一站式平台。 其主要特点如下: 开源可复现:提供公平、公开、可复现的大模型评测方案。因此,我们报告模型在此榜单上的相关结果。 | 数据集 | XVERSE-V-13B | GeminiProVision`*` | Qwen-VL-Plus`*` | Claude-3V Sonnet`*` | LLaVA-Next-Vicuna-13B | Monkey-Chat | OmniLMM-12B | DeepSeek-VL-7B | CogVLM-17B-Chat | TransCore-M | Yi-VL-34B | |--------------------|:------------:|:------------------:|:---------------:|:-------------------:|:---------------------:|:-----------:|:-----------:|:--------------:|:---------------:|:-----------:|:---------:| | MMBench | 75.6 | 73.6 | 67.0 | 67.8 | 70.0 | 72.4 | 71.7 | 73.8 | 65.8 | **82.3** | 72.4 | | MMBench-CN | 74.7 | 74.3 | 70.7 | 64.2 | 68.5 | 67.5 | 62.0 | 71.4 | 55.9 | **80.7** | 70.7 | | MMStar | **47.8** | 38.6 | 39.7 | 44.2 | 40.4 | 40.7 | 39.6 | 40.5 | 39.9 | 35.6 | 40.5 | | MMMU-Val | 43.3 | **48.9** | 39.8 | 47.4 | 37.3 | 40.7 | 41.8 | 38.3 | 37.3 | 41.0 | 45.1 | | MathVistaMini-Test | 44.1 | **46.5** | 37.6 | 45.0 | 34.1 | 35.9 | 34.7 | 36.9 | 35.0 | 32.3 | 31.5 | | HallusionBench | 31.8 | **45.2** | 40.6 | 41.3 | 31.8 | 39.3 | 35.8 | 34.5 | 35.4 | 27.3 | 35.3 | | AI2D-Test | 70.4 | 70.2 | 65.7 | 69.9 | **72.2** | 68.5 | 63.3 | 65.3 | 63.3 | 64.1 | 65.9 | | OCRBench | 489 | 680.0 | **726.0** | 646.0 | 537.0 | 534.0 | 420.0 | 435.0 | 590.0 | 405.0 | 290.0 | | SEEDBench_IMG | **72.4** | 70.7 | 65.7 | 65.0 | 71.4 | 68.9 | 71.5 | 70.1 | 68.8 | 72.0 | 68.1 | | LLaVABench | **82.3** | 79.9 | 73.7 | 73.2 | 73.9 | 60.5 | 75.8 | 77.8 | 73.9 | 66.8 | 62.3 | > <sup>1:带 `*` 号的模型是闭源模型</sup> 对于上述所有比较模型,我们优先汇报其官方公布的结果。在缺少官方结果的情况下,我们采用了 [OpenCompass 榜单](https://rank.opencompass.org.cn/leaderboard-multimodal)的报告结果。若 OpenCompass 榜单上仍然缺少相应的数据集评估结果, 则来自于我们自行执行的评估流程所获得的数据。而评测框架则采用了[OpenCompass 评估框架](https://github.com/open-compass/OpenCompass/)。 ### 传统VQA类任务 传统VQA任务,作为多模态视觉问答领域学术论文常引用的评测任务,具备显著的学术参考价值。因此,我们也将在此类数据集上报告相关的评测结果。 | 数据集 | XVERSE-V-13B | LLaVA-Next-Vicuna-13B | Monkey-Chat | OmniLMM-12B | DeepSeek-VL-7B | CogVLM-17B-Chat | TransCore-M | Yi-VL-34B | |--------------------|:------------:|:---------------------:| :-------: | :---------: | :--------: |:---------------:|:-----------:| :--------------: | | ScienceQA | **86.4** | 73.9 | 82.8 | 80.8 | 81.0 | 70.3 | 74.9 | 75.4 | | OKVQA | 59.2 | **60.0** | 54.7 | 40.8 | 55.1 | 54.4 | 56.7 | 51.4 | | GQA | 62.2 | **65.5** | 65.4 | 61.1 | 61.8 | 60.5 | 63.6 | 58.3 | | VizWiz | **81.9** | 54.6 | 75.6 | 64.0 | 50.1 | 44.0 | 41.4 | 70.8 | | TextVQA | **74.2** | 64.3 | 53.7 | 62.4 | 63.8 | 69.6 | 63.1 | 54.0 | 同理,对于上述所有比较模型,我们优先汇报其官方公布的结果。在缺少官方结果的情况下,则来自于我们自行执行的评估流程所获得的数据。而评测框架则采用了[OpenCompass 评估框架](https://github.com/open-compass/OpenCompass/)。 ## Evaluation Reports To comprehensively assess the model's performance, we conducted thorough testing on a series of standard datasets, including MMBench, MMMU, SEEDBench_IMG, MMStar, LLaVABench, AI2D, ScienceQA, VizWiz, TextVQA, OKVQA, and GQA, among others. These evaluations span the model's capabilities across various domains, encompassing OCR, logical reasoning, relational reasoning, coarse-grained perception, and fine-grained perception. The evaluation results are as follows: ### OpenCompass Leaderboard [OpenCompass](https://opencompass.org.cn/home) is a one-stop platform for large-scale model evaluation. Its main features are as follows: Open Source and Reproducible: It provides a fair, open, and reproducible evaluation framework for large-scale models. Therefore, we report the relevant results of our model on this leaderboard. | Datasets | XVERSE-V-13B | GeminiProVision`*` | Qwen-VL-Plus`*` | Claude-3V Sonnet`*` | LLaVA-Next-Vicuna-13B | Monkey-Chat | OmniLMM-12B | DeepSeek-VL-7B | CogVLM-17B-Chat | TransCore-M | Yi-VL-34B | |--------------------|:------------:|:------------------:|:---------------:|:-------------------:|:---------------------:|:-----------:|:-----------:|:--------------:|:---------------:|:-----------:|:---------:| | MMBench | 75.6 | 73.6 | 67.0 | 67.8 | 70.0 | 72.4 | 71.7 | 73.8 | 65.8 | **82.3** | 72.4 | | MMBench-CN | 74.7 | 74.3 | 70.7 | 64.2 | 68.5 | 67.5 | 62.0 | 71.4 | 55.9 | **80.7** | 70.7 | | MMStar | **47.8** | 38.6 | 39.7 | 44.2 | 40.4 | 40.7 | 39.6 | 40.5 | 39.9 | 35.6 | 40.5 | | MMMU-Val | 43.3 | **48.9** | 39.8 | 47.4 | 37.3 | 40.7 | 41.8 | 38.3 | 37.3 | 41.0 | 45.1 | | MathVistaMini-Test | 44.1 | **46.5** | 37.6 | 45.0 | 34.1 | 35.9 | 34.7 | 36.9 | 35.0 | 32.3 | 31.5 | | HallusionBench | 31.8 | **45.2** | 40.6 | 41.3 | 31.8 | 39.3 | 35.8 | 34.5 | 35.4 | 27.3 | 35.3 | | AI2D-Test | 70.4 | 70.2 | 65.7 | 69.9 | **72.2** | 68.5 | 63.3 | 65.3 | 63.3 | 64.1 | 65.9 | | OCRBench | 489 | 680.0 | **726.0** | 646.0 | 537.0 | 534.0 | 420.0 | 435.0 | 590.0 | 405.0 | 290.0 | | SEEDBench_IMG | **72.4** | 70.7 | 65.7 | 65.0 | 71.4 | 68.9 | 71.5 | 70.1 | 68.8 | 72.0 | 68.1 | | LLaVABench | **82.3** | 79.9 | 73.7 | 73.2 | 73.9 | 60.5 | 75.8 | 77.8 | 73.9 | 66.8 | 62.3 | > <sup>1. Models marked with an asterisk `*` are closed-source models.</sup> For all the compared models mentioned above, we prioritize reporting their officially published results. In cases where official results are unavailable, we rely on the reported results from the [OpenCompass leaderboard](https://rank.opencompass.org.cn/leaderboard-multimodal). If the corresponding dataset evaluation results are still missing from the OpenCompass leaderboard, we include data obtained from our own evaluation process. The evaluation framework used adheres to the [OpenCompass evaluation framework](https://github.com/open-compass/OpenCompass/). ### Traditional VQA tasks The traditional Visual Question Answering (VQA) task, frequently referenced in academic literature in the field of multimodal visual question answering, holds significant academic reference value. Therefore, we will also report relevant evaluation results on datasets of this kind. | Datasets | XVERSE-V-13B | LLaVA-Next-Vicuna-13B | Monkey-Chat | OmniLMM-12B | DeepSeek-VL-7B | CogVLM-17B-Chat | TransCore-M | Yi-VL-34B | |-----------|:------------:|:---------------------:| :-------: | :---------: | :--------: |:---------------:|:-----------:| :--------------: | | ScienceQA | **86.4** | 73.9 | 82.8 | 80.8 | 81.0 | 70.3 | 74.9 | 75.4 | | OKVQA | 59.2 | **60.0** | 54.7 | 40.8 | 55.1 | 54.4 | 56.7 | 51.4 | | GQA | 62.2 | **65.5** | 65.4 | 61.1 | 61.8 | 60.5 | 63.6 | 58.3 | | VizWiz | **81.9** | 54.6 | 75.6 | 64.0 | 50.1 | 44.0 | 41.4 | 70.8 | | TextVQA | **74.2** | 64.3 | 53.7 | 62.4 | 63.8 | 69.6 | 63.1 | 54.0 | Similarly, for all the compared models mentioned above, we prioritize reporting their officially published results. In the absence of official results, data is obtained from our own evaluation process. The evaluation framework used adheres to the [OpenCompass evaluation framework](https://github.com/open-compass/OpenCompass/). ## 效果示例 这里我们展示全景和细节识别、图表分析、百科解答、教育问答、内容创作和代码生成等能力的样例。 ## Demo Here we present examples of abilities such as panoramic and detail recognition, content creation, travel assistant, chart analysis, educational Q&A, and code generation. ![avatar](resources/Demo_Trans.svg) ## 局限性与免责申明 XVERSE-V-13B 与其它所有 LMM 一样,在某些情况下可能会产生不准确、有偏见或其他令人反感的内容。因此,请谨慎使用模型生成的内容,请勿将生成的有害内容进行传播,在部署任何 XVERSE-V-13B 的应用之前,开发人员应根据其具体应用对模型进行安全测试和调优。 我们强烈警告不要将 XVERSE-V-13B 模型用于制造或传播有害信息,或进行任何可能损害公众、国家、社会安全或违反法规的活动。如果使用 XVERSE-V-13B 模型产生任何问题,无论是数据安全问题、公共舆论风险,还是模型被误解、滥用、传播或不合规使用所引发的任何风险和问题,我们将不承担任何责任。 ## Limitations and Disclaimer Like all other Large Language Models (LLMs), XVERSE-V-13B may produce inaccurate, biased, or otherwise offensive content under certain circumstances. Therefore, please use the content generated by the model with caution and refrain from disseminating harmful content. Before deploying any application of XVERSE-V-13B, developers should conduct safety tests and optimization of the model according to its specific application. We strongly warn against the use of the XVERSE-V-13B model for producing or spreading harmful information, or conducting any activities that might harm the public, national, or social security, or violate regulations. We assume no responsibility for any problems arising from the use of the XVERSE-V-13B model, whether it be data security issues, public opinion risks, or any risks and issues caused by misunderstanding, misuse, dissemination, or non-compliance with the model. ## 模型开源协议 使用本仓库的源码需要遵循 [Apache-2.0](LICENSE) 开源协议,使用 XVERSE-V-13B 的模型权重则需要遵循[模型许可协议](MODEL_LICENSE.pdf)。 XVERSE-V-13B 模型权重对学术研究**完全开放**,并且支持**免费商用**。如需申请商业许可证,请填写【[申请表](https://chat.xverse.cn/home/business.html)】,如有其他问题或合作,请联系 <[email protected]>。 ## Open Source License The use of the source code in this repository must follow the [Apache-2.0](LICENSE) open-source license, while the use of the model weights of XVERSE-V-13B needs to adhere to the [Model License Agreement](MODEL_LICENSE.pdf). The XVERSE-V-13B model weights are **fully open** to academic research and support **free commercial use**. To apply for a commercial license, please fill in the [application form](https://chat.xverse.cn/home/business.html). For other questions or collaborations, please contact <[email protected]>.
{"license": "apache-2.0"}
xverse/XVERSE-V-13B
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:27:37+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
SemValX/wav2vec2-base-cv_17_fr-demo-google-colab
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:27:50+00:00
null
null
{}
Daniel-007/outputs
null
[ "region:us" ]
null
2024-04-23T11:29:28+00:00
text-classification
setfit
# SetFit with google-t5/t5-small This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** None tokens - **Number of Classes:** 5 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Tech Support | <ul><li>"My loyalty card isn't working at the checkout. What should I do?"</li><li>'How can I reset my password for the online account?'</li><li>'How can I reset my password for the online account?'</li></ul> | | HR | <ul><li>"I'm interested in applying for a job at your company. Can you provide information on current openings?"</li><li>'I have a question about my paycheck. Who should I contact?'</li><li>"I'm having an issue with my timesheet submission. Who should I contact?"</li></ul> | | Product | <ul><li>'What brand of nut butters do you carry that are peanut-free?'</li><li>'Do you offer any delivery or pickup options for online grocery orders?'</li><li>'I have a dietary restriction - how can I easily identify suitable products?'</li></ul> | | Returns | <ul><li>'My grocery delivery contained items that were spoiled or past their expiration date. How do I get replacements?'</li><li>"I purchased a product that was supposed to be on sale but I didn't get the discounted price. Can I get a credit for the difference?"</li><li>"I bought an item that doesn't fit. What's the process for exchanging it?"</li></ul> | | Logistics | <ul><li>'My delivery was marked as "undeliverable" - what are the next steps I should take?'</li><li>'I need to change the delivery address for my upcoming order. How can I do that?'</li><li>'Is there a way to get real-time updates on the status of my order during the shipping process?'</li></ul> | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("Do you have any special deals or discounts on bulk items?") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 10 | 14.25 | 26 | | Label | Training Sample Count | |:-------------|:----------------------| | Returns | 8 | | Tech Support | 8 | | Logistics | 8 | | HR | 8 | | Product | 8 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (100, 100) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.025 | 1 | 0.2674 | - | | 1.25 | 50 | 0.2345 | - | | 2.5 | 100 | 0.2558 | - | | 3.75 | 150 | 0.2126 | - | | 5.0 | 200 | 0.1904 | - | | 6.25 | 250 | 0.1965 | - | | 7.5 | 300 | 0.2013 | - | | 8.75 | 350 | 0.1221 | - | | 10.0 | 400 | 0.1254 | - | | 11.25 | 450 | 0.0791 | - | | 12.5 | 500 | 0.0917 | - | | 13.75 | 550 | 0.0757 | - | | 15.0 | 600 | 0.0446 | - | | 16.25 | 650 | 0.0407 | - | | 17.5 | 700 | 0.0276 | - | | 18.75 | 750 | 0.0297 | - | | 20.0 | 800 | 0.017 | - | | 21.25 | 850 | 0.0193 | - | | 22.5 | 900 | 0.0105 | - | | 23.75 | 950 | 0.0143 | - | | 25.0 | 1000 | 0.0133 | - | | 26.25 | 1050 | 0.0127 | - | | 27.5 | 1100 | 0.0064 | - | | 28.75 | 1150 | 0.0076 | - | | 30.0 | 1200 | 0.0099 | - | | 31.25 | 1250 | 0.0077 | - | | 32.5 | 1300 | 0.0059 | - | | 33.75 | 1350 | 0.0047 | - | | 35.0 | 1400 | 0.0059 | - | | 36.25 | 1450 | 0.005 | - | | 37.5 | 1500 | 0.005 | - | | 38.75 | 1550 | 0.005 | - | | 40.0 | 1600 | 0.0043 | - | | 41.25 | 1650 | 0.0056 | - | | 42.5 | 1700 | 0.0036 | - | | 43.75 | 1750 | 0.0029 | - | | 45.0 | 1800 | 0.0031 | - | | 46.25 | 1850 | 0.0033 | - | | 47.5 | 1900 | 0.0028 | - | | 48.75 | 1950 | 0.0042 | - | | 50.0 | 2000 | 0.0038 | - | | 51.25 | 2050 | 0.0032 | - | | 52.5 | 2100 | 0.0033 | - | | 53.75 | 2150 | 0.0031 | - | | 55.0 | 2200 | 0.0023 | - | | 56.25 | 2250 | 0.002 | - | | 57.5 | 2300 | 0.003 | - | | 58.75 | 2350 | 0.0039 | - | | 60.0 | 2400 | 0.003 | - | | 61.25 | 2450 | 0.0035 | - | | 62.5 | 2500 | 0.0022 | - | | 63.75 | 2550 | 0.0029 | - | | 65.0 | 2600 | 0.0029 | - | | 66.25 | 2650 | 0.0019 | - | | 67.5 | 2700 | 0.002 | - | | 68.75 | 2750 | 0.0041 | - | | 70.0 | 2800 | 0.0022 | - | | 71.25 | 2850 | 0.0027 | - | | 72.5 | 2900 | 0.0016 | - | | 73.75 | 2950 | 0.002 | - | | 75.0 | 3000 | 0.0029 | - | | 76.25 | 3050 | 0.0024 | - | | 77.5 | 3100 | 0.0017 | - | | 78.75 | 3150 | 0.0017 | - | | 80.0 | 3200 | 0.0025 | - | | 81.25 | 3250 | 0.0023 | - | | 82.5 | 3300 | 0.0018 | - | | 83.75 | 3350 | 0.0021 | - | | 85.0 | 3400 | 0.0016 | - | | 86.25 | 3450 | 0.0021 | - | | 87.5 | 3500 | 0.0018 | - | | 88.75 | 3550 | 0.0014 | - | | 90.0 | 3600 | 0.0014 | - | | 91.25 | 3650 | 0.0026 | - | | 92.5 | 3700 | 0.0012 | - | | 93.75 | 3750 | 0.0031 | - | | 95.0 | 3800 | 0.0025 | - | | 96.25 | 3850 | 0.0014 | - | | 97.5 | 3900 | 0.0012 | - | | 98.75 | 3950 | 0.0025 | - | | 100.0 | 4000 | 0.002 | - | ### Framework Versions - Python: 3.11.8 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.40.0 - PyTorch: 2.2.2 - Datasets: 2.19.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "base_model": "google-t5/t5-small", "widget": [{"text": "Do you have any special deals or discounts on bulk items?"}, {"text": "I'd like to exchange a product I bought in-store. Do I need to bring the original receipt?"}, {"text": "I have a question about freight shipping rates for a bulk order I'm considering placing"}, {"text": "I need to find some dairy-free milk alternatives. What options do you carry?"}, {"text": "I purchased a product that was supposed to be on sale but I didn't get the discounted price. Can I get a credit for the difference?"}], "pipeline_tag": "text-classification", "inference": true}
wikd/t5-small-finetuned
null
[ "setfit", "safetensors", "t5", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:google-t5/t5-small", "region:us" ]
null
2024-04-23T11:29:57+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # gemma-2b-it-gee This model is a fine-tuned version of [google/gemma-2b](https://huggingface.co/google/gemma-2b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9609 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.016 | 2 | 1.1482 | | No log | 0.032 | 4 | 1.1330 | | No log | 0.048 | 6 | 1.1206 | | No log | 0.064 | 8 | 1.1111 | | No log | 0.08 | 10 | 1.1005 | | No log | 0.096 | 12 | 1.0913 | | No log | 0.112 | 14 | 1.0823 | | No log | 0.128 | 16 | 1.0734 | | No log | 0.144 | 18 | 1.0660 | | No log | 0.16 | 20 | 1.0590 | | No log | 0.176 | 22 | 1.0520 | | No log | 0.192 | 24 | 1.0470 | | No log | 0.208 | 26 | 1.0425 | | No log | 0.224 | 28 | 1.0387 | | No log | 0.24 | 30 | 1.0353 | | No log | 0.256 | 32 | 1.0320 | | No log | 0.272 | 34 | 1.0288 | | No log | 0.288 | 36 | 1.0256 | | No log | 0.304 | 38 | 1.0232 | | No log | 0.32 | 40 | 1.0204 | | No log | 0.336 | 42 | 1.0183 | | No log | 0.352 | 44 | 1.0159 | | No log | 0.368 | 46 | 1.0137 | | No log | 0.384 | 48 | 1.0115 | | 1.0621 | 0.4 | 50 | 1.0095 | | 1.0621 | 0.416 | 52 | 1.0075 | | 1.0621 | 0.432 | 54 | 1.0054 | | 1.0621 | 0.448 | 56 | 1.0034 | | 1.0621 | 0.464 | 58 | 1.0014 | | 1.0621 | 0.48 | 60 | 0.9994 | | 1.0621 | 0.496 | 62 | 0.9976 | | 1.0621 | 0.512 | 64 | 0.9960 | | 1.0621 | 0.528 | 66 | 0.9944 | | 1.0621 | 0.544 | 68 | 0.9928 | | 1.0621 | 0.56 | 70 | 0.9911 | | 1.0621 | 0.576 | 72 | 0.9896 | | 1.0621 | 0.592 | 74 | 0.9882 | | 1.0621 | 0.608 | 76 | 0.9868 | | 1.0621 | 0.624 | 78 | 0.9853 | | 1.0621 | 0.64 | 80 | 0.9836 | | 1.0621 | 0.656 | 82 | 0.9822 | | 1.0621 | 0.672 | 84 | 0.9809 | | 1.0621 | 0.688 | 86 | 0.9797 | | 1.0621 | 0.704 | 88 | 0.9785 | | 1.0621 | 0.72 | 90 | 0.9775 | | 1.0621 | 0.736 | 92 | 0.9764 | | 1.0621 | 0.752 | 94 | 0.9754 | | 1.0621 | 0.768 | 96 | 0.9745 | | 1.0621 | 0.784 | 98 | 0.9737 | | 1.0035 | 0.8 | 100 | 0.9729 | | 1.0035 | 0.816 | 102 | 0.9723 | | 1.0035 | 0.832 | 104 | 0.9716 | | 1.0035 | 0.848 | 106 | 0.9710 | | 1.0035 | 0.864 | 108 | 0.9705 | | 1.0035 | 0.88 | 110 | 0.9700 | | 1.0035 | 0.896 | 112 | 0.9695 | | 1.0035 | 0.912 | 114 | 0.9690 | | 1.0035 | 0.928 | 116 | 0.9685 | | 1.0035 | 0.944 | 118 | 0.9681 | | 1.0035 | 0.96 | 120 | 0.9677 | | 1.0035 | 0.976 | 122 | 0.9674 | | 1.0035 | 0.992 | 124 | 0.9671 | | 1.0035 | 1.008 | 126 | 0.9668 | | 1.0035 | 1.024 | 128 | 0.9665 | | 1.0035 | 1.04 | 130 | 0.9661 | | 1.0035 | 1.056 | 132 | 0.9657 | | 1.0035 | 1.072 | 134 | 0.9654 | | 1.0035 | 1.088 | 136 | 0.9652 | | 1.0035 | 1.104 | 138 | 0.9650 | | 1.0035 | 1.12 | 140 | 0.9648 | | 1.0035 | 1.1360 | 142 | 0.9645 | | 1.0035 | 1.152 | 144 | 0.9644 | | 1.0035 | 1.168 | 146 | 0.9642 | | 1.0035 | 1.184 | 148 | 0.9639 | | 0.9687 | 1.2 | 150 | 0.9637 | | 0.9687 | 1.216 | 152 | 0.9634 | | 0.9687 | 1.232 | 154 | 0.9632 | | 0.9687 | 1.248 | 156 | 0.9630 | | 0.9687 | 1.264 | 158 | 0.9628 | | 0.9687 | 1.28 | 160 | 0.9627 | | 0.9687 | 1.296 | 162 | 0.9625 | | 0.9687 | 1.312 | 164 | 0.9623 | | 0.9687 | 1.328 | 166 | 0.9622 | | 0.9687 | 1.3440 | 168 | 0.9620 | | 0.9687 | 1.3600 | 170 | 0.9619 | | 0.9687 | 1.376 | 172 | 0.9618 | | 0.9687 | 1.392 | 174 | 0.9617 | | 0.9687 | 1.408 | 176 | 0.9616 | | 0.9687 | 1.424 | 178 | 0.9615 | | 0.9687 | 1.44 | 180 | 0.9614 | | 0.9687 | 1.456 | 182 | 0.9613 | | 0.9687 | 1.472 | 184 | 0.9613 | | 0.9687 | 1.488 | 186 | 0.9612 | | 0.9687 | 1.504 | 188 | 0.9611 | | 0.9687 | 1.52 | 190 | 0.9611 | | 0.9687 | 1.536 | 192 | 0.9610 | | 0.9687 | 1.552 | 194 | 0.9610 | | 0.9687 | 1.568 | 196 | 0.9609 | | 0.9687 | 1.584 | 198 | 0.9609 | | 0.982 | 1.6 | 200 | 0.9609 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.41.0.dev0 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "gemma", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "google/gemma-2b", "model-index": [{"name": "gemma-2b-it-gee", "results": []}]}
himanshue2e/gemma-2b-it-gee
null
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:google/gemma-2b", "license:gemma", "region:us" ]
null
2024-04-23T11:30:10+00:00
null
null
{}
Mahfujul/c-ai
null
[ "region:us" ]
null
2024-04-23T11:30:20+00:00
null
null
{"license": "mit"}
testhelloworld04/football_analysis
null
[ "license:mit", "region:us" ]
null
2024-04-23T11:30:51+00:00
null
null
{"license": "apache-2.0"}
yan-hao-tian/vw_maskformer-s_ade20k
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:32:33+00:00
text-generation
transformers
# 🤏 Coven Tiny 1.1B 32K ORPO Coven Tiny 1.1B 32K is an improved iteration of TinyLlama-1.1B-Chat-v1.0, refined to expand processing capabilities and refine language model preferences. This model includes a significantly increased context limit of 32K tokens, allowing for more extensive data processing and understanding of complex language scenarios. In addition, Coven Tiny 1.1B 32K uses the innovative ORPO (Monolithic Preference Optimization without Reference Model) technique. ORPO simplifies the fine-tuning process by directly optimizing the odds ratio to distinguish between favorable and unfavorable generation styles, effectively improving model performance without the need for an additional preference alignment step. ## Model Details * **Model name**: Coven Tiny 1.1B 32K ORPO alpha * **Fine-tuned by**: raidhon * **Base model**: [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) * **Parameters**: 1.1B * **Context**: 32K * **Language(s)**: Multilingual * **License**: Apache2.0 ### Eval | Task | Model | Metric | Value | Change (%) | |---------------------|-----------------------|----------------|----------|-----------------| | Winogrande | TinyLlama 1.1B Chat | Accuracy | 61.56% | - | | | Coven Tiny 1.1B | Accuracy | 61.17% | -0.63% | | TruthfulQA | TinyLlama 1.1B Chat | Accuracy | 30.43% | - | | | Coven Tiny 1.1B | Accuracy | 34.31% | +12.75% | | PIQA | TinyLlama 1.1B Chat | Accuracy | 74.10% | - | | | Coven Tiny 1.1B | Accuracy | 71.06% | -4.10% | | OpenBookQA | TinyLlama 1.1B Chat | Accuracy | 27.40% | - | | | Coven Tiny 1.1B | Accuracy | 30.60% | +11.68% | | MMLU | TinyLlama 1.1B Chat | Accuracy | 24.31% | - | | | Coven Tiny 1.1B | Accuracy | 38.03% | +56.44% | | Hellaswag | TinyLlama 1.1B Chat | Accuracy | 45.69% | - | | | Coven Tiny 1.1B | Accuracy | 43.44% | -4.92% | | GSM8K (Strict) | TinyLlama 1.1B Chat | Exact Match | 1.82% | - | | | Coven Tiny 1.1B | Exact Match | 14.71% | +708.24% | | GSM8K (Flexible) | TinyLlama 1.1B Chat | Exact Match | 2.65% | - | | | Coven Tiny 1.1B | Exact Match | 14.63% | +452.08% | | BoolQ | TinyLlama 1.1B Chat | Accuracy | 58.69% | - | | | Coven Tiny 1.1B | Accuracy | 65.20% | +11.09% | | ARC Easy | TinyLlama 1.1B Chat | Accuracy | 66.54% | - | | | Coven Tiny 1.1B | Accuracy | 57.24% | -13.98% | | ARC Challenge | TinyLlama 1.1B Chat | Accuracy | 34.13% | - | | | Coven Tiny 1.1B | Accuracy | 34.81% | +1.99% | | Humaneval | TinyLlama 1.1B Chat | Pass@1 | 10.98% | - | | | Coven Tiny 1.1B | Pass@1 | 10.37% | -5.56% | | Drop | TinyLlama 1.1B Chat | Score | 16.02% | - | | | Coven Tiny 1.1B | Score | 16.36% | +2.12% | | BBH | Coven Tiny 1.1B | Average | 29.02% | - | ## 💻 Usage ```python # Install transformers from source - only needed for versions <= v4.34 # pip install git+https://github.com/huggingface/transformers.git # pip install accelerate import torch from transformers import pipeline pipe = pipeline("text-generation", model="raidhon/coven_tiny_1.1b_32k_orpo_alpha", torch_dtype=torch.bfloat16, device_map="auto") messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) outputs = pipe(prompt, max_new_tokens=2048, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation", "large-language-model", "orpo"], "dataset": ["jondurbin/truthy-dpo-v0.1", "AlekseyKorshuk/evol-codealpaca-v1-dpo", "argilla/distilabel-intel-orca-dpo-pairs", "argilla/ultrafeedback-binarized-avg-rating-for-dpo-filtered", "snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset", "mlabonne/orpo-dpo-mix-40k"], "base_model": ["TinyLlama/TinyLlama-1.1B-Chat-v1.0"], "model-index": [{"name": "Coven Tiny 1.1B", "results": [{"task": {"type": "text-generation", "name": "Winogrande Challenge"}, "dataset": {"name": "Winogrande", "type": "winogrande", "config": "winogrande_xl", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 61.17, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "TruthfulQA Generation"}, "dataset": {"name": "TruthfulQA", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "accuracy", "value": 34.31, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "PIQA Problem Solving"}, "dataset": {"name": "PIQA", "type": "piqa", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 71.06, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "OpenBookQA Facts"}, "dataset": {"name": "OpenBookQA", "type": "openbookqa", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 30.6, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "MMLU Knowledge Test"}, "dataset": {"name": "MMLU", "type": "mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 38.03, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "Hellaswag Contextual Completions"}, "dataset": {"name": "Hellaswag", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "accuracy", "value": 43.44, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "GSM8k Mathematical Reasoning"}, "dataset": {"name": "GSM8k", "type": "gsm8k", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 14.71, "name": "exact match (strict)"}, {"type": "accuracy", "value": 14.63, "name": "exact match (flexible)"}]}, {"task": {"type": "text-generation", "name": "BoolQ Question Answering"}, "dataset": {"name": "BoolQ", "type": "boolq", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "accuracy", "value": 65.2, "name": "accuracy"}]}, {"task": {"type": "text-generation", "name": "ARC Challenge"}, "dataset": {"name": "ARC Challenge", "type": "ai2_arc", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "accuracy", "value": 34.81, "name": "accuracy"}]}]}]}
raidhon/coven_tiny_1.1b_32k_orpo_alpha
null
[ "transformers", "safetensors", "llama", "text-generation", "large-language-model", "orpo", "conversational", "en", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:33:31+00:00
null
null
helloworld
{}
louiscklaw/football_analysis
null
[ "region:us" ]
null
2024-04-23T11:33:45+00:00
text-classification
transformers
{}
KalaiselvanD/output_new
null
[ "transformers", "tensorboard", "safetensors", "albert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:33:55+00:00
null
trl
# Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.27-DPO This model is a fine-tuned version of [Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-merged] on the dataset Weni/wenigpt-agent-dpo-1.0.0 with the DPO trainer. It is part of the WeniGPT project for [Weni](https://weni.ai/). Description: Experiment on DPO with other hyperparameters and best SFT model of WeniGPT It achieves the following results on the evaluation set: {'eval_loss': 0.08551714569330215, 'eval_runtime': 10.8024, 'eval_samples_per_second': 2.592, 'eval_steps_per_second': 0.648, 'eval_rewards/chosen': 1.8717962503433228, 'eval_rewards/rejected': -1.2443491220474243, 'eval_rewards/accuracies': 1.0, 'eval_rewards/margins': 3.116144895553589, 'eval_logps/rejected': -191.76492309570312, 'eval_logps/chosen': -127.97382354736328, 'eval_logits/rejected': -1.8981773853302002, 'eval_logits/chosen': -1.8695993423461914, 'epoch': 5.806451612903226} ## Intended uses & limitations This model has not been trained to avoid specific intructions. ## Training procedure Finetuning was done on the model Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-merged with the following prompt: ``` --------------------- System_prompt: Agora você se chama {name}, você é {occupation} e seu objetivo é {chatbot_goal}. O adjetivo que mais define a sua personalidade é {adjective} e você se comporta da seguinte forma: {instructions_formatted} {context_statement} Lista de requisitos: - Responda de forma natural, mas nunca fale sobre um assunto fora do contexto. - Nunca traga informações do seu próprio conhecimento. - Repito é crucial que você responda usando apenas informações do contexto. - Nunca mencione o contexto fornecido. - Nunca mencione a pergunta fornecida. - Gere a resposta mais útil possível para a pergunta usando informações do conexto acima. - Nunca elabore sobre o porque e como você fez a tarefa, apenas responda. --------------------- ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - per_device_train_batch_size: 1 - per_device_eval_batch_size: 1 - gradient_accumulation_steps: 2 - num_gpus: 4 - total_train_batch_size: 8 - optimizer: AdamW - lr_scheduler_type: cosine - num_steps: 180 - quantization_type: bitsandbytes - LoRA: ("\n - bits: 4\n - use_exllama: True\n - device_map: auto\n - use_cache: False\n - lora_r: 32\n - lora_alpha: 16\n - lora_dropout: 0.05\n - bias: none\n - target_modules: ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj', 'down_proj']\n - task_type: CAUSAL_LM",) ### Training results ### Framework versions - transformers==4.40.0 - datasets==2.18.0 - peft==0.10.0 - safetensors==0.4.2 - evaluate==0.4.1 - bitsandbytes==0.43 - huggingface_hub==0.22.2 - seqeval==1.2.2 - auto-gptq==0.7.1 - gpustat==1.1.1 - deepspeed==0.14.0 - wandb==0.16.6 - trl==0.8.1 - accelerate==0.29.3 - coloredlogs==15.0.1 - traitlets==5.14.2 - git+https://github.com/casper-hansen/AutoAWQ.git ### Hardware - Cloud provided: runpod.io
{"language": ["pt"], "license": "mit", "library_name": "trl", "tags": ["DPO", "WeniGPT"], "base_model": "Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-merged", "model-index": [{"name": "Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.27-DPO", "results": []}]}
Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.27-DPO
null
[ "trl", "safetensors", "DPO", "WeniGPT", "pt", "base_model:Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-merged", "license:mit", "region:us" ]
null
2024-04-23T11:34:00+00:00
null
null
{"license": "mit"}
zxthesky/llama_v1
null
[ "license:mit", "region:us" ]
null
2024-04-23T11:34:31+00:00
null
null
{"license": "apache-2.0"}
yan-hao-tian/vw_maskformer-ti_ade20k
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:35:23+00:00
null
null
{}
MartaSamoilenko/benchmarks
null
[ "region:us" ]
null
2024-04-23T11:36:06+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shakespeare-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 16 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.3058 | 0.97 | 15 | 1.2255 | | 1.017 | 2.0 | 31 | 1.1220 | | 0.9377 | 2.97 | 46 | 1.0527 | | 0.7699 | 4.0 | 62 | 0.9921 | | 0.728 | 4.97 | 77 | 0.9438 | | 0.6098 | 6.0 | 93 | 0.8995 | | 0.5781 | 6.97 | 108 | 0.8649 | | 0.4823 | 8.0 | 124 | 0.8288 | | 0.4598 | 8.97 | 139 | 0.8065 | | 0.3866 | 10.0 | 155 | 0.7736 | | 0.3693 | 10.97 | 170 | 0.7525 | | 0.3165 | 12.0 | 186 | 0.7422 | | 0.312 | 12.97 | 201 | 0.7276 | | 0.2761 | 14.0 | 217 | 0.7160 | | 0.2815 | 14.97 | 232 | 0.7121 | | 0.2463 | 15.48 | 240 | 0.7122 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "model-index": [{"name": "shakespeare-ft", "results": []}]}
ashkid/shakespeare-ft
null
[ "peft", "tensorboard", "safetensors", "mistral", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "license:apache-2.0", "4-bit", "region:us" ]
null
2024-04-23T11:36:45+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
tomaszki/llama-8
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:39:46+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # shawgpt-ft This model is a fine-tuned version of [TheBloke/Mistral-7B-Instruct-v0.2-GPTQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.2-GPTQ) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 1.1537 - eval_runtime: 31.9752 - eval_samples_per_second: 1.939 - eval_steps_per_second: 0.5 - epoch: 4.0 - step: 62 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 2 - num_epochs: 10 - mixed_precision_training: Native AMP ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "model-index": [{"name": "shawgpt-ft", "results": []}]}
ashkid/shawgpt-ft
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:TheBloke/Mistral-7B-Instruct-v0.2-GPTQ", "license:apache-2.0", "region:us" ]
null
2024-04-23T11:40:19+00:00
null
null
{"license": "apache-2.0"}
yan-hao-tian/vw_maskformer-b_ade20k
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:40:58+00:00
null
null
{}
ChristineM/bert-base-banking77
null
[ "region:us" ]
null
2024-04-23T11:41:29+00:00
null
null
{"language": ["tr", "en"], "license": "openrail"}
ixtivh/Drama_Queen
null
[ "tr", "en", "license:openrail", "region:us" ]
null
2024-04-23T11:41:39+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
thusinh1969/LLaMA-2-finetune-cp44700-20APRIL2024
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:41:49+00:00
null
null
{"license": "apache-2.0"}
yan-hao-tian/vw_maskformer-l_ade20k
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:42:35+00:00
null
null
{}
Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.26-DPO
null
[ "safetensors", "region:us" ]
null
2024-04-23T11:43:06+00:00
audio-classification
transformers
# wave2vec2_capstone This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the common_voice_16_1 dataset. It achieves the following results on the evaluation set: - Loss: 0.2796 - Accuracy: 0.9400 - F1 score: 0.9399 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 9 - eval_batch_size: 9 - seed: 42 - gradient_accumulation_steps: 12 - total_train_batch_size: 108 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:| | 0.8951 | 1.0 | 776 | 1.1617 | 0.6651 | 0.6607 | | 0.6608 | 2.0 | 1552 | 0.6345 | 0.8188 | 0.8188 | | 0.4426 | 3.0 | 2328 | 0.4792 | 0.8672 | 0.8677 | | 0.3576 | 4.0 | 3105 | 0.3826 | 0.8917 | 0.8929 | | 0.194 | 5.0 | 3881 | 0.3255 | 0.9125 | 0.9130 | | 0.1635 | 6.0 | 4657 | 0.2903 | 0.9208 | 0.9206 | | 0.0903 | 7.0 | 5433 | 0.2990 | 0.9300 | 0.9299 | | 0.0405 | 8.0 | 6208 | 0.2796 | 0.9400 | 0.9399 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.0 - Tokenizers 0.15.0
{"language": ["en", "ca", "rw", "be", "eo", "de", "fr", "ka", "es", "lg", "sw", "fa", "it", "mh", "zh", "ba", "ta", "ru", "eu", "th", "pt", "pl", "ja"], "license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_16_1"], "metrics": ["accuracy"], "base_model": "facebook/wav2vec2-base", "pipeline_tag": "audio-classification", "model-index": [{"name": "wave2vec2_capstone", "results": []}]}
mageec/wave2vec2_capstone
null
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "audio-classification", "generated_from_trainer", "en", "ca", "rw", "be", "eo", "de", "fr", "ka", "es", "lg", "sw", "fa", "it", "mh", "zh", "ba", "ta", "ru", "eu", "th", "pt", "pl", "ja", "dataset:mozilla-foundation/common_voice_16_1", "base_model:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:43:29+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
nem012/gemma2b-r64-v2m
null
[ "transformers", "safetensors", "gemma", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:43:48+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # 13bluecity/token_new This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 8.0506 - Validation Loss: 8.6042 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'inner_optimizer': {'module': 'transformers.optimization_tf', 'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': -896, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 1000, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.8999999761581421, 'beta_2': 0.9990000128746033, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}, 'registered_name': 'AdamWeightDecay'}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000} - training_precision: mixed_float16 ### Training results | Train Loss | Validation Loss | Epoch | |:----------:|:---------------:|:-----:| | 8.6812 | 8.9512 | 0 | | 8.3057 | 8.7617 | 1 | | 8.0506 | 8.6042 | 2 | ### Framework versions - Transformers 4.40.0 - TensorFlow 2.15.0 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "mit", "tags": ["generated_from_keras_callback"], "base_model": "gpt2", "model-index": [{"name": "13bluecity/token_new", "results": []}]}
13bluecity/token_new
null
[ "transformers", "tf", "gpt2", "text-generation", "generated_from_keras_callback", "base_model:gpt2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:45:00+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-turkish-cased-06 This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 1.287 | 1.0 | 4032 | 0.9555 | | 0.95 | 2.0 | 8064 | 0.6570 | | 0.7216 | 3.0 | 12096 | 0.5394 | ### Framework versions - Transformers 4.26.0 - Pytorch 2.2.1+cu121 - Datasets 2.9.0 - Tokenizers 0.13.3
{"license": "mit", "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-base-turkish-cased-06", "results": []}]}
alikanakar/bert-base-turkish-cased-06
null
[ "transformers", "pytorch", "tensorboard", "bert", "question-answering", "generated_from_trainer", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:45:01+00:00
null
null
{"license": "mit"}
EterG/Llama-3-8b-quantized-Q4_K_M
null
[ "license:mit", "region:us" ]
null
2024-04-23T11:45:14+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
adammoss/gpt-pretrain-lm-n200
null
[ "transformers", "safetensors", "gptmodel", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:45:24+00:00
null
null
{}
MRohit23/ResNet50_Pest
null
[ "region:us" ]
null
2024-04-23T11:45:28+00:00
fill-mask
transformers
{"language": ["ta"], "license": "mit", "tags": ["tamil", "medicine", "mlm", "BERT"], "metrics": ["perplexity"], "pipeline_tag": "fill-mask"}
Vidharshana/tamil-bert4MLM
null
[ "transformers", "tensorboard", "safetensors", "bert", "fill-mask", "tamil", "medicine", "mlm", "BERT", "ta", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:45:36+00:00
null
null
{}
mumuksha/sql_classifier
null
[ "region:us" ]
null
2024-04-23T11:46:02+00:00
null
transformers
# Uploaded model - **Developed by:** MR-Eder - **License:** apache-2.0 - **Finetuned from model :** VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"}
MR-Eder/Llama3-wiki-de-single-pairs-LoRA
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:47:09+00:00
null
null
{}
mayank77/Image_Classificatiom
null
[ "region:us" ]
null
2024-04-23T11:47:43+00:00
null
null
{}
catid/cat-llama-3-70b-san66-hqq-qlora
null
[ "region:us" ]
null
2024-04-23T11:48:08+00:00
null
null
{}
JohnBB1/test1
null
[ "region:us" ]
null
2024-04-23T11:48:09+00:00
text-generation
transformers
# Uploaded model - **Developed by:** MR-Eder - **License:** apache-2.0 - **Finetuned from model :** VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"}
MR-Eder/Llama3-wiki-de-single-pairs-16bit
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "base_model:VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:48:48+00:00
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/lucianosb/boto-7B-v1.1 <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q2_K.gguf) | Q2_K | 2.8 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.IQ3_XS.gguf) | IQ3_XS | 3.1 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q3_K_S.gguf) | Q3_K_S | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.IQ3_M.gguf) | IQ3_M | 3.4 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q3_K_L.gguf) | Q3_K_L | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.IQ4_XS.gguf) | IQ4_XS | 4.0 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q5_K_S.gguf) | Q5_K_S | 5.1 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q5_K_M.gguf) | Q5_K_M | 5.2 | | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q6_K.gguf) | Q6_K | 6.0 | very good quality | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/boto-7B-v1.1-GGUF/resolve/main/boto-7B-v1.1.f16.gguf) | f16 | 14.6 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "datasets": ["lucianosb/cetacean-ptbr"], "base_model": "lucianosb/boto-7B-v1.1", "quantized_by": "mradermacher"}
mradermacher/boto-7B-v1.1-GGUF
null
[ "transformers", "gguf", "text-generation-inference", "unsloth", "mistral", "trl", "en", "dataset:lucianosb/cetacean-ptbr", "base_model:lucianosb/boto-7B-v1.1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:49:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fineturning-medical_data This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3803 - Wer: 0.2026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.5432 | 5.08 | 500 | 0.5657 | 0.3742 | | 0.3691 | 10.15 | 1000 | 0.4064 | 0.2665 | | 0.2045 | 15.23 | 1500 | 0.4500 | 0.2437 | | 0.1385 | 20.3 | 2000 | 0.4261 | 0.2285 | | 0.1028 | 25.38 | 2500 | 0.3828 | 0.2093 | | 0.0696 | 30.46 | 3000 | 0.3803 | 0.2026 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["wer"], "base_model": "facebook/wav2vec2-base", "model-index": [{"name": "fineturning-medical_data", "results": []}]}
Aviral2412/fineturning-medical_data
null
[ "transformers", "tensorboard", "safetensors", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "base_model:facebook/wav2vec2-base", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:50:49+00:00
null
transformers
## About <!-- ### quantize_version: 1 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: --> <!-- ### vocab_type: --> static quants of https://huggingface.co/akkky02/DPO-llama3-8B <!-- provided-files --> weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion. ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.IQ3_XS.gguf) | IQ3_XS | 3.6 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.IQ3_M.gguf) | IQ3_M | 3.9 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/DPO-llama3-8B-GGUF/resolve/main/DPO-llama3-8B.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
{"language": ["en"], "library_name": "transformers", "tags": [], "base_model": "akkky02/DPO-llama3-8B", "quantized_by": "mradermacher"}
mradermacher/DPO-llama3-8B-GGUF
null
[ "transformers", "gguf", "en", "base_model:akkky02/DPO-llama3-8B", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:51:04+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
gechim/vinallama-2.7b-custom
null
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:51:37+00:00
null
null
{}
LIOHDI/LIOHDI
null
[ "region:us" ]
null
2024-04-23T11:53:25+00:00
null
null
ما هو PureZen حبوب؟ PureZen أجهزة لوحية هو مكمل غذائي ممتاز تم إعداده بدقة لتعزيز صحة البروستاتا. تم تصنيع PureZen سعر بمزيج من المكونات الطبيعية المعروفة بخصائصها الداعمة للبروستاتا، ويهدف إلى معالجة المخاوف الشائعة المرتبطة بصحة البروستاتا، مثل الصعوبات البولية والالتهابات. الموقع الرسمي:<a href="https://www.nutritionsee.com/Pureunisi">www.PureZen.com</a> <p><a href="https://www.nutritionsee.com/Pureunisi"> <img src="https://www.nutritionsee.com/wp-content/uploads/2024/04/PureZen-Tunisia.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/Pureunisi">اشتري الآن!! انقر على الرابط أدناه لمزيد من المعلومات واحصل على خصم 50% الآن... أسرع </a> الموقع الرسمي:<a href="https://www.nutritionsee.com/Pureunisi">www.PureZen.com</a>
{"license": "apache-2.0"}
PureZenTunisia/PureZenTunisia
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T11:53:27+00:00
text-generation
transformers
{}
mrbalpande21/Llama-2-7b-chat-finetune
null
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:54:49+00:00
null
null
{}
nndang/checkpoint_PhoWhisper_small_synthetic_journal_50
null
[ "tensorboard", "safetensors", "region:us" ]
null
2024-04-23T11:55:27+00:00
object-detection
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # detr_v2_20 This model is a fine-tuned version of [facebook/detr-resnet-50](https://huggingface.co/facebook/detr-resnet-50) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "facebook/detr-resnet-50", "model-index": [{"name": "detr_v2_20", "results": []}]}
ssamperr/detr_v2_20
null
[ "transformers", "tensorboard", "safetensors", "detr", "object-detection", "generated_from_trainer", "base_model:facebook/detr-resnet-50", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:55:37+00:00
null
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
cheungra/ocularaid-scheduler-D
null
[ "diffusers", "arxiv:1910.09700", "region:us" ]
null
2024-04-23T11:55:53+00:00
null
null
{}
nndang/checkpoint_PhoWhisper_small_synthetic_journal_75
null
[ "region:us" ]
null
2024-04-23T11:56:08+00:00
null
null
{}
nndang/checkpoint_PhoWhisper_small_synthetic_journal_100
null
[ "region:us" ]
null
2024-04-23T11:56:32+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
TTTTao725/molt5-augmented-contrastive-0-small-whole_model
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:56:36+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
phongtintruong/mistral_7b_apirec
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-23T11:56:59+00:00
text-generation
transformers
{}
Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.27-DPO-merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:57:12+00:00
text-generation
transformers
{"license": "mit"}
yeelou/design2code-hf-bit4
null
[ "transformers", "pytorch", "text-generation", "custom_code", "license:mit", "autotrain_compatible", "4-bit", "region:us" ]
null
2024-04-23T11:57:32+00:00
text2text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
MetehanMuradTali/DailyDialog
null
[ "transformers", "safetensors", "t5", "text2text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T11:58:38+00:00
text-generation
transformers
# hus960/openbuddy-mistral2-7b-v20.3-32k-Q4_K_M-GGUF This model was converted to GGUF format from [`OpenBuddy/openbuddy-mistral2-7b-v20.3-32k`](https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OpenBuddy/openbuddy-mistral2-7b-v20.3-32k) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/openbuddy-mistral2-7b-v20.3-32k-Q4_K_M-GGUF --model openbuddy-mistral2-7b-v20.3-32k.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/openbuddy-mistral2-7b-v20.3-32k-Q4_K_M-GGUF --model openbuddy-mistral2-7b-v20.3-32k.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m openbuddy-mistral2-7b-v20.3-32k.Q4_K_M.gguf -n 128 ```
{"language": ["zh", "en", "fr", "de", "ja", "ko", "it", "ru"], "license": "apache-2.0", "library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"], "pipeline_tag": "text-generation", "inference": false}
hus960/openbuddy-mistral2-7b-v20.3-32k-Q4_K_M-GGUF
null
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "license:apache-2.0", "region:us" ]
null
2024-04-23T12:00:16+00:00
text2text-generation
transformers
{}
sarrabenrejeb/test1-finetuned-kde4-en-to-it
null
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:00:19+00:00
text-generation
transformers
{}
Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.27-DPO-AWQ
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "4-bit", "region:us" ]
null
2024-04-23T12:00:21+00:00
null
transformers
# Uploaded model - **Developed by:** MR-Eder - **License:** apache-2.0 - **Finetuned from model :** VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"}
MR-Eder/Llama3-wiki-de-single-pairs-f16
null
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "base_model:VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:00:31+00:00
null
keras
{}
AndreiUrsu/Face_Emotion_Clasification_CNN_modificat
null
[ "keras", "region:us" ]
null
2024-04-23T12:00:33+00:00
text-generation
transformers
# hus960/openbuddy-qwen1.5-32b-v21.2-32k-Q4_K_M-GGUF This model was converted to GGUF format from [`OpenBuddy/openbuddy-qwen1.5-32b-v21.2-32k`](https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-32b-v21.2-32k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/OpenBuddy/openbuddy-qwen1.5-32b-v21.2-32k) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/openbuddy-qwen1.5-32b-v21.2-32k-Q4_K_M-GGUF --model openbuddy-qwen1.5-32b-v21.2-32k.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/openbuddy-qwen1.5-32b-v21.2-32k-Q4_K_M-GGUF --model openbuddy-qwen1.5-32b-v21.2-32k.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m openbuddy-qwen1.5-32b-v21.2-32k.Q4_K_M.gguf -n 128 ```
{"language": ["zh", "en", "fr", "de", "ja", "ko", "it", "ru", "fi"], "license": "other", "library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"], "license_name": "tongyi-qianwen-license-agreement", "license_link": "https://huggingface.co/Qwen/Qwen1.5-14B/blob/39b74a78357df4d2296e838d87565967d663a67a/LICENSE", "pipeline_tag": "text-generation", "inference": false}
hus960/openbuddy-qwen1.5-32b-v21.2-32k-Q4_K_M-GGUF
null
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "zh", "en", "fr", "de", "ja", "ko", "it", "ru", "fi", "license:other", "region:us" ]
null
2024-04-23T12:00:41+00:00
text-classification
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": ["cross-encoder"]}
Jes322/cross-encoder-bert-base-fr-10
null
[ "transformers", "safetensors", "bert", "text-classification", "cross-encoder", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:00:49+00:00
text-generation
transformers
# Function Calling Fine-tuned Llama 3 Instruct The model is suitable for commercial use and may be purchased [here](https://buy.stripe.com/00g5l6aO9dmbcV201z). Check out other fine-tuned function calling models [here](https://huggingface.co/collections/Trelis/function-calling-v3-657199ecbe378693925c7915). ## Quick Server Setup Runpod one click TGI template [here](https://runpod.io/console/deploy?template=g2atw53xov&ref=jmfkcdio). - See this [YouTube Video](https://www.youtube.com/watch?v=hHn_cV5WUDI) for guidance on inference with this model. Runpod Affiliate [Link](https://runpod.io?ref=jmfkcdio) (helps support the Trelis channel). ## Inference Scripts See below for sample prompt format. Complete inference scripts are available for purchase [here](https://trelis.com/enterprise-server-api-and-inference-guide/): - Support for TGI, vLLM and Llama.cpp - Automate catching, handling and chaining of function calls. ## Prompt Format ### Using tokenizer.apply_chat_template For an easier application of the prompt, you can set up as follows (note that the conversation below is complete, i.e. you need to remove assistant messages if you want to feed in the conversation to the model): Set up `messages`: ``` [ { "role": "function_metadata", "content": "FUNCTION_METADATA" }, { "role": "user", "content": "What is the current weather in London?" }, { "role": "function_call", "content": "{\n \"name\": \"get_current_weather\",\n \"arguments\": {\n \"city\": \"London\"\n }\n}" }, { "role": "function_response", "content": "{\n \"temperature\": \"15 C\",\n \"condition\": \"Cloudy\"\n}" }, { "role": "assistant", "content": "The current weather in London is Cloudy with a temperature of 15 Celsius" } ] ``` with `FUNCTION_METADATA` as: ``` [ { "type": "function", "function": { "name": "get_current_weather", "description": "This function gets the current weather in a given city", "parameters": { "type": "object", "properties": { "city": { "type": "string", "description": "The city, e.g., San Francisco" }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use." } }, "required": ["city"] } } }, { "type": "function", "function": { "name": "get_clothes", "description": "This function provides a suggestion of clothes to wear based on the current weather", "parameters": { "type": "object", "properties": { "temperature": { "type": "string", "description": "The temperature, e.g., 15 C or 59 F" }, "condition": { "type": "string", "description": "The weather condition, e.g., 'Cloudy', 'Sunny', 'Rainy'" } }, "required": ["temperature", "condition"] } } } ] ``` and then apply the chat template to get a formatted prompt: ``` tokenizer = AutoTokenizer.from_pretrained('Trelis/Meta-Llama-3-70B-Instruct-function-calling', trust_remote_code=True) prompt = tokenizer.apply_chat_template(prompt, tokenize=False) ``` If you are using a gated model, you need to first run: ``` pip install huggingface_hub huggingface-cli login ``` ### Manual Prompt: ``` <|begin_of_text|><|start_header_id|>function_metadata<|end_header_id|> [ { "type": "function", "function": { "name": "get_stock_price", "description": "Get the stock price of an array of stocks", "parameters": { "type": "object", "properties": { "names": { "type": "array", "items": { "type": "string" }, "description": "An array of stocks" } }, "required": [ "names" ] } } }, { "type": "function", "function": { "name": "get_big_stocks", "description": "Get the names of the largest N stocks by market cap", "parameters": { "type": "object", "properties": { "number": { "type": "integer", "description": "The number of largest stocks to get the names of, e.g. 25" }, "region": { "type": "string", "description": "The region to consider, can be \"US\" or \"World\"." } }, "required": [ "number" ] } } } ]<|eot_id|><|start_header_id|>user<|end_header_id|> Get the names of the five largest stocks by market cap<|eot_id|><|start_header_id|>assistant<|end_header_id|> Generated Response: { "name": "get_big_stocks", "arguments": { "number": 5, "region": "US" } }<|eot_id|> ``` # Dataset See [Trelis/function_calling_v3](https://huggingface.co/datasets/Trelis/function_calling_v3). # License This model may be used commercially for inference, or for further fine-tuning and inference. Users may not re-publish or re-sell this model in the same or derivative form (including fine-tunes). ~~~ The original repo card follows below. ~~~ ## Model Details Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety. **Model developers** Meta **Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants. **Input** Models input text only. **Output** Models generate text and code only. **Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. <table> <tr> <td> </td> <td><strong>Training Data</strong> </td> <td><strong>Params</strong> </td> <td><strong>Context length</strong> </td> <td><strong>GQA</strong> </td> <td><strong>Token count</strong> </td> <td><strong>Knowledge cutoff</strong> </td> </tr> <tr> <td rowspan="2" >Llama 3 </td> <td rowspan="2" >A new mix of publicly available online data. </td> <td>8B </td> <td>8k </td> <td>Yes </td> <td rowspan="2" >15T+ </td> <td>March, 2023 </td> </tr> <tr> <td>70B </td> <td>8k </td> <td>Yes </td> <td>December, 2023 </td> </tr> </table> **Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date** April 18, 2024. **Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback. **License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy. ## How to use This repository contains two versions of Meta-Llama-3-70B-Instruct, for use with transformers and with the original `llama3` codebase. ### Use with transformers See the snippet below for usage with Transformers: ```python import transformers import torch model_id = "meta-llama/Meta-Llama-3-70B-Instruct" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) terminators = [ pipeline.tokenizer.eos_token_id, pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] outputs = pipeline( prompt, max_new_tokens=256, eos_token_id=terminators, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` ### Use with `llama3` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Meta-Llama-3-70B-Instruct --include "original/*" --local-dir Meta-Llama-3-70B-Instruct ``` For Hugging Face support, we recommend using transformers or TGI, but a similar command works. ## Hardware and Software **Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute. **Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program. <table> <tr> <td> </td> <td><strong>Time (GPU hours)</strong> </td> <td><strong>Power Consumption (W)</strong> </td> <td><strong>Carbon Emitted(tCO2eq)</strong> </td> </tr> <tr> <td>Llama 3 8B </td> <td>1.3M </td> <td>700 </td> <td>390 </td> </tr> <tr> <td>Llama 3 70B </td> <td>6.4M </td> <td>700 </td> <td>1900 </td> </tr> <tr> <td>Total </td> <td>7.7M </td> <td> </td> <td>2290 </td> </tr> </table> **CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others. ## Training Data **Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data. **Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively. ## Benchmarks In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md). ### Base pretrained models <table> <tr> <td><strong>Category</strong> </td> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama2 7B</strong> </td> <td><strong>Llama2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama2 70B</strong> </td> </tr> <tr> <td rowspan="6" >General </td> <td>MMLU (5-shot) </td> <td>66.6 </td> <td>45.7 </td> <td>53.8 </td> <td>79.5 </td> <td>69.7 </td> </tr> <tr> <td>AGIEval English (3-5 shot) </td> <td>45.9 </td> <td>28.8 </td> <td>38.7 </td> <td>63.0 </td> <td>54.8 </td> </tr> <tr> <td>CommonSenseQA (7-shot) </td> <td>72.6 </td> <td>57.6 </td> <td>67.6 </td> <td>83.8 </td> <td>78.7 </td> </tr> <tr> <td>Winogrande (5-shot) </td> <td>76.1 </td> <td>73.3 </td> <td>75.4 </td> <td>83.1 </td> <td>81.8 </td> </tr> <tr> <td>BIG-Bench Hard (3-shot, CoT) </td> <td>61.1 </td> <td>38.1 </td> <td>47.0 </td> <td>81.3 </td> <td>65.7 </td> </tr> <tr> <td>ARC-Challenge (25-shot) </td> <td>78.6 </td> <td>53.7 </td> <td>67.6 </td> <td>93.0 </td> <td>85.3 </td> </tr> <tr> <td>Knowledge reasoning </td> <td>TriviaQA-Wiki (5-shot) </td> <td>78.5 </td> <td>72.1 </td> <td>79.6 </td> <td>89.7 </td> <td>87.5 </td> </tr> <tr> <td rowspan="4" >Reading comprehension </td> <td>SQuAD (1-shot) </td> <td>76.4 </td> <td>72.2 </td> <td>72.1 </td> <td>85.6 </td> <td>82.6 </td> </tr> <tr> <td>QuAC (1-shot, F1) </td> <td>44.4 </td> <td>39.6 </td> <td>44.9 </td> <td>51.1 </td> <td>49.4 </td> </tr> <tr> <td>BoolQ (0-shot) </td> <td>75.7 </td> <td>65.5 </td> <td>66.9 </td> <td>79.0 </td> <td>73.1 </td> </tr> <tr> <td>DROP (3-shot, F1) </td> <td>58.4 </td> <td>37.9 </td> <td>49.8 </td> <td>79.7 </td> <td>70.2 </td> </tr> </table> ### Instruction tuned models <table> <tr> <td><strong>Benchmark</strong> </td> <td><strong>Llama 3 8B</strong> </td> <td><strong>Llama 2 7B</strong> </td> <td><strong>Llama 2 13B</strong> </td> <td><strong>Llama 3 70B</strong> </td> <td><strong>Llama 2 70B</strong> </td> </tr> <tr> <td>MMLU (5-shot) </td> <td>68.4 </td> <td>34.1 </td> <td>47.8 </td> <td>82.0 </td> <td>52.9 </td> </tr> <tr> <td>GPQA (0-shot) </td> <td>34.2 </td> <td>21.7 </td> <td>22.3 </td> <td>39.5 </td> <td>21.0 </td> </tr> <tr> <td>HumanEval (0-shot) </td> <td>62.2 </td> <td>7.9 </td> <td>14.0 </td> <td>81.7 </td> <td>25.6 </td> </tr> <tr> <td>GSM-8K (8-shot, CoT) </td> <td>79.6 </td> <td>25.7 </td> <td>77.4 </td> <td>93.0 </td> <td>57.5 </td> </tr> <tr> <td>MATH (4-shot, CoT) </td> <td>30.0 </td> <td>3.8 </td> <td>6.7 </td> <td>50.4 </td> <td>11.6 </td> </tr> </table> ### Responsibility & Safety We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community. Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications. Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience. As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started. #### Llama 3-Instruct As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case. <span style="text-decoration:underline;">Safety</span> For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable. <span style="text-decoration:underline;">Refusals</span> In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2. We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date. #### Responsible release In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision. Misuse If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/). #### Critical risks <span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives) We have conducted a two fold assessment of the safety of the model in this area: * Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks. * Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model). ### <span style="text-decoration:underline;">Cyber Security </span> We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval). ### <span style="text-decoration:underline;">Child Safety</span> Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. ### Community Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety. Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide) ## Citation instructions @article{llama3modelcard, title={Llama 3 Model Card}, author={AI@Meta}, year={2024}, url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md} } ## Contributors Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos
{"language": ["en"], "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "llama 3"], "datasets": ["Trelis/function_calling_v3"], "extra_gated_prompt": "Purchase access to this repo [HERE](https://buy.stripe.com/00g5l6aO9dmbcV201z)!"}
Trelis/Meta-Llama-3-70B-Instruct-function-calling
null
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "llama 3", "conversational", "en", "dataset:Trelis/function_calling_v3", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:02:28+00:00
automatic-speech-recognition
transformers
{}
mohdsokeen/whisper-small-ar
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:03:51+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # output This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2086 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "bert-base-uncased", "model-index": [{"name": "output", "results": []}]}
Abhi964/st_sexism_task_3
null
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:03:53+00:00
null
null
{"license": "mit"}
rpanagides/fusBERT
null
[ "license:mit", "region:us" ]
null
2024-04-23T12:04:19+00:00
text-generation
transformers
{}
sweetCaro/llama-2-7b-miniguanaco
null
[ "transformers", "pytorch", "llama", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:04:25+00:00
text-generation
transformers
{}
Weni/WeniGPT-Agents-Mistral-1.0.11-SFT-1.0.26-DPO-merged
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:04:38+00:00
null
null
{"license": "apache-2.0"}
repearx/llava_im
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-23T12:05:17+00:00
null
null
GIST-large-Embedding-v0-GGUF Original model: [avsolatorio/GIST-large-Embedding-v0](https://huggingface.co/avsolatorio/GIST-large-Embedding-v0) Use llama.cpp's conversion and quantization scripts.
{}
gaianet/GIST-large-Embedding-v0-GGUF
null
[ "gguf", "region:us" ]
null
2024-04-23T12:05:51+00:00
null
null
bge-large-en-v1.5-GGUF Original model: [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) Use llama.cpp's conversion and quantization scripts.
{}
gaianet/bge-large-en-v1.5-GGUF
null
[ "gguf", "region:us" ]
null
2024-04-23T12:06:03+00:00
null
null
gte-Qwen1.5-7B-instruct-GGUF Original model: [Alibaba-NLP/gte-Qwen1.5-7B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen1.5-7B-instruct) Use llama.cpp's conversion and quantization scripts.
{}
gaianet/gte-Qwen1.5-7B-instruct-GGUF
null
[ "gguf", "region:us" ]
null
2024-04-23T12:06:22+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
Grayx/sad_llama_32
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:06:41+00:00
null
null
language: en license: cc-by-4.0 tags: - pairwise-sequence-classification-evidence-detection repo: https://github.com/RibhavOjha/NLU_ed --- # Model Card for t56225ro-p37429am-ED <!-- Provide a quick summary of what the model is/does. --> This is a classification model that was trained to detect, given a pair of claim and evidence, if the evidence supports or refutes the claim. ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This model is based upon a BiLSTM model that was fine-tuned on 23.7K pairs of texts as a part of the ED (Evidence Detection) dataset. This model is intended for the task of pairwise sequence classification for ED. It can be further finetuned on related pairwise sequence classification tasks. This model is inspired from the model discussed in in the paper "BiLSTM-Attention and LSTM-Attention via Soft Voting in Emotion Classification". The link can be found below. - **Developed by:** Ribhav Ojha and Amal Manzoor - **Language(s):** English - **Model type:** Supervised - **Model architecture:** BiLSTM ### Model Resources <!-- Provide links where applicable. --> - **Paper or documentation:** https://www.researchgate.net/publication/329512919_NLP_at_IEST_2018_BiLSTM-Attention_and_LSTM-Attention_via_Soft_Voting_in_Emotion_Classification ## Training Details ### Training Data <!-- This is a short stub of information on the training data that was used, and documentation related to data pre-processing or additional filtering (if applicable). --> 23702 pairs of texts given in the coursework ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> The input claims and evidences are first converted into word embeddings using keras. Each of the embeddings is passed through a BiLSTM layer and then to a dropout layer. The output is concatenated and passed through an attention layer. The output is then merged and again passed through a BiLSTM layer to finally be passed to the output layer. The model is trained f0r 1 epoch. with a batch size of 32. Different batch sizes, learning rates, and model architectures were experimented with. First, the training data was split into training and validation. This was done to keep track of model's performance while training. However, it was realised that combining to two to train the model yielded better performance. Next, the trained model was tested on the dev dataset. Finally, the predictions were generated using the test dataset. #### Training Hyperparameters <!-- This is a summary of the values of hyperparameters used in training the model. --> - learning_rate: 0.001 - train_batch_size: 32 - num_epochs: 1 - optimizer: Adam - embedding_dim = 100 - LSTM dense units: 64 & 32 - Dropout Rate: 0.2 #### Speeds, Sizes, Times <!-- This section provides information about how roughly how long it takes to train the model and the size of the resulting model. --> The model was trained on a T4 GPU on Google Colab. - overall training time: 20 minutes - duration per training epoch: 20 minutes - model size: 417MB ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data & Metrics #### Testing Data <!-- This should describe any evaluation data used (e.g., the development/validation set provided). --> A subset of the development set provided, amounting to 5926 pairs. #### Metrics <!-- These are the evaluation metrics being used. --> - Precision - Recall - F1-score - Accuracy - Support - Macro Average - Weighted Average ### Results The model obtained an F1-score of 87% for irrelvant pairs, and 65% for relevant pairs. The model obtained an accuracy of 81% on the dev dataset. The macro avg and weighted avg numbers are close to each other, suggesting that the model's performance is consistent across classes and considering the class distribution. ## Technical Specifications ### Hardware - GPU: T4 ### Software - Transformers 4.18.0 - Pytorch 1.11.0+cu113 ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> It is possible that the model is biased towards the small amount of training data it is trained on. It might perform poorly on data gathered from different sources. Training data is limited in size. Increasing the size of the training data can help the model to generalise on unseen data better. ## Additional Information <!-- Any other information that would be useful for other people to know. --> The hyperparameters were determined by experimentation with different values.
{}
RibhavOjha/bilstm-evidence-detection
null
[ "region:us" ]
null
2024-04-23T12:07:04+00:00
text2text-generation
transformers
{}
namanagarwal16150/output
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:08:59+00:00
null
null
# SwahiliInstruct-v0.1-GGUF This repo contains models from LLM `SwahiliInstruct-v0.1` in GGUF format in quantization: - q_3_k_m - q_4_k_m - q_5_k_m ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [swahiliinstruct-v0.1.Q3_K_M.gguf](https://huggingface.co/wambugu1738/SwahiliInstruct-v0.1-GGUF/blob/main/swahiliinstruct-v0.1.Q3_K_M.gguf) | Q3_K_M | 3 | 3.52 GB| 6.02 GB | very small, high quality loss | | [swahiliinstruct-v0.1.Q4_K_M.gguf](https://huggingface.co/wambugu1738/SwahiliInstruct-v0.1-GGUF/blob/main/swahiliinstruct-v0.1.Q4_K_M.gguf) | Q4_K_M | 4 | 4.37 GB| 6.87 GB | medium, balanced quality - recommended | |[swahiliinstruct-v0.1.Q5_K_M.gguf](https://huggingface.co/wambugu1738/SwahiliInstruct-v0.1-GGUF/blob/main/swahiliinstruct-v0.1.Q5_K_M.gguf) | Q5_K_M | 5 | 5.13 GB| 7.63 GB | large, very low quality loss - recommended | #loading the models on cpu - Installing the library ``` Bash pip install llama_cpp_python ``` - Python code ``` Python import llama_cpp model = llama_cpp.Llama(model_path="swahiliinstruct-v0.1.Q4_K_M.gguf",n_ctx=4096,n_threads=0,n_gpu_layers=-1,verbose=True, chat_format="chatml-function-calling") def model_out(prompt): outp = model.create_chat_completion( messages=[{"role": "system", "content": "You are a human like assistant."},{ "role": "user", "content": f"{prompt}" }] ,stream=True,temperature=0.4, max_tokens=4096) return outp while True: prompt = input("\nUser:\n") for i in model_out(prompt): try: print(i['choices'][0][ 'delta']['role']) except: try: print(i['choices'][0][ 'delta']['content'],end="") except: pass ```
{"language": ["en", "sw"], "license": "mit", "tags": ["text-generation-inference"]}
wambugu1738/SwahiliInstruct-v0.1-GGUF
null
[ "gguf", "text-generation-inference", "en", "sw", "license:mit", "region:us" ]
null
2024-04-23T12:09:13+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
{"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"}
bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned-adapters_Aleatoric_tiny_0.0_Seed105
null
[ "peft", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-04-23T12:09:22+00:00
null
peft
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Data Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.7.0.dev0
{"library_name": "peft", "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0"}
bmehrba/TinyLlama-1.1B-Chat-v1.0-fine-tuned_Aleatoric_tiny_0.0_Seed105
null
[ "peft", "arxiv:1910.09700", "base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0", "region:us" ]
null
2024-04-23T12:09:27+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
hams2/markasgup1
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:09:53+00:00
null
transformers
# Uploaded model - **Developed by:** candenizkocak - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "base_model": "unsloth/llama-3-8b-bnb-4bit"}
candenizkocak/unsloth-llama-3-8b-code-297k
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "base_model:unsloth/llama-3-8b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:10:05+00:00
null
null
{"license": "mit"}
MIkaelaTR/ML_SAST
null
[ "license:mit", "region:us" ]
null
2024-04-23T12:10:08+00:00
null
transformers
{}
m4tthew23/report-htmltable-gguf
null
[ "transformers", "gguf", "llama", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:10:13+00:00
null
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
cheungra/ocularaid-diffusion-C
null
[ "diffusers", "safetensors", "arxiv:1910.09700", "region:us" ]
null
2024-04-23T12:10:36+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
hams2/markasgup2
null
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-23T12:10:40+00:00
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "255.88 +/- 22.11", "name": "mean_reward", "verified": false}]}]}]}
mahdi76/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-23T12:12:00+00:00
null
null
{}
matchmaking/llava-1.6-7b-ft-mix-vsft
null
[ "region:us" ]
null
2024-04-23T12:12:08+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
abhijithgururaj/blip2-opt-2.7b-spanish-post-lora-final
null
[ "transformers", "safetensors", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-23T12:13:02+00:00
null
diffusers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "diffusers"}
cheungra/ocularaid-scheduler-C
null
[ "diffusers", "arxiv:1910.09700", "region:us" ]
null
2024-04-23T12:13:12+00:00
null
null
{}
nndang/checkpoint_PhoWhisper_base_synthetic_journal_50
null
[ "tensorboard", "safetensors", "region:us" ]
null
2024-04-23T12:13:51+00:00
null
null
{}
Tamij/albert-base-v2-finetuned-squad-v2
null
[ "region:us" ]
null
2024-04-23T12:13:59+00:00
null
null
{}
alquimista888/unsloth
null
[ "region:us" ]
null
2024-04-23T12:14:06+00:00