Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
{}
duydatnguyen/gpt_viet_neo_poem_generation
null
[ "transformers", "tensorboard", "safetensors", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:18:51+00:00
text-generation
transformers
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Llama-3-8B-Instruct-262k-GGUF ## Original Model [gradientai/Llama-3-8B-Instruct-262k](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k) ## Run with LlamaEdge - LlamaEdge version: [v0.8.3](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.8.3) and above - Prompt template - Prompt type: `llama-3-chat` - Prompt string ```text <|begin_of_text|><|start_header_id|>system<|end_header_id|> {{ system_prompt }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_1 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> {{ model_answer_1 }}<|eot_id|><|start_header_id|>user<|end_header_id|> {{ user_message_2 }}<|eot_id|><|start_header_id|>assistant<|end_header_id|> ``` - Context size: `262144` - Run as LlamaEdge service ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Instruct-262k-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template llama-3-chat \ --ctx-size 262144 \ --model-name llama-3-8B-instruct-262k ``` - Run as LlamaEdge command app ```bash wasmedge --dir .:. --nn-preload default:GGML:AUTO:Llama-3-8B-Instruct-262k-Q5_K_M.gguf \ llama-chat.wasm \ --prompt-template llama-3-chat \ --ctx-size 262144 ``` ## Quantized GGUF Models | Name | Quant method | Bits | Size | Use case | | ---- | ---- | ---- | ---- | ----- | | [Llama-3-8B-Instruct-262k-Q2_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q2_K.gguf) | Q2_K | 2 | 3.18 GB| smallest, significant quality loss - not recommended for most purposes | | [Llama-3-8B-Instruct-262k-Q3_K_L.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_L.gguf) | Q3_K_L | 3 | 4.32 GB| small, substantial quality loss | | [Llama-3-8B-Instruct-262k-Q3_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_M.gguf) | Q3_K_M | 3 | 4.02 GB| very small, high quality loss | | [Meta-Llama-3-70B-Instruct-Q3_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q3_K_S.gguf) | Q3_K_S | 3 | 3.66 GB| very small, high quality loss | | [Llama-3-8B-Instruct-262k-Q4_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q4_0.gguf) | Q4_0 | 4 | 4.66 GB| legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-3-8B-Instruct-262k-Q4_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q4_K_M.gguf) | Q4_K_M | 4 | 4.92 GB| medium, balanced quality - recommended | | [Llama-3-8B-Instruct-262k-Q4_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q4_K_S.gguf) | Q4_K_S | 4 | 4.69 GB| small, greater quality loss | | [Llama-3-8B-Instruct-262k-Q5_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q5_0.gguf) | Q5_0 | 5 | 5.6 GB| legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-3-8B-Instruct-262k-Q5_K_M.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q5_K_M.gguf) | Q5_K_M | 5 | 5.73 GB| large, very low quality loss - recommended | | [Llama-3-8B-Instruct-262k-Q5_K_S.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q5_K_S.gguf) | Q5_K_S | 5 | 5.6 GB| large, low quality loss - recommended | | [Llama-3-8B-Instruct-262k-Q6_K.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q6_K.gguf) | Q6_K | 6 | 6.6 GB| very large, extremely low quality loss | | [Llama-3-8B-Instruct-262k-Q8_0.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-Q8_0.gguf) | Q8_0 | 8 | 8.54 GB| very large, extremely low quality loss - not recommended | | [Llama-3-8B-Instruct-262k-f16.gguf](https://huggingface.co/second-state/Llama-3-8B-Instruct-262k-GGUF/blob/main/Llama-3-8B-Instruct-262k-f16.gguf) | f16 | 16 | 16.1 GB| | *Quantized with llama.cpp b2734.*
{"language": ["en"], "license": "other", "tags": ["meta", "llama-3"], "license_name": "llama3", "base_model": "gradientai/Llama-3-8B-Instruct-262k", "inference": false, "model_creator": "gradient.ai", "model_type": "llama", "pipeline_tag": "text-generation", "quantized_by": "Second State Inc."}
second-state/Llama-3-8B-Instruct-262k-GGUF
null
[ "transformers", "gguf", "llama", "text-generation", "meta", "llama-3", "en", "base_model:gradientai/Llama-3-8B-Instruct-262k", "license:other", "autotrain_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:19:41+00:00
text-to-image
diffusers
# facefusion <Gallery /> ## Download model [Download](/ramiz6900/facefusion/tree/main) them in the Files & versions tab.
{"tags": ["text-to-image", "stable-diffusion", "lora", "diffusers", "template:sd-lora"], "widget": [{"text": "-", "output": {"url": "images/images.jpg"}}], "base_model": "h94/IP-Adapter-FaceID"}
ramiz6900/facefusion
null
[ "diffusers", "text-to-image", "stable-diffusion", "lora", "template:sd-lora", "base_model:h94/IP-Adapter-FaceID", "region:us" ]
null
2024-04-27T11:20:20+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/mv938bk
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:23:16+00:00
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) * [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: meta-llama/Meta-Llama-3-8B layer_range: - 0 - 32 - model: meta-llama/Meta-Llama-3-8B-Instruct layer_range: - 0 - 32 merge_method: slerp base_model: meta-llama/Meta-Llama-3-8B parameters: t: - filter: self_attn value: - 0 - 0.5 - 0.3 - 0.7 - 1 - filter: mlp value: - 1 - 0.5 - 0.7 - 0.3 - 0 - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["meta-llama/Meta-Llama-3-8B", "meta-llama/Meta-Llama-3-8B-Instruct"]}
skuma307/Llama3-base-instruct-SLERP
null
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:meta-llama/Meta-Llama-3-8B", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:24:00+00:00
audio-classification
transformers
{}
wojtek2288/audio_model
null
[ "transformers", "pytorch", "wav2vec2", "audio-classification", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:24:14+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
OwOOwO/final10
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:25:57+00:00
fill-mask
transformers
{"license": "mit"}
wantuta/roberta_ancient_greek_mlm
null
[ "transformers", "safetensors", "roberta", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:26:39+00:00
null
null
{}
gggreids32/midxam30
null
[ "region:us" ]
null
2024-04-27T11:27:21+00:00
null
transformers
{"license": "apache-2.0"}
songzewu/jonatasgrosman-whisper-large-zh-cv11-ct2
null
[ "transformers", "pytorch", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:27:56+00:00
null
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
rikitonoto/lua_tokenizer
null
[ "transformers", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:28:19+00:00
fill-mask
transformers
{"license": "mit"}
wantuta/bert_ancient_greek_mlm
null
[ "transformers", "safetensors", "bert", "fill-mask", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:28:49+00:00
null
null
{}
antgee/AI
null
[ "region:us" ]
null
2024-04-27T11:30:01+00:00
question-answering
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
NeginShams/mbert-extratranslation
null
[ "transformers", "safetensors", "bert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:30:52+00:00
null
null
{"license": "openrail"}
Danikdsa/Giselle_vocal
null
[ "license:openrail", "region:us" ]
null
2024-04-27T11:31:32+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.01_4iters_bs256_nodpo_only4w_iter_1 This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
{"license": "mit", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "HuggingFaceH4/mistral-7b-sft-beta", "model-index": [{"name": "0.01_4iters_bs256_nodpo_only4w_iter_1", "results": []}]}
ShenaoZhang/0.01_4iters_bs256_nodpo_only4w_iter_1
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:HuggingFaceH4/mistral-7b-sft-beta", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:31:57+00:00
null
null
{"license": "openrail"}
Danikdsa/Giselle_rap
null
[ "license:openrail", "region:us" ]
null
2024-04-27T11:32:37+00:00
null
transformers
# Gemma Model Card **Model Page**: [Gemma](https://ai.google.dev/gemma/docs) This model card corresponds to the latest 2B instruct version of the Gemma model. Here you can find other models in the Gemma family: | | Base | Instruct | |----|----------------------------------------------------|----------------------------------------------------------------------| | 2B | [gemma-2b](https://huggingface.co/google/gemma-2b) | [**gemma-1.1-2b-it**](https://huggingface.co/google/gemma-1.1-2b-it) | | 7B | [gemma-7b](https://huggingface.co/google/gemma-7b) | [gemma-1.1-7b-it](https://huggingface.co/google/gemma-1.1-7b-it) | **Release Notes** This is Gemma 1.1 2B (IT), an update over the original instruction-tuned Gemma release. Gemma 1.1 was trained using a novel RLHF method, leading to substantial gains on quality, coding capabilities, factuality, instruction following and multi-turn conversation quality. We also fixed a bug in multi-turn conversations, and made sure that model responses don't always start with `"Sure,"`. We believe this release represents an improvement for most use cases, but we encourage users to test in their particular applications. The previous model [will continue to be available in the same repo](https://huggingface.co/google/gemma-2b-it). We appreciate the enthusiastic adoption of Gemma, and we continue to welcome all feedback from the community. **Resources and Technical Documentation**: * [Responsible Generative AI Toolkit](https://ai.google.dev/responsible) * [Gemma on Kaggle](https://www.kaggle.com/models/google/gemma) * [Gemma on Vertex Model Garden](https://console.cloud.google.com/vertex-ai/publishers/google/model-garden/335) **Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) **Authors**: Google ## Model Information Summary description and brief definition of inputs and outputs. ### Description Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models. They are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. Gemma models are well-suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Their relatively small size makes it possible to deploy them in environments with limited resources such as a laptop, desktop or your own cloud infrastructure, democratizing access to state of the art AI models and helping foster innovation for everyone. ### Usage Below we share some code snippets on how to get quickly started with running the model. First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. #### Running the model on a CPU As explained below, we recommend `torch.bfloat16` as the default dtype. You can use [a different precision](#precisions) if necessary. ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt") outputs = model.generate(**input_ids, max_new_tokens=50) print(tokenizer.decode(outputs[0])) ``` #### Running the model on a single / multi GPU ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` <a name="precisions"></a> #### Running the model on a GPU using different precisions The native weights of this model were exported in `bfloat16` precision. You can use `float16`, which may be faster on certain hardware, indicating the `torch_dtype` when loading the model. For convenience, the `float16` revision of the repo contains a copy of the weights already converted to that precision. You can also use `float32` if you skip the dtype, but no precision increase will occur (model weights will just be upcasted to `float32`). See examples below. * _Using `torch.float16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", device_map="auto", torch_dtype=torch.float16, revision="float16", ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using `torch.bfloat16`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", device_map="auto", torch_dtype=torch.bfloat16 ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Upcasting to `torch.float32`_ ```python # pip install accelerate from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", device_map="auto" ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Quantized Versions through `bitsandbytes` * _Using 8-bit precision (int8)_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_8bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", quantization_config=quantization_config ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` * _Using 4-bit precision_ ```python # pip install bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig quantization_config = BitsAndBytesConfig(load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained("google/gemma-1.1-2b-it") model = AutoModelForCausalLM.from_pretrained( "google/gemma-1.1-2b-it", quantization_config=quantization_config ) input_text = "Write me a poem about Machine Learning." input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` #### Other optimizations * _Flash Attention 2_ First make sure to install `flash-attn` in your environment `pip install flash-attn` ```diff model = AutoModelForCausalLM.from_pretrained( model_id, torch_dtype=torch.float16, + attn_implementation="flash_attention_2" ).to(0) ``` #### Running the model in JAX / Flax Use the `flax` branch of the repository: ```python import jax.numpy as jnp from transformers import AutoTokenizer, FlaxGemmaForCausalLM model_id = "google/gemma-1.1-2b-it" tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.padding_side = "left" model, params = FlaxGemmaForCausalLM.from_pretrained( model_id, dtype=jnp.bfloat16, revision="flax", _do_init=False, ) inputs = tokenizer("Valencia and Málaga are", return_tensors="np", padding=True) output = model.generate(**inputs, params=params, max_new_tokens=20, do_sample=False) output_text = tokenizer.batch_decode(output.sequences, skip_special_tokens=True) ``` [Check this notebook](https://colab.research.google.com/github/sanchit-gandhi/notebooks/blob/main/jax_gemma.ipynb) for a comprehensive walkthrough on how to parallelize JAX inference. ### Chat Template The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet. Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction: ```py from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model_id = "google/gemma-1.1-2b-it" dtype = torch.bfloat16 tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="cuda", torch_dtype=dtype, ) chat = [ { "role": "user", "content": "Write a hello world program" }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) ``` At this point, the prompt contains the following text: ``` <bos><start_of_turn>user Write a hello world program<end_of_turn> <start_of_turn>model ``` As you can see, each turn is preceded by a `<start_of_turn>` delimiter and then the role of the entity (either `user`, for content supplied by the user, or `model` for LLM responses). Turns finish with the `<end_of_turn>` token. You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template. After the prompt is ready, generation can be performed like this: ```py inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt") outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=150) ``` ### Fine-tuning You can find some fine-tuning scripts under the [`examples/` directory](https://huggingface.co/google/gemma-7b/tree/main/examples) of [`google/gemma-7b`](https://huggingface.co/google/gemma-7b) repository. To adapt them to this model, simply change the model-id to `google/gemma-1.1-2b-it`. We provide: * A script to perform Supervised Fine-Tuning (SFT) on UltraChat dataset using QLoRA * A script to perform SFT using FSDP on TPU devices * A notebook that you can run on a free-tier Google Colab instance to perform SFT on the English quotes dataset ### Inputs and outputs * **Input:** Text string, such as a question, a prompt, or a document to be summarized. * **Output:** Generated English-language text in response to the input, such as an answer to a question, or a summary of a document. ## Model Data Data used for model training and how the data was processed. ### Training Dataset These models were trained on a dataset of text data that includes a wide variety of sources, totaling 6 trillion tokens. Here are the key components: * Web Documents: A diverse collection of web text ensures the model is exposed to a broad range of linguistic styles, topics, and vocabulary. Primarily English-language content. * Code: Exposing the model to code helps it to learn the syntax and patterns of programming languages, which improves its ability to generate code or understand code-related questions. * Mathematics: Training on mathematical text helps the model learn logical reasoning, symbolic representation, and to address mathematical queries. The combination of these diverse data sources is crucial for training a powerful language model that can handle a wide variety of different tasks and text formats. ### Data Preprocessing Here are the key data cleaning and filtering methods applied to the training data: * CSAM Filtering: Rigorous CSAM (Child Sexual Abuse Material) filtering was applied at multiple stages in the data preparation process to ensure the exclusion of harmful and illegal content * Sensitive Data Filtering: As part of making Gemma pre-trained models safe and reliable, automated techniques were used to filter out certain personal information and other sensitive data from training sets. * Additional methods: Filtering based on content quality and safely in line with [our policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11). ## Implementation Information Details about the model internals. ### Hardware Gemma was trained using the latest generation of [Tensor Processing Unit (TPU)](https://cloud.google.com/tpu/docs/intro-to-tpu) hardware (TPUv5e). Training large language models requires significant computational power. TPUs, designed specifically for matrix operations common in machine learning, offer several advantages in this domain: * Performance: TPUs are specifically designed to handle the massive computations involved in training LLMs. They can speed up training considerably compared to CPUs. * Memory: TPUs often come with large amounts of high-bandwidth memory, allowing for the handling of large models and batch sizes during training. This can lead to better model quality. * Scalability: TPU Pods (large clusters of TPUs) provide a scalable solution for handling the growing complexity of large foundation models. You can distribute training across multiple TPU devices for faster and more efficient processing. * Cost-effectiveness: In many scenarios, TPUs can provide a more cost-effective solution for training large models compared to CPU-based infrastructure, especially when considering the time and resources saved due to faster training. * These advantages are aligned with [Google's commitments to operate sustainably](https://sustainability.google/operating-sustainably/). ### Software Training was done using [JAX](https://github.com/google/jax) and [ML Pathways](https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/ml-pathways). JAX allows researchers to take advantage of the latest generation of hardware, including TPUs, for faster and more efficient training of large models. ML Pathways is Google's latest effort to build artificially intelligent systems capable of generalizing across multiple tasks. This is specially suitable for [foundation models](https://ai.google/discover/foundation-models/), including large language models like these ones. Together, JAX and ML Pathways are used as described in the [paper about the Gemini family of models](https://arxiv.org/abs/2312.11805); "the 'single controller' programming model of Jax and Pathways allows a single Python process to orchestrate the entire training run, dramatically simplifying the development workflow." ## Evaluation Model evaluation metrics and results. ### Benchmark Results The pre-trained base models were evaluated against a large collection of different datasets and metrics to cover different aspects of text generation: | Benchmark | Metric | 2B Params | 7B Params | | ------------------------------ | ------------- | ----------- | --------- | | [MMLU](https://arxiv.org/abs/2009.03300) | 5-shot, top-1 | 42.3 | 64.3 | | [HellaSwag](https://arxiv.org/abs/1905.07830) | 0-shot |71.4 | 81.2 | | [PIQA](https://arxiv.org/abs/1911.11641) | 0-shot | 77.3 | 81.2 | | [SocialIQA](https://arxiv.org/abs/1904.09728) | 0-shot | 49.7 | 51.8 | | [BooIQ](https://arxiv.org/abs/1905.10044) | 0-shot | 69.4 | 83.2 | | [WinoGrande](https://arxiv.org/abs/1907.10641) | partial score | 65.4 | 72.3 | | [CommonsenseQA](https://arxiv.org/abs/1811.00937) | 7-shot | 65.3 | 71.3 | | [OpenBookQA](https://arxiv.org/abs/1809.02789) | | 47.8 | 52.8 | | [ARC-e](https://arxiv.org/abs/1911.01547) | | 73.2 | 81.5 | | [ARC-c](https://arxiv.org/abs/1911.01547) | | 42.1 | 53.2 | | [TriviaQA](https://arxiv.org/abs/1705.03551) | 5-shot | 53.2 | 63.4 | | [Natural Questions](https://github.com/google-research-datasets/natural-questions) | 5-shot | 12.5 | 23 | | [HumanEval](https://arxiv.org/abs/2107.03374) | pass@1 | 22.0 | 32.3 | | [MBPP](https://arxiv.org/abs/2108.07732) | 3-shot | 29.2 | 44.4 | | [GSM8K](https://arxiv.org/abs/2110.14168) | maj@1 | 17.7 | 46.4 | | [MATH](https://arxiv.org/abs/2108.07732) | 4-shot | 11.8 | 24.3 | | [AGIEval](https://arxiv.org/abs/2304.06364) | | 24.2 | 41.7 | | [BIG-Bench](https://arxiv.org/abs/2206.04615) | | 35.2 | 55.1 | | ------------------------------ | ------------- | ----------- | --------- | | **Average** | | **45.0** | **56.9** | ## Ethics and Safety Ethics and safety evaluation approach and results. ### Evaluation Approach Our evaluation methods include structured evaluations and internal red-teaming testing of relevant content policies. Red-teaming was conducted by a number of different teams, each with different goals and human evaluation metrics. These models were evaluated against a number of different categories relevant to ethics and safety, including: * Text-to-Text Content Safety: Human evaluation on prompts covering safety policies including child sexual abuse and exploitation, harassment, violence and gore, and hate speech. * Text-to-Text Representational Harms: Benchmark against relevant academic datasets such as [WinoBias](https://arxiv.org/abs/1804.06876) and [BBQ Dataset](https://arxiv.org/abs/2110.08193v2). * Memorization: Automated evaluation of memorization of training data, including the risk of personally identifiable information exposure. * Large-scale harm: Tests for "dangerous capabilities," such as chemical, biological, radiological, and nuclear (CBRN) risks. ### Evaluation Results The results of ethics and safety evaluations are within acceptable thresholds for meeting [internal policies](https://storage.googleapis.com/gweb-uniblog-publish-prod/documents/2023_Google_AI_Principles_Progress_Update.pdf#page=11) for categories such as child safety, content safety, representational harms, memorization, large-scale harms. On top of robust internal evaluations, the results of well known safety benchmarks like BBQ, BOLD, Winogender, Winobias, RealToxicity, and TruthfulQA are shown here. #### Gemma 1.0 | Benchmark | Metric | Gemma 1.0 IT 2B | Gemma 1.0 IT 7B | | ------------------------ | ------------- | --------------- | --------------- | | [RealToxicity][realtox] | average | 6.86 | 7.90 | | [BOLD][bold] | | 45.57 | 49.08 | | [CrowS-Pairs][crows] | top-1 | 45.82 | 51.33 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 62.58 | 92.54 | | [BBQ Disambig][bbq] | top-1 | 54.62 | 71.99 | | [Winogender][winogender] | top-1 | 51.25 | 54.17 | | [TruthfulQA][truthfulqa] | | 44.84 | 31.81 | | [Winobias 1_2][winobias] | | 56.12 | 59.09 | | [Winobias 2_2][winobias] | | 91.10 | 92.23 | | [Toxigen][toxigen] | | 29.77 | 39.59 | | ------------------------ | ------------- | --------------- | --------------- | #### Gemma 1.1 | Benchmark | Metric | Gemma 1.1 IT 2B | Gemma 1.1 IT 7B | | ------------------------ | ------------- | --------------- | --------------- | | [RealToxicity][realtox] | average | 7.03 | 8.04 | | [BOLD][bold] | | 47.76 | | | [CrowS-Pairs][crows] | top-1 | 45.89 | 49.67 | | [BBQ Ambig][bbq] | 1-shot, top-1 | 58.97 | 86.06 | | [BBQ Disambig][bbq] | top-1 | 53.90 | 85.08 | | [Winogender][winogender] | top-1 | 50.14 | 57.64 | | [TruthfulQA][truthfulqa] | | 44.24 | 45.34 | | [Winobias 1_2][winobias] | | 55.93 | 59.22 | | [Winobias 2_2][winobias] | | 89.46 | 89.2 | | [Toxigen][toxigen] | | 29.64 | 38.75 | | ------------------------ | ------------- | --------------- | --------------- | ## Usage and Limitations These models have certain limitations that users should be aware of. ### Intended Usage Open Large Language Models (LLMs) have a wide range of applications across various industries and domains. The following list of potential uses is not comprehensive. The purpose of this list is to provide contextual information about the possible use-cases that the model creators considered as part of model training and development. * Content Creation and Communication * Text Generation: These models can be used to generate creative text formats such as poems, scripts, code, marketing copy, and email drafts. * Chatbots and Conversational AI: Power conversational interfaces for customer service, virtual assistants, or interactive applications. * Text Summarization: Generate concise summaries of a text corpus, research papers, or reports. * Research and Education * Natural Language Processing (NLP) Research: These models can serve as a foundation for researchers to experiment with NLP techniques, develop algorithms, and contribute to the advancement of the field. * Language Learning Tools: Support interactive language learning experiences, aiding in grammar correction or providing writing practice. * Knowledge Exploration: Assist researchers in exploring large bodies of text by generating summaries or answering questions about specific topics. ### Limitations * Training Data * The quality and diversity of the training data significantly influence the model's capabilities. Biases or gaps in the training data can lead to limitations in the model's responses. * The scope of the training dataset determines the subject areas the model can handle effectively. * Context and Task Complexity * LLMs are better at tasks that can be framed with clear prompts and instructions. Open-ended or highly complex tasks might be challenging. * A model's performance can be influenced by the amount of context provided (longer context generally leads to better outputs, up to a certain point). * Language Ambiguity and Nuance * Natural language is inherently complex. LLMs might struggle to grasp subtle nuances, sarcasm, or figurative language. * Factual Accuracy * LLMs generate responses based on information they learned from their training datasets, but they are not knowledge bases. They may generate incorrect or outdated factual statements. * Common Sense * LLMs rely on statistical patterns in language. They might lack the ability to apply common sense reasoning in certain situations. ### Ethical Considerations and Risks The development of large language models (LLMs) raises several ethical concerns. In creating an open model, we have carefully considered the following: * Bias and Fairness * LLMs trained on large-scale, real-world text data can reflect socio-cultural biases embedded in the training material. These models underwent careful scrutiny, input data pre-processing described and posterior evaluations reported in this card. * Misinformation and Misuse * LLMs can be misused to generate text that is false, misleading, or harmful. * Guidelines are provided for responsible use with the model, see the [Responsible Generative AI Toolkit](http://ai.google.dev/gemma/responsible). * Transparency and Accountability: * This model card summarizes details on the models' architecture, capabilities, limitations, and evaluation processes. * A responsibly developed open model offers the opportunity to share innovation by making LLM technology accessible to developers and researchers across the AI ecosystem. Risks identified and mitigations: * Perpetuation of biases: It's encouraged to perform continuous monitoring (using evaluation metrics, human review) and the exploration of de-biasing techniques during model training, fine-tuning, and other use cases. * Generation of harmful content: Mechanisms and guidelines for content safety are essential. Developers are encouraged to exercise caution and implement appropriate content safety safeguards based on their specific product policies and application use cases. * Misuse for malicious purposes: Technical limitations and developer and end-user education can help mitigate against malicious applications of LLMs. Educational resources and reporting mechanisms for users to flag misuse are provided. Prohibited uses of Gemma models are outlined in the [Gemma Prohibited Use Policy](https://ai.google.dev/gemma/prohibited_use_policy). * Privacy violations: Models were trained on data filtered for removal of PII (Personally Identifiable Information). Developers are encouraged to adhere to privacy regulations with privacy-preserving techniques. ### Benefits At the time of release, this family of models provides high-performance open large language model implementations designed from the ground up for Responsible AI development compared to similarly sized models. Using the benchmark evaluation metrics described in this document, these models have shown to provide superior performance to other, comparably-sized open model alternatives.
{"license": "gemma", "library_name": "transformers", "widget": [{"messages": [{"role": "user", "content": "How does the brain work?"}]}], "inference": {"parameters": {"max_new_tokens": 200}}, "extra_gated_heading": "Access Gemma on Hugging Face", "extra_gated_prompt": "To access Gemma on Hugging Face, you\u2019re required to review and agree to Google\u2019s usage license. To do this, please ensure you\u2019re logged-in to Hugging Face and click below. Requests are processed immediately.", "extra_gated_button_content": "Acknowledge license"}
jncraton/gemma-1.1-2b-it-ct2-int8
null
[ "transformers", "arxiv:2312.11805", "arxiv:2009.03300", "arxiv:1905.07830", "arxiv:1911.11641", "arxiv:1904.09728", "arxiv:1905.10044", "arxiv:1907.10641", "arxiv:1811.00937", "arxiv:1809.02789", "arxiv:1911.01547", "arxiv:1705.03551", "arxiv:2107.03374", "arxiv:2108.07732", "arxiv:2110.14168", "arxiv:2304.06364", "arxiv:2206.04615", "arxiv:1804.06876", "arxiv:2110.08193", "license:gemma", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:33:07+00:00
null
null
{}
fubuki119/Mistral-7B-text-to-sql-flash-attention-2-first-try
null
[ "region:us" ]
null
2024-04-27T11:33:31+00:00
question-answering
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
NeginShams/albert-Quran_QA
null
[ "transformers", "safetensors", "bert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:35:42+00:00
text-generation
transformers
# Mistral-child-1-1 Mistral-child-1-1 is a merge of the following models using [mergekit](https://github.com/cg123/mergekit): * [HuggingFaceH4/zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) * [meta-math/MetaMath-Mistral-7B](https://huggingface.co/meta-math/MetaMath-Mistral-7B) ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: HuggingFaceH4/zephyr-7b-beta parameters: density: 0.5 weight: 0.5 - model: meta-math/MetaMath-Mistral-7B parameters: density: 0.5 weight: 0.5 merge_method: ties base_model: mistralai/Mistral-7B-v0.1 parameters: normalize: true dtype: float16 ```
{"license": "apache-2.0", "tags": ["merge", "mergekit", "lazymergekit", "HuggingFaceH4/zephyr-7b-beta", "meta-math/MetaMath-Mistral-7B"]}
PotatoB/Mistral-child-1-1
null
[ "transformers", "safetensors", "mistral", "text-generation", "merge", "mergekit", "lazymergekit", "HuggingFaceH4/zephyr-7b-beta", "meta-math/MetaMath-Mistral-7B", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:36:44+00:00
null
null
EXL2 quants of [Qwen1.5 110B Chat](https://huggingface.co/Qwen/Qwen1.5-110B-Chat) [2.50 bits per weight](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/tree/2.5bpw) [3.00 bits per weight](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/tree/3.0bpw) [3.50 bits per weight](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/tree/3.5bpw) [4.00 bits per weight](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/tree/4.0bpw) [4.50 bits per weight](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/tree/4.5bpw) (More sizes coming.) [measurement.json](https://huggingface.co/turboderp/Qwen1.5-110B-Chat-exl2/blob/main/measurement.json)
{}
turboderp/Qwen1.5-110B-Chat-exl2
null
[ "region:us" ]
null
2024-04-27T11:37:29+00:00
feature-extraction
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"language": ["ru"], "library_name": "transformers", "datasets": ["tay-yozhik/SyntheticTexts"]}
v-urushkin/SyntheticGPT2-small
null
[ "transformers", "safetensors", "gpt2", "feature-extraction", "ru", "dataset:tay-yozhik/SyntheticTexts", "arxiv:1910.09700", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:37:39+00:00
null
null
Apa itu Arthricore Tablet? Arthricore Harga berdiri sebagai kapsul berkualitas premium yang dibuat untuk membantu mengelola hipertensi dan meningkatkan kesehatan jantung. Formula canggihnya memadukan campuran herbal, vitamin, dan mineral yang sinergis, dipilih dengan cermat untuk mengatasi penyebab utama tekanan darah tinggi. Situs web resmi:<a href="https://www.nutritionsee.com/artyhiindos">www.Arthricore.com</a> <p><a href="https://www.nutritionsee.com/artyhiindos"> <img src="https://www.nutritionsee.com/wp-content/uploads/2024/04/Arthricore-Indonesia.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/artyhiindos">Beli sekarang!! Klik link di bawah untuk informasi lebih lanjut dan dapatkan diskon 50% sekarang... Buruan</a> Situs web resmi:<a href="https://www.nutritionsee.com/artyhiindos">www.Arthricore.com</a>
{"license": "apache-2.0"}
ArthricoreIndonesia/Arthricore
null
[ "license:apache-2.0", "region:us" ]
null
2024-04-27T11:39:29+00:00
question-answering
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
NeginShams/parsbert-Quran_QA
null
[ "transformers", "safetensors", "bert", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:41:56+00:00
image-to-image
diffusers
Recommended version of `diffusers` is `0.20.2` with `torch` `2`. Usage Example: ```python import torch import requests from PIL import Image from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler # Load the pipeline pipeline = DiffusionPipeline.from_pretrained( "S1T4L/Zero123pp_custom", custom_pipeline="S1T4L/Zero123pp_custom_pipeline", torch_dtype=torch.float16 ) # Feel free to tune the scheduler pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( pipeline.scheduler.config, timestep_spacing='trailing' ) pipeline.to('cuda:0') # Run the pipeline cond = Image.open(requests.get("https://d.skis.ltd/nrp/sample-data/lysol.png", stream=True).raw) result = pipeline(cond).images[0] result.show() result.save("output.png") ```
{"license": "openrail", "library_name": "diffusers", "tags": ["art"], "datasets": ["allenai/objaverse"], "pipeline_tag": "image-to-image"}
S1T4L/Zero123pp_custom
null
[ "diffusers", "art", "image-to-image", "dataset:allenai/objaverse", "license:openrail", "diffusers:Zero123PlusPipeline", "region:us" ]
null
2024-04-27T11:42:02+00:00
text-generation
transformers
# merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [TeeZee/DarkSapling-7B-v2.0](https://huggingface.co/TeeZee/DarkSapling-7B-v2.0) * [MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp](https://huggingface.co/MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp layer_range: [0, 32] - model: TeeZee/DarkSapling-7B-v2.0 layer_range: [0, 32] merge_method: slerp base_model: MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["TeeZee/DarkSapling-7B-v2.0", "MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp"]}
DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0
null
[ "transformers", "safetensors", "mistral", "text-generation", "mergekit", "merge", "conversational", "base_model:TeeZee/DarkSapling-7B-v2.0", "base_model:MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:43:03+00:00
null
null
{}
mastermaxin/kushina
null
[ "region:us" ]
null
2024-04-27T11:45:31+00:00
text-generation
transformers
# stablelm-2-zephyr-1.6b-taskarith1 stablelm-2-zephyr-1.6b-taskarith1 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [aipib/stablelm-2-zephyr-1.6b-slerpx9](https://huggingface.co/aipib/stablelm-2-zephyr-1.6b-slerpx9) * [stabilityai/stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b) ## 🧩 Configuration ```yaml models: - model: aipib/stablelm-2-zephyr-1.6b-slerpx9 parameters: weight: 0.4 - model: stabilityai/stablelm-2-zephyr-1_6b parameters: weight: 0.4 merge_method: task_arithmetic base_model: aipib/stablelm-2-zephyr-1.6b-slerpx9 parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/stablelm-2-zephyr-1.6b-taskarith1" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b"], "base_model": ["aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b"]}
aipib/stablelm-2-zephyr-1.6b-taskarith1
null
[ "transformers", "safetensors", "stablelm", "text-generation", "merge", "mergekit", "lazymergekit", "aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b", "conversational", "base_model:aipib/stablelm-2-zephyr-1.6b-slerpx9", "base_model:stabilityai/stablelm-2-zephyr-1_6b", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:47:00+00:00
question-answering
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
NeginShams/xlm-roberta-Quran_QA
null
[ "transformers", "safetensors", "xlm-roberta", "question-answering", "arxiv:1910.09700", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:47:02+00:00
null
null
{}
lkid08/xpath_generation-25k-dataset-test2-anglebraces
null
[ "region:us" ]
null
2024-04-27T11:47:04+00:00
text-generation
transformers
{}
mia-musgen/shadow_opt_350m_fma_medium
null
[ "transformers", "safetensors", "opt", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:47:44+00:00
text-generation
transformers
# Phi-3 MoE mini 4k instruct raw The is a 8x MoE version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct). It is based on the Llamafied version [vonjack/Phi-3-mini-4k-instruct-LLaMAfied](https://huggingface.co/vonjack/Phi-3-mini-4k-instruct-LLaMAfied) of [Gan Feng](https://huggingface.co/vonjack). It was created with the help of [mergekit](https://github.com/arcee-ai/mergekit) with this [configuration](https://huggingface.co/PhilipMay/Phi-3-MoE-mini-4k-instruct-raw/blob/main/mergekit_moe_config.yml) and this command: ```bash TODO ``` As the router was initialized randomly during merging, this is a raw model. It should be trained before it can be used. ## Licensing Copyright (c) 2024 [Philip May](https://philipmay.org)\ Copyright (c) [Gan Feng](https://huggingface.co/vonjack)\ Copyright (c) Microsoft Corporation Licensed under the **MIT License** (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License by reviewing the file [LICENSE](https://huggingface.co/PhilipMay/Phi-3-MoE-mini-4k-instruct-raw/blob/main/LICENSE) in the repository.
{"license": "mit"}
PhilipMay/Phi-3-MoE-mini-4k-instruct-raw
null
[ "transformers", "safetensors", "mixtral", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:47:58+00:00
null
null
{}
chrlu/zephyr-7b-dpo-full
null
[ "region:us" ]
null
2024-04-27T11:48:59+00:00
null
null
{"license": "openrail"}
Mikerx/LelloBari
null
[ "license:openrail", "region:us" ]
null
2024-04-27T11:51:28+00:00
text-generation
transformers
{"license": "apache-2.0"}
Theon1130/PMC_llava-v1.6-mistral
null
[ "transformers", "safetensors", "llava_mistral", "text-generation", "conversational", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:52:28+00:00
null
transformers
# DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q8_0-GGUF This model was converted to GGUF format from [`DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0`](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q8_0-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q8_0-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q8_0.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "llama-cpp", "gguf-my-repo"], "base_model": ["TeeZee/DarkSapling-7B-v2.0", "MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp"]}
DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q8_0-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:TeeZee/DarkSapling-7B-v2.0", "base_model:MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:52:55+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # whisper-bs-cs-train-noaug-test-tstretch20-gain10-pitch20-gaussian20-lowpass10-mp3 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 1.0830 - Wer: 65.9355 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.3007 | 1.4440 | 1000 | 1.1013 | 72.5808 | | 0.1741 | 2.8881 | 2000 | 1.0371 | 69.6725 | | 0.0972 | 4.3321 | 3000 | 1.0761 | 66.3609 | | 0.079 | 5.7762 | 4000 | 1.0830 | 65.9355 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-base", "model-index": [{"name": "whisper-bs-cs-train-noaug-test-tstretch20-gain10-pitch20-gaussian20-lowpass10-mp3", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "common_voice_11_0", "type": "common_voice_11_0", "config": "cs", "split": "None", "args": "cs"}, "metrics": [{"type": "wer", "value": 65.93546248204221, "name": "Wer"}]}]}]}
LadislavVasina1/whisper-bs-cs-train-noaug-test-tstretch20-gain10-pitch20-gaussian20-lowpass10-mp3
null
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice_11_0", "base_model:openai/whisper-base", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:08+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/elqglta
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/atpmgf3
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/fnvgucq
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/und9vsi
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/16oaw6v
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/ckool1k
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:41+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
pruning/cx20aza
null
[ "transformers", "safetensors", "stablelm", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:42+00:00
null
transformers
# DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q6_K-GGUF This model was converted to GGUF format from [`DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0`](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q6_K-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q6_K.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q6_K-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q6_K.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q6_K.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "llama-cpp", "gguf-my-repo"], "base_model": ["TeeZee/DarkSapling-7B-v2.0", "MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp"]}
DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q6_K-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:TeeZee/DarkSapling-7B-v2.0", "base_model:MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:53:58+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # TTC4900Model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1884 - Accuracy: 0.6272 - F1: 0.7392 - Precision: 0.7048 - Recall: 0.8129 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.5316 | 0.56 | 50 | 1.1986 | 0.6262 | 0.4825 | 0.5074 | 0.5748 | | 0.5421 | 1.12 | 100 | 0.2282 | 0.9464 | 0.9318 | 0.9579 | 0.9159 | | 0.1327 | 1.69 | 150 | 0.2318 | 0.9499 | 0.9542 | 0.9479 | 0.9637 | | 0.1214 | 2.25 | 200 | 0.1772 | 0.9669 | 0.9688 | 0.9652 | 0.9730 | | 0.0632 | 2.81 | 250 | 0.2155 | 0.9669 | 0.9688 | 0.9681 | 0.9696 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "bert-base-uncased", "model-index": [{"name": "TTC4900Model", "results": []}]}
AmirlyPhd/TTC4900Model
null
[ "transformers", "safetensors", "bert", "text-classification", "generated_from_trainer", "base_model:bert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:54:29+00:00
null
transformers
# DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q5_K_M-GGUF This model was converted to GGUF format from [`DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0`](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q5_K_M-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q5_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q5_K_M-GGUF --model d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q5_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m d_au-mistral-7b-instruct-v0.2-bagel-darksapling-dpo-7b-v2.0.Q5_K_M.gguf -n 128 ```
{"library_name": "transformers", "tags": ["mergekit", "merge", "llama-cpp", "gguf-my-repo"], "base_model": ["TeeZee/DarkSapling-7B-v2.0", "MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp"]}
DavidAU/D_AU-Mistral-7B-Instruct-v0.2-Bagel-DarkSapling-DPO-7B-v2.0-Q5_K_M-GGUF
null
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "base_model:TeeZee/DarkSapling-7B-v2.0", "base_model:MaziyarPanahi/bagel-dpo-7b-v0.1-Mistral-7B-Instruct-v0.2-slerp", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:55:16+00:00
token-classification
transformers
{}
manish1103125/NER-Task-Full
null
[ "transformers", "safetensors", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:57:14+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/jp1uk7e
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:57:36+00:00
null
null
TrustVare Contacts Manager Software is an efficient and affordable application to quickly import VCF contacts from PST, MSG, OST, and NSF files. This software can save users time and effort by rapidly joining multiple small VCF files into one without taking a long time. Users can install this application in any Windows OS edition, such as Windows 11, Windows 10 S, Windows 10, Windows 8/8.1, Windows 7, Windows Vista, Windows XP, Windows 2000, etc. While using this utility, users don't need any other tool to save VCF contacts from PST, MSG, OST, or NSF files. The tool does many things, such as consolidating several VCF contacts, splitting large-size VCF contacts, transferring contacts from PST, OST, MSG, NSF, Excel, CSV files, and many more. The utility is fully standalone and can do multiple tasks. Users can save their contacts file as per the required location on the desktop when they import a VCF file from other files. There are no data size limitations. Both technical and non-technical users can also use this software to import VCF contacts. The advanced application is also workable with all Lotus Notes, Windows OS, and Microsoft Outlook editions without creating any problems. Users can also get the free trial version of this tool without paying any money. Click Here: https://www.trustvare.com/contacts-manager/
{}
trustvare/Contacts-Manager-Software
null
[ "region:us" ]
null
2024-04-27T11:57:37+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # CS505_COQE_viT5_total_Instruction0_SAPOL_v1_h1 This model is a fine-tuned version of [VietAI/vit5-large](https://huggingface.co/VietAI/vit5-large) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"license": "mit", "tags": ["generated_from_trainer"], "base_model": "VietAI/vit5-large", "model-index": [{"name": "CS505_COQE_viT5_total_Instruction0_SAPOL_v1_h1", "results": []}]}
ThuyNT/CS505_COQE_viT5_total_Instruction0_SAPOL_v1_h1
null
[ "transformers", "tensorboard", "safetensors", "t5", "text2text-generation", "generated_from_trainer", "base_model:VietAI/vit5-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:58:11+00:00
null
null
# EffectXmed Creme Erfahrungen - EffectXmed Inhaltsstoffe, Vorteile Offizielle Preis, Kaufen EffectXmed Creme Deutschland Erfahrungen Effectxmed Skin hat viel Lob für seine Effizienz und Ergebnisse erhalten. Es ist das beste Mittel zur Beseitigung unerwünschter Flecken und sorgt für ein besseres Hautbild. Dieser schmerzfreie Ansatz zur Behandlung von Hautproblemen erweist sich als viel zuverlässiger und problemloser und bietet eine revitalisierende Methode für junge Hautwucherungen. ## **[Klicken Sie hier, um jetzt auf der offiziellen Website von EffectXmed Creme zu kaufen](https://capsules24x7.com/effectxmed-de)** ## Was ist EffectXmed? EffectXmed ist ein Name, der Sie fasziniert. Der Hersteller garantiert seinerseits eine Reifung und Wiederbelebung der Haut auf Expertenniveau. Falten und andere Alterserscheinungen der Haut sollten ohne medizinische Eingriffe mit dieser Überlegung behandelt werden. Es werden lediglich normale Befestigungen verwendet. Durch die regelmäßige Anwendung des Fixiermittels soll der Haut dabei geholfen werden, ein schönes und junges Aussehen zu erhalten. Dadurch werden Knicke und kaum erkennbare Unterschiede beseitigt, aber auch eine Fixierung und Stärkung der Haut soll möglich sein. Aufgrund der verwendeten dynamischen Fixierungsgleichung können sogar Tränensäcke, Altersflecken und Augenringe mit der EffectXmed-Creme behandelt werden ## EffectXmed – So wird die Anwendung abgeschlossen Laut Hersteller soll sich die EffectXmed-Anwendung äußerst einfach in die tägliche Pflege integrieren lassen. Auf diese Weise kann die Creme typischerweise täglich aufgetragen werden. Für optimale Ergebnisse wird eine Anwendung von mindestens sieben Tagen empfohlen. Zur Anwendung sollte die Creme, wie auch andere Gesichtspflegeprodukte, auf das Gesicht aufgetragen und anschließend abgenommen werden. Als tägliche Dosis empfiehlt der Hersteller zwei Siphons aus dem Sahnespender. Die beste Art der Anwendung sollte in der ersten Tages- und Nachthälfte erfolgen. Vorab sollte die Gesichtshaut gründlich gereinigt werden. ## EffectXmed-Befestigungen Der Gegenreifungsgenuss wird durch die Art und Weise gefördert, in der sich die wichtigsten natürlichen dynamischen Fixierungen befinden. Daher sollte das Produkt auch von allen Kunden rundum akzeptiert werden. Die zugehörigen EffectXmed-Befestigungen sind angegeben: Kigelia Africana extrahieren Platinpeptide Traubenkernöl Kaviar und Muscheln entfernen Shea-Margarine, Aprikosenkernöl, Sonnenblumenöl und Olivenöl ## Gold- und Juwelenpulver   Kigelia Africana-Konzentrat: Dies ist ein wesentlicher Bestandteil zahlreicher Anti-Aging-Cremes, einschließlich EffectXmed. Es sättigt die Haut. Dadurch wird die Entstehung von Falten gemildert und die Haut kann wiederbelebt werden. Traubenkernöl: Dieses einzigartige Öl fördert die Wundheilung und sorgt anschließend für ein glattes und verfeinertes Hautbild. Platinpeptide: Peptide garantieren eine hervorragende Bildung von Kollagen Typ 1 und 3. Dies führt zu einer strafferen und geglätteten Haut. ## **[Klicken Sie hier, um jetzt auf der offiziellen Website von EffectXmed Creme zu kaufen](https://capsules24x7.com/effectxmed-de)**
{}
VKapseln475/EffectXmedCreme5498
null
[ "region:us" ]
null
2024-04-27T11:58:55+00:00
text-generation
transformers
# Full Parameter Finetuning Malaysian Llama-3 16384 context length on Malaysian chat completion 3B tokens README at https://github.com/huseinzol05/malaya/tree/master/session/llama3 WandB, https://wandb.ai/huseinzol05/fpf-llama-3-8b-8192-hf-packing?nw=nwuserhuseinzol05 ## how-to ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch tokenizer = AutoTokenizer.from_pretrained('mesolitica/malaysian-llama-3-8b-instruct-16k') model = AutoModelForCausalLM.from_pretrained('mesolitica/malaysian-llama-3-8b-instruct-16k', torch_dtype=torch.bfloat16, use_flash_attention_2 = True ) _ = model.cuda() messages = [ {'role': 'user', 'content': 'kwsp tu apa'} ] prompt = tokenizer.apply_chat_template(messages, tokenize = False) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) tokenizer.decode(r[0]) ``` ``` <|begin_of_text|><|start_header_id|>user<|end_header_id|> kwsp tu apa<|eot_id|><|start_header_id|>assistant<|end_header_id|> KWSP adalah singkatan kepada Kumpulan Wang Simpanan Pekerja, iaitu sejenis skim simpanan persaraan yang ditadbir oleh kerajaan Malaysia. Ia adalah sistem pencen yang disumbangkan oleh kedua-dua majikan dan pekerja. KWSP adalah skim simpanan wajib di Malaysia, dan kebanyakan pekerja mesti mendaftar dan menyumbang kepada KWSP. Skim ini ditadbir oleh Kumpulan Wang Simpanan Pekerja Malaysia. KWSP menyediakan pelbagai pilihan pelaburan untuk ahlinya, termasuk unit amanah, bon, dan juga simpanan tetap. Ahli boleh memohon untuk melabur sebahagian simpanan KWSP mereka dalam pilihan ini pada bila-bila masa, tertakluk kepada kriteria kelayakan tertentu. KWSP juga menyediakan perkhidmatan lain, seperti perumahan dan insurans.<|eot_id|> ``` ```python messages = [ {'role': 'user', 'content': 'nasi kandaq apa sedap kat sungai petani kedah'} ] prompt = tokenizer.apply_chat_template(messages, tokenize = False) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ``` <|begin_of_text|><|start_header_id|>user<|end_header_id|> nasi kandaq apa sedap kat sungai petani kedah<|eot_id|><|start_header_id|>assistant<|end_header_id|> Di Sungai Petani, Kedah, terdapat sebuah gerai yang menyajikan "nasi kandaq" yang sangat lazat dan popular di kalangan penduduk setempat dan pelancong. Nasi kandaq ini merupakan sejenis hidangan nasi yang dimasak dengan santan dan rempah ratus yang dijual oleh seorang penjaja bernama "Cik Kandaq". Gerai nasi kandaq yang terkenal ini terletak di Pekan Lama, Sungai Petani dan telah beroperasi selama lebih dari 30 tahun. Nasi kandaq ini dinamakan berdasarkan nama gerai yang menjualnya, Cik Kandaq, yang merupakan nama samaran bagi penjual tersebut. Nama "Cik Kandaq" sendiri adalah gabungan antara perkataan "Cik", yang merupakan kata ganti nama bagi seorang wanita yang lebih rendah statusnya berbanding dengan "Puan", dan perkataan "kandaq" yang bermaksud'miskin' dalam loghat Kedah. Nasi kandaq yang dijual oleh Cik Kandaq sangat terkenal kerana rasa nasi yang lemak dan wangi dari campuran santan dan rempah ratus, serta kerangupan lauk-pauk yang dihidangkan bersama nasi tersebut. Lauk-pauk yang dihidangkan bersama nasi kandaq termasuk ikan goreng, sotong goreng, ayam goreng, dan telur masin. Gerai ini hanya beroperasi pada waktu pagi sahaja dan seringkali pelanggan akan berbaris panjang untuk mendapatkan hidangan nasi kandaq yang sedap ini. Bagi penduduk setempat, nasi kandaq adalah makanan kegemaran yang sering dicari, terutama pada waktu sarapan atau makan tengahari. Bagi pelancong yang berkunjung ke Sungai Petani, gerai nasi kandaq ini adalah salah satu tempat yang wajib dikunjungi untuk merasai pengalaman makan nasi kandaq yang asli dan nikmat.<|eot_id|> ``` ```python messages = [ {'role': 'user', 'content': 'asdsd231asd'}, {'role': 'assistant', 'content': 'Saya minta maaf, saya tidak dapat menjana respons yang bermakna kepada input itu. Bolehkah anda berikan lebih banyak konteks atau jelaskan soalan anda?'}, {'role': 'user', 'content': 'awak giler eh'}, ] prompt = tokenizer.apply_chat_template(messages, tokenize = False) inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to('cuda') generate_kwargs = dict( inputs, max_new_tokens=1024, top_p=0.95, top_k=50, temperature=0.9, do_sample=True, num_beams=1, ) r = model.generate(**generate_kwargs) print(tokenizer.decode(r[0])) ``` ``` <|begin_of_text|><|start_header_id|>user<|end_header_id|> asdsd231asd<|eot_id|><|start_header_id|>assistant<|end_header_id|> Saya minta maaf, saya tidak dapat menjana respons yang bermakna kepada input itu. Bolehkah anda berikan lebih banyak konteks atau jelaskan soalan anda?<|eot_id|><|start_header_id|>user<|end_header_id|> awak giler eh<|eot_id|><|start_header_id|>assistant<|end_header_id|> Saya memohon maaf jika saya memberi anda maklumat yang salah atau tidak membantu. Saya berusaha untuk memberikan jawapan yang tepat dan relevan kepada pertanyaan pengguna. Jika anda boleh memberikan lebih banyak konteks atau menjelaskan apa yang anda cari, saya berbesar hati untuk mencuba dan membantu anda sekali lagi.<|eot_id|> ```
{"language": ["ms"]}
mesolitica/malaysian-llama-3-8b-instruct-16k
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "ms", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T11:59:04+00:00
null
transformers
# BasedBots/Yarn-Mistral-7b-128k-Q4_K_M-GGUF This model was converted to GGUF format from [`NousResearch/Yarn-Mistral-7b-128k`](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/NousResearch/Yarn-Mistral-7b-128k) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo BasedBots/Yarn-Mistral-7b-128k-Q4_K_M-GGUF --model yarn-mistral-7b-128k.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo BasedBots/Yarn-Mistral-7b-128k-Q4_K_M-GGUF --model yarn-mistral-7b-128k.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m yarn-mistral-7b-128k.Q4_K_M.gguf -n 128 ```
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["llama-cpp", "gguf-my-repo"], "datasets": ["emozilla/yarn-train-tokenized-16k-mistral"], "metrics": ["perplexity"]}
BasedBots/Yarn-Mistral-7b-128k-Q4_K_M-GGUF
null
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "en", "dataset:emozilla/yarn-train-tokenized-16k-mistral", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-27T11:59:58+00:00
null
transformers
# Uploaded model - **Developed by:** hanifsyarubany10 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-7b-bnb-4bit This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
{"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "unsloth/gemma-7b-bnb-4bit"}
hanifsyarubany10/gemma-7b-100epochs-Unsloth-LaMini-1e-3
null
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "gemma", "trl", "en", "base_model:unsloth/gemma-7b-bnb-4bit", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:01:27+00:00
text-generation
transformers
# stablelm-2-zephyr-1.6b-dareties3 stablelm-2-zephyr-1.6b-dareties3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [aipib/stablelm-2-zephyr-1.6b-slerpx9](https://huggingface.co/aipib/stablelm-2-zephyr-1.6b-slerpx9) * [stabilityai/stablelm-2-zephyr-1_6b](https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b) ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 24] model: aipib/stablelm-2-zephyr-1.6b-slerpx9 parameters: density: [0.9, 0.5, 0.1] weight: 0.4 - layer_range: [0, 24] model: stabilityai/stablelm-2-zephyr-1_6b parameters: density: [0.1, 0.5, 0.9] weight: - filter: mlp value: 0.4 - value: 0 merge_method: dare_ties base_model: aipib/stablelm-2-zephyr-1.6b-slerpx9 parameters: #normalize: true int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "aipib/stablelm-2-zephyr-1.6b-dareties3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```
{"tags": ["merge", "mergekit", "lazymergekit", "aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b"], "base_model": ["aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b"]}
aipib/stablelm-2-zephyr-1.6b-dareties3
null
[ "transformers", "safetensors", "stablelm", "text-generation", "merge", "mergekit", "lazymergekit", "aipib/stablelm-2-zephyr-1.6b-slerpx9", "stabilityai/stablelm-2-zephyr-1_6b", "conversational", "base_model:aipib/stablelm-2-zephyr-1.6b-slerpx9", "base_model:stabilityai/stablelm-2-zephyr-1_6b", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:04:46+00:00
null
null
{}
Gracian/xai_org_grok_1
null
[ "region:us" ]
null
2024-04-27T12:04:53+00:00
null
null
{}
Planningo/Photio_SD_4.0_Lightning_compel
null
[ "region:us" ]
null
2024-04-27T12:06:02+00:00
null
null
{}
mayurchoubey123/sklearntest
null
[ "joblib", "region:us" ]
null
2024-04-27T12:06:13+00:00
text-generation
transformers
{}
arctic126/hospital_tau-0.5B
null
[ "transformers", "safetensors", "qwen2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:07:41+00:00
text-generation
transformers
# Uploaded model The model is modified to be deployable using vllm - **Developed by:** GodsonNtungi - **License:** apache-2.0 - ** Base Model :** Mollel/Swahili_Gemma
{"language": ["sw"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "gemma", "trl"], "base_model": "Mollel/Swahili_Gemma"}
GodsonNtungi/Swahili_Gemma_vllm
null
[ "transformers", "pytorch", "gemma", "text-generation", "text-generation-inference", "unsloth", "trl", "conversational", "sw", "base_model:Mollel/Swahili_Gemma", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:07:48+00:00
text-generation
transformers
# Model Card for Model ID ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> MoM: Mixture of Mixture This Model is a first test to combine [Jamba](https://huggingface.co/ai21labs/Jamba-v0.1) architecture with bf16 bits linear layers, mixture of attention head and **multi head** mixture of depth. The goal is to developpe and test if this kind of architectures have not too much quality loss for a fast inference. - **Model type:** Mixture of attention head mixture of depth and mixture of expert bf16 linear layers - **License:** Apache licence 2.0 ### Model Sources [optional] - **Repository:** https://github.com/ostix360/optimized-LLM ## How to Get Started with the Model This model has a generation problem because of a softmax application in the mod process If you want to test this model please look at this repo at this [commit](https://github.com/ostix360/optimized-LLM/tree/1f937b3c35074c9eb48ccde52677bb0439f71960) ## Training Details - **wandb**: [training detail](https://wandb.ai/ostix360/Mixture%20of%20mixture%20(mod,%20moah%20moe)/runs/ygwwa30r) ### Training Data We use the first ~0.5B tokens of Locutusque/UltraTextbooks to train this model ### Training Procedure We use adam-8 bits with default betas and epsilon values #### Preprocessing [optional] The data fit the model max length i.e. 512 tokens #### Training Hyperparameters Please look at the wandb metadata to see the hyperparameters or the train.py file in the repo ## Technical Specifications ### Compute Infrastructure #### Hardware - one 4070 ti GPU #### Software - pytorch, transformers etc
{"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["moe", "moah", "mod", "mh-moe"], "datasets": ["Locutusque/UltraTextbooks"]}
Ostixe360/MoMv5-bf16
null
[ "transformers", "safetensors", "text-generation", "moe", "moah", "mod", "mh-moe", "en", "dataset:Locutusque/UltraTextbooks", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:07:52+00:00
null
null
{}
neildlf/my_awesome_billsum_model
null
[ "region:us" ]
null
2024-04-27T12:08:28+00:00
null
null
{}
misterytoon/Disventure_camp
null
[ "region:us" ]
null
2024-04-27T12:09:54+00:00
null
null
{}
nemesis1/nipples
null
[ "region:us" ]
null
2024-04-27T12:10:34+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:12:22+00:00
reinforcement-learning
null
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
moczard/Reinforce-CartPole-v1
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
null
2024-04-27T12:12:40+00:00
null
null
{}
Ling7229/llava-1.5-7b-hf-ft-mix-vsft
null
[ "region:us" ]
null
2024-04-27T12:12:44+00:00
null
null
{}
Destr/new_diffusers.zip
null
[ "region:us" ]
null
2024-04-27T12:13:30+00:00
text-generation
transformers
{}
arctic126/hospital_h2o-danube2-1.8b-base
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:13:39+00:00
null
null
{}
PrpEndo/TEST_merge
null
[ "region:us" ]
null
2024-04-27T12:14:17+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbert-Quran_QA This model was trained from scratch on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"tags": ["generated_from_trainer"], "model-index": [{"name": "mbert-Quran_QA", "results": []}]}
NeginShams/mbert-Quran_QA
null
[ "transformers", "tensorboard", "safetensors", "bert", "question-answering", "generated_from_trainer", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:14:51+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # textming_proj01_electra This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on [Vietnamese dataset - Kaggle](https://www.kaggle.com/datasets/duyminhnguyentran/csc15105). It achieves the following results on the evaluation set: - Train Loss: 0.4494 - Train Accuracy: 0.7976 - Validation Loss: 0.5521 - Validation Accuracy: 0.7456 - Epoch: 5 - Batch size: 32 ## Model description This model is fine-tuned by [email protected] in [Kaggle](https://www.kaggle.com/code/nguynnghabi/training-electra) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'learning_rate': 5e-05, 'epsilon': 1e-08} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 0.5951 | 0.6936 | 0.5818 | 0.6966 | 1 | | 0.5484 | 0.7291 | 0.5681 | 0.7054 | 2 | | 0.5119 | 0.7543 | 0.5284 | 0.7423 | 3 | | 0.4769 | 0.7800 | 0.5306 | 0.7432 | 4 | | 0.4494 | 0.7976 | 0.5521 | 0.7456 | 5 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2
{"language": ["vi"], "license": "apache-2.0", "tags": ["generated_from_keras_callback"], "base_model": "google/electra-small-discriminator", "model-index": [{"name": "textming_proj01_electra", "results": []}]}
nguyennghia0902/textming_proj01_electra
null
[ "transformers", "tf", "electra", "text-classification", "generated_from_keras_callback", "vi", "base_model:google/electra-small-discriminator", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2024-04-27T12:14:52+00:00
null
null
{}
siacus/Llama-3-8B-Q4_K_M.gguf
null
[ "gguf", "region:us" ]
null
2024-04-27T12:15:31+00:00
null
null
{}
Sunilkt/test
null
[ "region:us" ]
null
2024-04-27T12:16:13+00:00
text-generation
transformers
{}
azsxscdvfb/VetMedGPT-chat-V0.1
null
[ "transformers", "pytorch", "llama", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:16:41+00:00
null
null
{}
Togelup/Togelup_Alternatif
null
[ "region:us" ]
null
2024-04-27T12:16:53+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # 0.001_5iters_bs256_nodpo_only4w_iter_3 This model is a fine-tuned version of [ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_2](https://huggingface.co/ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_2) on the updated and the original datasets. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - total_eval_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.40.0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.19.1
{"license": "mit", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_2", "model-index": [{"name": "0.001_5iters_bs256_nodpo_only4w_iter_3", "results": []}]}
ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_3
null
[ "transformers", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "dpo", "generated_from_trainer", "conversational", "dataset:updated", "dataset:original", "base_model:ShenaoZhang/0.001_5iters_bs256_nodpo_only4w_iter_2", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:17:28+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-2epoch
null
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:18:08+00:00
text-generation
transformers
# hus960/wavecoder-pro-6.7b-Q4_K_M-GGUF This model was converted to GGUF format from [`microsoft/wavecoder-pro-6.7b`](https://huggingface.co/microsoft/wavecoder-pro-6.7b) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/microsoft/wavecoder-pro-6.7b) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/wavecoder-pro-6.7b-Q4_K_M-GGUF --model wavecoder-pro-6.7b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/wavecoder-pro-6.7b-Q4_K_M-GGUF --model wavecoder-pro-6.7b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m wavecoder-pro-6.7b.Q4_K_M.gguf -n 128 ```
{"language": ["en"], "license": "mit", "library_name": "transformers", "tags": ["code", "llama-cpp", "gguf-my-repo"], "datasets": ["humaneval"], "metrics": ["code_eval"], "license_link": "https://huggingface.co/microsoft/wavecoder-pro-6.7b/blob/main/LICENSE", "pipeline_tag": "text-generation"}
hus960/wavecoder-pro-6.7b-Q4_K_M-GGUF
null
[ "transformers", "gguf", "code", "llama-cpp", "gguf-my-repo", "text-generation", "en", "dataset:humaneval", "license:mit", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:18:40+00:00
null
null
{}
S1T4L/Zero123pp_custom_pipeline
null
[ "region:us" ]
null
2024-04-27T12:19:56+00:00
text-generation
transformers
# punk-llama3-11.5B (raw ver)
{"language": ["en"], "license": "mit"}
jeonsworld/punk-llama3-11.5B-raw
null
[ "transformers", "safetensors", "llama", "text-generation", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:20:18+00:00
null
null
{}
KSH841/Test10Kfilings1
null
[ "region:us" ]
null
2024-04-27T12:20:26+00:00
null
null
# hus960/Einstein-v4-phi2-Q8_0-GGUF This model was converted to GGUF format from [`Weyaxi/Einstein-v4-phi2`](https://huggingface.co/Weyaxi/Einstein-v4-phi2) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Weyaxi/Einstein-v4-phi2) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/Einstein-v4-phi2-Q8_0-GGUF --model einstein-v4-phi2.Q8_0.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/Einstein-v4-phi2-Q8_0-GGUF --model einstein-v4-phi2.Q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m einstein-v4-phi2.Q8_0.gguf -n 128 ```
{"language": ["en"], "license": "other", "tags": ["axolotl", "generated_from_trainer", "phi", "phi2", "einstein", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "science", "physics", "chemistry", "biology", "math", "llama-cpp", "gguf-my-repo"], "datasets": ["allenai/ai2_arc", "camel-ai/physics", "camel-ai/chemistry", "camel-ai/biology", "camel-ai/math", "metaeval/reclor", "openbookqa", "mandyyyyii/scibench", "derek-thomas/ScienceQA", "TIGER-Lab/ScienceEval", "jondurbin/airoboros-3.2", "LDJnr/Capybara", "Cot-Alpaca-GPT4-From-OpenHermes-2.5", "STEM-AI-mtl/Electrical-engineering", "knowrohit07/saraswati-stem", "sablo/oasst2_curated", "glaiveai/glaive-code-assistant", "lmsys/lmsys-chat-1m", "TIGER-Lab/MathInstruct", "bigbio/med_qa", "meta-math/MetaMathQA-40K", "openbookqa", "piqa", "metaeval/reclor", "derek-thomas/ScienceQA", "scibench", "sciq", "Open-Orca/SlimOrca", "migtissera/Synthia-v1.3", "TIGER-Lab/ScienceEval"], "base_model": "microsoft/phi-2", "model-index": [{"name": "Einstein-v4-phi2", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge (25-Shot)", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc_norm", "value": 59.98, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag (10-Shot)", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc_norm", "value": 74.07, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU (5-Shot)", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 56.89, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA (0-shot)", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "mc2", "value": 45.8}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande (5-shot)", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 73.88, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k (5-shot)", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 53.98, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v4-phi2", "name": "Open LLM Leaderboard"}}]}]}
hus960/Einstein-v4-phi2-Q8_0-GGUF
null
[ "gguf", "axolotl", "generated_from_trainer", "phi", "phi2", "einstein", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "science", "physics", "chemistry", "biology", "math", "llama-cpp", "gguf-my-repo", "en", "dataset:allenai/ai2_arc", "dataset:camel-ai/physics", "dataset:camel-ai/chemistry", "dataset:camel-ai/biology", "dataset:camel-ai/math", "dataset:metaeval/reclor", "dataset:openbookqa", "dataset:mandyyyyii/scibench", "dataset:derek-thomas/ScienceQA", "dataset:TIGER-Lab/ScienceEval", "dataset:jondurbin/airoboros-3.2", "dataset:LDJnr/Capybara", "dataset:Cot-Alpaca-GPT4-From-OpenHermes-2.5", "dataset:STEM-AI-mtl/Electrical-engineering", "dataset:knowrohit07/saraswati-stem", "dataset:sablo/oasst2_curated", "dataset:glaiveai/glaive-code-assistant", "dataset:lmsys/lmsys-chat-1m", "dataset:TIGER-Lab/MathInstruct", "dataset:bigbio/med_qa", "dataset:meta-math/MetaMathQA-40K", "dataset:piqa", "dataset:scibench", "dataset:sciq", "dataset:Open-Orca/SlimOrca", "dataset:migtissera/Synthia-v1.3", "base_model:microsoft/phi-2", "license:other", "model-index", "region:us" ]
null
2024-04-27T12:21:46+00:00
text-generation
transformers
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"library_name": "transformers", "tags": []}
shallow6414/ucnplvp
null
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:23:29+00:00
null
null
Fitspresso :- As the name suggests, Fitspresso is using the benefits of coffee for weight loss. Coffee extract is the primary ingredient of this weight management formula. Coffee extract is rich in chlorogenic acid and antioxidants. Chlorogenic acid is a metabolic rate booster. When taken in the right amount, chlorogenic acid can help boost metabolism by 5% to 15%. This small boost in metabolism can aid in healthy weight loss. Click Here https://www.jpost.com/brandblend/article-793826 https://www.facebook.com/FitspressoReviewsAustralia/ https://www.facebook.com/FitspressoReviewCanada/ https://www.facebook.com/WeightLossFitSpresso/ https://www.facebook.com/FitSpressoInUS/ https://www.facebook.com/FitSpressoReviewUS/ https://www.facebook.com/GetFitSpressoReviews/ https://fitspresso-official-reviews.jimdosite.com/ https://fitspresso-reviews-10.jimdosite.com/ https://fitspresso-review.jimdosite.com/ https://medium.com/@fitspressocoffenew/limited-stock-fitspresso-australia-coffee-loophole-ingredient-reviews-fitspresso-cost-us-2a87a6cb3171 https://medium.com/@fitspressocoffeeloopho/evaluating-fitspresso-effectiveness-and-health-implications-4523ab5ece78 https://medium.com/@fitspressocoffeeloopho/unveiling-the-truth-does-fitspresso-live-up-to-its-hype-67cdb78572e2 https://medium.com/@amypfarr/fitspresso-reviews-2024-consumer-says-fake-ingredients-exposed-within-2-days-is-it-real-or-rumours-7dd95afbf35f https://medium.com/@fitspressoloophole/fitspresso-coffee-loophole-where-to-buy-a-slim-fit-figure-without-cutting-your-favorite-dish-83ba5455f881 https://medium.com/@fitspressoloophole/fitspresso-reviews-it-proffers-a-slender-and-lean-perfect-physique-with-sound-health-e87728173efd https://medium.com/@fitspressoscamus/fitspresso-reviews-last-warning-before-buy-must-know-exotic-fraud-concerns-30883724e808 https://medium.com/@fitspressoscamus/fitspresso-where-to-buy-urgent-customer-complaints-researched-fitspresso-reviews-or-cheap-scam-b328db34e465 https://fit-spresso-official.company.site/ https://fitspresso-coffee-loophole-weight-loss.webflow.io/ https://fitspresso-0e973b.webflow.io/ https://fitspresso-coffee-loophole-a520fa.webflow.io/ https://fitspresso-coffee-loophole-983128.webflow.io/ https://fit-spresso-official.company.site/ https://fit-spresso-reviews.company.site/ https://fitspresso-customer-reviews.company.site/ https://fitspresso-loophole-weight-loss.company.site/ https://fitspresso-buy.company.site/ https://fitspresso-pills-review.company.site/ https://fitspresso-offers.company.site/ https://fitspressocoffeeloophoe.company.site/ https://fitspressoofficialwebsite2.godaddysites.com/ https://fitspresso97.godaddysites.com/ https://thecontingent.microsoftcrmportals.com/forums/support-forum/9c4d9840-5704-ef11-a73d-6045bd01c1cc https://fms.microsoftcrmportals.com/forums/support-forum/6d983dfb-5804-ef11-a73c-6045bd20e9c7 https://ecosoft.microsoftcrmportals.com/en-US/forums/support-forum/e252b228-5e04-ef11-a81c-6045bda1d753 https://twor.microsoftcrmportals.com/forums/support-forum/aa06eca9-5f04-ef11-a73d-6045bd3fd1cb https://pgccouncilcsp.powerappsportals.us/forums/support-forum/afc8a4fa-6004-ef11-a73d-001dd806eee4
{}
fitspressocoffenew/FitspressoCoffeeLoophole
null
[ "region:us" ]
null
2024-04-27T12:24:07+00:00
text-generation
transformers
# mlx-community/Swallow-7b-instruct-v0.1-8bit This model was converted to MLX format from [`tokyotech-llm/Swallow-7b-instruct-v0.1`]() using mlx-lm version **0.6.0**. Refer to the [original model card](https://huggingface.co/tokyotech-llm/Swallow-7b-instruct-v0.1) for more details on the model. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Swallow-7b-instruct-v0.1-8bit") response = generate(model, tokenizer, prompt="hello", verbose=True) ```
{"language": ["en", "ja"], "license": "llama2", "library_name": "transformers", "tags": ["mlx"], "pipeline_tag": "text-generation", "model_type": "llama"}
mlx-community/Swallow-7b-instruct-v0.1-8bit
null
[ "transformers", "safetensors", "llama", "text-generation", "mlx", "conversational", "en", "ja", "license:llama2", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:26:05+00:00
text-generation
transformers
{}
isemmanuelolowe/Ikhou_3B
null
[ "transformers", "mamba", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2024-04-27T12:28:08+00:00
reinforcement-learning
null
# **Reinforce** Agent playing **CartPole-v1** This is a trained model of a **Reinforce** agent playing **CartPole-v1** . To learn to use this model and train yours check Unit 4 of the Deep Reinforcement Learning Course: https://huggingface.co/deep-rl-course/unit4/introduction
{"tags": ["CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class"], "model-index": [{"name": "Reinforce-CartPole-v1", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "CartPole-v1", "type": "CartPole-v1"}, "metrics": [{"type": "mean_reward", "value": "500.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]}
vicha-w/Reinforce-CartPole-v1
null
[ "CartPole-v1", "reinforce", "reinforcement-learning", "custom-implementation", "deep-rl-class", "model-index", "region:us" ]
null
2024-04-27T12:30:10+00:00
reinforcement-learning
stable-baselines3
# **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
{"library_name": "stable-baselines3", "tags": ["LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "stable-baselines3"], "model-index": [{"name": "PPO", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "LunarLander-v2", "type": "LunarLander-v2"}, "metrics": [{"type": "mean_reward", "value": "258.90 +/- 15.28", "name": "mean_reward", "verified": false}]}]}]}
tangerym/ppo-LunarLander-v2
null
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
null
2024-04-27T12:32:37+00:00
null
null
{}
neildlf/cnn_dailymail_t5-small
null
[ "region:us" ]
null
2024-04-27T12:33:00+00:00
null
null
{}
Kitajiang/reranker
null
[ "region:us" ]
null
2024-04-27T12:33:02+00:00
null
null
# hus960/Einstein-v6.1-Llama3-8B-Q4_K_M-GGUF This model was converted to GGUF format from [`Weyaxi/Einstein-v6.1-Llama3-8B`](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Weyaxi/Einstein-v6.1-Llama3-8B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew. ```bash brew install ggerganov/ggerganov/llama.cpp ``` Invoke the llama.cpp server or the CLI. CLI: ```bash llama-cli --hf-repo hus960/Einstein-v6.1-Llama3-8B-Q4_K_M-GGUF --model einstein-v6.1-llama3-8b.Q4_K_M.gguf -p "The meaning to life and the universe is" ``` Server: ```bash llama-server --hf-repo hus960/Einstein-v6.1-Llama3-8B-Q4_K_M-GGUF --model einstein-v6.1-llama3-8b.Q4_K_M.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. ``` git clone https://github.com/ggerganov/llama.cpp && cd llama.cpp && make && ./main -m einstein-v6.1-llama3-8b.Q4_K_M.gguf -n 128 ```
{"language": ["en"], "license": "other", "tags": ["axolotl", "generated_from_trainer", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "science", "physics", "chemistry", "biology", "math", "llama", "llama3", "llama-cpp", "gguf-my-repo"], "datasets": ["allenai/ai2_arc", "camel-ai/physics", "camel-ai/chemistry", "camel-ai/biology", "camel-ai/math", "metaeval/reclor", "openbookqa", "mandyyyyii/scibench", "derek-thomas/ScienceQA", "TIGER-Lab/ScienceEval", "jondurbin/airoboros-3.2", "LDJnr/Capybara", "Cot-Alpaca-GPT4-From-OpenHermes-2.5", "STEM-AI-mtl/Electrical-engineering", "knowrohit07/saraswati-stem", "sablo/oasst2_curated", "lmsys/lmsys-chat-1m", "TIGER-Lab/MathInstruct", "bigbio/med_qa", "meta-math/MetaMathQA-40K", "openbookqa", "piqa", "metaeval/reclor", "derek-thomas/ScienceQA", "scibench", "sciq", "Open-Orca/SlimOrca", "migtissera/Synthia-v1.3", "TIGER-Lab/ScienceEval", "allenai/WildChat", "microsoft/orca-math-word-problems-200k", "openchat/openchat_sharegpt4_dataset", "teknium/GPTeacher-General-Instruct", "m-a-p/CodeFeedback-Filtered-Instruction", "totally-not-an-llm/EverythingLM-data-V3", "HuggingFaceH4/no_robots", "OpenAssistant/oasst_top1_2023-08-25", "WizardLM/WizardLM_evol_instruct_70k"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "Einstein-v6.1-Llama3-8B", "results": [{"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "AI2 Reasoning Challenge (25-Shot)", "type": "ai2_arc", "config": "ARC-Challenge", "split": "test", "args": {"num_few_shot": 25}}, "metrics": [{"type": "acc_norm", "value": 62.46, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "HellaSwag (10-Shot)", "type": "hellaswag", "split": "validation", "args": {"num_few_shot": 10}}, "metrics": [{"type": "acc_norm", "value": 82.41, "name": "normalized accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "MMLU (5-Shot)", "type": "cais/mmlu", "config": "all", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 66.19, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "TruthfulQA (0-shot)", "type": "truthful_qa", "config": "multiple_choice", "split": "validation", "args": {"num_few_shot": 0}}, "metrics": [{"type": "mc2", "value": 55.1}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "Winogrande (5-shot)", "type": "winogrande", "config": "winogrande_xl", "split": "validation", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 79.32, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}, {"task": {"type": "text-generation", "name": "Text Generation"}, "dataset": {"name": "GSM8k (5-shot)", "type": "gsm8k", "config": "main", "split": "test", "args": {"num_few_shot": 5}}, "metrics": [{"type": "acc", "value": 66.11, "name": "accuracy"}], "source": {"url": "https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-v6.1-Llama3-8B", "name": "Open LLM Leaderboard"}}]}]}
hus960/Einstein-v6.1-Llama3-8B-Q4_K_M-GGUF
null
[ "gguf", "axolotl", "generated_from_trainer", "instruct", "finetune", "chatml", "gpt4", "synthetic data", "science", "physics", "chemistry", "biology", "math", "llama", "llama3", "llama-cpp", "gguf-my-repo", "en", "dataset:allenai/ai2_arc", "dataset:camel-ai/physics", "dataset:camel-ai/chemistry", "dataset:camel-ai/biology", "dataset:camel-ai/math", "dataset:metaeval/reclor", "dataset:openbookqa", "dataset:mandyyyyii/scibench", "dataset:derek-thomas/ScienceQA", "dataset:TIGER-Lab/ScienceEval", "dataset:jondurbin/airoboros-3.2", "dataset:LDJnr/Capybara", "dataset:Cot-Alpaca-GPT4-From-OpenHermes-2.5", "dataset:STEM-AI-mtl/Electrical-engineering", "dataset:knowrohit07/saraswati-stem", "dataset:sablo/oasst2_curated", "dataset:lmsys/lmsys-chat-1m", "dataset:TIGER-Lab/MathInstruct", "dataset:bigbio/med_qa", "dataset:meta-math/MetaMathQA-40K", "dataset:piqa", "dataset:scibench", "dataset:sciq", "dataset:Open-Orca/SlimOrca", "dataset:migtissera/Synthia-v1.3", "dataset:allenai/WildChat", "dataset:microsoft/orca-math-word-problems-200k", "dataset:openchat/openchat_sharegpt4_dataset", "dataset:teknium/GPTeacher-General-Instruct", "dataset:m-a-p/CodeFeedback-Filtered-Instruction", "dataset:totally-not-an-llm/EverythingLM-data-V3", "dataset:HuggingFaceH4/no_robots", "dataset:OpenAssistant/oasst_top1_2023-08-25", "dataset:WizardLM/WizardLM_evol_instruct_70k", "base_model:meta-llama/Meta-Llama-3-8B", "license:other", "model-index", "region:us" ]
null
2024-04-27T12:34:41+00:00
null
null
{}
ArtChicken/fohwx-woman-xl-pyros
null
[ "region:us" ]
null
2024-04-27T12:35:31+00:00
null
null
With WholeClear PST to MBOX Converter, users can efficiently and quickly convert PST files into MBOX file format. Professional testers have verified that this clever program is 100% accurate across multiple platforms. All Outlook PST mailbox data, including emails and attachments, are converted using the PST to MBOX Converter utility. With its user-friendly interface and ability to export PST to MBOX, this software helps customers utilize it without any problems. The most well-liked utility among its users is this conversion tool. Attachments from PST files are exported by the utility also. It can convert one or more files at once. Additionally, this tool works with every Microsoft Windows OS version. This tool provides a demo version for assessing the functionality and features of the product. Visit Here - https://www.wholeclear.com/pst/mbox/
{}
wholeclearsoftware/PST-TO-MBOX-Converter
null
[ "region:us" ]
null
2024-04-27T12:35:43+00:00
text-generation
transformers
28/04/2024- UPDATE: Fixed tokenizer / vocab issues. Verified operation, conversion to GGUF now works too. GGUF uploaded, with Imatrix Plus GGUFs to follow shortly. Imatrix Plus GGUFs are [here](https://huggingface.co/DavidAU/D_AU-Orac-13B-Tiefighter-slerp-imat-plus-GGUF) This includes all Imatrix compressions as well as regular "Qs" which have also been "Imatrixed" too. "Imatrix Plus" is an upgraded form of Imatrix which using full precision for specific parts of the compression. This results in a higher quality model, especially at lower compressions. This method is applied across all compressions from IQ1 to Q8. This merge was an experiment to test already established Roleplay, Fiction and Story generation of "Tiefighter" with a some of "Orca 2"'s qualities. A blank or standard Alpaca Template for text generation will work. Currently "CHATML" is untested. Context length: 4096. # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the SLERP merge method. ### Models Merged The following models were included in the merge: * [microsoft/Orca-2-13b](https://huggingface.co/microsoft/Orca-2-13b) * [KoboldAI/LLaMA2-13B-Tiefighter](https://huggingface.co/KoboldAI/LLaMA2-13B-Tiefighter) ### Configuration The following YAML configuration was used to produce this model: ```yaml slices: - sources: - model: KoboldAI/LLaMA2-13B-Tiefighter layer_range: [0, 40] - model: microsoft/Orca-2-13b layer_range: [0, 40] merge_method: slerp base_model: microsoft/Orca-2-13b parameters: t: - filter: self_attn value: [0, 0.5, 0.3, 0.7, 1] - filter: mlp value: [1, 0.5, 0.7, 0.3, 0] - value: 0.5 dtype: bfloat16 ```
{"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["microsoft/Orca-2-13b", "KoboldAI/LLaMA2-13B-Tiefighter"]}
DavidAU/D_AU-Orac-13B-Tiefighter-slerp
null
[ "transformers", "safetensors", "llama", "text-generation", "mergekit", "merge", "base_model:microsoft/Orca-2-13b", "base_model:KoboldAI/LLaMA2-13B-Tiefighter", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:36:58+00:00
null
peft
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # GenAI-task2-ModelB This model is a fine-tuned version of [petals-team/falcon-rw-1b](https://huggingface.co/petals-team/falcon-rw-1b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0712 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.4819 | 0.05 | 20 | 1.5761 | | 1.6396 | 0.1 | 40 | 1.4181 | | 1.4715 | 0.15 | 60 | 1.3053 | | 1.2372 | 0.2 | 80 | 1.2440 | | 1.3006 | 0.25 | 100 | 1.2091 | | 1.117 | 0.3 | 120 | 1.1826 | | 1.1284 | 0.35 | 140 | 1.1691 | | 1.1199 | 0.4 | 160 | 1.1582 | | 1.1853 | 0.45 | 180 | 1.1457 | | 1.1308 | 0.5 | 200 | 1.1411 | | 1.0031 | 0.55 | 220 | 1.1288 | | 1.1332 | 0.6 | 240 | 1.1233 | | 1.1182 | 0.65 | 260 | 1.1185 | | 1.0737 | 0.7 | 280 | 1.1131 | | 1.1858 | 0.75 | 300 | 1.1078 | | 1.0432 | 0.8 | 320 | 1.1026 | | 1.0895 | 0.85 | 340 | 1.0983 | | 1.1091 | 0.9 | 360 | 1.0949 | | 1.0866 | 0.95 | 380 | 1.0927 | | 1.1613 | 1.0 | 400 | 1.0955 | | 1.0328 | 1.05 | 420 | 1.0861 | | 1.0603 | 1.1 | 440 | 1.0842 | | 1.0627 | 1.15 | 460 | 1.0826 | | 0.9571 | 1.2 | 480 | 1.0802 | | 1.0478 | 1.25 | 500 | 1.0808 | | 1.0482 | 1.3 | 520 | 1.0777 | | 1.0552 | 1.35 | 540 | 1.0770 | | 1.0545 | 1.4 | 560 | 1.0778 | | 0.9966 | 1.45 | 580 | 1.0750 | | 1.0967 | 1.5 | 600 | 1.0747 | | 1.0334 | 1.55 | 620 | 1.0736 | | 1.0981 | 1.6 | 640 | 1.0726 | | 1.016 | 1.65 | 660 | 1.0726 | | 1.0358 | 1.7 | 680 | 1.0718 | | 1.0838 | 1.75 | 700 | 1.0718 | | 1.0066 | 1.8 | 720 | 1.0715 | | 1.1167 | 1.85 | 740 | 1.0713 | | 1.0809 | 1.9 | 760 | 1.0713 | | 1.0526 | 1.95 | 780 | 1.0712 | | 1.1084 | 2.0 | 800 | 1.0712 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1
{"license": "apache-2.0", "library_name": "peft", "tags": ["trl", "sft", "generated_from_trainer"], "base_model": "petals-team/falcon-rw-1b", "model-index": [{"name": "GenAI-task2-ModelB", "results": []}]}
Katochh/GenAI-task2-ModelB
null
[ "peft", "tensorboard", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:petals-team/falcon-rw-1b", "license:apache-2.0", "region:us" ]
null
2024-04-27T12:37:28+00:00
null
null
{}
agl2149/ETAP524
null
[ "region:us" ]
null
2024-04-27T12:38:13+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # kaist-mistral-orpo-OHP-15k-Mathcode-1epoch-ohp-15k-strat-1-2epoch This model is a fine-tuned version of [orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch](https://huggingface.co/orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch) on the orpo-explorers/OHP-15k-Stratified-1 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2.post303 - Datasets 2.18.0 - Tokenizers 0.15.2
{"tags": ["alignment-handbook", "trl", "orpo", "generated_from_trainer", "trl", "orpo", "generated_from_trainer"], "datasets": ["orpo-explorers/OHP-15k-Stratified-1"], "base_model": "orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch", "model-index": [{"name": "kaist-mistral-orpo-OHP-15k-Mathcode-1epoch-ohp-15k-strat-1-2epoch", "results": []}]}
orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch-ohp-15k-strat-1-2epoch
null
[ "transformers", "tensorboard", "safetensors", "mistral", "text-generation", "alignment-handbook", "trl", "orpo", "generated_from_trainer", "conversational", "dataset:orpo-explorers/OHP-15k-Stratified-1", "base_model:orpo-explorers/kaist-mistral-orpo-OHP-15k-Mathcode-1epoch", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2024-04-27T12:38:18+00:00