Search is not available for this dataset
pipeline_tag
stringclasses 48
values | library_name
stringclasses 205
values | text
stringlengths 0
18.3M
| metadata
stringlengths 2
1.07B
| id
stringlengths 5
122
| last_modified
null | tags
sequencelengths 1
1.84k
| sha
null | created_at
stringlengths 25
25
|
---|---|---|---|---|---|---|---|---|
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# donut_synDB_wplus
This model is a fine-tuned version of [naver-clova-ix/donut-base](https://huggingface.co/naver-clova-ix/donut-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0887
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 5
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 6
- total_train_batch_size: 30
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.4536 | 1.29 | 42 | 0.1805 |
| 0.2279 | 1.93 | 63 | 0.1423 |
| 0.1556 | 2.57 | 84 | 0.0746 |
| 0.1186 | 3.21 | 105 | 0.0720 |
| 0.0971 | 3.86 | 126 | 0.0954 |
| 0.083 | 4.5 | 147 | 0.0759 |
| 0.0695 | 5.14 | 168 | 0.0821 |
| 0.0707 | 5.79 | 189 | 0.0887 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "naver-clova-ix/donut-base", "model-index": [{"name": "donut_synDB_wplus", "results": []}]} | Donut01/donut_synDB_wplus | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:naver-clova-ix/donut-base",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:49:34+00:00 |
text-generation | transformers |
# Model Trained Using AutoTrain
This model was trained using AutoTrain. For more information, please visit [AutoTrain](https://hf.co/docs/autotrain).
# Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "PATH_TO_THIS_REPO"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` | {"license": "other", "library_name": "transformers", "tags": ["autotrain", "text-generation-inference", "text-generation", "peft"], "widget": [{"messages": [{"role": "user", "content": "What is your favorite condiment?"}]}]} | usr-bin-ksh/autotrain-lchp3-d1ij0 | null | [
"transformers",
"tensorboard",
"safetensors",
"autotrain",
"text-generation-inference",
"text-generation",
"peft",
"conversational",
"license:other",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:50:08+00:00 |
text-generation | transformers | {} | Nishika26/llama2-sql-nish-2 | null | [
"transformers",
"pytorch",
"llama",
"text-generation",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:50:14+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]
| {"library_name": "transformers", "tags": []} | avemio-digital/llama3-checkpoint-3000-orpo | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:50:24+00:00 |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PolizzeDonut-LastProvaClust-Cluster7di7-5Epochs
This model is a fine-tuned version of [tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0](https://huggingface.co/tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0", "model-index": [{"name": "PolizzeDonut-LastProvaClust-Cluster7di7-5Epochs", "results": []}]} | tedad09/PolizzeDonut-LastProvaClust-Cluster7di7-5Epochs | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:50:34+00:00 |
null | transformers | {} | zz-xx/llama-3-8b-bnb-4bit-bias-detection-q8_0 | null | [
"transformers",
"gguf",
"llama",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:50:58+00:00 |
|
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-bart-sst3-distilled
This model is a fine-tuned version of [aravindhank/valuenet-bart-base](https://huggingface.co/aravindhank/valuenet-bart-base) on the None dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 33
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
| {"tags": ["generated_from_trainer"], "base_model": "aravindhank/valuenet-bart-base", "model-index": [{"name": "tiny-bart-sst3-distilled", "results": []}]} | aravindhank/tiny-bart-sst3-distilled | null | [
"transformers",
"tensorboard",
"safetensors",
"bart",
"text2text-generation",
"generated_from_trainer",
"base_model:aravindhank/valuenet-bart-base",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:51:32+00:00 |
null | transformers | {} | zz-xx/llama-3-8b-bnb-4bit-bias-detection-q5_k_m | null | [
"transformers",
"gguf",
"llama",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:53:22+00:00 |
|
null | transformers | {} | zz-xx/gemma-7b-bnb-4bit-bias-q8_0 | null | [
"transformers",
"gguf",
"gemma",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:54:40+00:00 |
|
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Yuma42/KangalKhan-Ruby-7B-Fixed
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF/resolve/main/KangalKhan-Ruby-7B-Fixed.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["merge", "mergekit", "lazymergekit", "argilla/CapybaraHermes-2.5-Mistral-7B", "argilla/distilabeled-OpenHermes-2.5-Mistral-7B"], "base_model": "Yuma42/KangalKhan-Ruby-7B-Fixed", "quantized_by": "mradermacher"} | mradermacher/KangalKhan-Ruby-7B-Fixed-GGUF | null | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"argilla/CapybaraHermes-2.5-Mistral-7B",
"argilla/distilabeled-OpenHermes-2.5-Mistral-7B",
"en",
"base_model:Yuma42/KangalKhan-Ruby-7B-Fixed",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:55:30+00:00 |
null | transformers | {} | zz-xx/gemma-7b-bnb-4bit-bias-q5_k_m | null | [
"transformers",
"gguf",
"gemma",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:55:52+00:00 |
|
null | transformers | {} | zxh4546/psttransformer-pde-msr-fromscratch-50-256-8-16-4-0.1-0.1 | null | [
"transformers",
"pytorch",
"points",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T09:56:07+00:00 |
|
null | null | {} | yekaii/lora_model | null | [
"region:us"
] | null | 2024-04-29T09:57:18+00:00 |
|
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# HPY_gpt2_v4
This model is a fine-tuned version of [ClassCat/gpt2-base-french](https://huggingface.co/ClassCat/gpt2-base-french) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7656
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 207 | 1.9531 |
| No log | 2.0 | 415 | 1.8299 |
| 2.1311 | 3.0 | 622 | 1.7804 |
| 2.1311 | 3.99 | 828 | 1.7656 |
### Framework versions
- Transformers 4.30.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.13.3
| {"license": "cc-by-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "HPY_gpt2_v4", "results": []}]} | azizkt/HPY_gpt2_v4 | null | [
"transformers",
"pytorch",
"tensorboard",
"gpt2",
"text-generation",
"generated_from_trainer",
"license:cc-by-sa-4.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:57:43+00:00 |
text-classification | setfit |
# SetFit with mental/mental-bert-base-uncased
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mental/mental-bert-base-uncased](https://huggingface.co/mental/mental-bert-base-uncased) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mental/mental-bert-base-uncased](https://huggingface.co/mental/mental-bert-base-uncased)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:--------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presence of a loved one | <ul><li>"Living alone feels like a double-edged sword, on one hand, I have my privacy, but on the other hand, there's no one around to support me when I'm feeling like shit."</li><li>'I have no one to talk to or no one who understands me.'</li><li>'I wish I had a shoulder to lean on when everything is falling apart.'</li></ul> |
| Previous attempt | <ul><li>'Shit got real after my last attempt, i woke up surrounded by a bunch of medical equipment, wondering what the fuck happened.'</li><li>"Looking back at my attempts, I can't deny there's a part of me that's glad they didn't work, but there's also this nagging voice wondering if I missed my chance."</li><li>"In the past, I tried to end it all, but I'm in the same situation now."</li></ul> |
| Ability to take care of oneself | <ul><li>"I've let go of everything that used to matter to me, my hobbies, my friends, everything seems uninteresting."</li><li>"It's hard to maintain a routine or assume my responsibilities, I've completely dropped out."</li><li>"I'm so disoriented, I forget important things and it's making my situation worse."</li></ul> |
| Ability to hope for change | <ul><li>"I'm just so tired of feeling stuck, every day feels the same, and I can't see any way out, I need help finding hope for a change in my life.,"</li><li>'I feel so isolated in all of this, like nobody would ever understand what I’m going through.'</li><li>"I don't know what to do anymore, it feels like my reason to live has been completely drained away, i'm desperately searching for any glimmer of hope to hold onto.,"</li></ul> |
| Other | <ul><li>"My garden has been thriving this summer, it's so rewarding to see everything in bloom."</li><li>"I've been trying to be more sustainable, I even started composting my food scraps."</li><li>"I've been learning to play the piano lately, it's so fulfilling to see my progress."</li></ul> |
| Suicidal planning | <ul><li>"I don't want to be here anymore, I don't want to endure this, I'm seriously thinking about killing myself."</li><li>"I've had thoughts of ending my life."</li><li>"Sometimes, I imagine myself in this life, and I don't see the point of it all."</li></ul> |
| Ability to control oneself | <ul><li>"I wish I could put my brain on pause, just so I don't act on impulse all the time."</li><li>'I try to focus, but my thoughts are too fast and I act before considering the consequences.'</li><li>"I can't stop myself from falling apart, no matter how hard I try."</li></ul> |
| Consumption | <ul><li>"Drinking has become my go-to escape from this overwhelming situation, It's like I can't deal with it sober anymore."</li><li>"The more I struggle with this distressing situation, the more I find solace in drinking, It's becoming a dangerous habit that's tough to break."</li><li>'Lately, when shit hits the fan, I find myself reaching for the bottle'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8276 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("richie-ghost/setfit-mental-bert-base-uncased-Suicidal-Topic-Check")
# Run inference
preds = model("There's no structure in my life, and that makes me even sicker.")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 18.3582 | 40 |
| Label | Training Sample Count |
|:--------------------------------|:----------------------|
| Suicidal planning | 9 |
| Previous attempt | 11 |
| Presence of a loved one | 8 |
| Other | 9 |
| Consumption | 6 |
| Ability to take care of oneself | 8 |
| Ability to hope for change | 7 |
| Ability to control oneself | 9 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:--------:|:-------------:|:---------------:|
| 0.0041 | 1 | 0.3127 | - |
| 0.2041 | 50 | 0.1378 | - |
| 0.4082 | 100 | 0.0519 | - |
| 0.6122 | 150 | 0.0043 | - |
| 0.8163 | 200 | 0.0014 | - |
| 1.0 | 245 | - | 0.0717 |
| 1.0204 | 250 | 0.0008 | - |
| 1.2245 | 300 | 0.0006 | - |
| 1.4286 | 350 | 0.0006 | - |
| 1.6327 | 400 | 0.0003 | - |
| 1.8367 | 450 | 0.0005 | - |
| 2.0 | 490 | - | 0.0693 |
| 2.0408 | 500 | 0.0005 | - |
| 2.2449 | 550 | 0.0006 | - |
| 2.4490 | 600 | 0.0005 | - |
| 2.6531 | 650 | 0.0003 | - |
| 2.8571 | 700 | 0.0003 | - |
| 3.0 | 735 | - | 0.0698 |
| 0.0041 | 1 | 0.0003 | - |
| 0.2041 | 50 | 0.0006 | - |
| 0.4082 | 100 | 0.0004 | - |
| 0.6122 | 150 | 0.001 | - |
| 0.8163 | 200 | 0.0002 | - |
| 1.0 | 245 | - | 0.0633 |
| 1.0204 | 250 | 0.0002 | - |
| 1.2245 | 300 | 0.0 | - |
| 1.4286 | 350 | 0.0001 | - |
| 1.6327 | 400 | 0.0001 | - |
| 1.8367 | 450 | 0.0001 | - |
| 2.0 | 490 | - | 0.0598 |
| 2.0408 | 500 | 0.0001 | - |
| 2.2449 | 550 | 0.0001 | - |
| 2.4490 | 600 | 0.0001 | - |
| 2.6531 | 650 | 0.0001 | - |
| 2.8571 | 700 | 0.0001 | - |
| 3.0 | 735 | - | 0.0585 |
| 3.0612 | 750 | 0.0001 | - |
| 3.2653 | 800 | 0.0001 | - |
| 3.4694 | 850 | 0.0001 | - |
| 3.6735 | 900 | 0.0001 | - |
| 3.8776 | 950 | 0.0 | - |
| 4.0 | 980 | - | 0.0582 |
| 4.0816 | 1000 | 0.0001 | - |
| 4.2857 | 1050 | 0.0 | - |
| 4.4898 | 1100 | 0.0 | - |
| 4.6939 | 1150 | 0.0 | - |
| 4.8980 | 1200 | 0.0 | - |
| 5.0 | 1225 | - | 0.0583 |
| 5.1020 | 1250 | 0.0 | - |
| 5.3061 | 1300 | 0.0 | - |
| 5.5102 | 1350 | 0.0 | - |
| 5.7143 | 1400 | 0.0 | - |
| 5.9184 | 1450 | 0.0 | - |
| **6.0** | **1470** | **-** | **0.0561** |
| 0.0041 | 1 | 0.0 | - |
| 0.2041 | 50 | 0.0 | - |
| 0.4082 | 100 | 0.0001 | - |
| 0.6122 | 150 | 0.0002 | - |
| 0.8163 | 200 | 0.0002 | - |
| 1.0 | 245 | - | 0.0699 |
| 1.0204 | 250 | 0.0001 | - |
| 1.2245 | 300 | 0.0001 | - |
| 1.4286 | 350 | 0.0 | - |
| 1.6327 | 400 | 0.0 | - |
| 1.8367 | 450 | 0.0 | - |
| 2.0 | 490 | - | 0.0653 |
| 2.0408 | 500 | 0.0001 | - |
| 2.2449 | 550 | 0.0 | - |
| 2.4490 | 600 | 0.0 | - |
| 2.6531 | 650 | 0.0001 | - |
| 2.8571 | 700 | 0.0001 | - |
| 3.0 | 735 | - | 0.0651 |
| 3.0612 | 750 | 0.0 | - |
| 3.2653 | 800 | 0.0 | - |
| 3.4694 | 850 | 0.0 | - |
| 3.6735 | 900 | 0.0 | - |
| 3.8776 | 950 | 0.0001 | - |
| 4.0 | 980 | - | 0.0634 |
| 4.0816 | 1000 | 0.0 | - |
| 4.2857 | 1050 | 0.0 | - |
| 4.4898 | 1100 | 0.0 | - |
| 4.6939 | 1150 | 0.0 | - |
| 4.8980 | 1200 | 0.0 | - |
| 5.0 | 1225 | - | 0.0654 |
| 5.1020 | 1250 | 0.0 | - |
| 5.3061 | 1300 | 0.0 | - |
| 5.5102 | 1350 | 0.0 | - |
| 5.7143 | 1400 | 0.0 | - |
| 5.9184 | 1450 | 0.0 | - |
| **6.0** | **1470** | **-** | **0.0627** |
| 6.1224 | 1500 | 0.0 | - |
| 6.3265 | 1550 | 0.0 | - |
| 6.5306 | 1600 | 0.0 | - |
| 6.7347 | 1650 | 0.0 | - |
| 6.9388 | 1700 | 0.0 | - |
| 7.0 | 1715 | - | 0.0648 |
| 7.1429 | 1750 | 0.0 | - |
| 7.3469 | 1800 | 0.0 | - |
| 7.5510 | 1850 | 0.0 | - |
| 7.7551 | 1900 | 0.0 | - |
| 7.9592 | 1950 | 0.0 | - |
| 8.0 | 1960 | - | 0.0636 |
| 8.1633 | 2000 | 0.0 | - |
| 8.3673 | 2050 | 0.0 | - |
| 8.5714 | 2100 | 0.0 | - |
| 8.7755 | 2150 | 0.0 | - |
| 8.9796 | 2200 | 0.0 | - |
| 9.0 | 2205 | - | 0.0648 |
| 9.1837 | 2250 | 0.0 | - |
| 9.3878 | 2300 | 0.0 | - |
| 9.5918 | 2350 | 0.0 | - |
| 9.7959 | 2400 | 0.0 | - |
| 10.0 | 2450 | 0.0 | 0.0643 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> | {"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "base_model": "mental/mental-bert-base-uncased", "widget": [{"text": "I let myself go, I make no effort to eat, sleep or take care of myself."}, {"text": "There's no structure in my life, and that makes me even sicker."}, {"text": "I'm drifting away from my friends, my family, games that I couldn't possibly know anything about."}, {"text": "My grandmother's homemade pasta recipe is the best, nothing else compares to it."}, {"text": "It's frustrating to realize I've made yet another impulsive choice that sets me back instead of moving forward."}], "pipeline_tag": "text-classification", "inference": true, "model-index": [{"name": "SetFit with mental/mental-bert-base-uncased", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.8275862068965517, "name": "Accuracy"}]}]}]} | richie-ghost/setfit-mental-bert-base-uncased-Suicidal-Topic-Check | null | [
"setfit",
"safetensors",
"bert",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
"arxiv:2209.11055",
"base_model:mental/mental-bert-base-uncased",
"model-index",
"region:us"
] | null | 2024-04-29T09:57:55+00:00 |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# 0.01_3iters_bs256_nodpo_full6w_iter_3
This model is a fine-tuned version of [ShenaoZhang/0.01_3iters_bs256_nodpo_full6w_iter_2](https://huggingface.co/ShenaoZhang/0.01_3iters_bs256_nodpo_full6w_iter_2) on the updated and the original datasets.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["alignment-handbook", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["updated", "original"], "base_model": "ShenaoZhang/0.01_3iters_bs256_nodpo_full6w_iter_2", "model-index": [{"name": "0.01_3iters_bs256_nodpo_full6w_iter_3", "results": []}]} | ShenaoZhang/0.01_3iters_bs256_nodpo_full6w_iter_3 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"generated_from_trainer",
"trl",
"dpo",
"conversational",
"dataset:updated",
"dataset:original",
"base_model:ShenaoZhang/0.01_3iters_bs256_nodpo_full6w_iter_2",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:58:15+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/na8e4g2 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T09:58:16+00:00 |
text-generation | transformers |
The model is a fine-tuned large language model on using publically available medical data.
Base model: Llama-3-8B
## Model Description
- **Developed by:** Probe Medical, MAILAB from Yonsei University
- **Model type:** LLM
- **Language(s) (NLP):** English
- **Finetuned from model:** llama-3-8b
## Training Hyperparameters
- **Lora Rank:** 128
- **Lora Alpha:** 256
- **Lora Targets:** "o_proj", "down_proj", "v_proj", "gate_proj", "up_proj", "k_proj", "q_proj"
| {"license": "llama3"} | probemedicalandyonseimailab/Llama-8B-1807 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"license:llama3",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:00:33+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/a1yhfkt | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:00:37+00:00 |
null | null | {} | zhouqh3/autotrain | null | [
"region:us"
] | null | 2024-04-29T10:00:55+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** itayl
- **License:** apache-2.0
- **Finetuned from model :** yam-peleg/Hebrew-Mistral-7B
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "yam-peleg/Hebrew-Mistral-7B"} | itayl/Hebrew-Mistral-7B_Chat-lora | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:yam-peleg/Hebrew-Mistral-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:01:13+00:00 |
null | null | {"license": "llama3"} | Jnaros2011/Llama-3-string-interpreter | null | [
"license:llama3",
"region:us"
] | null | 2024-04-29T10:01:41+00:00 |
|
text-generation | transformers | # merge
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [motherfucker0/zhun01](https://huggingface.co/motherfucker0/zhun01) as a base.
### Models Merged
The following models were included in the merge:
* [motherfucker0/derrick02](https://huggingface.co/motherfucker0/derrick02)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
models:
- model: motherfucker0/zhun01
# no parameters necessary for base model
- model: motherfucker0/zhun01
parameters:
density: 0.5
weight: 0.8
- model: motherfucker0/derrick02
parameters:
density: 0.5
weight: 0.2
merge_method: ties
base_model: motherfucker0/zhun01
parameters:
normalize: true
dtype: bfloat16
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": ["motherfucker0/zhun01", "motherfucker0/derrick02"]} | motherfucker0/derrick03 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"mergekit",
"merge",
"arxiv:2306.01708",
"base_model:motherfucker0/zhun01",
"base_model:motherfucker0/derrick02",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:01:42+00:00 |
null | transformers |
# Uploaded model
- **Developed by:** yekaii
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | yekaii/test_lora_model | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:01:56+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="loziobo/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | loziobo/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:02:28+00:00 |
null | null | {"license": "openrail"} | YASSSOALI/FAFA | null | [
"license:openrail",
"region:us"
] | null | 2024-04-29T10:02:41+00:00 |
|
null | null | {} | ritesh3Pillar/aapc-forum-bot | null | [
"region:us"
] | null | 2024-04-29T10:02:47+00:00 |
|
null | null | {} | Gab33/brevebot | null | [
"region:us"
] | null | 2024-04-29T10:03:01+00:00 |
|
null | null | {} | thorirhrafn/gpt7B_DPO_model | null | [
"region:us"
] | null | 2024-04-29T10:03:25+00:00 |
|
text-generation | null | # The GGUF Version
<center>
<img src="https://cdn-uploads.huggingface.co/production/uploads/6116d0584ef9fdfbf45dc4d9/QqnmEUN3c3fvnnDlFVfUV.png">
</center>
### About GGUF
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp.
Here is an incomplete list of clients and libraries that are known to support GGUF:
* [ollama](https://github.com/ollama/ollama). **Recommended**
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option.
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server.
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023.
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration.
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling.
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel.
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection.
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration.
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use.
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models.
| {"language": ["ar"], "license": "llama3", "tags": ["gguf"], "pipeline_tag": "text-generation"} | MohamedRashad/Arabic-Orpo-Llama-3-8B-Instruct-GGUF | null | [
"gguf",
"text-generation",
"ar",
"license:llama3",
"region:us"
] | null | 2024-04-29T10:03:27+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="pietroorlandi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | pietroorlandi/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:04:12+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **FrozenLake-v1**
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .
## Usage
```python
model = load_from_hub(repo_id="elisamammi/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-FrozenLake-v1-4x4-noSlippery", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "FrozenLake-v1-4x4-no_slippery", "type": "FrozenLake-v1-4x4-no_slippery"}, "metrics": [{"type": "mean_reward", "value": "1.00 +/- 0.00", "name": "mean_reward", "verified": false}]}]}]} | elisamammi/q-FrozenLake-v1-4x4-noSlippery | null | [
"FrozenLake-v1-4x4-no_slippery",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:04:30+00:00 |
text-classification | transformers | {} | PhilLel/my_awesome_model | null | [
"transformers",
"tensorboard",
"safetensors",
"distilbert",
"text-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:05:23+00:00 |
|
text2text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Transliteration-Moroccan-Darija
This model is trained to convert Moroccan Darija text written in Arabizi (Latin script) to Arabic letters.
Whether you're dealing with informal texts, social media posts, or any other content in Moroccan Arabizi, the model is here to help you accurately transliterate it into Arabic script.
## Model Overview
Our model is built upon the powerful Transformer architecture, leveraging state-of-the-art natural language processing techniques.
It has been trained from scratch on the "atlasia/ATAM" dataset, specifically for the task of transliterating Moroccan Darija Arabizi into Arabic letters, ensuring high-quality and accurate transliterations.
Furthermore, we trained a BPE Tokenizer specifically for this task.
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.02
- num_epochs: 120
## Framework versions
- Transformers 4.39.2
- Pytorch 2.2.2+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2
## Usage
Using our model for transliteration is simple and straightforward.
You can integrate it into your projects or workflows via the Hugging Face Transformers library.
Here's a basic example of how to use the model in Python:
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("BounharAbdelaziz/Transliteration-Moroccan-Darija")
model = AutoModelForSeq2SeqLM.from_pretrained("BounharAbdelaziz/Transliteration-Moroccan-Darija")
# Define your Moroccan Darija Arabizi text
input_text = "Your Moroccan Darija Arabizi text goes here."
# Tokenize the input text
input_tokens = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
# Perform transliteration
output_tokens = model.generate(**input_tokens)
# Decode the output tokens
output_text = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
print("Transliteration:", output_text)
```
## Example
Let's see an example of transliterating Moroccan Darija Arabizi to Arabic:
**Input**: "kayn chi"
**Output**: "كاين شي"
## Limiations
This version has some limitations mainly due to the Tokenizer.
We're currently collecting more data with the aim of continous improvements.
## Feedback
We're continuously striving to improve our model's performance and usability and we will be improving it incrementaly.
If you have any feedback, suggestions, or encounter any issues, please don't hesitate to reach out to us.
| {"language": ["ar"], "tags": ["generated_from_trainer"], "datasets": ["atlasia/ATAM"], "model-index": [{"name": "Transliteration-Moroccan-Darija", "results": []}]} | atlasia/Transliteration-Moroccan-Darija | null | [
"transformers",
"safetensors",
"encoder-decoder",
"text2text-generation",
"generated_from_trainer",
"ar",
"dataset:atlasia/ATAM",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:05:46+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="loziobo/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.52 +/- 2.76", "name": "mean_reward", "verified": false}]}]}]} | loziobo/q-Taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:06:43+00:00 |
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-dpo-full-sft-wo-medication_qa
This model is a fine-tuned version of [Minbyul/mistral-7b-wo-medication_qa-sft](https://huggingface.co/Minbyul/mistral-7b-wo-medication_qa-sft) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0756
- Rewards/chosen: -3.7115
- Rewards/rejected: -11.1989
- Rewards/accuracies: 0.9531
- Rewards/margins: 7.4875
- Logps/rejected: -1662.8185
- Logps/chosen: -803.2770
- Logits/rejected: -2.3910
- Logits/chosen: -2.5860
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Logits/chosen | Logits/rejected | Logps/chosen | Logps/rejected | Validation Loss | Rewards/accuracies | Rewards/chosen | Rewards/margins | Rewards/rejected |
|:-------------:|:-----:|:----:|:-------------:|:---------------:|:------------:|:--------------:|:---------------:|:------------------:|:--------------:|:---------------:|:----------------:|
| 0.2799 | 0.31 | 100 | -3.0348 | -3.0868 | -584.1479 | -794.0103 | 0.5261 | 0.75 | -1.5202 | 0.9907 | -2.5108 |
| 0.154 | 0.62 | 200 | -2.6948 | -2.5547 | -742.1359 | -1446.8754 | 0.0923 | 0.9375 | -3.1001 | 5.9394 | -9.0395 |
| 0.0948 | 0.92 | 300 | -2.5877 | -2.3930 | -803.1033 | -1661.4266 | 0.0753 | 0.9531 | -3.7097 | 7.4753 | -11.1850 |
### Framework versions
- Transformers 4.39.0.dev0
- Pytorch 2.1.2
- Datasets 2.14.6
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["alignment-handbook", "trl", "dpo", "generated_from_trainer", "trl", "dpo", "generated_from_trainer"], "datasets": ["HuggingFaceH4/ultrafeedback_binarized"], "base_model": "Minbyul/mistral-7b-wo-medication_qa-sft", "model-index": [{"name": "mistral-7b-dpo-full-sft-wo-medication_qa", "results": []}]} | Minbyul/mistral-7b-dpo-full-sft-wo-medication_qa | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"alignment-handbook",
"trl",
"dpo",
"generated_from_trainer",
"dataset:HuggingFaceH4/ultrafeedback_binarized",
"base_model:Minbyul/mistral-7b-wo-medication_qa-sft",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:07:06+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Yuma42/KangalKhan-RawEmerald-7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawEmerald-7B-GGUF/resolve/main/KangalKhan-RawEmerald-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["merge", "mergekit", "lazymergekit", "argilla/CapybaraHermes-2.5-Mistral-7B", "argilla/distilabeled-OpenHermes-2.5-Mistral-7B"], "base_model": "Yuma42/KangalKhan-RawEmerald-7B", "quantized_by": "mradermacher"} | mradermacher/KangalKhan-RawEmerald-7B-GGUF | null | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"argilla/CapybaraHermes-2.5-Mistral-7B",
"argilla/distilabeled-OpenHermes-2.5-Mistral-7B",
"en",
"base_model:Yuma42/KangalKhan-RawEmerald-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:07:16+00:00 |
null | null | ¿Qué es Yenki Derm gel?
Yenki Derm Precio es una crema de primera calidad diseñada específicamente para aliviar los síntomas de la psoriasis, incluida la inflamación, la picazón y la descamación de la piel. Su fórmula avanzada integra una mezcla sinérgica de ingredientes naturales conocidos por sus propiedades calmantes y curativas, brindando un alivio rápido y efectivo a las áreas afectadas.
Página web oficial:<a href="https://www.nutritionsee.com/yenkeexi">www.YenkiDerm.com</a>
<p><a href="https://www.nutritionsee.com/yenkeexi"> <img src="https://www.nutritionsee.com/wp-content/uploads/2024/04/Yenki-Derm-Mexico.png" alt="enter image description here"> </a></p>
<a href="https://www.nutritionsee.com/yenkeexi">¡¡Comprar ahora!! Haga clic en el enlace a continuación para obtener más información y obtener un 50% de descuento ahora... ¡Date prisa!</a>
Página web oficial:<a href="https://www.nutritionsee.com/yenkeexi">www.YenkiDerm.com</a> | {"license": "apache-2.0"} | YenkiDermMexico/YenkiDermMexico | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T10:07:16+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="elisamammi/Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.56 +/- 2.71", "name": "mean_reward", "verified": false}]}]}]} | elisamammi/Taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:08:10+00:00 |
reinforcement-learning | null |
# **Q-Learning** Agent playing1 **Taxi-v3**
This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .
## Usage
```python
model = load_from_hub(repo_id="pietroorlandi/q-Taxi-v3", filename="q-learning.pkl")
# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])
```
| {"tags": ["Taxi-v3", "q-learning", "reinforcement-learning", "custom-implementation"], "model-index": [{"name": "q-Taxi-v3", "results": [{"task": {"type": "reinforcement-learning", "name": "reinforcement-learning"}, "dataset": {"name": "Taxi-v3", "type": "Taxi-v3"}, "metrics": [{"type": "mean_reward", "value": "7.50 +/- 2.76", "name": "mean_reward", "verified": false}]}]}]} | pietroorlandi/q-Taxi-v3 | null | [
"Taxi-v3",
"q-learning",
"reinforcement-learning",
"custom-implementation",
"model-index",
"region:us"
] | null | 2024-04-29T10:09:05+00:00 |
image-classification | transformers |
# Model Trained Using AutoTrain
- Problem type: Image Classification
## Validation Metrics
loss: 0.25049543380737305
f1_macro: 0.8057413756994828
f1_micro: 0.9143052236258109
f1_weighted: 0.9129097427012546
precision_macro: 0.8645407928168571
precision_micro: 0.9143052236258109
precision_weighted: 0.9181845072286691
recall_macro: 0.7733911243129393
recall_micro: 0.9143052236258109
recall_weighted: 0.9143052236258109
accuracy: 0.9143052236258109
| {"tags": ["autotrain", "image-classification"], "datasets": ["autotrain-z4v51-00h62/autotrain-data"], "widget": [{"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg", "example_title": "Tiger"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg", "example_title": "Teapot"}, {"src": "https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg", "example_title": "Palace"}]} | Kushagra07/autotrain-z4v51-00h62 | null | [
"transformers",
"tensorboard",
"safetensors",
"vit",
"image-classification",
"autotrain",
"dataset:autotrain-z4v51-00h62/autotrain-data",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:09:49+00:00 |
text-classification | setfit |
# SetFit with intfloat/multilingual-e5-large
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6 | <ul><li>'What kind of promotions generally lead to higher cannibalization?'</li><li>'Which Skus has higher Canninibalization in Natural Juices for 2023?'</li><li>'Which two Product can have simultaneous Promotions?'</li></ul> |
| 2 | <ul><li>'Which Promotions contributred the most lift Change between 2022 and 2023?'</li><li>'Which category x brand has seen major decline in Volume Lift for 2023?'</li><li>'What actions were taken to increase the volume lift for MEGAMART in 2023?'</li></ul> |
| 3 | <ul><li>'What types of promotions within the FIZZY DRINKS category are best suited for offering high discounts?'</li><li>'Which promotion types are better for high discounts in Hydra category for 2022?'</li><li>'Which promotion types in are better for low discounts in FIZZY DRINKS category?'</li></ul> |
| 5 | <ul><li>'How will increasing the discount by 50 percent on Brand BREEZEFIZZ affect the incremental volume lift?'</li><li>'How will the introduction of a 20% discount promotion for Rice Krispies in August affect incremental volume and ROI?'</li><li>'If I raise the discount by 20% on Brand BREEZEFIZZ, what will be the incremental roi?'</li></ul> |
| 0 | <ul><li>'For which category MULTISAVING type of promotions worked best for WorldMart in 2022?'</li><li>'What type of promotions worked best for WorldMart in 2022?'</li><li>'Which subcategory have the highest ROI in 2022?'</li></ul> |
| 4 | <ul><li>'Suggest a better investment strategy to gain better ROI in 2023 for FIZZY DRINKS'</li><li>'Which promotions have scope for higher investment to drive more ROIs in UrbanHub ?'</li><li>'What promotions in FIZZY DRINKS have shown declining effectiveneHydra and can be discontinued?'</li></ul> |
| 1 | <ul><li>'How do the performance metrics of brands in the FIZZY DRINKS category compare to those in HYDRA and NATURAL JUICES concerning ROI change between 2021 to 2022?'</li><li>'Can you identify the specific factors or challenges that contributed to the decline in ROI within ULTRASTORE in 2022 compared to 2021?'</li><li>'What are the main reasons for ROI decline in 2022 compared to 2021?'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 1.0 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("vgarg/promo_prescriptive_28_04_2024")
# Run inference
preds = model("Which promotion types are better for low discounts for Zucaritas ?")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 7 | 14.6667 | 27 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 10 |
| 1 | 10 |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 9 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (3, 3)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0058 | 1 | 0.3528 | - |
| 0.2890 | 50 | 0.0485 | - |
| 0.5780 | 100 | 0.0052 | - |
| 0.8671 | 150 | 0.0014 | - |
| 1.1561 | 200 | 0.0006 | - |
| 1.4451 | 250 | 0.0004 | - |
| 1.7341 | 300 | 0.0005 | - |
| 2.0231 | 350 | 0.0004 | - |
| 2.3121 | 400 | 0.0004 | - |
| 2.6012 | 450 | 0.0005 | - |
| 2.8902 | 500 | 0.0004 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.7.0
- Transformers: 4.40.0
- PyTorch: 2.2.1+cu121
- Datasets: 2.19.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> | {"library_name": "setfit", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "metrics": ["accuracy"], "base_model": "intfloat/multilingual-e5-large", "widget": [{"text": "What promotions in RTEC have shown declining effectiveness and can be discontinued?"}, {"text": "What are my priority brands in RTEC to get positive Lift Change in 2022?"}, {"text": "What would be the expected incremental volume lift if the discount on Brand Zucaritas is raised by 5%?"}, {"text": "Which promotion types are better for low discounts for Zucaritas ?"}, {"text": "Which Promotions contributred the most ROI Change between 2022 and 2023?"}], "pipeline_tag": "text-classification", "inference": true, "model-index": [{"name": "SetFit with intfloat/multilingual-e5-large", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 1.0, "name": "Accuracy"}]}]}]} | vgarg/promo_prescriptive_28_04_2024 | null | [
"setfit",
"safetensors",
"xlm-roberta",
"sentence-transformers",
"text-classification",
"generated_from_setfit_trainer",
"arxiv:2209.11055",
"base_model:intfloat/multilingual-e5-large",
"model-index",
"region:us"
] | null | 2024-04-29T10:10:12+00:00 |
text-generation | transformers | <p align="center"> <img src="https://huggingface.co/Crystalcareai/LlaMoE-Medium/resolve/main/resources/ddb-nye2T3C3vZwJJm1l6A.png" width="auto" title="LlaMoE-Medium model image"> </p>
This is a 4x8b Llama Mixture of Experts (MoE) model. It was trained on OpenHermes Resort from the Dolphin-2.9 dataset.
The model is a combination of 4 Llama fine-tunes, using DeepSpeed-MoE's architecture. All experts are active for every token.
This is a VERY good model, somewhere in between 8B and Llama 70B in capability. Enjoy!
Thank you to:
CrusoeEnergy for sponsoring the compute for this project
My collaborators Eric Hartford and Fernando (has too many names) Neto
| {} | Crystalcareai/LlaMoE-Medium | null | [
"transformers",
"safetensors",
"deepseek",
"text-generation",
"conversational",
"custom_code",
"autotrain_compatible",
"region:us"
] | null | 2024-04-29T10:10:57+00:00 |
null | null | {} | MrNorris/testFineTuneQ4GGUF | null | [
"region:us"
] | null | 2024-04-29T10:11:06+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V4-bert-text-classification-model
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1669
- Accuracy: 0.9625
- F1: 0.8267
- Precision: 0.8224
- Recall: 0.8323
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.5437 | 0.11 | 50 | 1.6872 | 0.2896 | 0.0712 | 0.1912 | 0.1327 |
| 0.7301 | 0.22 | 100 | 0.7109 | 0.8078 | 0.4981 | 0.4962 | 0.5091 |
| 0.3015 | 0.33 | 150 | 0.4554 | 0.8988 | 0.6675 | 0.6601 | 0.6756 |
| 0.2653 | 0.44 | 200 | 0.5038 | 0.8682 | 0.6422 | 0.6256 | 0.6615 |
| 0.1756 | 0.55 | 250 | 0.4243 | 0.9106 | 0.6947 | 0.8014 | 0.7020 |
| 0.2054 | 0.66 | 300 | 0.3561 | 0.9087 | 0.6890 | 0.8099 | 0.6808 |
| 0.1555 | 0.76 | 350 | 0.2747 | 0.9166 | 0.7225 | 0.8152 | 0.7111 |
| 0.1215 | 0.87 | 400 | 0.1767 | 0.9625 | 0.8282 | 0.8258 | 0.8313 |
| 0.1221 | 0.98 | 450 | 0.3365 | 0.9243 | 0.7956 | 0.7887 | 0.8103 |
| 0.1382 | 1.09 | 500 | 0.2132 | 0.9554 | 0.8235 | 0.8221 | 0.8263 |
| 0.0829 | 1.2 | 550 | 0.2316 | 0.9524 | 0.8216 | 0.8178 | 0.8279 |
| 0.0978 | 1.31 | 600 | 0.1630 | 0.9680 | 0.8356 | 0.8353 | 0.8363 |
| 0.0876 | 1.42 | 650 | 0.1157 | 0.9718 | 0.8363 | 0.8359 | 0.8370 |
| 0.0818 | 1.53 | 700 | 0.1504 | 0.9669 | 0.8338 | 0.8389 | 0.8289 |
| 0.0642 | 1.64 | 750 | 0.1519 | 0.9713 | 0.8364 | 0.8384 | 0.8347 |
| 0.0984 | 1.75 | 800 | 0.1716 | 0.9666 | 0.8334 | 0.8360 | 0.8310 |
| 0.0724 | 1.86 | 850 | 0.1554 | 0.9694 | 0.8358 | 0.8366 | 0.8353 |
| 0.0546 | 1.97 | 900 | 0.1799 | 0.9642 | 0.8329 | 0.8339 | 0.8328 |
| 0.0559 | 2.07 | 950 | 0.1864 | 0.9642 | 0.8323 | 0.8294 | 0.8363 |
| 0.0396 | 2.18 | 1000 | 0.2251 | 0.9601 | 0.8286 | 0.8262 | 0.8327 |
| 0.0509 | 2.29 | 1050 | 0.1233 | 0.9721 | 0.8341 | 0.8358 | 0.8325 |
| 0.0528 | 2.4 | 1100 | 0.1674 | 0.9669 | 0.8345 | 0.8336 | 0.8360 |
| 0.0269 | 2.51 | 1150 | 0.1662 | 0.9686 | 0.8365 | 0.8350 | 0.8384 |
| 0.009 | 2.62 | 1200 | 0.1835 | 0.9661 | 0.8341 | 0.8310 | 0.8378 |
| 0.0193 | 2.73 | 1250 | 0.1949 | 0.9666 | 0.8339 | 0.8342 | 0.8340 |
| 0.0502 | 2.84 | 1300 | 0.1532 | 0.9694 | 0.8327 | 0.8305 | 0.8351 |
| 0.027 | 2.95 | 1350 | 0.1821 | 0.9680 | 0.8355 | 0.8351 | 0.8365 |
| 0.0271 | 3.06 | 1400 | 0.2110 | 0.9344 | 0.7545 | 0.8226 | 0.7387 |
| 0.0149 | 3.17 | 1450 | 0.2127 | 0.9631 | 0.8336 | 0.8337 | 0.8345 |
| 0.018 | 3.28 | 1500 | 0.1662 | 0.9710 | 0.8366 | 0.8347 | 0.8388 |
| 0.0067 | 3.38 | 1550 | 0.1927 | 0.9669 | 0.8340 | 0.8309 | 0.8378 |
| 0.0102 | 3.49 | 1600 | 0.1735 | 0.9705 | 0.8363 | 0.8333 | 0.8398 |
| 0.0035 | 3.6 | 1650 | 0.1687 | 0.9705 | 0.8356 | 0.8350 | 0.8366 |
| 0.0014 | 3.71 | 1700 | 0.1689 | 0.9713 | 0.8363 | 0.8359 | 0.8370 |
| 0.0147 | 3.82 | 1750 | 0.1648 | 0.9710 | 0.8361 | 0.8355 | 0.8369 |
| 0.0085 | 3.93 | 1800 | 0.1667 | 0.9716 | 0.8364 | 0.8358 | 0.8371 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "bert-base-uncased", "model-index": [{"name": "V4-bert-text-classification-model", "results": []}]} | AmirlyPhd/v10-bert-combined-dataset-text-classification-model | null | [
"transformers",
"tensorboard",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:bert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:11:22+00:00 |
null | pyannote | This is the model card of a pyannote model that has been pushed on the Hub. This model card has been automatically generated. | {"library_name": "pyannote", "tags": ["pyannote", "pyannote.audio", "pyannote-audio-model", "audio", "voice", "speech", "speaker", "speaker-recognition", "speaker-verification", "speaker-identification", "speaker-embedding", "PyTorch", "wespeaker"], "licence": "cc-by-4.0"} | kamilakesbi/speaker_embeddings | null | [
"pyannote",
"pytorch",
"pyannote.audio",
"pyannote-audio-model",
"audio",
"voice",
"speech",
"speaker",
"speaker-recognition",
"speaker-verification",
"speaker-identification",
"speaker-embedding",
"PyTorch",
"wespeaker",
"region:us"
] | null | 2024-04-29T10:12:21+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Yuma42/KangalKhan-RawRuby-7B
<!-- provided-files -->
weighted/imatrix quants are available at https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-i1-GGUF
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q2_K.gguf) | Q2_K | 2.8 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.IQ3_XS.gguf) | IQ3_XS | 3.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q3_K_S.gguf) | Q3_K_S | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.IQ3_S.gguf) | IQ3_S | 3.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.IQ3_M.gguf) | IQ3_M | 3.4 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q3_K_M.gguf) | Q3_K_M | 3.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q3_K_L.gguf) | Q3_K_L | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.IQ4_XS.gguf) | IQ4_XS | 4.0 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q4_K_S.gguf) | Q4_K_S | 4.2 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q4_K_M.gguf) | Q4_K_M | 4.5 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q5_K_S.gguf) | Q5_K_S | 5.1 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q5_K_M.gguf) | Q5_K_M | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q6_K.gguf) | Q6_K | 6.0 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.Q8_0.gguf) | Q8_0 | 7.8 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/KangalKhan-RawRuby-7B-GGUF/resolve/main/KangalKhan-RawRuby-7B.f16.gguf) | f16 | 14.6 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["merge", "mergekit", "lazymergekit", "Yuma42/KangalKhan-Ruby-7B-Fixed", "Yuma42/KangalKhan-RawEmerald-7B"], "base_model": "Yuma42/KangalKhan-RawRuby-7B", "quantized_by": "mradermacher"} | mradermacher/KangalKhan-RawRuby-7B-GGUF | null | [
"transformers",
"gguf",
"merge",
"mergekit",
"lazymergekit",
"Yuma42/KangalKhan-Ruby-7B-Fixed",
"Yuma42/KangalKhan-RawEmerald-7B",
"en",
"base_model:Yuma42/KangalKhan-RawRuby-7B",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:12:29+00:00 |
null | null | {} | cria111/distilbert-base-uncased | null | [
"region:us"
] | null | 2024-04-29T10:13:12+00:00 |
|
null | null | {} | HenryCai1129/adapter-llama-adapterhappy2sad-2k-search-filtered-50-0.006 | null | [
"region:us"
] | null | 2024-04-29T10:15:42+00:00 |
|
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PolizzeDonut-LastProvaClust-Cluster6di7-5Epochs
This model is a fine-tuned version of [tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0](https://huggingface.co/tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0", "model-index": [{"name": "PolizzeDonut-LastProvaClust-Cluster6di7-5Epochs", "results": []}]} | tedad09/PolizzeDonut-LastProvaClust-Cluster6di7-5Epochs | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:16:53+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/arcee-ai/Llama-3-MegaMed-8B-Model-Stock
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q2_K.gguf) | Q2_K | 3.3 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.IQ3_XS.gguf) | IQ3_XS | 3.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q3_K_S.gguf) | Q3_K_S | 3.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.IQ3_S.gguf) | IQ3_S | 3.8 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.IQ3_M.gguf) | IQ3_M | 3.9 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q3_K_L.gguf) | Q3_K_L | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.IQ4_XS.gguf) | IQ4_XS | 4.6 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q5_K_S.gguf) | Q5_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q5_K_M.gguf) | Q5_K_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q6_K.gguf) | Q6_K | 6.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF/resolve/main/Llama-3-MegaMed-8B-Model-Stock.f16.gguf) | f16 | 16.2 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "tags": ["merge", "mergekit"], "base_model": "arcee-ai/Llama-3-MegaMed-8B-Model-Stock", "quantized_by": "mradermacher"} | mradermacher/Llama-3-MegaMed-8B-Model-Stock-GGUF | null | [
"transformers",
"gguf",
"merge",
"mergekit",
"en",
"base_model:arcee-ai/Llama-3-MegaMed-8B-Model-Stock",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:19:12+00:00 |
automatic-speech-recognition | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# basic_train_basic_test 1000 similar params: per_device_train_batch_size=32, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the xbilek25/xbilek25/train_set_1000_de_en_de dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3813
- Wer: 16.0452
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0113 | 7.02 | 500 | 0.3458 | 17.0373 |
| 0.0015 | 15.02 | 1000 | 0.3461 | 18.2005 |
| 0.0007 | 23.02 | 1500 | 0.3652 | 16.2504 |
| 0.0005 | 31.02 | 2000 | 0.3741 | 16.3531 |
| 0.0004 | 39.01 | 2500 | 0.3790 | 15.6688 |
| 0.0004 | 47.01 | 3000 | 0.3813 | 16.0452 |
### Framework versions
- Transformers 4.37.2
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.15.2
| {"language": ["multilingual"], "license": "apache-2.0", "tags": ["hf-asr-leaderboard", "generated_from_trainer"], "datasets": ["mozilla-foundation/common_voice_11_0"], "metrics": ["wer"], "base_model": "openai/whisper-small", "model-index": [{"name": "basic_train_basic_test 1000 similar params: per_device_train_batch_size=32, # bylo 16 a pod tim 1 gradient_accumulation_steps=2, warmup_steps=300, max_steps=3000", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "xbilek25/xbilek25/train_set_1000_de_en_de", "type": "mozilla-foundation/common_voice_11_0", "args": "config: csen, split: train"}, "metrics": [{"type": "wer", "value": 16.04515908313377, "name": "Wer"}]}]}]} | xbilek25/whisper-small-train-v2.1 | null | [
"transformers",
"tensorboard",
"safetensors",
"whisper",
"automatic-speech-recognition",
"hf-asr-leaderboard",
"generated_from_trainer",
"multilingual",
"dataset:mozilla-foundation/common_voice_11_0",
"base_model:openai/whisper-small",
"license:apache-2.0",
"model-index",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:19:14+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/73y19p3 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:19:36+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | quickstep3621/gjq48wq | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:19:41+00:00 |
null | null | {} | ytol/vit-base-oxford-iiit-pets | null | [
"region:us"
] | null | 2024-04-29T10:20:51+00:00 |
|
text-generation | transformers |
# Uploaded model
- **Developed by:** webnizam
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl", "sft"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | webnizam/llama3-8b-unintended-consequences | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"text-generation-inference",
"unsloth",
"trl",
"sft",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:21:38+00:00 |
text-generation | transformers | {"license": "apache-2.0"} | huskyhong/noname-ai-v2_4-light | null | [
"transformers",
"safetensors",
"qwen2",
"text-generation",
"conversational",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:21:50+00:00 |
|
null | null | {} | uzzivirus/phi2-WP | null | [
"region:us"
] | null | 2024-04-29T10:23:48+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Nandu2905/Indic-gemma-2b-finetuned-sft-Navarasa-3.0-gptq-4bit | null | [
"transformers",
"safetensors",
"gemma",
"text-generation",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"4-bit",
"region:us"
] | null | 2024-04-29T10:24:38+00:00 |
null | null | {"license": "llama2"} | MaypepNecro/ChatEntropia | null | [
"license:llama2",
"region:us"
] | null | 2024-04-29T10:24:43+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/ye9ftaz | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:27:18+00:00 |
text-classification | null | {"pipeline_tag": "text-classification"} | gurman-02/practice | null | [
"text-classification",
"region:us"
] | null | 2024-04-29T10:27:26+00:00 |
|
null | null | {} | KamCastle/1TSDXL | null | [
"region:us"
] | null | 2024-04-29T10:27:51+00:00 |
|
null | null | {} | Jesse2003/Ok | null | [
"region:us"
] | null | 2024-04-29T10:28:02+00:00 |
|
null | null | {"license": "openrail"} | Coolwowsocoolwow/Random_Indian_Tutorial_Voice | null | [
"license:openrail",
"region:us"
] | null | 2024-04-29T10:28:13+00:00 |
|
null | null | {} | MapsMakeStudios/NLP | null | [
"region:us"
] | null | 2024-04-29T10:31:04+00:00 |
|
null | null | {"license": "apache-2.0"} | KyleJuYoungKim/model1 | null | [
"license:apache-2.0",
"region:us"
] | null | 2024-04-29T10:32:01+00:00 |
|
null | sample-factory | [Growth Matrix Reviews](https://jciodev.microsoftcrmportals.com/forums/general-discussion/56e0e0e2-f105-ef11-a81c-6045bd0b2619) It's vital to take note of that not all upgrade techniques are therapeutically or experimentally demonstrated, and numerous items advertised for these reasons might need guideline or logical proof supporting their adequacy and wellbeing. Prior to considering any type of male upgrade, it's significant to talk with a medical care proficient to grasp expected dangers, viability, and legitimate use. Furthermore, solid way of life decisions like standard activity, a decent eating regimen, overseeing pressure, and sufficient rest can emphatically influence sexual wellbeing and execution.
VISIT HERE FOR OFFICIAL WEBSITE:-https://jciodev.microsoftcrmportals.com/forums/general-discussion/56e0e0e2-f105-ef11-a81c-6045bd0b2619
| {"language": ["en"], "license": "bigcode-openrail-m", "library_name": "sample-factory", "tags": ["Growth Matrix Reviews"]} | growthmatrix/growthmatrix | null | [
"sample-factory",
"Growth Matrix Reviews",
"en",
"license:bigcode-openrail-m",
"region:us"
] | null | 2024-04-29T10:32:10+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | shallow6414/g6tfpi9 | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:32:37+00:00 |
null | null | {"license": "llama3"} | Soukaina123/LLama3 | null | [
"license:llama3",
"region:us"
] | null | 2024-04-29T10:33:28+00:00 |
|
text-generation | transformers |
# Uploaded model
- **Developed by:** cemt
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "trl"], "pipeline_tag": "text-generation", "base_model": "unsloth/llama-3-8b-bnb-4bit"} | cemt/Alpaca-llama-3-8b-bnb-4bit | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"llama",
"trl",
"text-generation",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:34:39+00:00 |
null | null | {} | DocDuck/FRED-T5-large-eos | null | [
"region:us"
] | null | 2024-04-29T10:35:44+00:00 |
|
text-generation | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tinyllama-essay-scorer
This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0748
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log | 1.0 | 50 | 2.6337 |
| No log | 2.0 | 100 | 2.7357 |
| No log | 3.0 | 150 | 3.0748 |
### Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2+cpu
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "base_model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0", "model-index": [{"name": "tinyllama-essay-scorer", "results": []}]} | as-cle-bert/tinyllama-essay-scorer | null | [
"transformers",
"tensorboard",
"safetensors",
"llama",
"text-generation",
"generated_from_trainer",
"conversational",
"base_model:TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:36:12+00:00 |
text-classification | null | {"metrics": ["accuracy"], "pipeline_tag": "text-classification"} | BaturhanCagatay/Bert | null | [
"text-classification",
"region:us"
] | null | 2024-04-29T10:36:13+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** ElCapybarone
- **License:** apache-2.0
- **Finetuned from model :** unsloth/llama-3-8b-bnb-4bit
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "llama", "gguf"], "base_model": "unsloth/llama-3-8b-bnb-4bit"} | ElCapybarone/finetunecodetestllmv1 | null | [
"transformers",
"gguf",
"llama",
"text-generation-inference",
"unsloth",
"en",
"base_model:unsloth/llama-3-8b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:36:25+00:00 |
null | peft |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: meta-llama/Meta-Llama-3-8B
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: kloodia/raw_physic
type: oasst
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./lora-out
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
# lora-out
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.641 | 0.01 | 1 | 0.6417 |
| 0.5093 | 0.25 | 42 | 0.5260 |
| 0.4665 | 0.5 | 84 | 0.5118 |
| 0.4431 | 0.75 | 126 | 0.5043 |
| 0.4523 | 1.0 | 168 | 0.4985 |
| 0.4237 | 1.23 | 210 | 0.4985 |
| 0.4002 | 1.48 | 252 | 0.4976 |
| 0.3656 | 1.73 | 294 | 0.4955 |
| 0.3744 | 1.98 | 336 | 0.4942 |
| 0.3278 | 2.21 | 378 | 0.5012 |
| 0.344 | 2.46 | 420 | 0.5003 |
| 0.3216 | 2.71 | 462 | 0.4984 |
| 0.3371 | 2.96 | 504 | 0.4980 |
| 0.3243 | 3.19 | 546 | 0.5051 |
| 0.3184 | 3.44 | 588 | 0.5052 |
| 0.313 | 3.69 | 630 | 0.5060 |
| 0.3097 | 3.94 | 672 | 0.5060 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.0.dev0
- Pytorch 2.1.2+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0 | {"license": "other", "library_name": "peft", "tags": ["generated_from_trainer"], "base_model": "meta-llama/Meta-Llama-3-8B", "model-index": [{"name": "lora-out", "results": []}]} | kloodia/lora-8b-physic | null | [
"peft",
"tensorboard",
"safetensors",
"llama",
"generated_from_trainer",
"base_model:meta-llama/Meta-Llama-3-8B",
"license:other",
"8-bit",
"region:us"
] | null | 2024-04-29T10:36:43+00:00 |
text-generation | transformers | <a href="https://www.gradient.ai" target="_blank"><img src="https://cdn-uploads.huggingface.co/production/uploads/655bb613e8a8971e89944f3e/TSa3V8YpoVagnTYgxiLaO.png" width="200"/></a>
# Llama-3 8B Gradient Instruct 1048k
Gradient incorporates your data to deploy autonomous assistants that power critical operations across your business. If you're looking to build custom AI models or agents, email us a message [email protected].
For more info see our [End-to-end development service for custom LLMs and AI systems](https://gradient.ai/development-lab)
This model extends LLama-3 8B's context length from 8k to > 1040K, developed by Gradient, sponsored by compute from [Crusoe Energy](https://huggingface.co/crusoeai). It demonstrates that SOTA LLMs can learn to operate on long context with minimal training by appropriately adjusting RoPE theta. We trained on 830M tokens for this stage, and 1.4B tokens total for all stages, which is < 0.01% of Llama-3's original pre-training data.

**Approach:**
- [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) as the base
- NTK-aware interpolation [1] to initialize an optimal schedule for RoPE theta, followed by empirical RoPE theta optimization
- Progressive training on increasing context lengths, similar to [Large World Model](https://huggingface.co/LargeWorldModel) [2] (See details below)
**Infra:**
We build on top of the EasyContext Blockwise RingAttention library [3] to scalably and efficiently train on contexts up to 1048k tokens on [Crusoe Energy](https://huggingface.co/crusoeai) high performance L40S cluster.
Notably, we layered parallelism on top of Ring Attention with a custom network topology to better leverage large GPU clusters in the face of network bottlenecks from passing many KV blocks between devices. This gave us a 33x speedup in model training (compare 524k and 1048k to 65k and 262k in the table below).
**Data:**
For training data, we generate long contexts by augmenting [SlimPajama](https://huggingface.co/datasets/cerebras/SlimPajama-627B).
**Progressive Training Details:**
| | 65K | 262K | 524k | 1048k |
|------------------------|-----------|-----------|-----------|-----------|
| Initialize From | LLaMA-3 8B| 65K | 262K | 524k |
| Sequence Length 2^N | 16 | 18 | 19 | 20 |
| RoPE theta | 15.3 M | 207.1 M | 1.06B | 2.80B |
| Batch Size | 1 | 1 | 16 | 16 |
| Gradient Accumulation Steps | 32 | 16 | 1 | 1 |
| Steps | 30 | 24 | 50 | 50 |
| Total Tokens | 62914560 | 100663296 | 419430400 | 838860800 |
| Learning Rate | 2.00E-05 | 2.00E-05 | 2.00E-05 | 2.00E-05 |
| # GPUs | 8 | 32 | 512 | 512 |
| GPU Type | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S | NVIDIA L40S |
| Minutes to Train (Wall)| 202 | 555 | 61 | 87 |
**Evaluation:**

```
EVAL_MAX_CONTEXT_LENGTH=1040200
EVAL_MIN_CONTEXT_LENGTH=100
EVAL_CONTEXT_INTERVAL=86675
EVAL_DEPTH_INTERVAL=0.2
EVAL_RND_NUMBER_DIGITS=8
HAYSTACK1:
EVAL_GENERATOR_TOKENS=25
HAYSTACK2:
EVAL_CONTEXT_INTERVAL=173350
EVAL_GENERATOR_TOKENS=150000
HAYSTACK3:
EVAL_GENERATOR_TOKENS=925000
```
All boxes not pictured for Haystack 1 and 3 are 100% accurate. Haystacks 1,2 and 3 are further detailed in this [blog post](https://gradient.ai/blog/the-haystack-matters-for-niah-evals).
**Quants:**
- [GGUF by Crusoe](https://huggingface.co/crusoeai/Llama-3-8B-Instruct-1048k-GGUF). Note that you need to add 128009 as [special token with llama.cpp](https://huggingface.co/gradientai/Llama-3-8B-Instruct-262k/discussions/13).
- [MLX-4bit](https://huggingface.co/mlx-community/Llama-3-8B-Instruct-1048k-4bit)
- [Ollama](https://ollama.com/library/llama3-gradient)
- vLLM docker image, recommended to load via `--max-model-len 32768`
- If you are interested in a hosted version, drop us a mail below.
## The Gradient AI Team
https://gradient.ai/
Gradient is accelerating AI transformation across industries. Our AI Foundry incorporates your data to deploy autonomous assistants that power critical operations across your business.
## Contact Us
Drop an email to [[email protected]](mailto:[email protected])
## References
[1] Peng, Bowen, et al. "Yarn: Efficient context window extension of large language models." arXiv preprint arXiv:2309.00071 (2023).
[2] Liu, Hao, et al. "World Model on Million-Length Video And Language With RingAttention." arXiv preprint arXiv:2402.08268 (2024).
[3] https://github.com/jzhang38/EasyContext
----
# Base Model
## Model Details
Meta developed and released the Meta Llama 3 family of large language models (LLMs), a collection of pretrained and instruction tuned generative text models in 8 and 70B sizes. The Llama 3 instruction tuned models are optimized for dialogue use cases and outperform many of the available open source chat models on common industry benchmarks. Further, in developing these models, we took great care to optimize helpfulness and safety.
**Model developers** Meta
**Variations** Llama 3 comes in two sizes — 8B and 70B parameters — in pre-trained and instruction tuned variants.
**Input** Models input text only.
**Output** Models generate text and code only.
**Model Architecture** Llama 3 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety.
<table>
<tr>
<td>
</td>
<td><strong>Training Data</strong>
</td>
<td><strong>Params</strong>
</td>
<td><strong>Context length</strong>
</td>
<td><strong>GQA</strong>
</td>
<td><strong>Token count</strong>
</td>
<td><strong>Knowledge cutoff</strong>
</td>
</tr>
<tr>
<td rowspan="2" >Llama 3
</td>
<td rowspan="2" >A new mix of publicly available online data.
</td>
<td>8B
</td>
<td>8k
</td>
<td>Yes
</td>
<td rowspan="2" >15T+
</td>
<td>March, 2023
</td>
</tr>
<tr>
<td>70B
</td>
<td>8k
</td>
<td>Yes
</td>
<td>December, 2023
</td>
</tr>
</table>
**Llama 3 family of models**. Token counts refer to pretraining data only. Both the 8 and 70B versions use Grouped-Query Attention (GQA) for improved inference scalability.
**Model Release Date** April 18, 2024.
**Status** This is a static model trained on an offline dataset. Future versions of the tuned models will be released as we improve model safety with community feedback.
**License** A custom commercial license is available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license)
Where to send questions or comments about the model Instructions on how to provide feedback or comments on the model can be found in the model [README](https://github.com/meta-llama/llama3). For more technical information about generation parameters and recipes for how to use Llama 3 in applications, please go [here](https://github.com/meta-llama/llama-recipes).
## Intended Use
**Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks.
**Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**.
**Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.
## How to use
This repository contains two versions of Meta-Llama-3-8B-Instruct, for use with transformers and with the original `llama3` codebase.
### Use with transformers
You can run conversational inference using the Transformers pipeline abstraction, or by leveraging the Auto classes with the `generate()` function. Let's see examples of both.
#### Transformers pipeline
```python
import transformers
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
pipeline = transformers.pipeline(
"text-generation",
model=model_id,
model_kwargs={"torch_dtype": torch.bfloat16},
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = pipeline(
prompt,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
print(outputs[0]["generated_text"][len(prompt):])
```
#### Transformers AutoModelForCausalLM
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
### Use with `llama3`
Please, follow the instructions in the [repository](https://github.com/meta-llama/llama3)
To download Original checkpoints, see the example command below leveraging `huggingface-cli`:
```
huggingface-cli download meta-llama/Meta-Llama-3-8B-Instruct --include "original/*" --local-dir Meta-Llama-3-8B-Instruct
```
For Hugging Face support, we recommend using transformers or TGI, but a similar command works.
## Hardware and Software
**Training Factors** We used custom training libraries, Meta's Research SuperCluster, and production clusters for pretraining. Fine-tuning, annotation, and evaluation were also performed on third-party cloud compute.
**Carbon Footprint Pretraining utilized a cumulative** 7.7M GPU hours of computation on hardware of type H100-80GB (TDP of 700W). Estimated total emissions were 2290 tCO2eq, 100% of which were offset by Meta’s sustainability program.
<table>
<tr>
<td>
</td>
<td><strong>Time (GPU hours)</strong>
</td>
<td><strong>Power Consumption (W)</strong>
</td>
<td><strong>Carbon Emitted(tCO2eq)</strong>
</td>
</tr>
<tr>
<td>Llama 3 8B
</td>
<td>1.3M
</td>
<td>700
</td>
<td>390
</td>
</tr>
<tr>
<td>Llama 3 70B
</td>
<td>6.4M
</td>
<td>700
</td>
<td>1900
</td>
</tr>
<tr>
<td>Total
</td>
<td>7.7M
</td>
<td>
</td>
<td>2290
</td>
</tr>
</table>
**CO2 emissions during pre-training**. Time: total GPU time required for training each model. Power Consumption: peak power capacity per GPU device for the GPUs used adjusted for power usage efficiency. 100% of the emissions are directly offset by Meta's sustainability program, and because we are openly releasing these models, the pretraining costs do not need to be incurred by others.
## Training Data
**Overview** Llama 3 was pretrained on over 15 trillion tokens of data from publicly available sources. The fine-tuning data includes publicly available instruction datasets, as well as over 10M human-annotated examples. Neither the pretraining nor the fine-tuning datasets include Meta user data.
**Data Freshness** The pretraining data has a cutoff of March 2023 for the 7B and December 2023 for the 70B models respectively.
## Benchmarks
In this section, we report the results for Llama 3 models on standard automatic benchmarks. For all the evaluations, we use our internal evaluations library. For details on the methodology see [here](https://github.com/meta-llama/llama3/blob/main/eval_methodology.md).
### Base pretrained models
<table>
<tr>
<td><strong>Category</strong>
</td>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama2 7B</strong>
</td>
<td><strong>Llama2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama2 70B</strong>
</td>
</tr>
<tr>
<td rowspan="6" >General
</td>
<td>MMLU (5-shot)
</td>
<td>66.6
</td>
<td>45.7
</td>
<td>53.8
</td>
<td>79.5
</td>
<td>69.7
</td>
</tr>
<tr>
<td>AGIEval English (3-5 shot)
</td>
<td>45.9
</td>
<td>28.8
</td>
<td>38.7
</td>
<td>63.0
</td>
<td>54.8
</td>
</tr>
<tr>
<td>CommonSenseQA (7-shot)
</td>
<td>72.6
</td>
<td>57.6
</td>
<td>67.6
</td>
<td>83.8
</td>
<td>78.7
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>76.1
</td>
<td>73.3
</td>
<td>75.4
</td>
<td>83.1
</td>
<td>81.8
</td>
</tr>
<tr>
<td>BIG-Bench Hard (3-shot, CoT)
</td>
<td>61.1
</td>
<td>38.1
</td>
<td>47.0
</td>
<td>81.3
</td>
<td>65.7
</td>
</tr>
<tr>
<td>ARC-Challenge (25-shot)
</td>
<td>78.6
</td>
<td>53.7
</td>
<td>67.6
</td>
<td>93.0
</td>
<td>85.3
</td>
</tr>
<tr>
<td>Knowledge reasoning
</td>
<td>TriviaQA-Wiki (5-shot)
</td>
<td>78.5
</td>
<td>72.1
</td>
<td>79.6
</td>
<td>89.7
</td>
<td>87.5
</td>
</tr>
<tr>
<td rowspan="4" >Reading comprehension
</td>
<td>SQuAD (1-shot)
</td>
<td>76.4
</td>
<td>72.2
</td>
<td>72.1
</td>
<td>85.6
</td>
<td>82.6
</td>
</tr>
<tr>
<td>QuAC (1-shot, F1)
</td>
<td>44.4
</td>
<td>39.6
</td>
<td>44.9
</td>
<td>51.1
</td>
<td>49.4
</td>
</tr>
<tr>
<td>BoolQ (0-shot)
</td>
<td>75.7
</td>
<td>65.5
</td>
<td>66.9
</td>
<td>79.0
</td>
<td>73.1
</td>
</tr>
<tr>
<td>DROP (3-shot, F1)
</td>
<td>58.4
</td>
<td>37.9
</td>
<td>49.8
</td>
<td>79.7
</td>
<td>70.2
</td>
</tr>
</table>
### Instruction tuned models
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Llama 3 8B</strong>
</td>
<td><strong>Llama 2 7B</strong>
</td>
<td><strong>Llama 2 13B</strong>
</td>
<td><strong>Llama 3 70B</strong>
</td>
<td><strong>Llama 2 70B</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.4
</td>
<td>34.1
</td>
<td>47.8
</td>
<td>82.0
</td>
<td>52.9
</td>
</tr>
<tr>
<td>GPQA (0-shot)
</td>
<td>34.2
</td>
<td>21.7
</td>
<td>22.3
</td>
<td>39.5
</td>
<td>21.0
</td>
</tr>
<tr>
<td>HumanEval (0-shot)
</td>
<td>62.2
</td>
<td>7.9
</td>
<td>14.0
</td>
<td>81.7
</td>
<td>25.6
</td>
</tr>
<tr>
<td>GSM-8K (8-shot, CoT)
</td>
<td>79.6
</td>
<td>25.7
</td>
<td>77.4
</td>
<td>93.0
</td>
<td>57.5
</td>
</tr>
<tr>
<td>MATH (4-shot, CoT)
</td>
<td>30.0
</td>
<td>3.8
</td>
<td>6.7
</td>
<td>50.4
</td>
<td>11.6
</td>
</tr>
</table>
### Responsibility & Safety
We believe that an open approach to AI leads to better, safer products, faster innovation, and a bigger overall market. We are committed to Responsible AI development and took a series of steps to limit misuse and harm and support the open source community.
Foundation models are widely capable technologies that are built to be used for a diverse range of applications. They are not designed to meet every developer preference on safety levels for all use cases, out-of-the-box, as those by their nature will differ across different applications.
Rather, responsible LLM-application deployment is achieved by implementing a series of safety best practices throughout the development of such applications, from the model pre-training, fine-tuning and the deployment of systems composed of safeguards to tailor the safety needs specifically to the use case and audience.
As part of the Llama 3 release, we updated our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/) to outline the steps and best practices for developers to implement model and system level safety for their application. We also provide a set of resources including [Meta Llama Guard 2](https://llama.meta.com/purple-llama/) and [Code Shield](https://llama.meta.com/purple-llama/) safeguards. These tools have proven to drastically reduce residual risks of LLM Systems, while maintaining a high level of helpfulness. We encourage developers to tune and deploy these safeguards according to their needs and we provide a [reference implementation](https://github.com/meta-llama/llama-recipes/tree/main/recipes/responsible_ai) to get you started.
#### Llama 3-Instruct
As outlined in the Responsible Use Guide, some trade-off between model helpfulness and model alignment is likely unavoidable. Developers should exercise discretion about how to weigh the benefits of alignment and helpfulness for their specific use case and audience. Developers should be mindful of residual risks when using Llama models and leverage additional safety tools as needed to reach the right safety bar for their use case.
<span style="text-decoration:underline;">Safety</span>
For our instruction tuned model, we conducted extensive red teaming exercises, performed adversarial evaluations and implemented safety mitigations techniques to lower residual risks. As with any Large Language Model, residual risks will likely remain and we recommend that developers assess these risks in the context of their use case. In parallel, we are working with the community to make AI safety benchmark standards transparent, rigorous and interpretable.
<span style="text-decoration:underline;">Refusals</span>
In addition to residual risks, we put a great emphasis on model refusals to benign prompts. Over-refusing not only can impact the user experience but could even be harmful in certain contexts as well. We’ve heard the feedback from the developer community and improved our fine tuning to ensure that Llama 3 is significantly less likely to falsely refuse to answer prompts than Llama 2.
We built internal benchmarks and developed mitigations to limit false refusals making Llama 3 our most helpful model to date.
#### Responsible release
In addition to responsible use considerations outlined above, we followed a rigorous process that requires us to take extra measures against misuse and critical risks before we make our release decision.
Misuse
If you access or use Llama 3, you agree to the Acceptable Use Policy. The most recent copy of this policy can be found at [https://llama.meta.com/llama3/use-policy/](https://llama.meta.com/llama3/use-policy/).
#### Critical risks
<span style="text-decoration:underline;">CBRNE</span> (Chemical, Biological, Radiological, Nuclear, and high yield Explosives)
We have conducted a two fold assessment of the safety of the model in this area:
* Iterative testing during model training to assess the safety of responses related to CBRNE threats and other adversarial risks.
* Involving external CBRNE experts to conduct an uplift test assessing the ability of the model to accurately provide expert knowledge and reduce barriers to potential CBRNE misuse, by reference to what can be achieved using web search (without the model).
### <span style="text-decoration:underline;">Cyber Security </span>
We have evaluated Llama 3 with CyberSecEval, Meta’s cybersecurity safety eval suite, measuring Llama 3’s propensity to suggest insecure code when used as a coding assistant, and Llama 3’s propensity to comply with requests to help carry out cyber attacks, where attacks are defined by the industry standard MITRE ATT&CK cyber attack ontology. On our insecure coding and cyber attacker helpfulness tests, Llama 3 behaved in the same range or safer than models of [equivalent coding capability](https://huggingface.co/spaces/facebook/CyberSecEval).
### <span style="text-decoration:underline;">Child Safety</span>
Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences.
### Community
Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership in AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama).
Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community.
## Ethical Considerations and Limitations
The core values of Llama 3 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress.
But Llama 3 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has been in English, and has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3 models, developers should perform safety testing and tuning tailored to their specific applications of the model. As outlined in the Responsible Use Guide, we recommend incorporating [Purple Llama](https://github.com/facebookresearch/PurpleLlama) solutions into your workflows and specifically [Llama Guard](https://ai.meta.com/research/publications/llama-guard-llm-based-input-output-safeguard-for-human-ai-conversations/) which provides a base model to filter input and output prompts to layer system-level safety on top of model-level safety.
Please see the Responsible Use Guide available at [http://llama.meta.com/responsible-use-guide](http://llama.meta.com/responsible-use-guide)
## Citation instructions
@article{llama3modelcard,
title={Llama 3 Model Card},
author={AI@Meta},
year={2024},
url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
}
## Contributors
Aaditya Singh; Aaron Grattafiori; Abhimanyu Dubey; Abhinav Jauhri; Abhinav Pandey; Abhishek Kadian; Adam Kelsey; Adi Gangidi; Ahmad Al-Dahle; Ahuva Goldstand; Aiesha Letman; Ajay Menon; Akhil Mathur; Alan Schelten; Alex Vaughan; Amy Yang; Andrei Lupu; Andres Alvarado; Andrew Gallagher; Andrew Gu; Andrew Ho; Andrew Poulton; Andrew Ryan; Angela Fan; Ankit Ramchandani; Anthony Hartshorn; Archi Mitra; Archie Sravankumar; Artem Korenev; Arun Rao; Ashley Gabriel; Ashwin Bharambe; Assaf Eisenman; Aston Zhang; Aurelien Rodriguez; Austen Gregerson; Ava Spataru; Baptiste Roziere; Ben Maurer; Benjamin Leonhardi; Bernie Huang; Bhargavi Paranjape; Bing Liu; Binh Tang; Bobbie Chern; Brani Stojkovic; Brian Fuller; Catalina Mejia Arenas; Chao Zhou; Charlotte Caucheteux; Chaya Nayak; Ching-Hsiang Chu; Chloe Bi; Chris Cai; Chris Cox; Chris Marra; Chris McConnell; Christian Keller; Christoph Feichtenhofer; Christophe Touret; Chunyang Wu; Corinne Wong; Cristian Canton Ferrer; Damien Allonsius; Daniel Kreymer; Daniel Haziza; Daniel Li; Danielle Pintz; Danny Livshits; Danny Wyatt; David Adkins; David Esiobu; David Xu; Davide Testuggine; Delia David; Devi Parikh; Dhruv Choudhary; Dhruv Mahajan; Diana Liskovich; Diego Garcia-Olano; Diego Perino; Dieuwke Hupkes; Dingkang Wang; Dustin Holland; Egor Lakomkin; Elina Lobanova; Xiaoqing Ellen Tan; Emily Dinan; Eric Smith; Erik Brinkman; Esteban Arcaute; Filip Radenovic; Firat Ozgenel; Francesco Caggioni; Frank Seide; Frank Zhang; Gabriel Synnaeve; Gabriella Schwarz; Gabrielle Lee; Gada Badeer; Georgia Anderson; Graeme Nail; Gregoire Mialon; Guan Pang; Guillem Cucurell; Hailey Nguyen; Hannah Korevaar; Hannah Wang; Haroun Habeeb; Harrison Rudolph; Henry Aspegren; Hu Xu; Hugo Touvron; Iga Kozlowska; Igor Molybog; Igor Tufanov; Iliyan Zarov; Imanol Arrieta Ibarra; Irina-Elena Veliche; Isabel Kloumann; Ishan Misra; Ivan Evtimov; Jacob Xu; Jade Copet; Jake Weissman; Jan Geffert; Jana Vranes; Japhet Asher; Jason Park; Jay Mahadeokar; Jean-Baptiste Gaya; Jeet Shah; Jelmer van der Linde; Jennifer Chan; Jenny Hong; Jenya Lee; Jeremy Fu; Jeremy Teboul; Jianfeng Chi; Jianyu Huang; Jie Wang; Jiecao Yu; Joanna Bitton; Joe Spisak; Joelle Pineau; Jon Carvill; Jongsoo Park; Joseph Rocca; Joshua Johnstun; Junteng Jia; Kalyan Vasuden Alwala; Kam Hou U; Kate Plawiak; Kartikeya Upasani; Kaushik Veeraraghavan; Ke Li; Kenneth Heafield; Kevin Stone; Khalid El-Arini; Krithika Iyer; Kshitiz Malik; Kuenley Chiu; Kunal Bhalla; Kyle Huang; Lakshya Garg; Lauren Rantala-Yeary; Laurens van der Maaten; Lawrence Chen; Leandro Silva; Lee Bell; Lei Zhang; Liang Tan; Louis Martin; Lovish Madaan; Luca Wehrstedt; Lukas Blecher; Luke de Oliveira; Madeline Muzzi; Madian Khabsa; Manav Avlani; Mannat Singh; Manohar Paluri; Mark Zuckerberg; Marcin Kardas; Martynas Mankus; Mathew Oldham; Mathieu Rita; Matthew Lennie; Maya Pavlova; Meghan Keneally; Melanie Kambadur; Mihir Patel; Mikayel Samvelyan; Mike Clark; Mike Lewis; Min Si; Mitesh Kumar Singh; Mo Metanat; Mona Hassan; Naman Goyal; Narjes Torabi; Nicolas Usunier; Nikolay Bashlykov; Nikolay Bogoychev; Niladri Chatterji; Ning Dong; Oliver Aobo Yang; Olivier Duchenne; Onur Celebi; Parth Parekh; Patrick Alrassy; Paul Saab; Pavan Balaji; Pedro Rittner; Pengchuan Zhang; Pengwei Li; Petar Vasic; Peter Weng; Polina Zvyagina; Prajjwal Bhargava; Pratik Dubal; Praveen Krishnan; Punit Singh Koura; Qing He; Rachel Rodriguez; Ragavan Srinivasan; Rahul Mitra; Ramon Calderer; Raymond Li; Robert Stojnic; Roberta Raileanu; Robin Battey; Rocky Wang; Rohit Girdhar; Rohit Patel; Romain Sauvestre; Ronnie Polidoro; Roshan Sumbaly; Ross Taylor; Ruan Silva; Rui Hou; Rui Wang; Russ Howes; Ruty Rinott; Saghar Hosseini; Sai Jayesh Bondu; Samyak Datta; Sanjay Singh; Sara Chugh; Sargun Dhillon; Satadru Pan; Sean Bell; Sergey Edunov; Shaoliang Nie; Sharan Narang; Sharath Raparthy; Shaun Lindsay; Sheng Feng; Sheng Shen; Shenghao Lin; Shiva Shankar; Shruti Bhosale; Shun Zhang; Simon Vandenhende; Sinong Wang; Seohyun Sonia Kim; Soumya Batra; Sten Sootla; Steve Kehoe; Suchin Gururangan; Sumit Gupta; Sunny Virk; Sydney Borodinsky; Tamar Glaser; Tamar Herman; Tamara Best; Tara Fowler; Thomas Georgiou; Thomas Scialom; Tianhe Li; Todor Mihaylov; Tong Xiao; Ujjwal Karn; Vedanuj Goswami; Vibhor Gupta; Vignesh Ramanathan; Viktor Kerkez; Vinay Satish Kumar; Vincent Gonguet; Vish Vogeti; Vlad Poenaru; Vlad Tiberiu Mihailescu; Vladan Petrovic; Vladimir Ivanov; Wei Li; Weiwei Chu; Wenhan Xiong; Wenyin Fu; Wes Bouaziz; Whitney Meers; Will Constable; Xavier Martinet; Xiaojian Wu; Xinbo Gao; Xinfeng Xie; Xuchao Jia; Yaelle Goldschlag; Yann LeCun; Yashesh Gaur; Yasmine Babaei; Ye Qi; Yenda Li; Yi Wen; Yiwen Song; Youngjin Nam; Yuchen Hao; Yuchen Zhang; Yun Wang; Yuning Mao; Yuzi He; Zacharie Delpierre Coudert; Zachary DeVito; Zahra Hankir; Zhaoduo Wen; Zheng Yan; Zhengxing Chen; Zhenyu Yang; Zoe Papakipos | {"language": ["en"], "license": "llama3", "tags": ["meta", "llama-3"], "pipeline_tag": "text-generation"} | gradientai/Llama-3-8B-Instruct-Gradient-1048k | null | [
"transformers",
"safetensors",
"llama",
"text-generation",
"meta",
"llama-3",
"conversational",
"en",
"license:llama3",
"autotrain_compatible",
"endpoints_compatible",
"has_space",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:36:56+00:00 |
null | null | {} | FranckArmand/llama-7b-qlora-ultrachat | null | [
"region:us"
] | null | 2024-04-29T10:38:06+00:00 |
|
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Anas989898/Moondream-Financial-10k-OCR-adapter | null | [
"transformers",
"safetensors",
"arxiv:1910.09700",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:38:14+00:00 |
null | null | {} | Aditya1947/results | null | [
"region:us"
] | null | 2024-04-29T10:38:18+00:00 |
|
text-generation | transformers | # output
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).
## Merge Details
### Merge Method
This model was merged using the [task arithmetic](https://arxiv.org/abs/2212.04089) merge method using ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087 as a base.
### Models Merged
The following models were included in the merge:
* ./evol_merge_storage/input_models/RakutenAI-7B-chat_2028928689
* ./evol_merge_storage/input_models/OpenMath-Mistral-7B-v0.1-hf_3930120330
### Configuration
The following YAML configuration was used to produce this model:
```yaml
base_model: ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087
dtype: bfloat16
merge_method: task_arithmetic
parameters:
int8_mask: 1.0
normalize: 0.0
slices:
- sources:
- layer_range: [0, 8]
model: ./evol_merge_storage/input_models/RakutenAI-7B-chat_2028928689
parameters:
weight: 0.4751898929029342
- layer_range: [0, 8]
model: ./evol_merge_storage/input_models/OpenMath-Mistral-7B-v0.1-hf_3930120330
parameters:
weight: 0.15973634379963977
- layer_range: [0, 8]
model: ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087
parameters:
weight: 0.640283894579152
- sources:
- layer_range: [8, 16]
model: ./evol_merge_storage/input_models/RakutenAI-7B-chat_2028928689
parameters:
weight: 0.19424736508900337
- layer_range: [8, 16]
model: ./evol_merge_storage/input_models/OpenMath-Mistral-7B-v0.1-hf_3930120330
parameters:
weight: 0.08221575886362112
- layer_range: [8, 16]
model: ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087
parameters:
weight: -0.23713388005117378
- sources:
- layer_range: [16, 24]
model: ./evol_merge_storage/input_models/RakutenAI-7B-chat_2028928689
parameters:
weight: 0.033742143324615545
- layer_range: [16, 24]
model: ./evol_merge_storage/input_models/OpenMath-Mistral-7B-v0.1-hf_3930120330
parameters:
weight: 0.5125748346054765
- layer_range: [16, 24]
model: ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087
parameters:
weight: 0.35282253920558426
- sources:
- layer_range: [24, 32]
model: ./evol_merge_storage/input_models/RakutenAI-7B-chat_2028928689
parameters:
weight: 0.7795484206247641
- layer_range: [24, 32]
model: ./evol_merge_storage/input_models/OpenMath-Mistral-7B-v0.1-hf_3930120330
parameters:
weight: 0.27517180468664126
- layer_range: [24, 32]
model: ./evol_merge_storage/input_models/Mistral-7B-Instruct-v0.2_674785087
parameters:
weight: 0.4537203169876529
```
| {"library_name": "transformers", "tags": ["mergekit", "merge"], "base_model": []} | yuiseki/YuisekinAIEvol-Mistral-7B-ja-math-v0.1 | null | [
"transformers",
"safetensors",
"mistral",
"text-generation",
"mergekit",
"merge",
"conversational",
"arxiv:2212.04089",
"autotrain_compatible",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:39:48+00:00 |
null | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": ["unsloth"]} | anchauha/lora_model2 | null | [
"transformers",
"safetensors",
"gguf",
"llama",
"unsloth",
"arxiv:1910.09700",
"endpoints_compatible",
"text-generation-inference",
"region:us"
] | null | 2024-04-29T10:39:48+00:00 |
null | null | {} | iamalexcaspian/LincolnLoud-TheLoudHouse-RusDub | null | [
"region:us"
] | null | 2024-04-29T10:40:10+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/51i4qah | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:41:23+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/jwjehuk | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:41:29+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/hp8tza7 | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:41:35+00:00 |
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | golf2248/gqox55v | null | [
"transformers",
"safetensors",
"stablelm",
"text-generation",
"conversational",
"arxiv:1910.09700",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:41:39+00:00 |
text-generation | transformers |
## Model Summary
The Phi-3-Mini-128K-Instruct is a 3.8 billion-parameter, lightweight, state-of-the-art open model trained using the Phi-3 datasets.
This dataset includes both synthetic data and filtered publicly available website data, with an emphasis on high-quality and reasoning-dense properties.
The model belongs to the Phi-3 family with the Mini version in two variants [4K](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) and [128K](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) which is the context length (in tokens) that it can support.
After initial training, the model underwent a post-training process that involved supervised fine-tuning and direct preference optimization to enhance its ability to follow instructions and adhere to safety measures.
When evaluated against benchmarks that test common sense, language understanding, mathematics, coding, long-term context, and logical reasoning, the Phi-3 Mini-128K-Instruct demonstrated robust and state-of-the-art performance among models with fewer than 13 billion parameters.
Resources and Technical Documentation:
+ [Phi-3 Microsoft Blog](https://aka.ms/phi3blog-april)
+ [Phi-3 Technical Report](https://aka.ms/phi3-tech-report)
+ [Phi-3 on Azure AI Studio](https://aka.ms/phi3-azure-ai)
+ Phi-3 ONNX: [128K](https://aka.ms/Phi3-mini-128k-instruct-onnx)
## Intended Uses
**Primary use cases**
The model is intended for commercial and research use in English. The model provides uses for applications which require:
1) Memory/compute constrained environments
2) Latency bound scenarios
3) Strong reasoning (especially code, math and logic)
Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features.
**Use case considerations**
Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case.
Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.
## How to Use
Phi-3 Mini-128K-Instruct has been integrated in the development version (4.40.0) of `transformers`. Until the official version is released through `pip`, ensure that you are doing one of the following:
* When loading the model, ensure that `trust_remote_code=True` is passed as an argument of the `from_pretrained()` function.
* Update your local `transformers` to the development version: `pip uninstall -y transformers && pip install git+https://github.com/huggingface/transformers`. The previous command is an alternative to cloning and installing from the source.
The current `transformers` version can be verified with: `pip list | grep transformers`.
### Tokenizer
Phi-3 Mini-128K-Instruct supports a vocabulary size of up to `32064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size.
### Chat Format
Given the nature of the training data, the Phi-3 Mini-128K-Instruct model is best suited for prompts using the chat format as follows.
You can provide the prompt as a question with a generic template as follow:
```markdown
<|user|>\nQuestion<|end|>\n<|assistant|>
```
For example:
```markdown
<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
How to explain Internet for a medieval knight?<|end|>
<|assistant|>
```
where the model generates the text after `<|assistant|>`. In case of few-shots prompt, the prompt can be formatted as the following:
```markdown
<|system|>
You are a helpful AI assistant.<|end|>
<|user|>
I am going to Paris, what should I see?<|end|>
<|assistant|>
Paris, the capital of France, is known for its stunning architecture, art museums, historical landmarks, and romantic atmosphere. Here are some of the top attractions to see in Paris:\n\n1. The Eiffel Tower: The iconic Eiffel Tower is one of the most recognizable landmarks in the world and offers breathtaking views of the city.\n2. The Louvre Museum: The Louvre is one of the world's largest and most famous museums, housing an impressive collection of art and artifacts, including the Mona Lisa.\n3. Notre-Dame Cathedral: This beautiful cathedral is one of the most famous landmarks in Paris and is known for its Gothic architecture and stunning stained glass windows.\n\nThese are just a few of the many attractions that Paris has to offer. With so much to see and do, it's no wonder that Paris is one of the most popular tourist destinations in the world."<|end|>
<|user|>
What is so great about #1?<|end|>
<|assistant|>
```
### Sample inference code
This code snippets show how to get quickly started with running the model on a GPU:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
torch.random.manual_seed(0)
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-128k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
messages = [
{"role": "system", "content": "You are a helpful digital assistant. Please provide safe, ethical and accurate information to the user."},
{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
{"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
{"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```
*Some applications/frameworks might not include a BOS token (`<s>`) at the start of the conversation. Please ensure that it is included since it provides more reliable results.*
## Responsible AI Considerations
Like other language models, the Phi series models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include:
+ Quality of Service: the Phi models are trained primarily on English text. Languages other than English will experience worse performance. English language varieties with less representation in the training data might experience worse performance than standard American English.
+ Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases.
+ Inappropriate or Offensive Content: these models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the use case.
+ Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated.
+ Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses.
Developers should apply responsible AI best practices and are responsible for ensuring that a specific use case complies with relevant laws and regulations (e.g. privacy, trade, etc.). Important areas for consideration include:
+ Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques.
+ High-Risk Scenarios: Developers should assess suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context.
+ Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG).
+ Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case.
+ Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations.
## Training
### Model
* Architecture: Phi-3 Mini-128K-Instruct has 3.8B parameters and is a dense decoder-only Transformer model. The model is fine-tuned with Supervised fine-tuning (SFT) and Direct Preference Optimization (DPO) to ensure alignment with human preferences and safety guidlines.
* Inputs: Text. It is best suited for prompts using chat format.
* Context length: 128K tokens
* GPUs: 512 H100-80G
* Training time: 7 days
* Training data: 3.3T tokens
* Outputs: Generated text in response to the input
* Dates: Our models were trained between February and April 2024
* Status: This is a static model trained on an offline dataset with cutoff date October 2023. Future versions of the tuned models may be released as we improve models.
### Datasets
Our training data includes a wide variety of sources, totaling 3.3 trillion tokens, and is a combination of
1) Publicly available documents filtered rigorously for quality, selected high-quality educational data, and code;
2) Newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.);
3) High quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness.
### Fine-tuning
A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/sample_finetune.py).
## Benchmarks
We report the results for Phi-3-Mini-128K-Instruct on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Phi-2, Mistral-7b-v0.1, Mixtral-8x7b, Gemma 7B, Llama-3-8B-Instruct, and GPT-3.5.
All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation.
As is now standard, we use few-shot prompts to evaluate the models, at temperature 0.
The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3.
More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model.
The number of k–shot examples is listed per-benchmark.
| | Phi-3-Mini-128K-In<br>3.8b | Phi-3-Small<br>7b (preview) | Phi-3-Medium<br>14b (preview) | Phi-2<br>2.7b | Mistral<br>7b | Gemma<br>7b | Llama-3-In<br>8b | Mixtral<br>8x7b | GPT-3.5<br>version 1106 |
|---|---|---|---|---|---|---|---|---|---|
| MMLU <br>5-Shot | 68.1 | 75.3 | 78.2 | 56.3 | 61.7 | 63.6 | 66.5 | 68.4 | 71.4 |
| HellaSwag <br> 5-Shot | 74.5 | 78.7 | 83.2 | 53.6 | 58.5 | 49.8 | 71.1 | 70.4 | 78.8 |
| ANLI <br> 7-Shot | 52.8 | 55.0 | 58.7 | 42.5 | 47.1 | 48.7 | 57.3 | 55.2 | 58.1 |
| GSM-8K <br> 0-Shot; CoT | 83.6 | 86.4 | 90.8 | 61.1 | 46.4 | 59.8 | 77.4 | 64.7 | 78.1 |
| MedQA <br> 2-Shot | 55.3 | 58.2 | 69.8 | 40.9 | 49.6 | 50.0 | 60.5 | 62.2 | 63.4 |
| AGIEval <br> 0-Shot | 36.9 | 45.0 | 49.7 | 29.8 | 35.1 | 42.1 | 42.0 | 45.2 | 48.4 |
| TriviaQA <br> 5-Shot | 57.1 | 59.1 | 73.3 | 45.2 | 72.3 | 75.2 | 67.7 | 82.2 | 85.8 |
| Arc-C <br> 10-Shot | 84.0 | 90.7 | 91.9 | 75.9 | 78.6 | 78.3 | 82.8 | 87.3 | 87.4 |
| Arc-E <br> 10-Shot | 95.2 | 97.1 | 98.0 | 88.5 | 90.6 | 91.4 | 93.4 | 95.6 | 96.3 |
| PIQA <br> 5-Shot | 83.6 | 87.8 | 88.2 | 60.2 | 77.7 | 78.1 | 75.7 | 86.0 | 86.6 |
| SociQA <br> 5-Shot | 76.1 | 79.0 | 79.4 | 68.3 | 74.6 | 65.5 | 73.9 | 75.9 | 68.3 |
| BigBench-Hard <br> 0-Shot | 71.5 | 75.0 | 82.5 | 59.4 | 57.3 | 59.6 | 51.5 | 69.7 | 68.32 |
| WinoGrande <br> 5-Shot | 72.5 | 82.5 | 81.2 | 54.7 | 54.2 | 55.6 | 65.0 | 62.0 | 68.8 |
| OpenBookQA <br> 10-Shot | 80.6 | 88.4 | 86.6 | 73.6 | 79.8 | 78.6 | 82.6 | 85.8 | 86.0 |
| BoolQ <br> 0-Shot | 78.7 | 82.9 | 86.5 | -- | 72.2 | 66.0 | 80.9 | 77.6 | 79.1 |
| CommonSenseQA <br> 10-Shot | 78.0 | 80.3 | 82.6 | 69.3 | 72.6 | 76.2 | 79 | 78.1 | 79.6 |
| TruthfulQA <br> 10-Shot | 63.2 | 68.1 | 74.8 | -- | 52.1 | 53.0 | 63.2 | 60.1 | 85.8 |
| HumanEval <br> 0-Shot | 57.9 | 59.1 | 54.7 | 47.0 | 28.0 | 34.1 | 60.4| 37.8 | 62.2 |
| MBPP <br> 3-Shot | 62.5 | 71.4 | 73.7 | 60.6 | 50.8 | 51.5 | 67.7 | 60.2 | 77.8 |
## Software
* [PyTorch](https://github.com/pytorch/pytorch)
* [DeepSpeed](https://github.com/microsoft/DeepSpeed)
* [Transformers](https://github.com/huggingface/transformers)
* [Flash-Attention](https://github.com/HazyResearch/flash-attention)
## Hardware
Note that by default, the Phi-3-mini model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types:
* NVIDIA A100
* NVIDIA A6000
* NVIDIA H100
If you want to run the model on:
* NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager"
* Optimized inference on GPU, CPU, and Mobile: use the **ONNX** models [128K](https://aka.ms/phi3-mini-128k-instruct-onnx)
## Cross Platform Support
ONNX runtime ecosystem now supports Phi-3 Mini models across platforms and hardware. You can find the optimized Phi-3 Mini-128K-Instruct ONNX model [here](https://aka.ms/phi3-mini-128k-instruct-onnx).
Optimized Phi-3 models are also published here in ONNX format, to run with ONNX Runtime on CPU and GPU across devices, including server platforms, Windows, Linux and Mac desktops, and mobile CPUs, with the precision best suited to each of these targets. DirectML support lets developers bring hardware acceleration to Windows devices at scale across AMD, Intel, and NVIDIA GPUs.
Along with DirectML, ONNX Runtime provides cross platform support for Phi-3 across a range of devices CPU, GPU, and mobile.
Here are some of the optimized configurations we have added:
1. ONNX models for int4 DML: Quantized to int4 via AWQ
2. ONNX model for fp16 CUDA
3. ONNX model for int4 CUDA: Quantized to int4 via RTN
4. ONNX model for int4 CPU and Mobile: Quantized to int4 via RTN
## License
The model is licensed under the [MIT license](https://huggingface.co/microsoft/Phi-3-mini-128k/resolve/main/LICENSE).
## Trademarks
This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies.
| {"language": ["en"], "license": "mit", "tags": ["nlp", "code"], "license_link": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/resolve/main/LICENSE", "pipeline_tag": "text-generation", "widget": [{"messages": [{"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}]}]} | inventbot/Phi-3-mini-128k-instruct | null | [
"transformers",
"safetensors",
"phi3",
"text-generation",
"nlp",
"code",
"conversational",
"custom_code",
"en",
"license:mit",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:42:10+00:00 |
image-classification | transformers | {} | rashid996958/beard_face_image_detection | null | [
"transformers",
"safetensors",
"vit",
"image-classification",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:42:32+00:00 |
|
null | null | {} | rajeevkumar00103/bart-large-cnn-samsum | null | [
"region:us"
] | null | 2024-04-29T10:43:13+00:00 |
|
text-to-image | diffusers | {} | GraydientPlatformAPI/halcyon15 | null | [
"diffusers",
"safetensors",
"endpoints_compatible",
"diffusers:StableDiffusionXLPipeline",
"region:us"
] | null | 2024-04-29T10:44:45+00:00 |
|
text-generation | transformers |
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Model type:** [More Information Needed]
- **Language(s) (NLP):** [More Information Needed]
- **License:** [More Information Needed]
- **Finetuned from model [optional]:** [More Information Needed]
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
[More Information Needed]
### Downstream Use [optional]
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
## How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
[More Information Needed]
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
[More Information Needed]
#### Training Hyperparameters
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
#### Speeds, Sizes, Times [optional]
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
[More Information Needed]
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
[More Information Needed]
#### Factors
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
[More Information Needed]
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
[More Information Needed]
### Results
[More Information Needed]
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed] | {"library_name": "transformers", "tags": []} | Anas989898/Moondream-finetuned-Financial-10k-OCR | null | [
"transformers",
"safetensors",
"moondream1",
"text-generation",
"custom_code",
"arxiv:1910.09700",
"autotrain_compatible",
"region:us"
] | null | 2024-04-29T10:44:52+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/Alsebay/Lorge-2x7B
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q2_K.gguf) | Q2_K | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.IQ3_XS.gguf) | IQ3_XS | 5.4 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q3_K_S.gguf) | Q3_K_S | 5.7 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.IQ3_S.gguf) | IQ3_S | 5.7 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.IQ3_M.gguf) | IQ3_M | 5.8 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q3_K_M.gguf) | Q3_K_M | 6.3 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q3_K_L.gguf) | Q3_K_L | 6.8 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.IQ4_XS.gguf) | IQ4_XS | 7.1 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q4_K_S.gguf) | Q4_K_S | 7.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q4_K_M.gguf) | Q4_K_M | 7.9 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q5_K_S.gguf) | Q5_K_S | 9.0 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q5_K_M.gguf) | Q5_K_M | 9.2 | |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q6_K.gguf) | Q6_K | 10.7 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Lorge-2x7B-GGUF/resolve/main/Lorge-2x7B.Q8_0.gguf) | Q8_0 | 13.8 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "cc-by-nc-4.0", "library_name": "transformers", "base_model": "Alsebay/Lorge-2x7B", "quantized_by": "mradermacher"} | mradermacher/Lorge-2x7B-GGUF | null | [
"transformers",
"gguf",
"en",
"base_model:Alsebay/Lorge-2x7B",
"license:cc-by-nc-4.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:45:16+00:00 |
null | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# PolizzeDonut-Lowercase-5Epochs-rif
This model is a fine-tuned version of [tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0](https://huggingface.co/tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0) on the imagefolder dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP
### Training results
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["imagefolder"], "base_model": "tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0", "model-index": [{"name": "PolizzeDonut-Lowercase-5Epochs-rif", "results": []}]} | tedad09/PolizzeDonut-Lowercase-5Epochs-rif | null | [
"transformers",
"tensorboard",
"safetensors",
"vision-encoder-decoder",
"generated_from_trainer",
"dataset:imagefolder",
"base_model:tedad09/PolizzeDonut-ChangeRequest-imm5epochs-Expand0",
"license:mit",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:46:22+00:00 |
null | null | {} | B0BWAX/mt5-base-finetuned-en-to-ar | null | [
"region:us"
] | null | 2024-04-29T10:46:27+00:00 |
|
text-classification | transformers |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# V10-distilbert-text-classification-model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2088
- Accuracy: 0.9546
- F1: 0.8213
- Precision: 0.8192
- Recall: 0.8243
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
| 1.5687 | 0.11 | 50 | 2.1779 | 0.1200 | 0.0687 | 0.0913 | 0.0550 |
| 1.1872 | 0.22 | 100 | 1.1610 | 0.6475 | 0.4010 | 0.4470 | 0.3901 |
| 0.6574 | 0.33 | 150 | 0.9675 | 0.6300 | 0.3389 | 0.4603 | 0.3683 |
| 0.548 | 0.44 | 200 | 0.6524 | 0.8165 | 0.5001 | 0.4898 | 0.5117 |
| 0.3506 | 0.55 | 250 | 0.6884 | 0.7985 | 0.5037 | 0.6467 | 0.5073 |
| 0.3233 | 0.66 | 300 | 0.5294 | 0.8553 | 0.5177 | 0.5012 | 0.5353 |
| 0.3211 | 0.76 | 350 | 0.5028 | 0.8553 | 0.5989 | 0.5974 | 0.6058 |
| 0.2611 | 0.87 | 400 | 0.7703 | 0.8387 | 0.6148 | 0.5917 | 0.6521 |
| 0.3259 | 0.98 | 450 | 0.6041 | 0.8335 | 0.6121 | 0.5925 | 0.6442 |
| 0.2196 | 1.09 | 500 | 0.5109 | 0.8737 | 0.6300 | 0.6026 | 0.6665 |
| 0.1712 | 1.2 | 550 | 0.6030 | 0.8488 | 0.6231 | 0.7507 | 0.6528 |
| 0.175 | 1.31 | 600 | 0.5176 | 0.8783 | 0.6549 | 0.7620 | 0.6752 |
| 0.257 | 1.42 | 650 | 0.3901 | 0.8873 | 0.6462 | 0.7626 | 0.6783 |
| 0.1759 | 1.53 | 700 | 0.4053 | 0.8955 | 0.6774 | 0.7709 | 0.6947 |
| 0.1309 | 1.64 | 750 | 0.3624 | 0.9251 | 0.7857 | 0.7883 | 0.7927 |
| 0.2394 | 1.75 | 800 | 0.3332 | 0.9171 | 0.7749 | 0.7751 | 0.7848 |
| 0.165 | 1.86 | 850 | 0.6878 | 0.8510 | 0.6446 | 0.6970 | 0.6394 |
| 0.1421 | 1.97 | 900 | 0.3987 | 0.8718 | 0.6345 | 0.7590 | 0.6170 |
| 0.1361 | 2.07 | 950 | 0.3393 | 0.9253 | 0.7738 | 0.7734 | 0.7872 |
| 0.1292 | 2.18 | 1000 | 0.3194 | 0.9300 | 0.8017 | 0.8128 | 0.7930 |
| 0.0754 | 2.29 | 1050 | 0.3485 | 0.9245 | 0.7871 | 0.7842 | 0.8006 |
| 0.1345 | 2.4 | 1100 | 0.2564 | 0.9387 | 0.8022 | 0.7974 | 0.8104 |
| 0.0593 | 2.51 | 1150 | 0.2132 | 0.9541 | 0.8159 | 0.8222 | 0.8109 |
| 0.1019 | 2.62 | 1200 | 0.2234 | 0.9472 | 0.8070 | 0.8044 | 0.8127 |
| 0.0735 | 2.73 | 1250 | 0.2183 | 0.9535 | 0.8155 | 0.8250 | 0.8072 |
| 0.113 | 2.84 | 1300 | 0.2716 | 0.9128 | 0.7208 | 0.8006 | 0.7118 |
| 0.0838 | 2.95 | 1350 | 0.2957 | 0.9330 | 0.7999 | 0.7929 | 0.8128 |
| 0.0797 | 3.06 | 1400 | 0.2758 | 0.9437 | 0.8075 | 0.8117 | 0.8058 |
| 0.0612 | 3.17 | 1450 | 0.2450 | 0.9139 | 0.7200 | 0.7983 | 0.7140 |
| 0.0492 | 3.28 | 1500 | 0.2501 | 0.9480 | 0.8089 | 0.8089 | 0.8118 |
| 0.0294 | 3.38 | 1550 | 0.2745 | 0.9374 | 0.8035 | 0.8011 | 0.8084 |
| 0.0248 | 3.49 | 1600 | 0.2561 | 0.9434 | 0.8099 | 0.8073 | 0.8144 |
| 0.0621 | 3.6 | 1650 | 0.2312 | 0.9491 | 0.8135 | 0.8190 | 0.8094 |
| 0.0541 | 3.71 | 1700 | 0.2512 | 0.9472 | 0.8140 | 0.8177 | 0.8119 |
| 0.0509 | 3.82 | 1750 | 0.2195 | 0.9516 | 0.8145 | 0.8173 | 0.8125 |
| 0.0452 | 3.93 | 1800 | 0.2418 | 0.9480 | 0.8140 | 0.8175 | 0.8120 |
### Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
| {"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy", "f1", "precision", "recall"], "base_model": "distilbert-base-uncased", "model-index": [{"name": "V10-distilbert-text-classification-model", "results": []}]} | AmirlyPhd/V10-distilbert-text-classification-model | null | [
"transformers",
"safetensors",
"bert",
"text-classification",
"generated_from_trainer",
"base_model:distilbert-base-uncased",
"license:apache-2.0",
"autotrain_compatible",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:47:09+00:00 |
null | null | {} | ArunIcfoss/nllb-200-distilled-1.3B-ICFOSS-Malayalam_Tamil_Translation | null | [
"safetensors",
"region:us"
] | null | 2024-04-29T10:47:20+00:00 |
|
null | null | {} | hprashanth/testgen | null | [
"region:us"
] | null | 2024-04-29T10:48:11+00:00 |
|
null | transformers |
# Uploaded model
- **Developed by:** yekaii
- **License:** apache-2.0
- **Finetuned from model :** unsloth/mistral-7b-bnb-4bit
This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
| {"language": ["en"], "license": "apache-2.0", "tags": ["text-generation-inference", "transformers", "unsloth", "mistral", "trl"], "base_model": "unsloth/mistral-7b-bnb-4bit"} | yekaii/coba_testing_lora | null | [
"transformers",
"safetensors",
"text-generation-inference",
"unsloth",
"mistral",
"trl",
"en",
"base_model:unsloth/mistral-7b-bnb-4bit",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:49:26+00:00 |
null | transformers | ## About
<!-- ### quantize_version: 2 -->
<!-- ### output_tensor_quantised: 1 -->
<!-- ### convert_type: -->
<!-- ### vocab_type: -->
static quants of https://huggingface.co/jaked97/Mixtral-dMoE-multi-18
<!-- provided-files -->
weighted/imatrix quants seem not to be available (by me) at this time. If they do not show up a week or so after the static ones, I have probably not planned for them. Feel free to request them by opening a Community Discussion.
## Usage
If you are unsure how to use GGUF files, refer to one of [TheBloke's
READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
more details, including on how to concatenate multi-part files.
## Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
| Link | Type | Size/GB | Notes |
|:-----|:-----|--------:|:------|
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q2_K.gguf) | Q2_K | 3.7 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.IQ3_XS.gguf) | IQ3_XS | 4.1 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.IQ3_S.gguf) | IQ3_S | 4.3 | beats Q3_K* |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q3_K_S.gguf) | Q3_K_S | 4.3 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.IQ3_M.gguf) | IQ3_M | 4.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q3_K_M.gguf) | Q3_K_M | 4.6 | lower quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q3_K_L.gguf) | Q3_K_L | 4.9 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.IQ4_XS.gguf) | IQ4_XS | 5.2 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q4_K_S.gguf) | Q4_K_S | 5.4 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q4_K_M.gguf) | Q4_K_M | 5.7 | fast, recommended |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q5_K_S.gguf) | Q5_K_S | 6.4 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q5_K_M.gguf) | Q5_K_M | 6.6 | |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q6_K.gguf) | Q6_K | 7.5 | very good quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.Q8_0.gguf) | Q8_0 | 9.6 | fast, best quality |
| [GGUF](https://huggingface.co/mradermacher/Mixtral-dMoE-multi-18-GGUF/resolve/main/Mixtral-dMoE-multi-18.f16.gguf) | f16 | 18.0 | 16 bpw, overkill |
Here is a handy graph by ikawrakow comparing some lower-quality quant
types (lower is better):

And here are Artefact2's thoughts on the matter:
https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
## FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to
questions you might have and/or if you want some other model quantized.
## Thanks
I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
me use its servers and providing upgrades to my workstation to enable
this work in my free time.
<!-- end -->
| {"language": ["en"], "license": "apache-2.0", "library_name": "transformers", "base_model": "jaked97/Mixtral-dMoE-multi-18", "quantized_by": "mradermacher"} | mradermacher/Mixtral-dMoE-multi-18-GGUF | null | [
"transformers",
"gguf",
"en",
"base_model:jaked97/Mixtral-dMoE-multi-18",
"license:apache-2.0",
"endpoints_compatible",
"region:us"
] | null | 2024-04-29T10:49:58+00:00 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.