Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
{}
TehranNLP-org/xlnet-base-cased-avg-mnli
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-21
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-42
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
TehranNLP-org/xlnet-base-cased-avg-sst2-2e-5-63
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
Product Review Sentiment Classification 1. Label0 - Negative 2. Label1 - Positive Trained so far on 20000 Balanced Positive and Negative Reviews
{}
Tejas003/distillbert_base_uncased_amazon_review_sentiment_300
null
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/Xlnet_base_80
null
[ "transformers", "pytorch", "xlnet", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_110_uncased_movie_genre
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_110_uncased_v1
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_base_uncased_80
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_base_uncased_80_all
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_base_uncased_80_equal
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Tejas3/distillbert_base_uncased_amazon_food_review_300
null
[ "transformers", "tf", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{"tags": ["conversational"]}
Tejasvb/DialoGPT-small-rick
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
null
{"tags": ["conversational"]}
Tejasvb/DialogGPT-small-rick
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Tejaswini/m2m100_1.2B-finetuned-es-to-en
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Tejaswini/mbart-large-50-finetuned-es-to-en
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
Tejaswini/opus-mt-en-ro-finetuned-en-to-ro
null
[ "transformers", "pytorch", "tensorboard", "marian", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
Temur/qartvelian-roberta-base
null
[ "transformers", "jax", "tensorboard", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Georgian Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Georgian using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "ka", split="test[:2%]") processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona") model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Georgian test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "ka", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Temur/wav2vec2-Georgian-Daytona") model = Wav2Vec2ForCTC.from_pretrained("Temur/wav2vec2-Georgian-Daytona") model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 48.34 % ## Training The Common Voice `train`, `validation`, and ... datasets were used for training as well as ... and ... # TODO: adapt to state all the datasets that were used for training. The script used for training can be found [here](https://github.com/huggingface/transformers/blob/master/examples/research_projects/wav2vec2/FINE_TUNE_XLSR_WAV2VEC2.md)
{"language": "ka", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "Georgian WAV2VEC2 Daytona", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ka", "type": "common_voice", "args": "ka"}, "metrics": [{"type": "wer", "value": 48.34, "name": "Test WER"}]}]}]}
Temur/wav2vec2-Georgian-Daytona
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ka", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# GFPGAN (CVPR 2021) [**Paper**](https://arxiv.org/abs/2101.04061) **|** [**Project Page**](https://xinntao.github.io/projects/gfpgan) &emsp;&emsp; [English](README.md) **|** [简体中文](README_CN.md) GitHub: https://github.com/TencentARC/GFPGAN GFPGAN is a blind face restoration algorithm towards real-world face images. <a href="https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="google colab logo"></a> [Colab Demo](https://colab.research.google.com/drive/1sVsoBd9AjckIXThgtZhGrHRfFI6UUYOo) ### :book: GFP-GAN: Towards Real-World Blind Face Restoration with Generative Facial Prior > [[Paper](https://arxiv.org/abs/2101.04061)] &emsp; [[Project Page](https://xinntao.github.io/projects/gfpgan)] &emsp; [Demo] <br> > [Xintao Wang](https://xinntao.github.io/), [Yu Li](https://yu-li.github.io/), [Honglun Zhang](https://scholar.google.com/citations?hl=en&user=KjQLROoAAAAJ), [Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en) <br> > Applied Research Center (ARC), Tencent PCG #### Abstract Blind face restoration usually relies on facial priors, such as facial geometry prior or reference prior, to restore realistic and faithful details. However, very low-quality inputs cannot offer accurate geometric prior while high-quality references are inaccessible, limiting the applicability in real-world scenarios. In this work, we propose GFP-GAN that leverages **rich and diverse priors encapsulated in a pretrained face GAN** for blind face restoration. This Generative Facial Prior (GFP) is incorporated into the face restoration process via novel channel-split spatial feature transform layers, which allow our method to achieve a good balance of realness and fidelity. Thanks to the powerful generative facial prior and delicate designs, our GFP-GAN could jointly restore facial details and enhance colors with just a single forward pass, while GAN inversion methods require expensive image-specific optimization at inference. Extensive experiments show that our method achieves superior performance to prior art on both synthetic and real-world datasets. #### BibTeX @InProceedings{wang2021gfpgan, author = {Xintao Wang and Yu Li and Honglun Zhang and Ying Shan}, title = {Towards Real-World Blind Face Restoration with Generative Facial Prior}, booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, year = {2021} } <p align="center"> <img src="https://xinntao.github.io/projects/GFPGAN_src/gfpgan_teaser.jpg"> </p> --- ## :wrench: Dependencies and Installation - Python >= 3.7 (Recommend to use [Anaconda](https://www.anaconda.com/download/#linux) or [Miniconda](https://docs.conda.io/en/latest/miniconda.html)) - [PyTorch >= 1.7](https://pytorch.org/) - NVIDIA GPU + [CUDA](https://developer.nvidia.com/cuda-downloads) ### Installation 1. Clone repo ```bash git clone https://github.com/xinntao/GFPGAN.git cd GFPGAN ``` 1. Install dependent packages ```bash # Install basicsr - https://github.com/xinntao/BasicSR # We use BasicSR for both training and inference # Set BASICSR_EXT=True to compile the cuda extensions in the BasicSR - It may take several minutes to compile, please be patient BASICSR_EXT=True pip install basicsr # Install facexlib - https://github.com/xinntao/facexlib # We use face detection and face restoration helper in the facexlib package pip install facexlib pip install -r requirements.txt ``` ## :zap: Quick Inference Download pre-trained models: [GFPGANv1.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth) ```bash wget https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/GFPGANv1.pth -P experiments/pretrained_models ``` ```bash python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/whole_imgs # for aligned images python inference_gfpgan_full.py --model_path experiments/pretrained_models/GFPGANv1.pth --test_path inputs/cropped_faces --aligned ``` ## :computer: Training We provide complete training codes for GFPGAN. <br> You could improve it according to your own needs. 1. Dataset preparation: [FFHQ](https://github.com/NVlabs/ffhq-dataset) 1. Download pre-trained models and other data. Put them in the `experiments/pretrained_models` folder. 1. [Pretrained StyleGAN2 model: StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/StyleGAN2_512_Cmul1_FFHQ_B12G4_scratch_800k.pth) 1. [Component locations of FFHQ: FFHQ_eye_mouth_landmarks_512.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/FFHQ_eye_mouth_landmarks_512.pth) 1. [A simple ArcFace model: arcface_resnet18.pth](https://github.com/TencentARC/GFPGAN/releases/download/v0.1.0/arcface_resnet18.pth) 1. Modify the configuration file `train_gfpgan_v1.yml` accordingly. 1. Training > python -m torch.distributed.launch --nproc_per_node=4 --master_port=22021 train.py -opt train_gfpgan_v1.yml --launcher pytorch ## :scroll: License and Acknowledgement GFPGAN is realeased under Apache License Version 2.0. ## :e-mail: Contact If you have any question, please email `[email protected]` or `[email protected]`.
{}
TencentARC/GFPGANv1
null
[ "arxiv:2101.04061", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Tender/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Teng/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
TerenceAmil/bert_cn_finetuning
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TerenceAmil/bert_funting_test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
Note: **default code snippet above won't work** because we are using `AlbertTokenizer` with `GPT2LMHeadModel`, see [issue](https://github.com/huggingface/transformers/issues/4285). ## GPT2 124M Trained on Ukranian Fiction ### Training details Model was trained on corpus of 4040 fiction books, 2.77 GiB in total. Evaluation on [brown-uk](https://github.com/brown-uk/corpus) gives perplexity of 50.16. ### Example usage: ```python from transformers import AlbertTokenizer, GPT2LMHeadModel tokenizer = AlbertTokenizer.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") model = GPT2LMHeadModel.from_pretrained("Tereveni-AI/gpt2-124M-uk-fiction") input_ids = tokenizer.encode("Но зла Юнона, суча дочка,", add_special_tokens=False, return_tensors='pt') outputs = model.generate( input_ids, do_sample=True, num_return_sequences=3, max_length=50 ) for i, out in enumerate(outputs): print("{}: {}".format(i, tokenizer.decode(out))) ``` Prints something like this: ```bash 0: Но зла Юнона, суча дочка, яка затьмарила всі її таємниці: І хто з'їсть її душу, той помре». І, не дочекавшись гніву богів, посунула в пітьму, щоб не бачити перед собою. Але, за 1: Но зла Юнона, суча дочка, і довела мене до божевілля. Але він не знав нічого. Після того як я його побачив, мені стало зле. Я втратив рівновагу. Але в мене не було часу на роздуми. Я вже втратив надію 2: Но зла Юнона, суча дочка, не нарікала нам! — раптом вигукнула Юнона. — Це ти, старий йолопе! — мовила вона, не перестаючи сміятись. — Хіба ти не знаєш, що мені подобається ходити з тобою? ```
{"language": "uk", "tags": ["text-generation"], "widget": [{"text": "\u041d\u043e \u0437\u043b\u0430 \u042e\u043d\u043e\u043d\u0430, \u0441\u0443\u0447\u0430 \u0434\u043e\u0447\u043a\u0430, "}]}
Tereveni-AI/gpt2-124M-uk-fiction
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "uk", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Terrenc3/Batman_Bot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Tester/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ThaiUWA/gpt-2-josh-uwa
null
[ "transformers", "pytorch", "tf", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
ThaiUWA/gpt2test
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
ThaiUWA/py_just_rumour
null
[ "transformers", "pytorch", "jax", "gpt2", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "afl-3.0"}
Thais/hf_nlp
null
[ "license:afl-3.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) dataset. When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): \\tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the Tamil test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "{lang_id}", split="test") #TODO: replace {lang_id} in your language code here. Make sure the code is one of the *ISO codes* of [this](https://huggingface.co/languages) site. wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model = Wav2Vec2ForCTC.from_pretrained("{model_id}") #TODO: replace {model_id} with your model id. The model id consists of {your_username}/{your_modelname}, *e.g.* `elgeish/wav2vec2-large-xlsr-53-arabic` model.to("cuda") chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\“]' # TODO: adapt this list to include all special characters you removed from the data resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): \\tbatch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() \\tspeech_array, sampling_rate = torchaudio.load(batch["path"]) \\tbatch["speech"] = resampler(speech_array).squeeze().numpy() \\treturn batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): \\tinputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) \\twith torch.no_grad(): \\t\\tlogits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits \\tpred_ids = torch.argmax(logits, dim=-1) \\tbatch["pred_strings"] = processor.batch_decode(pred_ids) \\treturn batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 100.00 % ## Training The Common Voice `train`, `validation` were used for training The script used for training can be found [https://colab.research.google.com/drive/1PC2SjxpcWMQ2qmRw21NbP38wtQQUa5os#scrollTo=YKBZdqqJG9Tv](...)
{"language": "ta", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "metrics": ["wer"], "model-index": [{"name": "thanish wav2vec2-large-xlsr-tamil", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ta", "type": "common_voice", "args": "ta"}, "metrics": [{"type": "wer", "value": 100.0, "name": "Test WER"}]}]}]}
Thanish/wav2vec2-large-xlsr-tamil
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "ta", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Thargyi/Arcane
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThatBomberDev/AITests
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThatSkyFox/DialoGPT-large-joshuaBot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This is an improved version of the Joshua bot
{"tags": ["conversational"]}
ThatSkyFox/DialoGPT-medium-joshua
null
[ "transformers", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#This is a chatbot trained on the transcript of the game "The World Ends with You"
{"tags": ["conversational"]}
ThatSkyFox/DialoGPT-small-joshua
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThatSkyFox/JoshuaBot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThatZoeGamer/tzgchatbot2.0
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Thatianexsilva/That
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Thayyy/Thayyy
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Thazren/Thazzy
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
The-Data-Hound/bacteria_lamp_network
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
The-Programmer-With-Cool-Pens/DialoGPT-small-tifa
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Tifa DialoGPT Model
{"tags": ["conversational"]}
The-Programmer-With-Cool-Pens/TifaBotAIPackage
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheArticle/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
ruGPT3-small model, trained on some 2chan posts
{}
TheBakerCat/2chan_ruGPT3_small
null
[ "transformers", "pytorch", "jax", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheBronxTexan/first_test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Joshua
{"tags": ["conversational"]}
TheCatsMoo/DialoGGPT-small-joshua
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDarkLord/DialoGpt-small-tony
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDiamondKing/DialoGPT-Small-HarryPotterBot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDiamondKing/DialoGPT-med-rick-and-morty-v3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDiamondKing/DialoGPT-med-rick-and-morty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDiamondKing/DialoGPT-medium-rick-and-morty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# A Talking AI made with GPT2 trained with Harry Potter transcripts ## Currently working on Text to speech and speech recognition ## Likes to say "i'm not a wizard"
{"tags": ["conversational"]}
TheDiamondKing/DialoGPT-small-harrypotter
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheDiamondKing/DialoGPT-small-rick-and-morty
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheFarGG/ChuckAI
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheHolyTachanka/DialoGPT-small-rick
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheHolyTachanka/rickbot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/MIMIC-III-t5-large-v1
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-toxic This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.1295 - Rouge1: 93.7659 - Rouge2: 3.6618 - Rougel: 93.7652 - Rougelsum: 93.7757 - Gen Len: 2.5481 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 0.1595 | 1.0 | 7979 | 0.1295 | 93.7659 | 3.6618 | 93.7652 | 93.7757 | 2.5481 | ### Framework versions - Transformers 4.9.1 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-toxic", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 93.7659}}]}]}
TheLongSentance/t5-small-finetuned-toxic
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-small-finetuned-xsum This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the xsum dataset. It achieves the following results on the evaluation set: - Loss: 2.3833 - Rouge1: 29.6452 - Rouge2: 8.6953 - Rougel: 23.4474 - Rougelsum: 23.4553 - Gen Len: 18.8037 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:------:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:| | 2.6051 | 1.0 | 102023 | 2.3833 | 29.6452 | 8.6953 | 23.4474 | 23.4553 | 18.8037 | ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["xsum"], "metrics": ["rouge"], "model_index": [{"name": "t5-small-finetuned-xsum", "results": [{"task": {"name": "Sequence-to-sequence Language Modeling", "type": "text2text-generation"}, "dataset": {"name": "xsum", "type": "xsum", "args": "default"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 29.6452}}]}]}
TheLongSentance/t5-small-finetuned-xsum
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5_large_baseline This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 0.0010 - Rouge1: 99.8958 - Rouge2: 99.8696 - Rougel: 99.8958 - Rougelsum: 99.8958 - Gen Len: 46.715 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adafactor - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 0.9852 | 0.33 | 50 | 0.1098 | 55.1421 | 49.8248 | 54.4294 | 54.7377 | 19.0 | | 0.1186 | 0.67 | 100 | 0.0176 | 58.0994 | 54.8973 | 57.7383 | 57.9538 | 19.0 | | 0.0417 | 1.0 | 150 | 0.0057 | 58.3685 | 55.7353 | 58.279 | 58.2729 | 19.0 | | 0.0225 | 1.33 | 200 | 0.0029 | 58.8981 | 56.2457 | 58.8202 | 58.7906 | 19.0 | | 0.0131 | 1.67 | 250 | 0.0024 | 58.8439 | 56.2535 | 58.7557 | 58.7218 | 19.0 | | 0.0112 | 2.0 | 300 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0077 | 2.33 | 350 | 0.0013 | 58.9538 | 56.4749 | 58.9322 | 58.8817 | 19.0 | | 0.0043 | 2.67 | 400 | 0.0010 | 59.0124 | 56.5806 | 58.9867 | 58.9342 | 19.0 | | 0.0052 | 3.0 | 450 | 0.0010 | 59.0402 | 56.6982 | 59.0385 | 58.986 | 19.0 | ### Framework versions - Transformers 4.10.0.dev0 - Pytorch 1.9.0+cu111 - Datasets 1.11.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["rouge"], "model_index": [{"name": "t5_large_baseline", "results": [{"task": {"name": "Summarization", "type": "summarization"}, "metric": {"name": "Rouge1", "type": "rouge", "value": 99.8958}}]}]}
TheLongSentance/t5_large_baseline
null
[ "transformers", "pytorch", "t5", "text2text-generation", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt10000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt15000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt150000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt20000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt225000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt25000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt30000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt5000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_final_chkpnt75000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr1e4c_chkpnt20000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_1_nbn_lr3e4c_chkpnt20000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt20000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_chkpnt5000
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
TheLongSentance/t5_mimic_nt1_1m_tk200_r2p5_c15_sp1_3_nbn_lr3e4c
null
[ "transformers", "pytorch", "t5", "feature-extraction", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheLongSentance/tst-multilabelclass
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Harry DialoGPT Model
{"tags": ["conversational"]}
ThePeachOx/DialoGPT-small-harry
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
EconBERTa - RoBERTa further trained for 25k steps (T=512, batch_size = 256) on text sourced from economics books. Example usage for MLM: ```python from transformers import RobertaTokenizer, RobertaForMaskedLM from transformers import pipeline tokenizer = RobertaTokenizer.from_pretrained('roberta-base') model = RobertaForMaskedLM.from_pretrained('models').cpu() model.eval() mlm = pipeline('fill-mask', model = model, tokenizer = tokenizer) test = "ECB - euro, FED - <mask>, BoJ - yen" print(mlm(test)[:2]) [{'sequence': 'ECB - euro, FED - dollar, BoJ - yen', 'score': 0.7342271208763123, 'token': 1404, 'token_str': ' dollar'}, {'sequence': 'ECB - euro, FED - dollars, BoJ - yen', 'score': 0.10828445851802826, 'token': 1932, 'token_str': ' dollars'}] ```
{}
ThePixOne/EconBERTa
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThePixOne/chaqt
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
BERT finetuned on wallstreetbets subreddit
{}
ThePixOne/retBERT
null
[ "transformers", "pytorch", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
null
#Rick DialoGPT Model
{"tags": ["conversational"]}
TheReverendWes/DialoGPT-small-rick
null
[ "conversational", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
TheSkrill/ChatBot-CS-583
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Hemione Chat Bot
{"tags": ["conversational"]}
TheTUFGuy/HermioneChatBot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Theivaprakasham/Speech2Text-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-cased-twitter_sentiment This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6907 - Accuracy: 0.7132 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8901 | 1.0 | 1387 | 0.8592 | 0.6249 | | 0.8085 | 2.0 | 2774 | 0.7600 | 0.6822 | | 0.7336 | 3.0 | 4161 | 0.7170 | 0.6915 | | 0.6938 | 4.0 | 5548 | 0.7018 | 0.7016 | | 0.6738 | 5.0 | 6935 | 0.6926 | 0.7067 | | 0.6496 | 6.0 | 8322 | 0.6910 | 0.7088 | | 0.6599 | 7.0 | 9709 | 0.6902 | 0.7088 | | 0.631 | 8.0 | 11096 | 0.6910 | 0.7095 | | 0.6327 | 9.0 | 12483 | 0.6925 | 0.7146 | | 0.6305 | 10.0 | 13870 | 0.6907 | 0.7132 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "bert-base-cased-twitter_sentiment", "results": []}]}
Theivaprakasham/bert-base-cased-twitter_sentiment
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Theivaprakasham/bert-base-cased-twitter_sentimenttest_trainer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-sroie This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on the sroie dataset. It achieves the following results on the evaluation set: - Loss: 0.0291 - Address Precision: 0.9341 - Address Recall: 0.9395 - Address F1: 0.9368 - Address Number: 347 - Company Precision: 0.9570 - Company Recall: 0.9625 - Company F1: 0.9598 - Company Number: 347 - Date Precision: 0.9885 - Date Recall: 0.9885 - Date F1: 0.9885 - Date Number: 347 - Total Precision: 0.9253 - Total Recall: 0.9280 - Total F1: 0.9266 - Total Number: 347 - Overall Precision: 0.9512 - Overall Recall: 0.9546 - Overall F1: 0.9529 - Overall Accuracy: 0.9961 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Address Precision | Address Recall | Address F1 | Address Number | Company Precision | Company Recall | Company F1 | Company Number | Date Precision | Date Recall | Date F1 | Date Number | Total Precision | Total Recall | Total F1 | Total Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:--------------:|:-----------------:|:--------------:|:----------:|:--------------:|:--------------:|:-----------:|:-------:|:-----------:|:---------------:|:------------:|:--------:|:------------:|:-----------------:|:--------------:|:----------:|:----------------:| | No log | 0.05 | 157 | 0.8162 | 0.3670 | 0.7233 | 0.4869 | 347 | 0.0617 | 0.0144 | 0.0234 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.3346 | 0.1844 | 0.2378 | 0.9342 | | No log | 1.05 | 314 | 0.3490 | 0.8564 | 0.8934 | 0.8745 | 347 | 0.8610 | 0.9280 | 0.8932 | 347 | 0.7297 | 0.8559 | 0.7878 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8128 | 0.6693 | 0.7341 | 0.9826 | | No log | 2.05 | 471 | 0.1845 | 0.7970 | 0.9049 | 0.8475 | 347 | 0.9211 | 0.9424 | 0.9316 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.8978 | 0.7089 | 0.7923 | 0.9835 | | 0.7027 | 3.05 | 628 | 0.1194 | 0.9040 | 0.9222 | 0.9130 | 347 | 0.8880 | 0.9135 | 0.9006 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.0 | 0.0 | 0.0 | 347 | 0.9263 | 0.7061 | 0.8013 | 0.9853 | | 0.7027 | 4.05 | 785 | 0.0762 | 0.9397 | 0.9424 | 0.9410 | 347 | 0.8889 | 0.9222 | 0.9052 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7740 | 0.9078 | 0.8355 | 347 | 0.8926 | 0.9402 | 0.9158 | 0.9928 | | 0.7027 | 5.05 | 942 | 0.0564 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9296 | 0.9510 | 0.9402 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.7801 | 0.8588 | 0.8176 | 347 | 0.9036 | 0.9323 | 0.9177 | 0.9946 | | 0.0935 | 6.05 | 1099 | 0.0548 | 0.9222 | 0.9222 | 0.9222 | 347 | 0.6975 | 0.7378 | 0.7171 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.8608 | 0.8732 | 0.8670 | 347 | 0.8648 | 0.8804 | 0.8725 | 0.9921 | | 0.0935 | 7.05 | 1256 | 0.0410 | 0.92 | 0.9280 | 0.9240 | 347 | 0.9486 | 0.9568 | 0.9527 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9091 | 0.9222 | 0.9156 | 347 | 0.9414 | 0.9488 | 0.9451 | 0.9961 | | 0.0935 | 8.05 | 1413 | 0.0369 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9569 | 0.9597 | 0.9583 | 347 | 0.9772 | 0.9885 | 0.9828 | 347 | 0.9143 | 0.9222 | 0.9182 | 347 | 0.9463 | 0.9524 | 0.9494 | 0.9960 | | 0.038 | 9.05 | 1570 | 0.0343 | 0.9282 | 0.9308 | 0.9295 | 347 | 0.9624 | 0.9597 | 0.9610 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9206 | 0.9020 | 0.9112 | 347 | 0.9500 | 0.9452 | 0.9476 | 0.9958 | | 0.038 | 10.05 | 1727 | 0.0317 | 0.9395 | 0.9395 | 0.9395 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9280 | 0.9280 | 0.9280 | 347 | 0.9539 | 0.9546 | 0.9543 | 0.9963 | | 0.038 | 11.05 | 1884 | 0.0312 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9514 | 0.9597 | 0.9555 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9226 | 0.9280 | 0.9253 | 347 | 0.9498 | 0.9539 | 0.9518 | 0.9960 | | 0.0236 | 12.05 | 2041 | 0.0318 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9043 | 0.8991 | 0.9017 | 347 | 0.9467 | 0.9474 | 0.9471 | 0.9956 | | 0.0236 | 13.05 | 2198 | 0.0291 | 0.9337 | 0.9337 | 0.9337 | 347 | 0.9598 | 0.9625 | 0.9612 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9164 | 0.9164 | 0.9164 | 347 | 0.9496 | 0.9503 | 0.9499 | 0.9960 | | 0.0236 | 14.05 | 2355 | 0.0300 | 0.9286 | 0.9366 | 0.9326 | 347 | 0.9459 | 0.9568 | 0.9513 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9476 | 0.9510 | 0.9493 | 0.9959 | | 0.0178 | 15.05 | 2512 | 0.0307 | 0.9366 | 0.9366 | 0.9366 | 347 | 0.9513 | 0.9568 | 0.9540 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9275 | 0.9222 | 0.9249 | 347 | 0.9510 | 0.9510 | 0.9510 | 0.9959 | | 0.0178 | 16.05 | 2669 | 0.0300 | 0.9312 | 0.9366 | 0.9339 | 347 | 0.9543 | 0.9625 | 0.9584 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9171 | 0.9251 | 0.9211 | 347 | 0.9477 | 0.9532 | 0.9504 | 0.9959 | | 0.0178 | 17.05 | 2826 | 0.0292 | 0.9368 | 0.9395 | 0.9381 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9519 | 0.9546 | 0.9532 | 0.9961 | | 0.0178 | 18.05 | 2983 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 | | 0.0149 | 19.01 | 3000 | 0.0291 | 0.9341 | 0.9395 | 0.9368 | 347 | 0.9570 | 0.9625 | 0.9598 | 347 | 0.9885 | 0.9885 | 0.9885 | 347 | 0.9253 | 0.9280 | 0.9266 | 347 | 0.9512 | 0.9546 | 0.9529 | 0.9961 | ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.0+cu101 - Datasets 1.18.4.dev0 - Tokenizers 0.11.6
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "datasets": ["sroie"], "model-index": [{"name": "layoutlmv2-finetuned-sroie", "results": []}]}
Theivaprakasham/layoutlmv2-finetuned-sroie
null
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "dataset:sroie", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # layoutlmv2-finetuned-sroie_mod This model is a fine-tuned version of [microsoft/layoutlmv2-base-uncased](https://huggingface.co/microsoft/layoutlmv2-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 3000 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.16.2 - Pytorch 1.8.0+cu101 - Datasets 1.18.3 - Tokenizers 0.11.0
{"license": "cc-by-nc-sa-4.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "layoutlmv2-finetuned-sroie_mod", "results": []}]}
Theivaprakasham/layoutlmv2-finetuned-sroie_mod
null
[ "transformers", "pytorch", "tensorboard", "layoutlmv2", "token-classification", "generated_from_trainer", "license:cc-by-nc-sa-4.0", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment This model is a fine-tuned version of [sentence-transformers/msmarco-distilbert-base-tas-b](https://huggingface.co/sentence-transformers/msmarco-distilbert-base-tas-b) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6954 - Accuracy: 0.7146 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.8892 | 1.0 | 1387 | 0.8472 | 0.6180 | | 0.7965 | 2.0 | 2774 | 0.7797 | 0.6609 | | 0.7459 | 3.0 | 4161 | 0.7326 | 0.6872 | | 0.7096 | 4.0 | 5548 | 0.7133 | 0.6995 | | 0.6853 | 5.0 | 6935 | 0.6998 | 0.7002 | | 0.6561 | 6.0 | 8322 | 0.6949 | 0.7059 | | 0.663 | 7.0 | 9709 | 0.6956 | 0.7077 | | 0.6352 | 8.0 | 11096 | 0.6890 | 0.7164 | | 0.6205 | 9.0 | 12483 | 0.6888 | 0.7117 | | 0.6203 | 10.0 | 13870 | 0.6871 | 0.7121 | | 0.6005 | 11.0 | 15257 | 0.6879 | 0.7171 | | 0.5985 | 12.0 | 16644 | 0.6870 | 0.7139 | | 0.5839 | 13.0 | 18031 | 0.6882 | 0.7164 | | 0.5861 | 14.0 | 19418 | 0.6910 | 0.7124 | | 0.5732 | 15.0 | 20805 | 0.6916 | 0.7153 | | 0.5797 | 16.0 | 22192 | 0.6947 | 0.7110 | | 0.5565 | 17.0 | 23579 | 0.6930 | 0.7175 | | 0.5636 | 18.0 | 24966 | 0.6959 | 0.7106 | | 0.5642 | 19.0 | 26353 | 0.6952 | 0.7132 | | 0.5717 | 20.0 | 27740 | 0.6954 | 0.7146 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "metrics": ["accuracy"], "model-index": [{"name": "sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment", "results": []}]}
Theivaprakasham/sentence-transformers-msmarco-distilbert-base-tas-b-twitter_sentiment
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
Theivaprakasham/sentence-transformers-paraphrase-MiniLM-L6-v2-twitter_sentiment
null
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-timit-demo-colab This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4475 - Wer: 0.3400 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 3.6929 | 4.0 | 500 | 2.4485 | 1.0009 | | 0.9441 | 8.0 | 1000 | 0.4848 | 0.4758 | | 0.3016 | 12.0 | 1500 | 0.4464 | 0.4016 | | 0.1715 | 16.0 | 2000 | 0.4666 | 0.3765 | | 0.1277 | 20.0 | 2500 | 0.4340 | 0.3515 | | 0.1082 | 24.0 | 3000 | 0.4544 | 0.3495 | | 0.0819 | 28.0 | 3500 | 0.4475 | 0.3400 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "wav2vec2-base-timit-demo-colab", "results": []}]}
Theivaprakasham/wav2vec2-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Theivaprakasham/wav2vec2-base-timit-demo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Stewie DialoGPT Model
{"tags": ["conversational"]}
Thejas/DialoGPT-small-Stewei
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#Elon Musk DialoGPT Model
{"tags": ["conversational"]}
Thejas/DialoGPT-small-elon
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ThibaudL/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
ThinkCERCA/claim_hugging
null
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
ThinkCERCA/counterargument_hugging
null
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
ThinkCERCA/evidence_hugging
null
[ "transformers", "tf", "bert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00