Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-classification
transformers
# Model description This model is an Arabic language sentiment analysis pretrained model. The model is built on top of the CAMelBERT_msa_sixteenth BERT-based model. We used the HARD dataset of hotels review to fine tune the model. The dataset original labels based on a five-star rating were modified to a 3 label data: - POSITIVE: for ratings > 3 stars - NEUTRAL: for a 3 star rating - NEGATIVE: for ratings < 3 stars This first prototype was trained on 3 epochs for 1 hours using Colab and a TPU acceleration. # Examples Here are some examples in Arabic to test : - Excellent -> ممتاز(Happy) - I'am sad -> أنا حزين (Sad) - Nothing -> لا شيء (Neutral) # Contact If you have questions or improvement remarks, feel free to contact me on my LinkedIn profile: https://www.linkedin.com/in/yahya-ghrab/
{"language": "ar", "widget": [{"text": "\u0645\u0645\u062a\u0627\u0632"}, {"text": "\u0623\u0646\u0627 \u062d\u0632\u064a\u0646"}, {"text": "\u0644\u0627 \u0634\u064a\u0621"}]}
Yah216/Sentiment_Analysis_CAMelBERT_msa_sixteenth_HARD
null
[ "transformers", "tf", "bert", "text-classification", "ar", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yaia/distilbert-base-uncased-finetuned-disaster
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yaia/distilbert-base-uncased-finetuned-disaster_full
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2086 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8249 | 1.0 | 250 | 0.3042 | 0.9085 | 0.9068 | | 0.2437 | 2.0 | 500 | 0.2086 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.1 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["emotion"], "metrics": ["accuracy", "f1"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9255, "name": "Accuracy"}, {"type": "f1", "value": 0.9257196896784097, "name": "F1"}]}]}]}
Yaia/distilbert-base-uncased-finetuned-emotion
null
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YanWang20121865/2021MScAI_ML
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
ONNX version of message-intent model. Will be used on GPU machine.
{}
Yanjie/message-intent-onnx
null
[ "onnx", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
This is the concierge intent model. Fined tuned on DistilBert uncased model.
{}
Yanjie/message-intent
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
This is the concierge preamble model. Fined tuned on DistilBert uncased model.
{}
Yanjie/message-preamble
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
Yankee/TEST21
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yankee/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#test
{"tags": ["conversational"]}
Yankee/test1234
null
[ "transformers", "pytorch", "conversational", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
Domain-adaptive pretraining of camembert-base using 15 GB of French Tweets
{"language": "fr"}
Yanzhu/bertweetfr-base
null
[ "transformers", "pytorch", "camembert", "fill-mask", "fr", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
French NER model for tweets. Fine-tuned on the CAP2017 dataset. label_list = ['O', 'B-person', 'I-person', 'B-musicartist', 'I-musicartist', 'B-org', 'I-org', 'B-geoloc', 'I-geoloc', 'B-product', 'I-product', 'B-transportLine', 'I-transportLine', 'B-media', 'I-media', 'B-sportsteam', 'I-sportsteam', 'B-event', 'I-event', 'B-tvshow', 'I-tvshow', 'B-movie', 'I-movie', 'B-facility', 'I-facility', 'B-other', 'I-other']
{}
Yanzhu/bertweetfr_ner
null
[ "transformers", "pytorch", "camembert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
French roBERTa-base model fine-tuned for Offensive Language Identification on COVID-19 tweets.
{}
Yanzhu/bertweetfr_offensiveness
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YashBit/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YashBit/roberta-base-finetuned-sst2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yashaaaaa/Yahsjaja
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yashwanth/test-trainer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
null
# Wav2Vec2-Large-XLSR-Bengali Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) Bengali using a subset of 40,000 utterances from [Bengali ASR training data set containing ~196K utterances](https://www.openslr.org/53/). Tested WER using ~4200 held out from training. When using this model, make sure that your speech input is sampled at 16kHz. Train Script can be Found at : train.py Data Prep Notebook : https://colab.research.google.com/drive/1JMlZPU-DrezXjZ2t7sOVqn7CJjZhdK2q?usp=sharing Inference Notebook : https://colab.research.google.com/drive/1uKC2cK9JfUPDTUHbrNdOYqKtNozhxqgZ?usp=sharing ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor processor = Wav2Vec2Processor.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") model = Wav2Vec2ForCTC.from_pretrained("arijitx/wav2vec2-large-xlsr-bengali") # model = model.to("cuda") resampler = torchaudio.transforms.Resample(TEST_AUDIO_SR, 16_000) def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch) speech = resampler(speech_array).squeeze().numpy() return speech speech_array = speech_file_to_array_fn("test_file.wav") inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values).logits predicted_ids = torch.argmax(logits, dim=-1) preds = processor.batch_decode(predicted_ids)[0] print(preds.replace("[PAD]","")) ``` **Test Result**: WER on ~4200 utterance : 32.45 %
{"language": "Bengali", "license": "cc-by-sa-4.0", "tags": ["bn", "audio", "automatic-speech-recognition", "speech"], "datasets": ["OpenSLR"], "metrics": ["wer"], "model-index": [{"name": "XLSR Wav2Vec2 Bengali by Arijit", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "OpenSLR", "type": "OpenSLR", "args": "ben"}, "metrics": [{"type": "wer", "value": 32.45, "name": "Test WER"}]}]}]}
YasinShihab/asr-en-bn-test
null
[ "bn", "audio", "automatic-speech-recognition", "speech", "dataset:OpenSLR", "license:cc-by-sa-4.0", "model-index", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yasmin007anjinha/O
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yasmin018393o03i4/Arcade
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yatoro/Yatoro-finetuned-imdb
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yatoro/bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yatoro/codeparrot-ds
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yatoro/marian-finetuned-kde4-en-to-fr
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yatoro/mt5-small-finetuned-amazon-en-es
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yax/yaxescobedo
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Ye/albert_finetuned_ye
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Ukrainian STT model (with Language Model) 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UK dataset. It achieves the following results on the evaluation set without the language model: - Loss: 0.1875 - Wer: 0.2033 - Cer: 0.0384 ## Model description On 100 test example the model shows the following results: Without LM: - WER: 0.1862 - CER: 0.0277 With LM: - WER: 0.1218 - CER: 0.0190 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2815 | 7.93 | 500 | 0.3536 | 0.4753 | 0.1009 | | 1.0869 | 15.86 | 1000 | 0.2317 | 0.3111 | 0.0614 | | 0.9984 | 23.8 | 1500 | 0.2022 | 0.2676 | 0.0521 | | 0.975 | 31.74 | 2000 | 0.1948 | 0.2469 | 0.0487 | | 0.9306 | 39.67 | 2500 | 0.1916 | 0.2377 | 0.0464 | | 0.8868 | 47.61 | 3000 | 0.1903 | 0.2257 | 0.0439 | | 0.8424 | 55.55 | 3500 | 0.1786 | 0.2206 | 0.0423 | | 0.8126 | 63.49 | 4000 | 0.1849 | 0.2160 | 0.0416 | | 0.7901 | 71.42 | 4500 | 0.1869 | 0.2138 | 0.0413 | | 0.7671 | 79.36 | 5000 | 0.1855 | 0.2075 | 0.0394 | | 0.7467 | 87.3 | 5500 | 0.1884 | 0.2049 | 0.0389 | | 0.731 | 95.24 | 6000 | 0.1877 | 0.2060 | 0.0387 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0 #### Evaluation Commands 1. To evaluate on `mozilla-foundation/common_voice_7_0` with split `test` ```bash python eval.py --model_id Yehor/wav2vec2-xls-r-1b-uk-with-lm --dataset mozilla-foundation/common_voice_7_0 --config uk --split test ``` ### Eval results on Common Voice 7 "test" (WER): | Without LM | With LM (run `./eval.py`) | |---|---| | 21.52 | 14.62 |
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "uk"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "wav2vec2-xls-r-1b-uk-with-lm", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 14.62, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Dev Data", "type": "speech-recognition-community-v2/dev_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 48.72, "name": "Test WER"}]}, {"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Robust Speech Event - Test Data", "type": "speech-recognition-community-v2/eval_data", "args": "uk"}, "metrics": [{"type": "wer", "value": 40.66, "name": "Test WER"}]}]}]}
Yehor/wav2vec2-xls-r-1b-uk-with-lm
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "hf-asr-leaderboard", "mozilla-foundation/common_voice_7_0", "robust-speech-event", "uk", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Ukrainian STT model (with the Big Language Model formed on News Dataset) 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UK dataset. Attribution to the dataset of Language Model: - Chaplynskyi, D. et al. (2021) lang-uk Ukrainian Ubercorpus [Data set]. https://lang.org.ua/uk/corpora/#anchor4 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 1.2815 | 7.93 | 500 | 0.3536 | 0.4753 | 0.1009 | | 1.0869 | 15.86 | 1000 | 0.2317 | 0.3111 | 0.0614 | | 0.9984 | 23.8 | 1500 | 0.2022 | 0.2676 | 0.0521 | | 0.975 | 31.74 | 2000 | 0.1948 | 0.2469 | 0.0487 | | 0.9306 | 39.67 | 2500 | 0.1916 | 0.2377 | 0.0464 | | 0.8868 | 47.61 | 3000 | 0.1903 | 0.2257 | 0.0439 | | 0.8424 | 55.55 | 3500 | 0.1786 | 0.2206 | 0.0423 | | 0.8126 | 63.49 | 4000 | 0.1849 | 0.2160 | 0.0416 | | 0.7901 | 71.42 | 4500 | 0.1869 | 0.2138 | 0.0413 | | 0.7671 | 79.36 | 5000 | 0.1855 | 0.2075 | 0.0394 | | 0.7467 | 87.3 | 5500 | 0.1884 | 0.2049 | 0.0389 | | 0.731 | 95.24 | 6000 | 0.1877 | 0.2060 | 0.0387 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "cc-by-nc-sa-4.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "uk"], "xdatasets": ["mozilla-foundation/common_voice_7_0"]}
Yehor/wav2vec2-xls-r-1b-uk-with-news-lm
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "uk", "license:cc-by-nc-sa-4.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Ukrainian STT model (with Language Model) 🇺🇦 Join Ukrainian Speech Recognition Community - https://t.me/speech_recognition_uk ⭐ See other Ukrainian models - https://github.com/egorsmkv/speech-recognition-uk - Have a look on an updated 300m model: https://huggingface.co/Yehor/wav2vec2-xls-r-300m-uk-with-small-lm - Have a look on a better model with more parameters: https://huggingface.co/Yehor/wav2vec2-xls-r-1b-uk-with-lm This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UK dataset. It achieves the following results on the evaluation set: - Loss: 0.3015 - Wer: 0.3377 - Cer: 0.0708 The above results present evaluation without the language model. ## Model description On 100 test example the model shows the following results: Without LM: - WER: 0.2647 - CER: 0.0469 With LM: - WER: 0.1568 - CER: 0.0289 ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 20 - total_train_batch_size: 160 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 100.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 3.0255 | 7.93 | 500 | 2.5514 | 0.9921 | 0.9047 | | 1.3809 | 15.86 | 1000 | 0.4065 | 0.5361 | 0.1201 | | 1.2355 | 23.8 | 1500 | 0.3474 | 0.4618 | 0.1033 | | 1.1956 | 31.74 | 2000 | 0.3617 | 0.4580 | 0.1005 | | 1.1416 | 39.67 | 2500 | 0.3182 | 0.4074 | 0.0891 | | 1.0996 | 47.61 | 3000 | 0.3166 | 0.3985 | 0.0875 | | 1.0427 | 55.55 | 3500 | 0.3116 | 0.3835 | 0.0828 | | 0.9961 | 63.49 | 4000 | 0.3137 | 0.3757 | 0.0807 | | 0.9575 | 71.42 | 4500 | 0.2992 | 0.3632 | 0.0771 | | 0.9154 | 79.36 | 5000 | 0.3015 | 0.3502 | 0.0740 | | 0.8994 | 87.3 | 5500 | 0.3004 | 0.3425 | 0.0723 | | 0.871 | 95.24 | 6000 | 0.3016 | 0.3394 | 0.0713 | ### Framework versions - Transformers 4.16.0.dev0 - Pytorch 1.10.1+cu102 - Datasets 1.18.1.dev0 - Tokenizers 0.11.0
{"language": ["uk"], "license": "apache-2.0", "tags": ["automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "uk"], "datasets": ["mozilla-foundation/common_voice_7_0"], "model-index": [{"name": "wav2vec2-xls-r-300m-uk-with-lm", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Automatic Speech Recognition"}, "dataset": {"name": "Common Voice 7", "type": "mozilla-foundation/common_voice_7_0", "args": "uk"}, "metrics": [{"type": "wer", "value": 26.47, "name": "Test WER"}, {"type": "cer", "value": 2.9, "name": "Test CER"}]}]}]}
Yehor/wav2vec2-xls-r-300m-uk-with-lm
null
[ "transformers", "pytorch", "wav2vec2", "pretraining", "automatic-speech-recognition", "mozilla-foundation/common_voice_7_0", "generated_from_trainer", "uk", "dataset:mozilla-foundation/common_voice_7_0", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yero/distilroberta-base-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yero/model_basic
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# ProteinLM
{}
Yijia-Xiao/ProteinLM
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yita/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
YituTech/conv-bert-base
null
[ "transformers", "pytorch", "tf", "convbert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
YituTech/conv-bert-medium-small
null
[ "transformers", "pytorch", "tf", "convbert", "feature-extraction", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
YituTech/conv-bert-small
null
[ "transformers", "pytorch", "tf", "convbert", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yixuan/wav2vec2-large-xls-r-300m-cantonese
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
Yixuan/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yizumi/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YoadTew/Arithmetic
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yoiimomo/Beep
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yokiiiii/Yolii
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yokito7u7/Agua
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yongqi/gru_bidaf
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "mit"}
Yoonseong/GreenWashing
null
[ "license:mit", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YoooCupid/Cupid
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
Yoshisaur/kono-chat
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yotam/new
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YoussefSaad/t5-small-finetuned-en-to-ro
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Ysa/Chat-Pizza
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Ysa/DialoGPT-small-harrypotter
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{"license": "wtfpl"}
Ysfafandi/A1
null
[ "license:wtfpl", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YuCui/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuber-Lobo/Prueba
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
# Question Answering model for Hindi and Tamil This model is part of the ensemble that ranked 4/943 in the [Hindi and Tamil Question Answering](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering) competition held by Google Research India at Kaggle. ``` from transformers import AutoTokenizer, AutoModelForQuestionAnswering tokenizer = AutoTokenizer.from_pretrained("Yuchen/muril-large-cased-hita-qa") model = AutoModelForQuestionAnswering.from_pretrained("Yuchen/muril-large-cased-hita-qa") ```
{"license": "apache-2.0", "thumbnail": "https://huggingface.co/front/thumbnails/google.png"}
Yuchen/muril-large-cased-hita-qa
null
[ "transformers", "pytorch", "bert", "question-answering", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuki9666/Anime
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuqian/Celine_SRL
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuqian/multilingual-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # xlm-roberta-base-finetuned-marc This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the amazon_reviews_multi dataset. It achieves the following results on the evaluation set: - Loss: 0.9825 - Mae: 0.4956 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mae | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1432 | 1.0 | 308 | 1.0559 | 0.5133 | | 0.9883 | 2.0 | 616 | 0.9825 | 0.4956 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.9.0+cu111 - Datasets 1.13.3 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "datasets": ["amazon_reviews_multi"], "model-index": [{"name": "xlm-roberta-base-finetuned-marc", "results": []}]}
Yuri/xlm-roberta-base-finetuned-marc
null
[ "transformers", "pytorch", "tensorboard", "xlm-roberta", "text-classification", "generated_from_trainer", "dataset:amazon_reviews_multi", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuriy/wer
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yurun/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
espnet
## ESPnet2 DIAR model ### `YushiUeda/test` This model was trained by Yushi Ueda using mini_librispeech recipe in [espnet](https://github.com/espnet/espnet/). ### Demo: How to use in ESPnet2 ```bash cd espnet git checkout 4dfa2be4331d3d68f124aa5fd81f63217a7278a4 pip install -e . cd egs2/mini_librispeech/diar1 ./run.sh --skip_data_prep false --skip_train true --download_model YushiUeda/test ``` <!-- Generated by scripts/utils/show_diar_result.sh --> # RESULTS ## Environments - date: `Wed Aug 25 23:29:07 EDT 2021` - python version: `3.7.11 (default, Jul 27 2021, 14:32:16) [GCC 7.5.0]` - espnet version: `espnet 0.10.2a1` - pytorch version: `pytorch 1.9.0+cu102` - Git hash: `19bcd34f9395e01e54a97c4db5ecbcedb429dd92` - Commit date: `Tue Aug 24 19:50:44 2021 -0400` ## `diar_train_diar_raw_max_epoch20` ### DER `dev_clean_2_ns2_beta2_500` |threshold_median_collar|DER| |---|---| |result_th0.3_med1_collar0.0|32.42| |result_th0.3_med11_collar0.0|32.03| |result_th0.4_med1_collar0.0|30.96| |result_th0.4_med11_collar0.0|30.26| |result_th0.5_med1_collar0.0|30.35| |result_th0.5_med11_collar0.0|29.37| |result_th0.6_med1_collar0.0|30.77| |result_th0.6_med11_collar0.0|29.52| |result_th0.7_med1_collar0.0|32.60| |result_th0.7_med11_collar0.0|31.03| ## DIAR config <details><summary>expand</summary> ``` config: conf/train_diar.yaml print_config: false log_level: INFO dry_run: false iterator_type: chunk output_dir: exp/diar_train_diar_raw_max_epoch20 ngpu: 1 seed: 0 num_workers: 1 num_att_plot: 3 dist_backend: nccl dist_init_method: env:// dist_world_size: null dist_rank: null local_rank: 0 dist_master_addr: null dist_master_port: null dist_launcher: null multiprocessing_distributed: false unused_parameters: false sharded_ddp: false cudnn_enabled: true cudnn_benchmark: false cudnn_deterministic: true collect_stats: false write_collected_feats: false max_epoch: 20 patience: 3 val_scheduler_criterion: - valid - loss early_stopping_criterion: - valid - loss - min best_model_criterion: - - valid - acc - max keep_nbest_models: 3 grad_clip: 5 grad_clip_type: 2.0 grad_noise: false accum_grad: 2 no_forward_run: false resume: true train_dtype: float32 use_amp: false log_interval: null use_tensorboard: true use_wandb: false wandb_project: null wandb_id: null wandb_entity: null wandb_name: null wandb_model_log_interval: -1 detect_anomaly: false pretrain_path: null init_param: [] ignore_init_mismatch: false freeze_param: [] num_iters_per_epoch: null batch_size: 16 valid_batch_size: null batch_bins: 1000000 valid_batch_bins: null train_shape_file: - exp/diar_stats_8k/train/speech_shape - exp/diar_stats_8k/train/spk_labels_shape valid_shape_file: - exp/diar_stats_8k/valid/speech_shape - exp/diar_stats_8k/valid/spk_labels_shape batch_type: folded valid_batch_type: null fold_length: - 80000 - 800 sort_in_batch: descending sort_batch: descending multiple_iterator: false chunk_length: 200000 chunk_shift_ratio: 0.5 num_cache_chunks: 64 train_data_path_and_name_and_type: - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/train_clean_5_ns2_beta2_500/espnet_rttm - spk_labels - rttm valid_data_path_and_name_and_type: - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/wav.scp - speech - sound - - dump/raw/simu/data/dev_clean_2_ns2_beta2_500/espnet_rttm - spk_labels - rttm allow_variable_data_keys: false max_cache_size: 0.0 max_cache_fd: 32 valid_max_cache_size: null optim: adam optim_conf: lr: 0.01 scheduler: noamlr scheduler_conf: warmup_steps: 1000 num_spk: 2 init: xavier_uniform input_size: null model_conf: loss_type: pit use_preprocessor: true frontend: default frontend_conf: fs: 8k hop_length: 128 normalize: global_mvn normalize_conf: stats_file: exp/diar_stats_8k/train/feats_stats.npz encoder: transformer encoder_conf: input_layer: linear num_blocks: 2 linear_units: 512 dropout_rate: 0.1 output_size: 256 attention_heads: 4 attention_dropout_rate: 0.0 decoder: linear decoder_conf: {} label_aggregator: label_aggregator label_aggregator_conf: {} required: - output_dir version: 0.10.2a1 distributed: false ``` </details>
{"license": "cc-by-4.0", "tags": ["espnet", "audio", "diarization"], "datasets": ["mini_librispeech"]}
YushiUeda/test
null
[ "espnet", "audio", "diarization", "dataset:mini_librispeech", "license:cc-by-4.0", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_FANTASY This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_FANTASY", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_FANTASY
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_HORROR This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_HORROR", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_HORROR
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_MODERN This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_MODERN", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_MODERN
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # IFIS_ZORK_AI_SCIFI This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "IFIS_ZORK_AI_SCIFI", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/IFIS_ZORK_AI_SCIFI
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YusufSahin99/IFIS_ZORK_AI_SCIFI2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Zork_AI_SciFi This model is a fine-tuned version of [gpt2](https://huggingface.co/gpt2) on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.8.2 - Pytorch 1.9.0+cu102 - Tokenizers 0.10.3
{"license": "mit", "tags": ["generated_from_trainer"], "model_index": [{"name": "Zork_AI_SciFi", "results": [{"task": {"name": "Causal Language Modeling", "type": "text-generation"}}]}]}
YusufSahin99/Zork_AI_SciFi
null
[ "transformers", "pytorch", "tensorboard", "gpt2", "text-generation", "generated_from_trainer", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
YusufSahin99/Zork_AI_SciFi2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuta565/OkuYuta
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuuryoku/Junko_Enoshima
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuxing/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yuxing/distilbert-base-uncased-finetuned-mnli
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
{}
Yv/bert-finetuned-ner-accelerate
null
[ "transformers", "pytorch", "bert", "token-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
token-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0598 - Precision: 0.9370 - Recall: 0.9509 - F1: 0.9439 - Accuracy: 0.9869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0871 | 1.0 | 1756 | 0.0633 | 0.9197 | 0.9362 | 0.9279 | 0.9833 | | 0.0386 | 2.0 | 3512 | 0.0572 | 0.9351 | 0.9483 | 0.9417 | 0.9866 | | 0.0214 | 3.0 | 5268 | 0.0598 | 0.9370 | 0.9509 | 0.9439 | 0.9869 | ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["conll2003"], "metrics": ["precision", "recall", "f1", "accuracy"], "model-index": [{"name": "bert-finetuned-ner", "results": [{"task": {"type": "token-classification", "name": "Token Classification"}, "dataset": {"name": "conll2003", "type": "conll2003", "args": "conll2003"}, "metrics": [{"type": "precision", "value": 0.9369817578772802, "name": "Precision"}, {"type": "recall", "value": 0.9508582968697409, "name": "Recall"}, {"type": "f1", "value": 0.9438690277313732, "name": "F1"}, {"type": "accuracy", "value": 0.9868575969859305, "name": "Accuracy"}]}]}]}
Yv/bert-finetuned-ner
null
[ "transformers", "pytorch", "tensorboard", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Yv/mt5-small-finetuned-amazon-en-es
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ZAKok97/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ZYW/Xquad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # en-de-vi-zh-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/en-de-vi-zh-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-en-de-es-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-en-de-es-vi-zh-model
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbart-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbart-model
null
[ "transformers", "pytorch", "mbart", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-en-de-es-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-en-de-es-vi-zh-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-en-de-es-vi-zh-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-model
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # squad-mbert-model_2 This model was trained from scratch on an unkown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.7.0 - Tokenizers 0.10.3
{}
ZYW/squad-mbert-model_2
null
[ "transformers", "pytorch", "bert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
question-answering
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # test-squad-trained This model was trained from scratch on an unkown dataset. It achieves the following results on the evaluation set: - Loss: 1.2026 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.988 | 1.0 | 5486 | 1.1790 | | 0.7793 | 2.0 | 10972 | 1.2026 | | 0.8068 | 3.0 | 16458 | 1.2026 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.3
{}
ZYW/test-squad-trained
null
[ "transformers", "pytorch", "distilbert", "question-answering", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.8631 - Matthews Correlation: 0.5411 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5249 | 1.0 | 535 | 0.5300 | 0.4152 | | 0.3489 | 2.0 | 1070 | 0.5238 | 0.4940 | | 0.2329 | 3.0 | 1605 | 0.6447 | 0.5162 | | 0.1692 | 4.0 | 2140 | 0.7805 | 0.5332 | | 0.1256 | 5.0 | 2675 | 0.8631 | 0.5411 | ### Framework versions - Transformers 4.10.3 - Pytorch 1.9.0+cu102 - Datasets 1.12.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["glue"], "metrics": ["matthews_correlation"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5410897632107913, "name": "Matthews Correlation"}]}]}]}
ZZDDBBCC/distilbert-base-uncased-finetuned-cola
null
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ZacharyAllwein/DialoGPT-small-rick
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Zafer/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
# Wav2Vec2-Large-XLSR-53-Tamil Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Tamil using the [Common Voice](https://huggingface.co/datasets/common_voice) When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "???", split="test[:2%]"). processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows on the {language} test data of Common Voice. ```python import torch import torchaudio from datasets import load_dataset, load_metric from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import re test_dataset = load_dataset("common_voice", "???", split="test") wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model = Wav2Vec2ForCTC.from_pretrained("Zaid/wav2vec2-large-xlsr-53-arabic-egyptian") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the aduio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: ??? % ## Training The Common Voice `train`, `validation` datasets were used for training. The script used for training can be found ???
{"language": "???", "license": "apache-2.0", "tags": ["audio", "automatic-speech-recognition", "speech", "xlsr-fine-tuning-week"], "datasets": ["common_voice"], "model-index": [{"name": "XLSR Wav2Vec2 Arabic Egyptian by Zaid", "results": [{"task": {"type": "automatic-speech-recognition", "name": "Speech Recognition"}, "dataset": {"name": "Common Voice ???", "type": "common_voice", "args": "???"}, "metrics": [{"type": "wer", "value": "???", "name": "Test WER"}]}]}]}
arbml/wav2vec2-large-xlsr-53-arabic-egyptian
null
[ "transformers", "pytorch", "jax", "wav2vec2", "automatic-speech-recognition", "audio", "speech", "xlsr-fine-tuning-week", "dataset:common_voice", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
arbml/wav2vec2-large-xlsr-dialect-classification
null
[ "transformers", "pytorch", "jax", "wav2vec2", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
Zakky/Real_Esrgan
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("Zane/Ricky") model = AutoModelWithLMHead.from_pretrained("Zane/Ricky") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Zane/Ricky
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# DialoGPT Trained on the Speech of a Game Character This is an instance of [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small) trained on a game character, Neku Sakuraba from [The World Ends With You](https://en.wikipedia.org/wiki/The_World_Ends_with_You). The data comes from [a Kaggle game script dataset](https://www.kaggle.com/ruolinzheng/twewy-game-script). Chat with the model: ```python from transformers import AutoTokenizer, AutoModelWithLMHead tokenizer = AutoTokenizer.from_pretrained("r3dhummingbird/DialoGPT-small-neku") model = AutoModelWithLMHead.from_pretrained("r3dhummingbird/DialoGPT-small-neku") # Let's chat for 4 lines for step in range(4): # encode the new user input, add the eos_token and return a tensor in Pytorch new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt') # print(new_user_input_ids) # append the new user input tokens to the chat history bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids # generated a response while limiting the total chat history to 1000 tokens, chat_history_ids = model.generate( bot_input_ids, max_length=200, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=3, do_sample=True, top_k=100, top_p=0.7, temperature=0.8 ) # pretty print last ouput tokens from bot print("NekuBot: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True))) ```
{"license": "mit", "tags": ["conversational"], "thumbnail": "https://huggingface.co/front/thumbnails/dialogpt.png"}
Zane/Ricky3
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "license:mit", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
More information: [github](https://github.com/TanHM-1211/viRoberta-l6-h384-cased) ```python from underthesea import word_tokenize from transformers import RobertaTokenizer, RobertaModel model_name = 'Zayt/viRoberta-l6-h384-word-cased' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForMaskedLM.from_pretrained(model_name) text = word_tokenize("Xin chào, tôi không còn là sinh viên đại học Bách Khoa.", format='text') output = model(**tokenizer(text, return_tensors='pt)) output ```
{}
Zayt/viRoberta-l6-h384-word-cased
null
[ "transformers", "pytorch", "roberta", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00