Search is not available for this dataset
pipeline_tag
stringclasses
48 values
library_name
stringclasses
205 values
text
stringlengths
0
18.3M
metadata
stringlengths
2
1.07B
id
stringlengths
5
122
last_modified
null
tags
listlengths
1
1.84k
sha
null
created_at
stringlengths
25
25
text-generation
transformers
# Emilybot DialoGPT Model
{"tags": ["conversational"]}
abhisht/DialoGPT-medium-Emilybot
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
abhisht/DialogGPT-medium-Emilybot
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# GPT2-Tamil This repository is created as part of the Flax/Jax community week by Huggingface. The aim of this project is to pretrain a language model using GPT-2 specifically for Tamil language. ## Setup: To setup the project, run the following command, ```python pip install -r requirements.txt ``` ## Model: Pretrained model on Tamil language using a causal language modeling (CLM) objective. ## Dataset Used: The GTP-2 model is trained on [oscar dataset - ta](https://huggingface.co/datasets/oscar) and [IndicNLP dataset - ta](https://indicnlp.ai4bharat.org/corpora/) ## Intended uses & limitations: You can use the raw model for next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=gpt2) to look for fine-tuned versions on a task that interests you. ## How to pretrain the model: To perform training, do the following steps, - Export the model directory (where you want to store the model artifacts like config, tokenizer, etc.) ```python >>> export MODEL_DIR=<model_dir> ``` - Create the config.json by running the following command, ```python >>> python src/create_config.py ``` - Create the tokenizer by running the following command, ```python >>> python src/train_tokenizer.py ``` - Once the config and tokenizer is created, run the following script to start training the flax model ```python >>> python scripts/train_gpt2-oscar-tamil.sh ``` ## How to use: To perform language generation using the model, pipeline can be used directly. - First convert the flax model to pytorch using the following command, ```python python src/convert_flax_to_pytorch.py ``` - Use the following snippet to perform language generation, ```python >>> from transformers import AutoTokenizer, AutoModelWithLMHead, pipeline >>> model_name = 'abinayam/gpt-2-tamil' >>> model = AutoModelWithLMHead.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) >>> set_seed(42) >>> input_text = "ஒரு ஊரிலே ஒரு காக்கைக்கு" >>> max_len = 300 >>> no_seq = 5 >>> generator = pipeline('text-generation', model=model, tokenizer=tokenizer) >>> sequence = generator(input_text, max_length=max_len, num_return_sequences=no_seq) ```
{"language": "ta", "datasets": ["oscar", "IndicNLP"], "widget": [{"text": "\u0b92\u0bb0\u0bc1 \u0b8a\u0bb0\u0bbf\u0bb2\u0bc7 \u0b92\u0bb0\u0bc1 \u0b95\u0bbe\u0b95\u0bcd\u0b95\u0bc8\u0b95\u0bcd\u0b95\u0bc1"}]}
abinayam/gpt-2-tamil
null
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt2", "text-generation", "ta", "dataset:oscar", "dataset:IndicNLP", "autotrain_compatible", "endpoints_compatible", "has_space", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# Model v2
{"tags": ["conversational"]}
abjbpi/DS_small
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
# My Awesome Model
{"tags": ["conversational"]}
abjbpi/Dwight_Schrute
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
abjbpi/Hate_Speech
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
Fine-tuned [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on German using the Common Voice dataset. When using this model, make sure that your speech input is sampled at 16kHz. As capitalization is an important part of the German language (eg. Sie vs. sie). I trained a model using a vocab that includes both lower case and upper case letters in hopes that the model would learn the correct casing. This removes the need to do any post-processing like truecasing. | Reference | Prediction | | ------------- | ------------- | | **Die** zoologische **Einordnung** der **Spezies** ist seit **Jahrzehnten** umstritten | **Die** psoologische **Einordnung** der **Spezies** ist seit **Jahrzehnten** umstritten | | **Hauptgeschäftsfeld** war ursprünglich der öffentliche **Sektor** in **Irland** | **Hauptgeschäftsfeld** war ursprünglich der öffentliche **Sektor** in **Irland** | | **Er** vertrat den **Wahlkreis Donauwörth** im **Parlament** | **Er** vertrat den **Wahlkreis DonauWört** im **Parlament** | | **Ich** bin gespannt welche **Lieder** sie wählt | **Ich** bin gespannt welche **Lieder** see wählt | | **Eine** allgemein verbindliche **Definition** gibt es nicht | **Eine** allgemeinverbindliche **Definition** gibt es nicht | ``` from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC import soundfile as sf import torch # load model and processor processor = Wav2Vec2Processor.from_pretrained("abnerh/wav2vec2-xlsr-300m-german-truecase") model = Wav2Vec2ForCTC.from_pretrained("abnerh/wav2vec2-xlsr-300m-german-truecase") speech, sr = sf.read('audio.wav') # tokenize input_values = processor(speech, return_tensors="pt", padding="longest").input_values # Batch size 1 # retrieve logits logits = model(input_values).logits # take argmax and decode predicted_ids = torch.argmax(logits, dim=-1) transcription = processor.batch_decode(predicted_ids) # print transcription results print(transcription) ```
{}
abnerh/wav2vec2-xlsr-300m-german-truecase
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aboukric/covid-19
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aboukric/gpt2-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
aboukric/wav2vec2-large-xls-r-300m-turkish-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# Transferring Monolingual Model to Low-Resource Language: The Case Of Tigrinya: ## Proposed Method: <img src="data/proposed.png" height = "330" width ="760" > The proposed method transfers a mono-lingual Transformer model into new target language at lexical level by learning new token embeddings. All implementation in this repo uses XLNet as a source Transformer model, however, other Transformer models can also be used similarly. ## Main files: All files are IPython Notebook files which can be excuted simply in Google Colab. - train.ipynb : Fine-tunes XLNet (mono-lingual transformer) on new target language (Tigrinya) sentiment analysis dataset. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bSSrKE-TSphUyrNB2UWhFI-Bkoz0a5l0?usp=sharing) - test.ipynb : Evaluates the fine-tuned model on test data. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/17R1lvRjxILVNk971vzZT79o2OodwaNIX?usp=sharing) - token_embeddings.ipynb : Trains a word2vec token embeddings for Tigrinya language. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1hCtetAllAjBw28EVQkJFpiKdFtXmuxV7?usp=sharing) - process_Tigrinya_comments.ipynb : Extracts Tigrinya comments from mixed language contents. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1-ndLlBV-iLZNBW3Z8OfKAqUUCjvGbdZU?usp=sharing) - extract_YouTube_comments.ipynb : Downloads available comments from a YouTube channel ID. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1b7G85wHKe18y45JIDtvDJdO5dOkRmDdp?usp=sharing) - auto_labelling.ipynb : Automatically labels Tigrinya comments in to positive or negative sentiments based on [Emoji's sentiment](http://kt.ijs.si/data/Emoji_sentiment_ranking/). [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1wnZf7CBBCIr966vRUITlxKCrANsMPpV7?usp=sharing) ## Tigrinya Tokenizer: A [sentencepiece](https://github.com/google/sentencepiece) based tokenizer for Tigrinya has been released to the public and can be accessed as in the following: from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("abryee/TigXLNet") tokenizer.tokenize("ዋዋዋው እዛ ፍሊም ካብተን ዘድንቀን ሓንቲ ኢያ ሞ ብጣዕሚ ኢና ነመስግን ሓንቲ ክብላ ደልየ ዘሎኹ ሓደራኣኹም ኣብ ጊዜኹም ተረክቡ") ## TigXLNet: A new general purpose transformer model for low-resource language Tigrinya is also released to the public and be accessed as in the following: from transformers import AutoConfig, AutoModel config = AutoConfig.from_pretrained("abryee/TigXLNet") config.d_head = 64 model = AutoModel.from_pretrained("abryee/TigXLNet", config=config) ## Evaluation: The proposed method is evaluated using two datasets: - A newly created sentiment analysis dataset for low-resource language (Tigriyna). <table> <tr> <td> <table> <thead> <tr> <th><sub>Models</sub></th> <th><sub>Configuration</sub></th> <th><sub>F1-Score</sub></th> </tr> </thead> <tbody> <tr> <td rowspan=3><sub>BERT</sub></td> <td rowspan=1><sub>+Frozen BERT weights</sub></td> <td><sub>54.91</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>74.26</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>76.35</sub></td> </tr> <tr> <td rowspan=3><sub>mBERT</sub></td> <td rowspan=1><sub>+Frozen mBERT weights</sub></td> <td><sub>57.32</sub></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><sub>76.01</sub></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><sub>77.51</sub></td> </tr> <tr> <td rowspan=3><sub>XLNet</sub></td> <td rowspan=1><sub>+Frozen XLNet weights</sub></td> <td><strong><sub>68.14</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Random embeddings</sub></td> <td><strong><sub>77.83</sub></strong></td> </tr> <tr> <td rowspan=1><sub>+Frozen token embeddings</sub></td> <td><strong><sub>81.62</sub></strong></td> </tr> </tbody> </table> </td> <td><img src="data/effect_of_dataset_size.png" alt="3" width = 480px height = 280px></td> </tr> </table> - Cross-lingual Sentiment dataset ([CLS](https://zenodo.org/record/3251672#.Xs65VzozbIU)). <table> <thead> <tr> <th rowspan=2><sub>Models</sub></th> <th rowspan=1 colspan=3><sub>English</sub></th> <th rowspan=1 colspan=3><sub>German</sub></th> <th rowspan=1 colspan=3><sub>French</sub></th> <th rowspan=1 colspan=3><sub>Japanese</sub></th> <th rowspan=2><sub>Average</sub></th> </tr> <tr> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> <th colspan=1><sub>Books</sub></th> <th colspan=1><sub>DVD</sub></th> <th colspan=1><sub>Music</sub></th> </tr> </thead> <tbody> <tr> <td colspan=1><sub>XLNet</sub></td> <td colspan=1><sub><strong>92.90</strong></sub></td> <td colspan=1><sub><strong>93.31</strong></sub></td> <td colspan=1><sub><strong>92.02</strong></sub></td> <td colspan=1><sub>85.23</sub></td> <td colspan=1><sub>83.30</sub></td> <td colspan=1><sub>83.89</sub></td> <td colspan=1><sub>73.05</sub></td> <td colspan=1><sub>69.80</sub></td> <td colspan=1><sub>70.12</sub></td> <td colspan=1><sub>83.20</sub></td> <td colspan=1><sub><strong>86.07</strong></sub></td> <td colspan=1><sub>85.24</sub></td> <td colspan=1><sub>83.08</sub></td> </tr> <tr> <td colspan=1><sub>mBERT</sub></td> <td colspan=1><sub>92.78</sub></td> <td colspan=1><sub>90.30</sub></td> <td colspan=1><sub>91.88</sub></td> <td colspan=1><sub><strong>88.65</strong></sub></td> <td colspan=1><sub><strong>85.85</strong></sub></td> <td colspan=1><sub><strong>90.38</strong></sub></td> <td colspan=1><sub><strong>91.09</strong></sub></td> <td colspan=1><sub><strong>88.57</strong></sub></td> <td colspan=1><sub><strong>93.67</strong></sub></td> <td colspan=1><sub><strong>84.35</strong></sub></td> <td colspan=1><sub>81.77</sub></td> <td colspan=1><sub><strong>87.53</strong></sub></td> <td colspan=1><sub><strong>88.90</strong></sub></td> </tr> </tbody> </table> ## Dataset used for this paper: We have constructed new sentiment analysis dataset for Tigrinya language and it can be found in the zip file (Tigrinya Sentiment Analysis Dataset) ## Citing our paper: Our paper can be accessed from ArXiv [link](https://arxiv.org/pdf/2006.07698.pdf), and please consider citing our work. @misc{tela2020transferring, title={Transferring Monolingual Model to Low-Resource Language: The Case of Tigrinya}, author={Abrhalei Tela and Abraham Woubie and Ville Hautamaki}, year={2020}, eprint={2006.07698}, archivePrefix={arXiv}, primaryClass={cs.CL} } ## Any questions, comments, feedback is appreciated! And can be forwarded to the following email: [email protected]
{}
abrhaleitela/TigXLNet
null
[ "transformers", "pytorch", "xlnet", "arxiv:2006.07698", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/basic_reference_recognizer-lapt-0.1
null
[ "transformers", "reference_recognizer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/basic_reference_recognizer-rest-0.1
null
[ "transformers", "reference_recognizer", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/bert-lapt-0.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/bert-lapt-0.2
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/bert-rest-0.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/bert-rest-0.2
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/bert-rest-lapt-0.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/classifier-lapt-0.2.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/classifier-lapt-0.2
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/classifier-rest-0.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/classifier-rest-0.2.1
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
{}
absa/classifier-rest-0.2
null
[ "transformers", "tf", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
abubakar/wav2vec2-base-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
acat/wav2vec2-base-timit-demo-colab
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
ruGPT-3 fine-tuned on russian fanfiction about Bangatan Boys (BTS).
{}
accelotron/rugpt3-ficbook-bts
null
[ "transformers", "pytorch", "gpt2", "text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
#3PO
{"tags": ["conversational"]}
aced/DialoGPT-medium-3PO
null
[ "transformers", "pytorch", "gpt2", "text-generation", "conversational", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
achoo/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
acleclair/distilgpt2-finetuned-wikitext2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
acoadmarmon/un-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
https://www.guilded.gg/thisiscineplex/overview/news/XRz48Dr6 https://www.guilded.gg/FLIXmasGR/overview/news/7R0WorPy https://www.guilded.gg/FLIXmasGR/overview/news/NyE5BPmy https://www.guilded.gg/FLIXmasGR/overview/news/2l3Konal https://www.guilded.gg/FLIXmasGR/overview/news/AykDjvVR https://www.guilded.gg/FLIXmasGR/overview/news/16YOGQoR https://www.guilded.gg/FLIXmasGR/overview/news/KR2ngpXR https://www.guilded.gg/FLIXmasGR/overview/news/xypa2qZR https://www.guilded.gg/FLIXmasGR/overview/news/A6jZGQk6 https://www.guilded.gg/FLIXmasGR/overview/news/1ROQVMe6 https://www.guilded.gg/FLIXmasGR/overview/news/4yAW0Kvl https://www.guilded.gg/FLIXmasGR/overview/news/JlaoGQBy https://www.guilded.gg/FLIXmasGR/overview/news/YyrPnVEl https://www.guilded.gg/FLIXmasGR/overview/news/4lGz3aBR https://www.guilded.gg/FLIXmasGR/overview/news/16nKkj1y https://www.guilded.gg/FLIXmasGR/overview/news/X6QA0Ng6 https://www.guilded.gg/FLIXmasGR/overview/news/XRz4xGa6 https://www.guilded.gg/FLIXmasGR/overview/news/PlqV9826 https://www.guilded.gg/FLIXmasGR/overview/news/7R0WokWy https://www.guilded.gg/FLIXmasGR/overview/news/qlDvK4dy https://www.guilded.gg/FLIXmasGR/overview/news/2l3KopZl https://www.guilded.gg/FLIXmasGR/overview/news/16YOGj4R https://www.guilded.gg/FLIXmasGR/overview/news/4ldxGzQl
{}
activatepin/RC_News
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-DK_laptop") model = AutoModel.from_pretrained("activebus/BERT-DK_laptop") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT-DK_laptop
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_rest` is trained from 1G (19 types) restaurants from Yelp. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-DK_rest") model = AutoModel.from_pretrained("activebus/BERT-DK_rest") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT-DK_rest
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_laptop` is trained from 100MB laptop corpus under `Electronics/Computers & Accessories/Laptops`. `BERT-PT_*` addtionally uses SQuAD 1.1. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_laptop") model = AutoModel.from_pretrained("activebus/BERT-PT_laptop") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT-PT_laptop
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT-DK_rest` is trained from 1G (19 types) restaurants from Yelp. `BERT-PT_*` addtionally uses SQuAD 1.1. ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-PT_rest") model = AutoModel.from_pretrained("activebus/BERT-PT_rest") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT-PT_rest
null
[ "transformers", "pytorch", "jax", "safetensors", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. Please visit https://github.com/howardhsu/BERT-for-RRC-ABSA for details. `BERT-XD_Review` is a cross-domain (beyond just `laptop` and `restaurant`) language model, where each example is from a single product / restaurant with the same rating, post-trained (fine-tuned) on a combination of 5-core Amazon reviews and all Yelp data, expected to be 22 G in total. It is trained for 4 epochs on `bert-base-uncased`. The preprocessing code [here](https://github.com/howardhsu/BERT-for-RRC-ABSA/transformers). ## Model Description The original model is from `BERT-base-uncased`. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT-XD_Review") model = AutoModel.from_pretrained("activebus/BERT-XD_Review") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) `BERT_Review` is expected to have similar performance on domain-specific tasks (such as aspect extraction) as `BERT-DK`, but much better on general tasks such as aspect sentiment classification (different domains mostly share similar sentiment words). ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT-XD_Review
null
[ "transformers", "pytorch", "bert", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
# ReviewBERT BERT (post-)trained from review corpus to understand sentiment, options and various e-commence aspects. `BERT_Review` is cross-domain (beyond just `laptop` and `restaurant`) language model with one example from randomly mixed domains, post-trained (fine-tuned) on a combination of 5-core Amazon reviews and all Yelp data, expected to be 22 G in total. It is trained for 4 epochs on `bert-base-uncased`. The preprocessing code [here](https://github.com/howardhsu/BERT-for-RRC-ABSA/transformers). ## Model Description The original model is from `BERT-base-uncased` trained from Wikipedia+BookCorpus. Models are post-trained from [Amazon Dataset](http://jmcauley.ucsd.edu/data/amazon/) and [Yelp Dataset](https://www.yelp.com/dataset/challenge/). ## Instructions Loading the post-trained weights are as simple as, e.g., ```python import torch from transformers import AutoModel, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("activebus/BERT_Review") model = AutoModel.from_pretrained("activebus/BERT_Review") ``` ## Evaluation Results Check our [NAACL paper](https://www.aclweb.org/anthology/N19-1242.pdf) `BERT_Review` is expected to have similar performance on domain-specific tasks (such as aspect extraction) as `BERT-DK`, but much better on general tasks such as aspect sentiment classification (different domains mostly share similar sentiment words). ## Citation If you find this work useful, please cite as following. ``` @inproceedings{xu_bert2019, title = "BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis", author = "Xu, Hu and Liu, Bing and Shu, Lei and Yu, Philip S.", booktitle = "Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics", month = "jun", year = "2019", } ```
{}
activebus/BERT_Review
null
[ "transformers", "pytorch", "jax", "bert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
ad6398/gupshup_e2e_pegasus
null
[ "transformers", "pytorch", "mbart", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
ad6398/gupshup_e2e_t5
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
ad6398/test_models
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
This model was distilled from [BERTimbau](https://huggingface.co/neuralmind/bert-base-portuguese-cased) ## Usage ```python from transformers import AutoTokenizer # Or BertTokenizer from transformers import AutoModelForPreTraining # Or BertForPreTraining for loading pretraining heads from transformers import AutoModel # or BertModel, for BERT without pretraining heads model = AutoModelForPreTraining.from_pretrained('adalbertojunior/distilbert-portuguese-cased') tokenizer = AutoTokenizer.from_pretrained('adalbertojunior/distilbert-portuguese-cased', do_lower_case=False) ``` You should fine tune it on your own data. It can achieve accuracy up to 99% relative to the original BERTimbau in some tasks.
{"language": ["pt"]}
adalbertojunior/distilbert-portuguese-cased
null
[ "transformers", "pytorch", "safetensors", "bert", "feature-extraction", "pt", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
transformers
Image Captioning in Portuguese trained with ViT and GPT2 [DEMO](https://huggingface.co/spaces/adalbertojunior/image_captioning_portuguese) Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC)
{"language": ["pt"]}
adalbertojunior/image_captioning_portuguese
null
[ "transformers", "pytorch", "jax", "vision-encoder-decoder", "pt", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adam/distilbert-base-uncased-finetuned-cola
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
This model has been trained by fine-tuning a BERTweet sentiment classification model named "finiteautomata/bertweet-base-sentiment-analysis", on a labeled positive/negative dataset of tweets. email : [email protected]
{}
adam-chell/tweet-sentiment-analyzer
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adam-h-ds/distilbert-base-uncased-finetuned-cuad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adam1224/bert-finetuned-ner
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
adam1224/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adam1224/dummy-model2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adam1224/dummy-model3
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
# Configuration `title`: _string_ Display title for the Space `emoji`: _string_ Space emoji (emoji-only character allowed) `colorFrom`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `colorTo`: _string_ Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray) `sdk`: _string_ Can be either `gradio` or `streamlit` `app_file`: _string_ Path to your main application file (which contains either `gradio` or `streamlit` Python code). Path is relative to the root of the repository. `pinned`: _boolean_ Whether the Space stays on top of your list.
{"title": "Twitter Sentiments", "emoji": "\ud83d\ude0d", "colorFrom": "yellow", "colorTo": "blue", "sdk": "streamlit", "app_file": "app.py", "pinned": false}
adam3242/test
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
dsfregrtgr
{}
adam3242/testing
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adansuarez/distilbert-base-uncased-finetuned-squad
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
### How to use Here is how to use this model in PyTorch: ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("addy88/T5-23-emotions-detections") tokenizer = T5Tokenizer.from_pretrained("addy88/T5-23-emotions-detections") text_to_summarize="emotion: i don't like it this is nonsense." input_ids = tokenizer.encode(text_to_summarize, return_tensors="pt", add_special_tokens=True) input_ids = input_ids.to(self.device) generated_ids = model.generate( input_ids=input_ids, num_beams=2, max_length=512, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True, top_p=0.95, top_k=50, num_return_sequences=1, ) preds = [tokenizer.decode(g,skip_special_tokens=True,clean_up_tokenization_spaces=True,)for g in generated_ids] ```
{}
addy88/T5-23-emotions-detections
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
addy88/argument-classifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
addy88/code-t5-ruby
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
sentence-similarity
sentence-transformers
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. Finetune on [ELI5](https://huggingface.co/datasets/eli5) <!--- Describe your model here --> ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer sentences = ["This is an example sentence", "Each sentence is converted"] model = SentenceTransformer('addy88/eli5-all-mpnet-base-v2') embeddings = model.encode(sentences) print(embeddings) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #Mean Pooling - Take attention mask into account for correct averaging def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) # Sentences we want sentence embeddings for sentences = ['This is an example sentence', 'Each sentence is converted'] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained('addy88/eli5-all-mpnet-base-v2') model = AutoModel.from_pretrained('addy88/eli5-all-mpnet-base-v2') # Tokenize sentences encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input) # Perform pooling. In this case, mean pooling. sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) print("Sentence embeddings:") print(sentence_embeddings) ``` ## Evaluation Results <!--- Describe how your model was evaluated --> For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=addy88/eli5-all-mpnet-base-v2) ## Training The model was trained with the parameters: **DataLoader**: `sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader` of length 14393 with parameters: ``` {'batch_size': 16} ``` **Loss**: `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters: ``` {'scale': 20.0, 'similarity_fct': 'cos_sim'} ``` Parameters of the fit()-Method: ``` { "epochs": 1, "evaluation_steps": 0, "evaluator": "NoneType", "max_grad_norm": 1, "optimizer_class": "<class 'transformers.optimization.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 1439, "weight_decay": 0.01 } ``` ## Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) ) ``` ## Citing & Authors This model was trained by [sentence-transformers](https://www.sbert.net/). If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084): ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "http://arxiv.org/abs/1908.10084", } ```
{"tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "transformers"], "pipeline_tag": "sentence-similarity"}
addy88/eli5-all-mpnet-base-v2
null
[ "sentence-transformers", "pytorch", "roberta", "feature-extraction", "sentence-similarity", "transformers", "arxiv:1908.10084", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This Model is 8bit Version of EleutherAI/gpt-j-6B. It is converted by Facebook's bitsandbytes library. The original GPT-J takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. So for finetuning on single GPU This model is converted into 8bit. Here's how to run it: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KNf5siQdM7ILQM-pHsP6gNVPKl1SJdU1) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://colab.research.google.com/drive/1FxGeYQyE7cx9VNCBC4gUyRVZGORW7c6g) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Can I use this technique with other models? The model was converted using [this notebook](https://colab.research.google.com/drive/1rwxh0XRdVi8VEbTx97l9xXr4JbRhZaq5#scrollTo=CX3VHn-J1Zer). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
{}
addy88/gpt-j-8bit
null
[ "transformers", "pytorch", "gptj", "text-generation", "arxiv:2106.09685", "arxiv:2110.02861", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
{}
addy88/gpt-neo-netflix
null
[ "transformers", "pytorch", "gpt_neo", "text-generation", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-generation
transformers
This Model is 8bit Version of EleutherAI/gpt-j-6B. It is converted by Facebook's bitsandbytes library. The original GPT-J takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. So for finetuning on single GPU This model is converted into 8bit. Here's how to run it: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1KNf5siQdM7ILQM-pHsP6gNVPKl1SJdU1) __The [original GPT-J](https://huggingface.co/EleutherAI/gpt-j-6B/tree/main)__ takes 22+ GB memory for float32 parameters alone, and that's before you account for gradients & optimizer. Even if you cast everything to 16-bit, it will still not fit onto most single-GPU setups short of A6000 and A100. You can inference it [on TPU](https://colab.research.google.com/github/kingoflolz/mesh-transformer-jax/blob/master/colab_demo.ipynb) or CPUs, but fine-tuning is way more expensive. Here, we apply several techniques to make GPT-J usable and fine-tunable on a single GPU with ~11 GB memory: - large weight tensors are quantized using dynamic 8-bit quantization and de-quantized just-in-time for multiplication - using gradient checkpoints to store one only activation per layer: using dramatically less memory at the cost of 30% slower training - scalable fine-tuning with [LoRA](https://arxiv.org/abs/2106.09685) and [8-bit Adam](https://arxiv.org/abs/2110.02861) In other words, all of the large weight-matrices are frozen in 8-bit, and you only train small adapters and optionally 1d tensors (layernorm scales, biases). ![img](https://i.imgur.com/n4XXo1x.png) __Does 8-bit affect model quality?__ Technically yes, but the effect is negligible in practice. [This notebook measures wikitext test perplexity](https://colab.research.google.com/drive/1FxGeYQyE7cx9VNCBC4gUyRVZGORW7c6g) and it is nigh indistinguishable from the original GPT-J. Quantized model is even slightly better, but that is not statistically significant. Our code differs from other 8-bit methods in that we use **8-bit only for storage, and all computations are performed in float16 or float32**. As a result, we can take advantage of nonlinear quantization that fits to each individual weight distribution. Such nonlinear quantization does not accelerate inference, but it allows for much smaller error. __What about performance?__ Both checkpointing and de-quantization has some overhead, but it's surprisingly manageable. Depending on GPU and batch size, the quantized model is 1-10% slower than the original model on top of using gradient checkpoints (which is 30% overhead). In short, this is because block-wise quantization from bitsandbytes is really fast on GPU. ### How should I fine-tune the model? We recommend starting with the original hyperparameters from [the LoRA paper](https://arxiv.org/pdf/2106.09685.pdf). On top of that, there is one more trick to consider: the overhead from de-quantizing weights does not depend on batch size. As a result, the larger batch size you can fit, the more efficient you will train. ### Can I use this technique with other models? The model was converted using [this notebook](https://colab.research.google.com/drive/1rwxh0XRdVi8VEbTx97l9xXr4JbRhZaq5#scrollTo=CX3VHn-J1Zer). It can be adapted to work with other model types. However, please bear in mind that some models replace Linear and Embedding with custom alternatives that require their own BNBWhateverWithAdapters.
{}
addy88/gptj8
null
[ "transformers", "pytorch", "gptj", "text-generation", "arxiv:2106.09685", "arxiv:2110.02861", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/hindi-wav2vec2-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/hindi-wav2vec2-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/hindi-wav2vec2-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
addy88/hubart-hindi-asr
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hubert-base-timit-demo-colab This model is a fine-tuned version of [facebook/hubert-large-ls960-ft](https://huggingface.co/facebook/hubert-large-ls960-ft) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1092 - Wer: 0.1728 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.4664 | 4.0 | 500 | 2.3026 | 0.9866 | | 0.8171 | 8.0 | 1000 | 0.0980 | 0.1885 | | 0.2983 | 12.0 | 1500 | 0.0943 | 0.1750 | | 0.1769 | 16.0 | 2000 | 0.0990 | 0.1737 | | 0.1823 | 20.0 | 2500 | 0.1068 | 0.1757 | | 0.0761 | 24.0 | 3000 | 0.1041 | 0.1719 | | 0.0993 | 28.0 | 3500 | 0.1092 | 0.1728 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "hubert-base-timit-demo-colab", "results": []}]}
addy88/hubert-base-timit-demo-colab
null
[ "transformers", "pytorch", "tensorboard", "hubert", "automatic-speech-recognition", "generated_from_trainer", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
image-classification
transformers
### How to use Here is how to use this model in PyTorch: ```python from transformers import PerceiverFeatureExtractor, PerceiverForImageClassificationLearned import requests from PIL import Image feature_extractor = PerceiverFeatureExtractor.from_pretrained("addy88/perceiver_image_classifier") model = PerceiverForImageClassificationLearned.from_pretrained("addy88/perceiver_image_classifier") url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # prepare input encoding = feature_extractor(image, return_tensors="pt") inputs = encoding.pixel_values # forward pass outputs = model(inputs) logits = outputs.logits print("Predicted class:", model.config.id2label[logits.argmax(-1).item()]) >>> should print Predicted class: tabby, tabby cat ```
{}
addy88/perceiver_image_classifier
null
[ "transformers", "pytorch", "perceiver", "image-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
### How to use Here is how to use this model in PyTorch: ```python from transformers import PerceiverTokenizer, PerceiverForMaskedLM tokenizer = PerceiverTokenizer.from_pretrained("addy88/perceiver_imdb") model = PerceiverForMaskedLM.from_pretrained("addy88/perceiver_imdb") text = "This is an incomplete sentence where some words are missing." # prepare input encoding = tokenizer(text, padding="max_length", return_tensors="pt") # mask " missing.". Note that the model performs much better if the masked span starts with a space. encoding.input_ids[0, 52:61] = tokenizer.mask_token_id inputs, input_mask = encoding.input_ids.to(device), encoding.attention_mask.to(device) # forward pass outputs = model(inputs=inputs, attention_mask=input_mask) logits = outputs.logits masked_tokens_predictions = logits[0, 51:61].argmax(dim=-1) print(tokenizer.decode(masked_tokens_predictions)) >>> should print " missing." ```
{}
addy88/perceiver_imdb
null
[ "transformers", "pytorch", "perceiver", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
This model is funetune version of Codebert in roberta. On CodeSearchNet. ### Quick start: from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("addy88/programming-lang-identifier") model = AutoModelForSequenceClassification.from_pretrained("addy88/programming-lang-identifier") input_ids = tokenizer.encode(CODE_TO_IDENTIFY) logits = model(input_ids)[0] language_idx = logits.argmax() # index for the resulting label ###
{}
addy88/programming-lang-identifier
null
[ "transformers", "pytorch", "roberta", "text-classification", "autotrain_compatible", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
Pretraining Dataset: debatelab/aaac
{}
addy88/t5-argument-anlyser
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # t5-base-finetuned-sn-to-en This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the itihasa dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["itihasa"], "model-index": [{"name": "t5-base-finetuned-sn-to-en", "results": []}]}
addy88/t5-base-finetuned-sn-to-en
null
[ "transformers", "pytorch", "tensorboard", "t5", "text2text-generation", "generated_from_trainer", "dataset:itihasa", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
### How to use Here is how to use this model in PyTorch: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("addy88/t5-grammar-correction") model = AutoModelForSeq2SeqLM.from_pretrained("addy88/t5-grammar-correction") input_ids = tokenizer('grammar: This sentences has has bads grammar.', return_tensors='pt').input_ids outputs = model.generate(input_ids) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ```
{}
addy88/t5-grammar-correction
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
text2text-generation
transformers
{}
addy88/t5-qa-genrate-explain-context
null
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain_compatible", "endpoints_compatible", "text-generation-inference", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-odia-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-odia-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec-odia-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/addy88/wav2vec2-assamese-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/addy88/wav2vec2-assamese-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-assamese-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
audio-classification
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the superb dataset. It achieves the following results on the evaluation set: - Loss: 0.1339 - Accuracy: 0.9768 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.102 | 1.0 | 399 | 1.0087 | 0.6574 | | 0.5228 | 2.0 | 798 | 0.4266 | 0.9247 | | 0.3222 | 3.0 | 1197 | 0.2037 | 0.9744 | | 0.2096 | 4.0 | 1596 | 0.1444 | 0.9766 | | 0.2003 | 5.0 | 1995 | 0.1339 | 0.9768 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.14.0 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["superb"], "metrics": ["accuracy"], "model-index": [{"name": "wav2vec2-base-finetuned-ks", "results": []}]}
addy88/wav2vec2-base-finetuned-ks
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "audio-classification", "generated_from_trainer", "dataset:superb", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
addy88/wav2vec2-base-sanskrit-84h
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
{}
addy88/wav2vec2-base-timit-english
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-bengali-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-bengali-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-bengali-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-bhojpuri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-bhojpuri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-bhojpuri-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-dogri-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-dogri-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-dogri-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-english-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-english-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-english-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-gujarati-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-gujarati-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-gujarati-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-kannada-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-kannada-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-kannada-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "has_space", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # wav2vec2-large-xls-r-300m-hindi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"license": "apache-2.0", "tags": ["generated_from_trainer"], "datasets": ["common_voice"], "model-index": [{"name": "wav2vec2-large-xls-r-300m-hindi-colab", "results": []}]}
addy88/wav2vec2-large-xls-r-300m-hindi-colab
null
[ "transformers", "pytorch", "tensorboard", "wav2vec2", "automatic-speech-recognition", "generated_from_trainer", "dataset:common_voice", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-maithili-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-maithili-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-maithili-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-malayalam-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-malayalam-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-malayalam-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-marathi-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-marathi-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-marathi-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-nepali-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-nepali-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-nepali-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-punjabi-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-punjabi-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-punjabi-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-rajsthani-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-rajsthani-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-rajsthani-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-sanskrit-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-sanskrit-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-sanskrit-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-tamil-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-tamil-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-tamil-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-telugu-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-telugu-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-telugu-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
automatic-speech-recognition
transformers
## Usage The model can be used directly (without a language model) as follows: ```python import soundfile as sf import torch from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor import argparse def parse_transcription(wav_file): # load pretrained model processor = Wav2Vec2Processor.from_pretrained("addy88/wav2vec2-urdu-stt") model = Wav2Vec2ForCTC.from_pretrained("addy88/wav2vec2-urdu-stt") # load audio audio_input, sample_rate = sf.read(wav_file) # pad input values and return pt tensor input_values = processor(audio_input, sampling_rate=sample_rate, return_tensors="pt").input_values # INFERENCE # retrieve logits & take argmax logits = model(input_values).logits predicted_ids = torch.argmax(logits, dim=-1) # transcribe transcription = processor.decode(predicted_ids[0], skip_special_tokens=True) print(transcription) ```
{}
addy88/wav2vec2-urdu-stt
null
[ "transformers", "pytorch", "wav2vec2", "automatic-speech-recognition", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adeelahmad/model_name
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
fill-mask
transformers
{}
adeiMousa/dummy-model
null
[ "transformers", "pytorch", "camembert", "fill-mask", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adele/test-adele
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
{}
adelevie/distilbert-gsa-eula-opp
null
[ "transformers", "pytorch", "distilbert", "text-classification", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
text-classification
transformers
# Model Trained Using AutoNLP - Problem type: Multi-class Classification - Model ID: 18833547 - CO2 Emissions (in grams): 64.58945483765274 ## Validation Metrics - Loss: 0.14247722923755646 - Accuracy: 0.9586074193404036 - Macro F1: 0.9468339778730883 - Micro F1: 0.9586074193404036 - Weighted F1: 0.9585551117678807 - Macro Precision: 0.9445436604001405 - Micro Precision: 0.9586074193404036 - Weighted Precision: 0.9591405429662925 - Macro Recall: 0.9499427161888565 - Micro Recall: 0.9586074193404036 - Weighted Recall: 0.9586074193404036 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoNLP"}' https://api-inference.huggingface.co/models/adelgasmi/autonlp-kpmg_nlp-18833547 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("adelgasmi/autonlp-kpmg_nlp-18833547", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("adelgasmi/autonlp-kpmg_nlp-18833547", use_auth_token=True) inputs = tokenizer("I love AutoNLP", return_tensors="pt") outputs = model(**inputs) ```
{"language": "ar", "tags": "autonlp", "datasets": ["adelgasmi/autonlp-data-kpmg_nlp"], "widget": [{"text": "I love AutoNLP \ud83e\udd17"}], "co2_eq_emissions": 64.58945483765274}
adelgasmi/autonlp-kpmg_nlp-18833547
null
[ "transformers", "pytorch", "bert", "text-classification", "autonlp", "ar", "dataset:adelgasmi/autonlp-data-kpmg_nlp", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adelia/hgg
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
adhisetiawan/test-vit
null
[ "transformers", "pytorch", "safetensors", "vit", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00
null
null
{}
adhisetiawan/test-vit2
null
[ "region:us" ]
null
2022-03-02T23:29:05+00:00
feature-extraction
transformers
{}
adhisetiawan/vit-resisc45
null
[ "transformers", "pytorch", "vit", "feature-extraction", "endpoints_compatible", "region:us" ]
null
2022-03-02T23:29:05+00:00